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Abstract The goal of this article is to obtain bounds on the coefficients of modu-
lar and integral flow and tension polynomials of graphs. To this end we use the fact
that these polynomials can be realized as Ehrhart polynomials of inside-out poly-
topes. Inside-out polytopes come with an associated relative polytopal complex and,
for a wide class of inside-out polytopes, we show that this complex has a convex ear
decomposition. This leads to the desired bounds on the coefficients of these polyno-
mials.

Keywords Ehrhart polynomial · Inside-out polytope · Convex ear decomposition ·
Regular subdivision · Polytopal complex · M-vector

1 Introduction

The goal of this article is to obtain bounds on the coefficients of modular and inte-
gral flow and tension polynomials of graphs. To this end we employ Ehrhart theory,
the theory of lattice points in polyhedra. In past research [2, 3, 5, 7, 12] it has been
shown that each of these polynomials can be realized as the Ehrhart polynomial of
inside-out polytopes. Inside-out polytopes come with an associated relative polytopal
complex C′ ⊆ C . In this article we show that for a wide class of inside-out polytopes,
this polytopal complex can be triangulated so that the resulting relative simplicial
complex �′ ⊆ � is unimodular and �′ admits a convex ear decomposition (Theo-
rem 2). This implies constraints on the Ehrhart polynomial of the inside-out polytope
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(Theorem 4). In the case of modular flow and tension polynomials, which is of greater
interest in graph theory than the integral case, this leads to upper and lower bounds
on the coefficients of these polynomials (Theorem 5). In the integral case, Theorem 4
calls for a closer analysis of the Ehrhart polynomials of flow and tension polytopes,
which we begin in Sect. 8. In particular we obtain upper and lower bounds on the
h∗-vector of tension and flow polytopes.

This article is related to similar work done for the chromatic polynomial of a
graph. Steingrímsson [26] showed that the chromatic polynomial of graph can be
realized as the Hilbert function of a certain square-free monomial ideal, which in turn
gave rise to what Steingrímsson called the coloring complex of a graph. Subsequent
articles, building on Steingrímsson’s work, have investigated various properties of the
coloring complex. Jonsson [18] showed the coloring complex to be constructible and
hence Cohen–Macaulay. This result was improved by Hultman [17] who showed the
coloring complex to be shellable and by Hersh and Swartz [15] who showed that the
coloring complex has a convex ear decomposition. These results translate into bounds
on the coefficients of the chromatic polynomial.

Breuer and Dall [6] have shown that the integral and modular flow and tension
polynomials of a graph can also be realized as Hilbert functions of square-free mono-
mial ideals, working with the theory of lattice polytopes rather than the theory of
Stanley-Reisner rings. In the present article we continue this work to obtain bounds
on the coefficients of these polynomials. As we only need to focus on the geometry
to obtain our results, we do not use that these are Hilbert functions but only that they
are Ehrhart polynomials.

This article is organized as follows. We begin in the realm of discrete geometry
where we use Sect. 2 to give some preliminary definitions. We then focus on regular
subdivisions of polytopes in Sect. 3 where we show that the subdivision determined
by an inside-out polytope is regular (Lemma 2). We introduce the four counting poly-
nomials in Sect. 4 and summarize the realization of these as Ehrhart polynomials of
inside-out polytopes. In Sect. 5 we define convex ear decompositions and show that
regular triangulations of the complexes associated with inside-out polytopes have a
convex ear decomposition. As we need to relate the h-vector of an abstract simpli-
cial complex to the Ehrhart h∗-vector of a relative polytopal complex, we give an
overview of the well-known relationships between f -, h- and h∗-vectors in Sect. 6.
We are then in the position to derive our main results in Sect. 7. To deal with the inte-
gral case, more work has to be done, which we begin in Sect. 8 by obtaining bounds
on the h∗-vectors of flow and tension polytopes.

2 Preliminaries from discrete geometry

Before we begin, we gather some definitions from discrete geometry. We recommend
the textbooks [1, 30] as references.

The Ehrhart function LA of any set A ⊆ R
n is defined by LA(k) = |Zn ∩ k · A|

for k ∈ N. A lattice polytope is a polytope in R
n such that all vertices are integer

points. It is a theorem of Ehrhart that the Ehrhart function LP (k) of a lattice polytope
is a polynomial in k. Two polytopes P,Q are lattice isomorphic, P ≈ Q, if there
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exists an affine isomorphism A such that A|Zn is a bijection onto Z
n and AP = Q.

A d-simplex is the convex hull of d + 1 affinely independent points. A d-simplex
is unimodular if it is lattice isomorphic to the convex hull of d + 1 standard unit
vectors. A hyperplane arrangement is a finite collection H of affine hyperplanes and⋃

H denotes the union of all of these. A cell of H is the closure of a component of
the complement of

⋃
H. We use the notation

Ha,b = {
x ∈ R

n | 〈a, x〉 = b
}

for a ∈ R
n and b ∈ R to denote hyperplanes.

