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Abstract We prove that m-dissimilarity vectors of weighted trees are points on the
tropical Grassmannian, as conjecture by Cools in response to a question of Sturmfels
and Pachter. We accomplish this by relating m-dissimilarity vectors to the represen-
tation theory of SLm(C).
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1 Introduction

We will explore tropical properties of weighted, or metric trees T , using the repre-
sentation theory of the special linear group SLm(C). We direct the reader to the book
by Fulton and Harris [5] and the book by Dolgachev [4] for an introduction to the
representation theory of connected complex reductive groups over C. Recall that we
can choose a Borel subgroup B , and a maximal torus T with T ⊂ B ⊂ G, and as-
sociate to this data a monoid of weights CG ⊂ X(T ) in the characters of T , which
classify irreducible representations of G up to isomorphism. This cone comes with
an involution defined by the duality operation on representations λ → λ∗. The direct
sum of all such representations forms a commutative algebra

R(G) =
⊕

λ∈CG

V (λ∗), (1)

which is the coordinate ring of the quotient of G by the unipotent radical of a chosen
Borel subgroup, R(G) = C[G/U ]. For SLm(C), this can be taken to be the subgroup
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of unipotent upper-triangular matrices. Choosing a Borel subgroup also fixes a set of
positive roots R+ ⊂ X(T ), for G, which define a partial ordering on the weights, we
say that λ ≥ λ′ if λ − λ′ is a member of NR+. For SLm(C), the cone CSLm(C) is gen-
erated over Z+ by m − 1 fundamental weights, ω1, . . . ,ωm−1. The weight ωi is the
so-called highest weight of the representation

∧i
(Cm). The main result of this paper

expresses the m-dissimilarity vector of an arbitrary tree in terms of the fundamental
weights of SLm(C). In what follows A+ denotes the non-negative members of A = Z

or R.

1.1 Dissimilarity maps and the Grassmannian

Let T be a trivalent tree with n ordered leaves, and let � : Edge(T ) → R+ be a
function which assigns a weight (or length) to each edge of T . The weight function �

defines a metric on the leaves L(T ) of T , where the distance dij between the leaves
i and j is the sum of the weights on the edges of the unique path γ (i, j) connecting
i to j in T . We intentionally confuse the path γij with the set of edges it traverses.

dij (T , �) =
∑

e∈γ (i,j)

�(e). (2)

Obviously dij = dji and dii = 0. We call the vector D2,n(T , �) = {dij (T , �)}i<j ∈
R(n

2) the 2-dissimilarity vector of (T , �). We may generalize this construction by
introducing the convex hull of m leaves i1 . . . im ∈ L(T ) as the set of all edges which
appear in paths connecting some ij to some ik , see Fig. 1.

γ (i1 . . . im) =
⋃

γ (ij ik). (3)

The m-dissimilarity vector Dm,n(T , �) = {di1...im(T , �)}i1<···<im ∈ R(n
m) is then de-

fined as expected.

di1...im(T , �) =
∑

e∈γ (i1...im)

�(e). (4)

The set of 2-dissimilarity vectors of weighted trees T2,n ⊂ R(n
2) is well under-

stood. A weighted tree can be recovered from its 2-dissimilarity vector, and the set
of all 2-dissimilarity vectors is characterized by the following theorem from tropical
geometry, see [3, 12].

Fig. 1 The convex hull of three
leaves
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Theorem 1.1 The set of 2-dissimilarity vectors coincides with the tropical Grass-
mannian.

T2,n = Trop
(
Gr2

(
C

n
)) ⊂ R(n

2).