A polytopal complex is a finite collection C of polytopes in some R
n with the fol-

lowing two properties: If P ∈ C and F is a face of P , then F ∈ C ; and if P,Q ∈ C then
P ∩ Q ∈ C is common face of both P and Q. The polytopes in C are called faces and⋃

C , the union of all faces of C , is called the support of C . A (geometric) simplicial
complex is a polytopal complex in which all faces are simplices. An abstract simpli-
cial complex is a set � of subsets of a finite set V such that � is closed under taking
subsets. A geometric simplicial complex gives rise to an abstract simplicial complex
and every abstract simplicial complex can be realized by a geometric one. We will
not distinguish notationally between these two notions as it will be clear from the
context which is meant. A polytopal complex C′ that is a subset C′ ⊆ C of a polytopal
complex C is called a subcomplex of C . Subcomplexes of abstract simplicial com-
plexes are defined similarly. Given a collection S of polytopes in R

n such that for any
P,Q ∈ S the set P ∩ Q is a face of both P and Q, the polytopal complex C gener-
ated by S, is C = {F | F a face of P ∈ S}. A subdivision of a polytopal complex C is a
polytopal complex C′ such that

⋃
C = ⋃

C′ and every face of C′ is contained in a face
of C . A triangulation is a subdivision in which all faces are simplices. A unimodular
triangulation is a triangulation in which all simplices are unimodular.

A relative polytopal complex C′ ⊆ C is a pair of polytopal complexes C′ and C such
that C′ is a subcomplex of C . An inside-out polytope is a pair (P, H) of a polytope
P ⊆ R

n and a finite collection of hyperplanes H in R
n such that each hyperplane

H ∈ H meets the relative interior of P . Every inside-out polytope (P, H) comes
with an associated relative polytopal complex C′ ⊆ C , where C is generated by the
cells of the hyperplane arrangement intersected with P and C′ is the subcomplex of
C consisting of all those faces of C that are contained in

⋃
H ∪ ∂P . The Ehrhart

function L(P,H) of an inside-out polytope is the Ehrhart function of
⋃

C \ ⋃
C′, i.e.,

L(P,H)(k) =
∣
∣
∣
∣Z

n ∩ k ·
(

intP \
⋃

H
)∣

∣
∣
∣

for k ∈ N. We call an inside-out polytope integral if all the faces of C are lattice
polytopes. In this case L(P,H)(k) is a polynomial in k.

3 Regular subdivisions

We are going to use the concept of a regular subdivision of a polytope. For a thorough
treatment of this concept we refer to [8, 20, 27]. In this section we show that the poly-
topal complexes induced by inside-out polytopes are regular subdivisions. Moreover
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we present two tools from the literature that we are going to use. This will enable us
to show in Sect. 5 that the complexes that interest us have convex ear decompositions.

Loosely speaking, a polytopal complex P is a regular subdivision of a d-polytope
P if it is a subdivision of P and there exists a (d + 1)-polytope Q such that P is
the projection of the lower hull of Q. More precisely, we let P be a d-polytope and
assume without loss of generality that P ⊆ R

d × {0} ⊆ R
d+1 and define π to be the

map (v1, . . . , vd, vd+1) �→ (v1, . . . , vd,0) that forgets the last coordinate. A polytopal
complex P with

⋃
P = P is a regular subdivision of P ⊆ R

n if there exists a (d +1)-
polytope Q ⊆ R

d+1 such that the facets of P are precisely the images under π of
those facets of Q whose outer normal u = (u1, . . . , ud+1) has ud+1 < 0. A regular
triangulation is a regular subdivision that is a triangulation.

We note that having a regular subdivision is hereditary in the sense that if C is a
subcomplex of P such that

⋃
C is a polytope and P is a regular subdivision of

⋃
P ,

then C is a regular subdivision of
⋃

C .
If we can show that a given simplicial complex is a regular triangulation, this tells

us that we can realize this complex as a subcomplex of the boundary of a simplicial
polytope.

Lemma 1 Let P be a d-polytope and P a regular triangulation of P . Then:

(a) P |∂P is combinatorially equivalent to the boundary complex of a simplicial d-
polytope.

(b) P is combinatorially equivalent to a subcomplex of the boundary complex of a
simplicial (d + 1)-polytope.

Proof (a) is a result by Bruns and Römer [9, Lemma 9]. To show (b) we observe that
by assumption P is combinatorially equivalent to the lower hull of some (d + 1)-
polytope Q. Let Q′ be a polytope obtained by perturbing the vertices of Q slightly.
Then Q′ is simplicial and P is combinatorially equivalent to a subcomplex of the
boundary of Q′, as desired. �

To give a formal proof of the fact that a given complex is indeed a regular sub-
division, it is convenient to work with a different definition of regular subdivision,
that is easily seen to be equivalent: Let C be a polytopal complex whose support is a
polytope P . A function ω : P → R is a C -linear strictly C -convex support function if
the following properties hold.

(a) ω is continuous.
(b) ω is affine on each F ∈ C .
(c) ω is convex on P .
(d) The convex sets S ⊆ P that are inclusion maximal with the property that there

exists an affine function f such that f ≤ ω and f |S = ω|S , are exactly the facets
of C .

We call a convex set S with the properties given in (d) a domain of linearity. A sub-
division C of P possesses a C -linear strictly C -convex support function if and only if
C is a regular subdivision of P .
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Lemma 2 Let (P, H) be an inside-out polytope and let C′ ⊆ C be the associated
relative polytopal complex. Then C is a regular subdivision of P .

Proof For every affine hyperplane H ∈ H we define a function ωH : P → R as fol-
lows. Let z be any point in H , let v be a normal vector of H and define

ωH (x) := ∣
∣〈v, z〉 − 〈v, x〉∣∣.