The Gröbner fan of the Plücker algebra C[Xi1,...,im ]/Im,n has support R(n
m), so

each vector w in this space gives a Gröbner degeneration of the ideal Im,n to the
ideal of initial forms inw(Im,n). The set of vectors w which for which inw(Im,n)

is monomial free is called the tropical Grassmannian Trop(Grm(Cn)). The above
theorem implies that for a vector w ∈ R(n

2) to be a 2-dissimilarity vector, it must
weight Plücker variables zij in such a way that at least two monomials in each Plücker
relation

zij zk� − zikzj� + zi�zjk (5)

have the same weight. For a point �w = {wij } to satisfy this requirement, the maximum
of {wij + wk�,wik + wj�,wi� + wjk} must be obtained at least twice. If this is the
case, then we may find a tree (T , �) such that di,j (T , �) = wij . Since 2-dissimilarity
vectors characterize their respective weighted trees, we should expect that some op-
eration on the 2-dissimilarity vector of a weighted tree (T , �), probably tropical in
nature, will yield the m-dissimilarity vector, and indeed this is the case, see [2] for
the following theorem.

Theorem 1.2 Let Cm be the set of length m cycles in the set of permutations on m

letters. Then we have the following formula.

di1...im(T , �) = 1

2
min
α∈Cm

{
di1iα(1)

(T , �) + · · · + di
αm−1(1)

iαm(1)
(T , �)

}
. (6)

This defines an onto map φ(m) :T2,n → Tm,n.

Given that Tm,n and the tropical Grassmannian Trop(Grm(Cn)) live in the same
space, and coincide for m = 2, one would hope that these two sets always have a close
relationship. Sturmfels and Pachter asked if the set of m-dissimilarity vectors was
always contained in the tropical Grassmannian Trop(Grm(Cn), [11]. Cools recently
proved this for small m, [3] and conjectured that the result holds for all m, the result
was proved in general by Giraldo, [6].

Theorem 1.3 (Cools, Giraldo)

φ(m)(T2,n) = Tm,n ⊂ Trop
(
Grm

(
C

n
))

. (7)

This means that the entries of Dm,n(T , �) always satisfy the tropical Plücker equa-
tions, and the weighting defined by this vector defines a monomial free initial ideal
inDm,n(T ,�)(Im,n). The purpose of this note is to prove this theorem using tropical
properties of the Plücker algebra deduced from the related representation theory of
SLm(C).
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1.2 Invariants in tensor products of representations

The Plücker algebra C[Xi1,...,im ]/Im,n is a natural object in the representation theory
of SLm(C), it appears as the subring of invariants of the diagonal action of SLm(C)

on Mm×n(C), this is the First Fundamental Theorem of Invariant Theory.

C[Xi1,...,im]/Im,n
∼= C

[
Mm×n(C)

]SLm(C)
. (8)

The Plücker algebra is exactly the subring generated by the Plücker coordinates,
Zi1...im . Let A ∈ Mm×n(C), A = [C1 . . . Cn], with Ci ∈ C

m, then the value of the
Plücker coordinates at A is defined by the following.

Zi1...im(A) = det[Ci1 . . . Cim]. (9)

We may rewrite this algebra in terms of the category of finite dimensional represen-
tations of SLm(C) as follows.

C
[
Mm×n(C)

]SLm(C) =
⊕

�r∈Z
n+

[
V

(
r1ω

∗
1

) ⊗ · · · ⊗ V
(
rnω

∗
1

)]SLm(C)
. (10)

Here ω1 is the highest weight of C
m as a representation of SLm(C) and ω∗

1 = ωm−1.
With respect to this direct-sum decomposition, the Plücker coordinate Zi1...im is a
generator of the summand with V (ω∗

1) in the rij -th place for all ij ∈ {i1, . . . , im}, and
the trivial representation everywhere else. Multiplication in C[Mm,n(C)] has a nice
description in terms of this direct-sum decomposition as well, it is induced by the
Cartan multiplication maps in each component, where the tensor product is projected
onto its highest weight summand.

V
(
r1ω

∗
1

) ⊗ V
(
r2ω

∗
1

) → V
(
(r1 + r2)ω

∗
1

)
. (11)

We may rewrite each summand in terms of homomorphisms from the category of
SLm(C) representations.

[
V

(
r1ω

∗
1

) ⊗ · · · ⊗ V
(
rnω

∗
1

)]SLm(C) = HomSLm(C)

(
C,V

(
r1ω

∗
1

) ⊗ · · · ⊗ V
(
rnω

∗
1

))
.

(12)

In this way, the Plücker algebra encodes the branching problem of finding copies of
the trivial representation of SLm(C) in an irreducible representation of SLm(C)n.
For this reason, we will refer to the Plücker algebra as a branching algebra. In
general, a branching algebra encodes the branching rules of irreducible represen-
tations for some map of reductive groups. In this case the map is the diagonal map
Δn : SLm(C) → SLm(C)n. Filtrations and associated graded algebras of branching
algebras like this one were studied by the author in [8], in particular for diagonal em-
beddings as above, the author described a way to produce filtrations of the branching
algebra associated to labeled, rooted trees. We will review the details of this construc-
tion in the next section, but for now we will describe the features that we need. Let
CSLm(C) be the cone of dominant weights with respect to the standard ordering of
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Fig. 2 A tree weighted with
representations

weight vectors in the weight lattice for SLm(C). Let T̂ be a rooted tree with n leaves,
we consider the orientation induced on the edges of T̂ by orienting every edge in the
unique path from the root to a leaf in such a way to make the root the unique source.

Proposition 1.4 Let T̂ be a rooted tree with n leaves. There is a direct-sum decom-
position,

[
V (r1ω1) ⊗ · · · ⊗ V (rnω1)

]SLm(C) =
⊕

W (T̂ , λ) (13)

over all λ : Edge(T̂ ) → CSLm(C), such that the root edge is weighted 0, the edge inci-
dent to the i’th leaf is weighted riω

∗
1 , and for each internal vertex, the representation

associated to the label on the sink appears in the direct-sum decomposition of the
tensor product of the representations associated to the labels on the sources. The
summand W (T̂ , λ) is the vector space of all possible assignments of intertwiners to
the internal vertices which realize the weight on a source at a vertex as a summand
of the tensor product of the weights on sinks.

In Fig. 2 we an example of such an object with SLm(C) representations given by
Young tableaux. Recall that ω∗

1 = ωm−1.
Proposition 1.4 is a formal consequence of properties of semisimple categories

with monoidal products. The tree T̂ can be considered as a recipe for inserting paren-
theses into the tensor product V (r1ω

∗
1) ⊗ · · · ⊗ V (rnω

∗
1), and gives a way to recur-

sively expand the expression into a direct sum. We can then take the same tree T̂ and
assign to its edges e ∈ Edge(T ) functionals he :CSLm(C) ⊂ X(TSLm(C)) → R+, taking
care that he is positive on all positive roots. We apply this functional (T̂ , ĥ) to each
summand, where an element in W (T̂ , λ) is given the weight

∑
e∈Edge(T̂ )

he(λ(e)).

This weights each Plücker coordinate Zi1...im with a number dependent on ĥ and the
tree T̂ , and so gives a point in R(n

m). After reviewing the construction of this filtra-
tion and understanding it with respect to the multiplication operation in the Plücker
algebra, we will be able to conclude the following.

Theorem 1.5 Each (T̂ , ĥ) defines a point in Trop(Grm(Cn)) ⊂ R(n
m).

This will follow from general arguments on filtrations of branching algebras ob-
tained from the associated representation theory, in particular we will give a general
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way to produce points on the tropical varieties of ideals defining these algebras. The
functionals (T̂ , ĥ) have a good amount of flexibility, enough to show the following
theorem.

Theorem 1.6 There exists for any weighted tree (T , �) a tree functional (T̂ , ĥ) such
that di1...im(T , �) = (T̂ , ĥ)(Zi1...im) for all m tuples {i1, . . . , im}. In particular, m-
dissimilarity vectors are points on the tropical Grassmannian.

2 Filtrations of branching algebras

In this section we will review the construction of filtrations of branching alge-
bras introduced in [8]. The basic object we will be working with is the algebra
R(G) = C[G]UG = ⊕

λ∈CG
V (λ∗), where G is a connected reductive group over

C, UG ⊂ G is a maximal unipotent subgroup, λ are dominant weights, V (λ) is the
irreducible representation with highest weight λ, and CG is the monoid of domi-
nant weights. We choose highest weight vectors for each irreducible representation
vλ ∈ V (λ). Multiplication in R(G) is induced by Cartan multiplication, see [1] for an
introduction to the algebra R(G).