As can be checked easily, ωH is continuous and affine on each of the two half-spaces
defined by H . Moreover ωH is convex, i.e.,

ωH

(
λx + (1 − λ)y

) ≤ λωH (x) + (1 − λ)ωH (y), (1)

where the inequality above is strict if and only if x, y /∈ H lie in opposite half-spaces.
Now, we define a function ω : P → R by

ω(x) =
∑

H∈H
ωH (x).

We claim that this function is a C -linear strictly C -convex support function.

(a) ω is continuous because it is a sum of continuous functions.
(b) ω is affine on each F ∈ C , because each of the ωH is affine on F .
(c) ω is convex because it is a sum of convex functions.

All that we have left to show is property (d).
Let S ⊆ P be a convex set that is inclusion maximal with respect to the property

that there is an affine function f : ⋃ C → R with f ≤ ω and f |S = ω|S . Assume that
there exist x, y ∈ S that are contained in the relative interior of two different maximal
faces of C . That means that there is a hyperplane H0 ∈ H that separates the two. Then
we have

f

(
1

2
x + 1

2
y

)

= ω

(
1

2
x + 1

2
y

)

<
1

2
ω(x) + 1

2
ω(y) = 1

2
f (x) + 1

2
f (y)

because inequality (1) holds strictly for ωH0 and weakly for all other ωH . But this
means that f is not affine on S, a contradiction. We conclude that no two points in
S can be separated by a hyperplane in H, which shows that S must be contained in a
maximal face F ∈ C .

To show that F is contained in S consider the following. We already know that ω|F
is an affine function. Because F is full-dimensional, ω|F can be extended uniquely
to an affine function f : P → R and we have f |F = ω|F by construction. Let x ∈ P

be any point. Pick a point y �= x that lies in the relative interior of F and choose
λ ∈ (0,1) such that λx + (1 − λ)y also lies in the relative interior of F . This is
possible because P is convex and F is full-dimensional. Then

λf (x) + (1 − λ)f (y) = f
(
λx + (1 − λ)y

)

= ω
(
λx + (1 − λ)y

)

≤ λω(x) + (1 − λ)ω(y).
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Because f (y) = ω(y) this implies f (x) ≤ ω(x). Thus f demonstrates that F is a
domain of linearity. As S was defined to be inclusion maximal, we can conclude
F = S.

We have now shown that every such set S is a maximal face of C . But the above
argument also shows that any maximal face F ∈ C is a domain of linearity. Therefore
the proof is complete. �

Of course C is not going to be simplicial in general. To obtain a simplicial complex,
we need to refine C further. To this end we use the concept of a pulling refinement,
see [27]: Given a polytopal complex C and a vertex v of C we define the complex
pull(C, v), obtained by pulling v, by

pull(C, v) = {F ∈ C | v /∈ F } ∪
⋃

Q

{conv(F ∪ v)|F a face of Q,v /∈ F },

where the union runs over all Q ∈ C such that v ∈ Q. A pulling refinement of C is a
polytopal complex obtained by pulling several vertices of C in a given order. A pulling
triangulation of C is a pulling refinement of C that is a triangulation. One important
property of this method of refinement is that pulling a vertex preserves regularity
of the subdivision: If C is a regular subdivision of a polytope P and C′ is a pulling
refinement of C , then C′ is a regular subdivision of P . See [14, 20].

A lattice polytope P such that all pulling triangulations of P are unimodular is
called compressed. An integral inside-out polytope P with associated relative poly-
topal complex C′ ⊆ C is compressed if all faces of C are compressed.

4 Flow and tension polynomials as Ehrhart functions

Both the modular and integral variants of the flow and tension polynomials of a graph
can be represented as Ehrhart functions of inside-out polytopes. In this section we de-
fine these polynomials and summarize the constructions of the corresponding inside-
out polytopes. For the general graph-theoretic background we refer the reader to [29].
A detailed treatment of the material in this section can be found in [5, Chaps. 3–4].

Throughout this paper, let G be a graph with edge set E and vertex set V . In
general G may have multiple edges and/or loops. However, when studying flows
(resp. tensions), we exclude graphs that have bridges (resp. loops), as there are no
nowhere-zero flows (tensions) in these cases. We now fix an orientation of G, which
we use to define flows and tensions. It is important to note, however, that all counting
polynomials studied in this article are invariants of the underlying undirected graph
and are independent of the chosen orientation.

A spanning forest T of G is a maximal cycle-free spanning subgraph of G. With
any path P in the underlying undirected graph we can associate a sign vector σ ∈
{0,±1}E by letting σe = +1 if e ∈ P and the orientation of e and the direction of
traversal of e are the same, by letting σe = −1 if e ∈ P and the orientation of e and
the direction of traversal of e are opposite, and by letting σe = 0 if e /∈ P .

Let A be the vertex-edge incidence matrix of G. We will interpret A as both a
matrix with entries in Z and as a matrix with entries in Zk . In the former case,
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kerA ⊆ R
E is the flow space of G and vectors f ∈ kerA ∩ {−k + 1, . . . , k − 1}E

are called k-flows of G. In the latter case, vectors f ∈ kerA ⊆ Z
E
k are called Zk-

flows. We will identify integers with their respective cosets in Zk and cosets in Zk

with their canonical representatives in Z. Thus we may view the set of k-flows as be-
ing contained in the open cube (−k, k)E and the set of Zk-flows as being contained
in the half-open cube [0, k)E .