V (α∗) ⊗ V (β∗) C∗−−−−→ V (α∗ + β∗).

Identify V (λ∗) with the dual V (λ)∗ in the unique way that makes ev(vλ, v̂λ∗) = 1
where ev : V (λ) ⊗ V (λ)∗ → C sends v ⊗ f to f (v), and v̂λ∗ is the lowest weight
vector of V (λ∗). Under this identification, Cartan multiplication is the dual of the
map which sends vα+β to vα ⊗ vβ .

V (α + β)
C∗−−−−→ V (α) ⊗ V (β).

Let φ :H → G be a map of connected reductive groups over C, we define the branch-
ing algebra A(φ) of φ as follows.

A(φ) = [
R(H) ⊗ R(G)

]H =
⊕

(α,β)∈CH ×CG

[
V (α∗) ⊗ W(β∗)

]H
. (14)

Here H acts on R(G) through φ, and φ maps UH to UG. Branching algebras are
so-named because the dimension of their multigraded components give the branch-
ing multiplicities for irreducible representations of G as representations of H . We
will now rewrite the multiplication operation in A(φ) with respect to the following
identity.

[
V (α∗) ⊗ W(β∗)

]H = HomH

(
C,V (α∗) ⊗ W(β∗)

) ∼= HomH

(
V (α),W(β∗)

)
.

(15)

The isomorphism on the right is given by the following construction, for f ∈
HomH (C,V (α∗) ⊗ W(β∗)).

V (α) = V (α) ⊗ C
id⊗f−−−−→ V (α) ⊗ V (α∗) ⊗ W(β∗) ev⊗id−−−−→ W(β∗).
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Let f̂ = (ev ⊗ id) ◦ (id ⊗ f ) denote the transformed map. Under this isomorphism,
the multiplication map

C ⊗ C
f ⊗g−−−−→ [

V (α∗
1) ⊗ W(β∗

1 )
] ⊗ [

V (α∗
2) ⊗ W(β∗

2 )
]

C∗⊗C∗−−−−→ V (α∗
1 + α∗

2) ⊗ W(β∗
1 + β∗

2 )

becomes

V (α1 + α2)
C∗−−−−→ V (α1) ⊗ V (α2)

f̂ ⊗ĝ−−−−→ W(β∗
1 ) ⊗ W(β∗

2 )

C∗−−−−→ W(β∗
1 + β∗

2 )

this is a straightforward calculation. Now we consider a factorization of φ in the
category of connected reductive groups over C.

H
ψ−−−−→ K

π−−−−→ G.

We formally get a direct-sum decomposition of each multigraded component of the
branching algebra A(φ).

HomH

(
V (α),W(β∗)

) =
⊕

η∈CK

HomH

(
V (α),Y (η∗)

) ⊗ HomK

(
Y(η∗),W(β∗)

)
.

(16)

This introduces a host of combinatorial representation theory data into the algebra
A(φ). We will see how to multiply two elements, we start by taking the tensor prod-
uct.

V (α1) ⊗ V (α2)
f1⊗f2−−−−→ Y(η∗

1) ⊗ Y(η∗
2)

g1⊗g2−−−−→ W(β∗
1 ) ⊗ W(β∗

2 ).

The middle representation decomposes as a direct sum of K representations,

Y(η∗
1) ⊗ Y(η∗

2) =
⊕

η∈CK

HomK

(
Y(η∗), Y (η∗

1) ⊗ Y(η∗
2)

) ⊗ Y(η∗) (17)

this allows us to represent f1 ⊗ f2 and g1 ⊗ g2 as sums of maps. Let πη : Y(η∗
1) ⊗

Y(η∗
2) → HomK(Y (η∗), Y (η∗

1) ⊗ Y(η∗
2)) ⊗ Y(η∗) and πη : HomK(Y (η∗), Y (η∗

1) ⊗
Y(η∗

2))⊗Y(η∗) → Y(η∗
1)⊗Y(η∗

2) be projections and injections that define the direct-
sum decomposition with πη1+η2 = C∗ and πη1+η2 = C∗. Then we have

f1 ⊗ f2 =
∑

πη ◦ (f1 ⊗ f2), (18)

g1 ⊗ g2 =
∑

(g1 ⊗ g2) ◦ πη. (19)

Decomposing the diagram along these sums gives an expansion of the product into
components from the direct-sum decomposition of HomH (V (α1 +α2),W(β1 +β2)),
and there is a natural leading term given by the sum of the weights,

V (α1 + α2)
C∗◦(f1⊗f2)◦C∗
−−−−−−−−−→ Y(η∗

1 + η∗
2)

C∗◦(g1⊗g2)◦C∗
−−−−−−−−−→ W(β∗

1 + β∗
2 ).
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A general term,

V (α1 + α2)
πη◦(f1⊗f2)◦C∗
−−−−−−−−−→ Y(η∗) C∗◦(g1⊗g2)◦πη

−−−−−−−−−→ W(β∗
1 + β∗

2 )

is a member of the (α1 + α2, η,β1 + β2) summand. The leading term never vanishes,
because the defining maps C∗ ◦ (f1 ⊗ f2) ◦ C∗ and C∗ ◦ (g1 ⊗ g2) ◦ C∗ are the same
as the multiplication operation in A(ψ) and A(π) respectively. These algebras are
domains because R(G) is always a domain. Notice that this analysis depends only
on multigraded summands of A(φ), so the same term decomposition exists for any
subalgebra which preserves the multigrading. We summarize the previous discussion.

Proposition 2.1 For any factorization of a map of connected, reductive groups
over C,

H
ψ−−−−→ K

π−−−−→ G

there is a direct-sum decomposition of A(φ) into summands W (α, η,β), with
α ∈ CH , η ∈ CK and β ∈ CG dominant weights. This defines a multifiltration of the
branching algebra A(π ◦ ψ). The product of two elements

V (α1)
f1−−−−→ Y(η1)

g1−−−−→ W(β1),

V (α2)
f2−−−−→ Y(η2)

g2−−−−→ W(β2)

has leading term

V (α1 + α2)
C∗◦f1⊗f2◦C∗
−−−−−−−−→ Y(η1 + η2)

C∗◦g1⊗g2◦C∗
−−−−−−−−→ W(β1 + β2)

all lower terms involve η ∈ CK which are less than η1 + η2 as dominant weights.

We can perform this same construction on a factorization of any length

H
ψ−−−−→ K1

π1−−−−→ · · · πk−1−−−−→ Kk
π−−−−→ G

without altering the details, and Proposition 2.1 holds for the resulting multifiltration.
We may use this extra combinatorial data to describe filtrations of A(φ). To each new
summand W (α, �λ,β) in the filtration, we attach a number as follows, pick functionals

h0 :X(TH ) → R+, h1 :X(TK1) → R+, . . . ,

hk :X(TKk
) → R+, hk+1 :X(TG) → R+,

(20)

such that hi has non-negative value on all positive roots of Ki . Now apply these func-
tionals to the weights defining the multifiltered summands, this defines a filtration.

�h(
V (λ0)

f1−−−−→ V (λ1)
f2−−−−→ · · · fk−−−−→ V (λk)

) = ∑
hi(λi).

By Proposition 2.1, the value on a product of elements, computed by summing up the
contributions from each element, is always equal to the value on its leading term for
any linear functional �h.
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Proposition 2.2 Let Φ : C[X] → A(φ) be a presentation of the branching algebra,
and let φ = ψ1 ◦ · · · ◦ ψk be a factorization of φ. Suppose each x ∈ X is mapped to
an element of one of the summands W (�λ) ⊂ A(φ) defined by the factorization, and
let I ⊂ C[X] be the defining ideal. Then any functional �h defines a term weighting of
X which gives a monomial free initial ideal in�h(I ).

Proof Pick any expression in the ideal I .