Let M denote the cycle-edge incidence matrix, i.e., the matrix whose row vectors
are the sign vectors of all cycles of G. Again we interpret M as both a matrix with
entries in Z and as a matrix with entries in Zk . In the former case, kerM ⊆ R

E is the
tension space of G and vectors t ∈ kerM ∩{−k+1, . . . , k−1}E are called k-tensions
of G. In the latter case, vectors t ∈ kerA ⊆ Z

E
k are called Zk-tensions. Again we may

view the set of k-tensions as being contained in the open cube (−k, k)E and the set
of Zk-tensions as being contained in the half-open cube [0, k)E .

We call a vector z, with entries in Z or in Zk , nowhere-zero if ze �= 0 for all e ∈ E.
Now we define for all k ∈ N

ϕG(k) = #{nowhere-zero k-flows of G}
ϕ̄G(k) = #{nowhere-zero Zk-flows of G}
θG(k) = #{nowhere-zero k-tensions of G}
θ̄G(k) = #{nowhere-zero Zk-tensions of G}.

It turns out that all of these functions are polynomials in k. The polynomials ϕ̄G and
θ̄G are called the modular flow and tension polynomials of G, respectively. These
are the classic graph polynomials defined by Tutte. They are evaluations of the Tutte
polynomial and can be computed recursively, using a deletion-contraction formula.
The modular tension polynomial, θ̄G, is a non-trivial divisor of the chromatic poly-
nomial of G. ϕG and θG are called the integral flow and tension polynomials of G,
respectively. That these are in fact polynomials is a relatively recent result by Kochol
[19]. They were studied more intensively in [11] and [12].

From the above definitions it is straightforward to see that the integral flow and
tension polynomials of a graph are Ehrhart functions of inside-out polytopes. See
[5, 6] for details. Let H denote the hyperplane arrangement consisting of all coordi-
nate hyperplanes Hei,0. Then

ϕG(k) = LkerA∩(−1,1)E,H(k) and θG(k) = LkerM∩(−1,1)E,H(k).

These constructions are from [2, 3, 12]. The inside-out polytopes
(
kerA ∩ (−1,1)E, H

)
and

(
kerM ∩ (−1,1)E, H

)

are integral (which follows from the total unimodularity of A and M , see [22]) and
compressed (which follows e.g. from a theorem by Ohsugi and Hibi [21, Theo-
rem 1.1]).

To obtain the modular flow and tension polynomials as Ehrhart functions of inside-
out polytopes, we have a bit more work to do. Let T be a spanning forest of G. To
every non-tree edge e ∈ E \ T with tail(e) = u and head(e) = v there corresponds
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a unique path P in T from v to u. Let σ e denote the sign vector of this path. Let
C denote the |T | × |E \ T |-matrix that has the vectors σ e|T as columns. Any flow
f on G is uniquely determined by f |E\T via f |T = Cf |E\T . Any tension t on G

is uniquely determined by t |T via t |E\T = (−Ct)t |T . We can therefore parameterize
nowhere-zero Zk-flows (Zk-tensions) by lattice points in the open unit cube (0, k)E\T
(resp. (0, k)T ), subject to certain constraints that can be expressed via the matrix C.
Let A denote the set of rows of C and let B denote the set of rows of −Ct . Let
HA denote the set of hyperplanes Ha,k where a ∈ A and k ∈ Z such that Ha,k meets
int (0,1)E\T . Let HB denote the set of hyperplanes Hb,k where b ∈ B and k ∈ Z such
that Hb,k meets int (0,1)T . Then

ϕ̄G(k) = L(0,1)E\T ,HA (k) and θ̄G(k) = L(0,1)T ,HB (k).

The inside-out polytopes ((0,1)E\T , HA) and ((0,1)T , HB) are integral (which fol-
lows from the total unimodularity of C, see [22]) and compressed (which follows,
e.g., from Paco’s Lemma, see [14, Proposition 1.8]). The above constructions were
given by Breuer and Sanyal in [5, 7], to which we refer the interested reader for
details. See also [6].

For any spanning forest T , the matrix C defined above can also be used to con-
struct inside-out polytopes in the integral case. For a graph G with a fixed spanning
forest T we define the tension polytope TG by

TG = {
t ∈ R

T | −1 ≤ Ct t ≤ 1,−1 ≤ t ≤ 1
}

and the flow polytope FG by

FG = {
f ∈ R

E\T | −1 ≤ −Cf ≤ 1,−1 ≤ f ≤ 1
}
,

where 1 denotes the all-ones vector and the inequalities hold componentwise. Let
HT denote the collection of hyperplanes in R

T given by Ct t = 0 together with the
coordinate hyperplanes. Then the inside-out polytope (TG, HT ) is a lattice transform
of the inside-out polytope given above for the integral tension case and in partic-
ular L(TG,HT ) = θG. Let HF denote the collection of hyperplanes in R

E\T given
by Cf = 0 together with the coordinate hyperplanes. Then the inside-out polytope
(FG, HF ) is a lattice transform of the inside-out polytope given above for the in-
tegral flow case and in particular L(FG,HF ) = ϕG. In [13], the authors prove that
(certain unimodular transformations of) generalized tension polytopes give rise to all
distributive polytopes and give a connection to alcoved polytopes.

We summarize the content of this section in the following theorem.

Theorem 1 For every graph G, the modular and integral flow and tension polyno-
mials of G can be realized as Ehrhart polynomials of compressed, integral inside-out
polytopes.
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5 Convex ear decompositions

Definition 1 Let � be a (d − 1)-dimensional simplicial complex. A convex ear
decomposition of � is an ordered sequence �1,�2, . . . ,�m of pure (d − 1)-
dimensional subcomplexes of � such that

(a) �1 is the boundary complex of a d-polytope. For each j ≥ 2, �j is a (d −1)-ball
that is a proper subcomplex of the boundary complex of a simplicial d-polytope.