F(X) =
∑

ca �x �a. (21)

We consider the expansion of each monomial term into pure terms, Φ ◦ (�x �a) = Sa
0 +

· · · + Sa
m, where Sa

0 has the same pure filtration level as the monomial, the existence
of this term follows from Proposition 2.1, which also implies that we must have
�h(S0) ≥ �h(Si) for every term in this expansion. In general, for pure terms X and Y ,
we say that X ≥ Y if for each component λi(X) − λi(Y ) is a positive root. Note
that not all pure terms are comparable. By definition of the functional �h if X ≤ Y

then �h(X) ≤ �h(Y ). Now suppose some monomial �x �a in the expression F(X) has the
highest filtration weight with respect to �h. We must have Φ ◦ F(X) = 0, so S �a

0 must
be canceled by pure terms from the expansion of other monomials. This implies that

some monomial �x �b must have a pure term S
�b
j with the same multifiltration level as S �a

0 .

We must have that S �a
0 ≤ S

�b
0 as pure terms, by assumption this implies that �x �b has the

same filtration weight as �x �a . �

This proposition implies that every �h defines a point on the tropical variety of the
defining ideal I . It also implies that for any presentation Φ : C[X] → A(φ), and any
form in the defining ideal F(X) ∈ I , the leading terms of at least two monomials
agree, a result independent of a functional �h. The functionals �h fit into the broader
theory of valuations on rings. Roughly these are functions v on a ring which satisfy
v(ab) = v(a) + v(b), v(a + b) ≤ max{v(a), v(b)}, and v(0) is 0 or −∞ depending
on the tropical algebra where v takes its values. Generally speaking valuations define
“universal” tropical points, in that they define a point on the tropical variety of any
presentation of a subring of the ring on which they are defined. We explore these
objects in the note [9], see also [10]. For each factorization of φ : H → G

F = {ψ1, . . . ,ψk}, (22)

φ = ψ1 ◦ · · · ◦ ψk (23)

we obtain a cone of functionals �h ∈ PF defined by the conditions on the compo-
nents of �h. Note that the hi = 0 is always an option, indeed this essentially for-
gets the information in i-th component of the multifiltration. For each factorization
F = {ψ1, . . . ,ψk} and every i, there is an operation

Oi(F ) = {ψ1 . . . ,ψi−1,ψi+1 ◦ ψi,ψi+2, . . . ,ψk}. (24)

Setting hi to 0 gives a map of cones POi(F ) → PF which defines POi(F ) as a face
of PF . This defines a connected complex of cones

⋃
F◦φ PF over all factorizations
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of φ in the category of connected, reductive groups. The content of the proposition
above is that there is a map from this complex into the tropical variety of any presen-
tation of A(φ), the same holds for any subalgebra of B → A(φ) which preserves the
multigrading. In particular, this is true for the subalgebra of invariants, which will be
important in the sequel.

R(G)H = [
C ⊗ R(G)

]H ⊂ [
R(H) ⊗ R(G)

]H = A(φ). (25)

Example 2.3 We can also look at branching deformations for the trivial subgroup of
a reductive group 1 → G. This morphism is factored by any flag of subgroups of G,
for instance we can take G = GLn and look at the flag

1 → GL1 → GL2 → ·· · → GLn−1 → GLn. (26)

The branching of GLm over GLm−1 is multiplicity free, so the branching algebra
associated to this pair is toric. Choosing a functional hi :ΔGLi

→ R+ which is pos-
itive on positive roots then defines a toric deformation of R(GLn) to the monoid of
Gel’fand Tsetlin patterns.

Example 2.4 Any representation V of a reductive group G defines a morphism
G → GLn for n = dim(V ). First we note that if V is reducible, then the map factors
through GLn1 × · · · × GLnk

→ GLn for some partition of n. Also, the map defined
by V always defines a factorization of the trivial morphism 1 → G → GLn, and can
therefore be identified with a cone of filtrations on R(Gln).