(b) ∂�j = �j ∩ ⋃
i<j �i for j ≥ 2.

(c) � = ⋃
j �j .

Convex ear decompositions are of interest because the existence of a convex ear
decomposition of a complex � implies bounds on the h-vector of �, see Theorem 3
below. To be able to apply this result, we now establish that inside-out polytopes have
convex ear decompositions in the following sense.

Theorem 2 Let (P, H) be an inside-out polytope and let �′ ⊆ � be a regular trian-
gulation of the associated relative polytopal complex. Then both �′ and �′|∂P have
a convex ear decomposition.

Proof We show only that �′ has a convex ear decomposition. The proof that �′|∂P

has a convex ear decomposition is analogous.
Let C′ ⊆ C denote the relative polytopal complex associated with the inside-out

polytope (P, H). By Lemma 2, C is a regular subdivision of P . By assumption �

is a regular triangulation of C . By transitivity � is a regular triangulation of P . By
Lemma 1(a) the complex �|∂P is combinatorially equivalent to the boundary com-
plex of a simplicial d-polytope, where d = dimP . So we can define the first element
in our convex ear decomposition to be �0 := �|∂P .

Next we fix a total order H1, . . . ,Hl of the hyperplanes in H. For any hyperplane
H , we denote the positive and negative closed half-spaces by H+ and H−, respec-
tively. Now for any 1 ≤ j ≤ l and any function σ : {1, . . . , j −1} → {+,−} we define
the set P σ

j to be the intersection

P σ
j := P ∩

⋂

1≤k<j

H
σ(k)
k .

Note that P σ
j is either empty or d-dimensional as the hyperplanes all meet the interior

of P . Next we define

Cσ
j := P σ

j ∩ Hj and �σ
j := �|Cσ

j
.

For a given j , we denote the set of all σ such that �σ
j is (d − 1)-dimensional by Sj

and we equip Sj with an arbitrary total order ≺.
The complete set of ears for our convex ear decomposition is

{�0} ∪ {
�σ

j |1 ≤ j ≤ l, σ ∈ Sj

}
.
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The total order ≺ we impose on this set is defined as follows. �0 is its minimal
element. Moreover �

σ1
j1

≺ �
σ2
j2

, if j1 < j2 or if j1 = j2 and σ1 ≺ σ2. Now we have to
show that this really gives a convex ear decomposition.

(a) We note that for every j and σ , the complex �σ
j is a regular triangulation of the

(d − 1)-dimensional polytope Cσ
j . (C′|Cσ

j
is a regular subdivision of Cσ

j and �′|Cσ
j

is a regular triangulation of C′|Cσ
j

.) Thus it is a pure (d − 1)-dimensional simplicial
complex which is a (d − 1)-dimensional ball and by Lemma 1(b) it is combinatori-
ally equivalent to a proper subcomplex of the boundary of a simplicial d-polytope.
Moreover it is a subcomplex of �.

(b) Next we observe that for every j

�0 ∪
⋃

1≤k<j

⋃

σ∈Sk

�σ
j = ∂P ∪

⋃

1≤k<j

(Hk ∩ P)

which is a superset of ∂�σ
j for every σ ∈ Sj . On the other hand, no interior point

of �σ
j is contained in ∂P or any of the hyperplanes Hk with k < j . Moreover, no

interior point of �σ
j is contained in any �σ ′

j for σ ′ �= σ . Thus

∂�σ
j = �σ

j ∩
(

�0 ∪
⋃

k<j
σ∈Sk

�σ
k ∪

⋃

σ ′≺σ

�σ ′
j

)

.

(c) Finally we note that on the level of sets

�0 ∪
⋃

1≤j≤l

⋃

σ∈Sj

�σ
j = ∂P ∪

⋃

1≤j≤l

Hj ∩ P = �′

and thus the same holds on the level of complexes as �′, �0 and the �σ
j are all

subcomplexes of �. This shows that the above is a convex ear decomposition of �′. �

6 The f -, h- and h∗-vectors of polynomials

Let p(k) be a polynomial in k of degree d . We define the h∗-vector h∗(p) =
(h∗

0, . . . , h
∗
d) of p by

p(k) =
d∑

i=0

h∗
i

(
k + d − i

d

)

.

Here we use the fact that the polynomials
(
k+d−i

d

)
for 0 ≤ i ≤ d form a basis of the

vector space of polynomials of degree at most d . Equivalently, the h∗-vector can be
defined by the equation

(1 − z)d+1
(

p(0) +
∑

k≥1

p(k)zk

)

=
d∑

i=0

h∗
i z

i .
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Similarly, we define the h-vector h(p) = (h0, . . . , hd+1) of p by

p(k) =
(

k + d

d

)

+
d+1∑

i=1

hi

(
k + d − i

d

)

and h0 = 1. Here we use the fact that the polynomials
(
k+d−i

d

)
for 1 ≤ i ≤ d + 1 form

a basis of the vector space of polynomials of degree at most d . Note that the h-vector
has length d + 1 while the h∗-vector has only length d . This is due to the fact that the
first entry of the h-vector is always 1, while the first entry of the h∗-vector is p(0).
Equivalently, the h-vector can be defined by the equation

(1 − z)d+1
(

1 +
∑

k≥1

p(k)zk

)

=
d+1∑

i=0

hiz
i .

Finally, we define the f -vector f (p) = (f0, . . . , fd) of p by

p(k) =
d∑

i=0

fi

(
k − 1

i

)

.

Here we use the fact that the polynomials
(
k−1

i

)
, 0 ≤ i ≤ d form a basis of the vector

space of polynomials of degree at most d .
Then the h-vector and the h∗-vector of a given polynomial are related by

h∗
i = hi + (−1)d+i

(
d + 1

i

)

hd+1 (2)

for 0 ≤ i ≤ d subject to the constraint that h0 = 1. Similarly, the f - and the h-vector
are related by

hi = (−1)i
(

d + 1

i

)

+
i−1∑

k=0

(−1)i−k−1
(

d − k

i − k − 1

)

fk (3)

for 0 ≤ i ≤ d + 1.
Of course we are mainly interested in the case where p is the Ehrhart polynomial

of some polytopal complex. Let C be a d-dimensional polytopal complex such that all
vertices of C are lattice points. Let LC denote the Ehrhart polynomial of C . Then we
define h∗(C) := h∗(LC ). When applying the above definition of an h∗-vector in this
case, it is important to note that LC (0) denotes the value of the Ehrhart polynomial at
zero and not the value of the lattice point enumerator at zero, see also [24, p. 255]. If
C is a polytope, then h∗(C) is the classical h∗-vector or Ehrhart-δ-vector of a lattice
polytope.

For a d-dimensional simplicial complex �, the f -vector f (�) = (f0, . . . , fd) is
classically defined by letting fi equal the number of i-dimensional simplices in �.
The h-vector h(�) is then defined by the relation (3). See [4, 25, 30]. Note that in
this case the Euler characteristic χ(�) of � is

χ(�) = 1 + (−1)dhd+1(�). (4)
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Moreover, if � is unimodular, then L�(0) = h∗
0(�) = χ(�), see Lemma 3 below.

To our knowledge f - and h-vectors of polynomials have previously not been ex-
plicitly defined. Our choice of terminology is justified by the following well-known
fact.

Lemma 3 Let � be a unimodular triangulation of an integral polytopal complex C .

(a) f (�) = f (LC ).
(b) h(�) = h(LC ).
(c) If C is a topological ball, then h∗(�) = h(�).

Proof (a) follows directly from the fact that the Ehrhart polynomial of the relative
interior of a unimodular i-simplex is

(
k−1

i

)
. (b) follows from (a) by the relation be-

tween the f - and h-vectors. For shellable complexes, see [30], this can also be seen
directly by noting that the Ehrhart polynomial of a unimodular d-simplex that has i

faces removed is
(
k+d−i

d

)
. (c) follows from 1 = χ(�) = h∗

0(�) by (2) and (4). �

Notice that for a lattice polytope P , the constant term of LP is 1 and hence
h(LP ) = h∗(LP ).

Lemma 4 Let p and q be polynomials with deg(p) = deg(q) = d .

(a) If deg(p + q) = d , then h∗(p + q) = h∗(p) + h∗(q).
(b) If deg(p + q) = d − 1, then h∗

i (p + q) = ∑i
j=0 h∗

j (p)+h∗
j (q) for 0 ≤ i ≤ d − 1.

Proof (a) is immediate from the definition. (b) can be seen by observing that

∑d−1
j=0 h∗

j (p + q)zj

(1 − z)d
=

∑d
j=0 h∗

j (p)zj

(1 − z)d+1
+

∑d
j=0 h∗

j (q)zj

(1 − z)d+1
,

which implies

d−1∑

j=0

h∗
j (p + q)zj =

(∑

i≥0

zi

)

·
( d∑

j=0

h∗
j (p)zj +

d∑

j=0

h∗
j (q)zj

)

from which the claim follows by comparing coefficients. �

It turns out that the h∗-vectors of the polynomials kd and (2k + 1)d are given by
Eulerian and MacMahon numbers, respectively. Given n ∈ N and 0 ≤ i ≤ n we define
the Eulerian number A(n, i) and the MacMahon number B(n, i) by

A(n, i) =
i∑

j=0

(−1)j
(

n + 1

j

)

(i − j)n

B(n, i) =
i∑

j=1

(−1)i−j

(
n

i − j

)

(2j − 1)n−1.
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These are sequences A008292 and A060187 in the Online Encyclopedia of Integer
Sequences [23] with the exception that we also consider A(n,0) = B(n,0) = 0. If we
let A(n,n + 1) = 0, then we have for 0 ≤ i ≤ n

h∗
i

(
kn

) = A(n, i), (5)

h∗
i

(
(k + 1)n

) = A(n, i + 1), (6)

h∗
i

(
(2k + 1)n

) = B(n + 1, i + 1). (7)

All of these identities are straightforward to compute, see also [1, Sect. 2.2].

7 Enumerative consequences

For positive integers h and i there exists a unique sequence of integers ai > ai−1 >

· · · > aj ≥ j ≥ 1 such that

h =
(

ai

i

)

+
(

ai−1

i − 1

)

+ · · · +
(

aj

j

)

.

We then define

h〈i〉 :=
(

ai + 1

i + 1

)

+
(

ai−1 + 1

i

)

+ · · · +
(

aj + 1

j + 1

)

.