Remark 2.5 One can use this technique to define degenerations of a wide range of
varieties with symmetry. Let A be a commutative ring with the action of a product
of reductive groups H × G, and φ :H → G be a map of connected reductive groups
over C. There is a flat degeneration of A defined in [7] which preserves the action
of H × G, to the algebra [AU−

H ×U−
G ⊗ R(H) ⊗ R(G)]TH ×TG , where TG is a maximal

torus of G. Taking H invariants for the action of (id, φ) : H → H × G gives a flat
degeneration AH → [AUG ⊗A(φ)]TG , this can then be composed with degenerations
of the branching algebra. This technique was adapted by the author in [8] to study
properties of a quantum analogue of a branching algebra coming from conformal field
theory. A similar sort of universality holds for other types of degenerations defined
from the combinatorics of representation theory, for instance toric degenerations of
spherical varieties, see [1] for details.

Remark 2.6 In [8] the author also studied the associated graded algebra of a branch-
ing filtration. For a factorization,

H
ψ−−−−→ K

φ−−−−→ G.

If the functional ĥ is strictly positive on the positive roots of K , then we get a flat
deformation over C[t],

A(φ ◦ ψ) ⇒ [
A(ψ) ⊗ A(φ)

]TK . (27)
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3 Diagonal branching algebras for SLm(C)

In this section we use the results from the previous section to study
C[Mm×n(C)]SLm(C) ⊂ A(Δn), where Δn : SLm(C) → SLm(C)n is the diagonal em-
bedding. These embeddings have a special class of filtrations classified by rooted
trees with n leaves. Take such a tree T̂ and define a factorization of Δn as follows, let
T̂ have the orientation induced by the root, as before. For each internal vertex v ∈ T̂
attach the diagonal morphism Δval(v)−1 from one copy of SLm(C) to SLm(C)valv−1,
see Fig. 3.

By well-ordering the non-leaf vertices of T̂ in any way such that the first vertex
is attached to the root, and two consecutive vertices share an edge allows us to write
this factorization in the style of the previous section.

SLm(C)
Δval(v1)−1−−−−−→ SLm(C)valv1−1

Idval(v1)−2×Δval(v2)−1−−−−−−−−−−−−→ SLm(C)val(v1)+val(v2)−3 · · ·SLm(C)n.

This results in a direct-sum decomposition of A(Δn) into spaces W (T̂ , λ) indexed
by assignments of dominant weights of SLm(C) to the edges of T̂ , along with an
assignment of SLm(C)-linear maps at every vertex intertwining the corresponding
tensor products of irreducible representations. From the introduction we know that
the Plücker algebra is the subalgebra of A(Δn) generated by the unique invariants
[C ⊗ · · · ⊗ V (ω∗

1) ⊗ · · · ⊗ C]SLm(C) where m of the n + 1 pieces of the tensor prod-

uct are copies of V (ω∗
1) = ∧m−1

(Cm). The first piece, corresponding to the root, is
always C, and the other n − m pieces are the trivial representation C. Each of these
spaces is one dimensional, so we should be able to write down the tree diagram of
a basis member for a chosen T̂ . To describe the diagram in general it is simplest to
start with a rooted tree T̂o with m leaves, give this tree an orientation as above. Each
leaf of this tree is labeled with ω1, and to compute the representation labeling a given
edge e ∈ T̂o, simply count the number of leaves ne above e with respect to the rooted
orientation, and give it the label ωne = ∧ne (Cm). Now dualize the whole picture, so
ωi becomes ωm−i . The result is shown below in Young tableaux.

The root is labeled with
∧m

(Cm) which is trivial as an SLm(C) representation.
In a general rooted tree T̂ , take the convex hull of the root and the non-trivially la-
beled leaves. Combinatorially, this is the same as some rooted tree with m-leaves
T̂o, label the edges of T̂ accordingly, and label all other edges with the trivial rep-
resentation. Note that up to scalars the available intertwiners

∧m−(i+j)
(Cm) →

Fig. 3 Factorization of Δ4
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Fig. 4 A tree weighted with
representations

Fig. 5 Adding a root to the tree

∧m−i
(Cm) ⊗ ∧m−j

(Cm) in this diagram are all unique as expected. The subalgebra
C[Mm×n(C)]SLm(C) ⊂ A(Δn) is generated by the

(
n
m

)
elements of this type. All di-

agrams are given explicitly in terms of the m − 1 fundamental weights of SLm(C),
and one easily checks that an edge e ∈ T̂ is labeled nontrivially if and only if it is in
the combinatorial convex hull of the m-nontrivially labeled leaves, see Fig. 4. Now
consider the functional H : X(TSLm(C)) → R+ defined by H(ωk) = 1 for all funda-
mental weights ωk , and note that this functional gives the trivial representation the
0 weight. Pick a non-negative length de for edge e ∈ T̂ , and consider the functional
defined by assigning deH to the edge e. For the Plücker coordinate Zi1...im we have

(T̂ , �dH) ◦ (Zi1...im) =
∑

e∈convT̂ {i1,...,im}
de. (28)

Proposition 3.1 For any metric tree (T , �) with n leaves there is a rooted tree with
n leaves T̂ , and a functional ĥ with

(T̂ , ĥ) ◦ (Zi1...im) = di1...im(T , �). (29)

Proof To get T̂ , one may add a root to T anywhere. It is simple to verify that this
preserves combinatorial convex hulls. See Fig. 5 for an example. The root is added
in the middle of an edge of T , so in order to preserve the weighting information we
must split the weight on this edge among the two new edges created by the addition
of the root. The previous discussion does the rest. �

This proposition establishes that we can replicate the m-dissimilarity vectors of
a metric tree (T , �) with branching filtrations. The efforts of the previous section



J Algebr Comb (2011) 33: 199–213 211

confirm that branching filtrations always give tropical points. Together, these facts
prove Theorem 1.3.

4 Examples

In this section we will look at dissimilarity maps, Plücker coordinates, and tree
weighting functionals in more detail for a specific example. We will take a look at
some elements and relations in the Plücker algebra C[Gr3(C

8)]. We choose a rooted
tree T with 8 leaves, pictures in Fig. 6.

For simplicity we give T the metric where each edge has length 1, note that the
corresponding unrooted tree would have one edge with length 2, and all others with
length 1. We will find how T weights the Plücker relation

Z123Z456 − Z124Z356 + Z125Z346 − Z126Z345 = 0 (30)

in C[M3×8(C)]SL3(C). Each Plücker coordinate corresponds to an assignment of rep-
resentations to the edges of T , which are then weighted with the functional H , as in
Fig. 7.

In Fig. 8 we show the convex hulls of each set of leaves, rows correspond to
Plücker monomials. This results in the following weights in the Plücker relation,

t12Z123Z456 − t12Z124Z356 + t14Z125Z346 − t14Z126Z345 = 0. (31)

Next we look at the general case of SL2(C). The 2-dissimilarity vectors of a tree
are the best understood dissimilarity vectors because of their association with the
Grassmannian Gr2(C

n), the same is true for SL2(C
n) branching algebras. The algebra

A(Δn) for SL2(C) is isomorphic to C[M2×n+1]SL2(C), indeed we have

R
(
SL2(C)

) = Sym
(
V (ω1)

) ∼= C[x1, x2]. (32)

Fig. 6 A rooted tree with 8
leaves

Fig. 7 Applying functional
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Fig. 8 Combinatorial convex
hulls of leaves

It follows that the subalgebra of invariants R(SL2(C)n)SL2(C) is isomorphic to the
(2, n) Plücker algebra. For a rooted tree T̂ , the functionals (T̂ , ĥ) are all given by
assigning non-negative integers to the edges of T̂ , as non-negative integers corre-
spond to maps he :CSL2(C) = Z+ → R+. Therefore for any metric tree (T , �) we can
construct a branching algebra filtration that weights the Plücker monomials the same
as (T , �). In this way, every member of the tropical Grassmannian Trop(Gr2(C

n)) is
realizable by a branching filtration.

Acknowledgements We thank the reviewer for several useful suggestions, including the example 2.3.
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