Now, a sequence of non-negative integers (h0, . . . , hd) is an M-vector if h0 = 1 and
hi+1 ≤ h

〈i〉
i for all 1 ≤ i ≤ d − 1. We say that a vector h = (h0, . . . , hd) of d + 1

integers satisfies the g-constraints if

(a) h0 ≤ h1 ≤ · · · ≤ h�d/2�.
(b) hi ≤ hd−i for i ≤ d/2.
(c) (h0, h1 − h0, h2 − h1, . . . , h�d/2� − h�d/2�−1) is an M-vector.

Theorem 3 (Chari, Swartz) Let � denote an abstract (d − 1)-dimensional simplical
complex with a convex ear decomposition. Then the h-vector of � satisfies the g-
constraints.

This is [15, Theorem 14], where the first two constraints are due to Chari [10] and
the last constraint is due to Swartz [28].

Combining this result with our Theorem 2 yields the following result about Ehrhart
polynomials of inside-out polytopes.

Theorem 4 Let (P, H) be an integral inside-out polytope in which all faces are
compressed. Then the h-vector of the polynomial LP (k) − L(P,H)(k) satisfies the
g-constraints.

Proof Let �′ ⊆ � be any pulling triangulation of the relative polytopal complex
C′ ⊆ C associated with (P, H). By Lemma 2, C is a regular subdivision and, as �
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arises from C by pulling vertices, � is a regular triangulation of P . By Theorem 2
we conclude that �′ has a convex ear decomposition. So, by Theorem 3, the h-vector
of �′ satisfies the g-constraints. All faces of (P, H) are compressed, so all faces of
� are unimodular. Thus, by Lemma 3, the h-vectors of �′ and L�′ coincide and we
conclude that

h
(
LP (k) − L(P,H)(k)

) = h
(
L�′(k)

) = h(�′)

satisfies the g-constraints as desired. �

This implies bounds on the coefficients of modular flow and tension polynomials
of graphs, by virtue of the fact that in these cases P is a unit cube and thus LP (k) =
(k + 1)d .

Theorem 5 Let p denote the modular flow polynomial or the modular tension poly-
nomial of a graph. Let d denote the degree of p. Then the h-vector of the polynomial
(k + 1)d − p(k) satisfies the g-constraints.

Proof As we have seen in Sect. 4, the modular flow or tension polynomial of any
graph can be realized as the Ehrhart polynomial of an integral inside-out polytope
(P, H) with compressed faces, where P = [0,1]d and d denotes the degree of the
polynomial. The claim now follows from Theorem 4 and the fact that L[0,1]d (k) =
(k + 1)d . �

8 The integral case

In the case of the integral flow and tension polynomials, the inside-out polytopes
(P, H) are not of the form P = [0,1]d . Rather, P will depend on the graph, so, given
a polynomial p, we cannot compute a polynomial p′ such that if p is a, say, flow
polynomial then p′ satisfies the g-constraints. The best we can say is the following.

Theorem 6 Let p denote the integral flow polynomial or the integral tension poly-
nomial of a graph G. Then LFG

(k)−p(k) or LTG
(k)−p(k), respectively, satisfy the

g-constraints.

Proof As we have seen in Sect. 4, the integral flow or tension polynomial of any
graph can be realized as the Ehrhart polynomial of an integral compressed inside-
out polytope (FG, H) or (TG, H), respectively. The claim then follows from Theo-
rem 4. �

To check whether a given p satisfies this necessary condition, say in the flow case,
we would have to check whether LFG

(k) − p(k) satisfies the g-constraints for all
graphs G with ϕG = p. So the question arises which polynomials are of the form
LFG

or LTG
for some graph G: Which polynomials are Ehrhart polynomials of in-

tegral flow or tension polytopes? We address this question in this section by giving
constraints on the h∗-vectors of these polynomials.
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First we exploit some nice geometric properties of integral flow and tension poly-
topes to show that their h∗-vectors are palindromic.

Definition 2 A lattice polytope P is reflexive if

(a) intP ∩ Z
d = {0}.

(b) int((k + 1)P ) ∩ Z
d = kP ∩ Z

d for all k ∈ Z>0.

The following proposition gives a method for obtaining new reflexive polytopes
from a given reflexive polytope.

Proposition 1 Let P be a reflexive d-polytope and let S be a linear subspace of R
d .

If Q := P ∩ S is a lattice polytope, then Q is reflexive.

Proof Since S a subspace, Q◦ ∩ Z
d = {0}. Suppose x ∈ Z

d ∩ (k + 1)Q◦ \ kQ for
some k ∈ Z>0, then x is also in (k + 1)P ◦ \ kP . This contradicts the fact that P is
reflexive. �

Taking P = [−1,1]m (where m = |E|) and letting S be the flow space (tension
space, respectively) in Proposition 1 yields

Corollary 1 Integral flow and tension polytopes of a finite graph G are reflexive.

The following theorem, due to Hibi, gives a beautiful connection between the
geometry of reflexive polytopes on the one hand and palindromic h∗-vectors on the
other.

Theorem 7 (Hibi [16]) Let P be a lattice d-polytope with the origin in its interior.
P is reflexive if and only if the vector h∗(P ) is palindromic, i.e., it satisfies h∗

i = h∗
d−i

for 0 ≤ i ≤ � d
2 �.

Combining Corollary 1 and Theorem 7 yields

Theorem 8 Let G be any finite graph. Then h∗(FG) and h∗(TG) are palindromic.

Our next goal is to produce vectors fl, fu, tl, and tu such that the h∗-vector of any
flow polytope (respectively, tension polytope) satisfies fl ≤ h∗ ≤ fu (resp. tl ≤ h∗ ≤
tu). To this end we use Stanley’s Monotonicity Theorem (for polytopes):

Theorem 9 (Stanley [24]) Let P ⊆ Q be lattice d-polytopes. Then h∗(P ) ≤ h∗(Q).

To apply this result we use the variants of flow and tension polytopes from Sect. 4
that were defined with respect to a fixed spanning forest.

Lemma 5 Let G = (V ,EG) be a finite graph with c components. Then any tension
polytope TG of G is a subpolytope of [−1,1]|V |−c. Let H = (V ,EH ) be a subgraph
of G with the same number of components. Then TG ⊆ TH for a suitable choice of
spanning forest.
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Proof By the construction given in Sect. 4, TG ⊆ [−1,1]|V |−c .
By assumption there is a spanning forest F of H that is also a spanning forest

of G. Let the tension polytopes TG and TH both be constructed with respect to F .
As EG \ F ⊇ EH \ F , the set of inequalities defining TG is a superset of the set of
inequalities defining TH . Thus TG ⊆ TH . �

We can now give upper and lower bounds on LTG
.

Theorem 10 Let G be a connected finite graph with n vertices. Then the h∗-vector
of the tension polytope TG satisfies

A(n, i + 1) = h∗
i

(
(k + 1)n − kn

) ≤ h�
i (TG) ≤ h∗

i

(
(2k + 1)n−1) = B(n, i + 1)

for 0 ≤ i ≤ n − 1 and these bounds are tight for all n.

Note that if G has c components G1, . . . ,Gc, then LTG
= ∏c

i=1 LTGi
.

Proof By Lemma 5 we know that TG ⊆ [−1,1]n−1 and by Theorem 9 and (7) we
conclude that h∗

i (TG) ≤ h�
i (L[−1,1]n−1) = B(n, i+1) for all 0 ≤ i ≤ n−1. This bound

is realized as [−1,1]n−1, which is the tension polytope of any tree on n vertices.
By Theorem 5, we have that, for any spanning forest of G, TKn ⊆ TG. Thus to

obtain the lower bound we must show that h∗(LTKn
) = A(n, i + 1).

First we show that LTKn
= (k + 1)n − kn. To see this note that LTKn

counts the
number of (k + 1)-tensions on Kn. The (k + 1)-tensions of Kn are in bijection with
the functions c in the set

C = {
c : V → Z | ∣∣c(vi) − c(vj )

∣
∣ ≤ k,min

v∈V
c(v) = 0

}
.

Because we are dealing with the complete graph the functions c ∈ C take only values
in {0, . . . , k} and for functions c : V → {0,1, . . . , k} the condition |c(vi)− c(vj )| ≤ k

is automatically satisfied. So we can write C as

C = {
c : V → {0,1, . . . , k} | min

v∈V
c(v) = 0

}

= {
c : V → {0,1, . . . , k}} \ {

c : V → {1, . . . , k}},
and thus

LTKn
(k) = |C| = (k + 1)n − kn.

Combining Lemma 4 with (5) and (6) yields h∗
i ((k + 1)n − kn) = A(n, i + 1) for all

0 ≤ i ≤ n − 1. �

We now turn our attention to integral flow polytopes. If G is a planar graph and G�

is its dual, then, by the (vector space) duality of the flow and tension spaces, the flow
polytope of G is the tension polytope of G�. In this case, we can apply the theorem
above to obtain bounds on the flow polynomial of G.
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In the non-planar case we proceed as follows. Let ♦d denote the d-dimensional
cross-polytope defined by

♦d =
{

xi ∈ R
d

∣
∣
∣
∣

d∑

i=1

|xi | ≤ 1

}

.

Lemma 6 Let G = (V ,E) be a finite graph with c components and let r = |E| −
|V | + c. Then for any flow polytope FG of G we have that ♦r ⊆ FG ⊆ [−1,1]r for
any choice of spanning forest.

Proof By the construction given in Sect. 4, FG ⊆ [−1,1]r . Moreover, for any stan-
dard unit vector ei we have that Cei is a {0,±1}-vector. Thus ei and −ei are contained
in FG. �

As in the case of tensions, this implies upper and lower bounds on h∗(LFG
).

Theorem 11 Let G = (V ,E) be a finite graph with c components and let r = |E| −
|V | + c. Then the h∗-vector of the flow polytope FG satisfies

(
r

i

)

≤ h�
i (FG) ≤ h∗

i

(
(2k + 1)r

) = B(r + 1, i + 1)

for 0 ≤ i ≤ n − 1. The upper bound is tight for all r .

Proof By Lemma 6, the r-dimensional cross-polytope, ♦r , is a subpolytope of FG.
So by Stanley’s monotonicity theorem we have h∗(L♦r ) ≤ h∗(LFG

). The lower
bound in the theorem stems from the well-known fact that h�

i (L♦r ) = (
r
i

)
, see [1,

Theorem 2.7]. Since h�
i (L[−1,1]r ) = h∗

i ((2k +1)r ) = B(r +1, i +1) by (7), the upper
bound follows from Lemma 6 as well.

The upper bound in the above theorem is tight since, for any r ∈ N, the flow
polytope of the graph consisting of a single vertex and r loops is [−1,1]r . The lower
bound, on the other hand, is not tight. For example, no 3-dimensional flow polytope
is lattice isomorphic to ♦3. �
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