Skip to main content
Log in

Cobalt-doped mesoporous carbon nanofibres as free-standing cathodes for lithium–oxygen batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, we present binder-free O2 electrodes of mesoporous carbon nanofibres and Co nanoparticles (Co-doped CNF). Such electrodes are synthesized using electrospinning techniques coupled with subsequent thermal treatments. The fibre-based mats behave as free-standing electrodes due to the presence of 3D cross-linked web structures, and thus additional metal mesh or gas diffusion layer supports are not required. The absence of polymeric binders in the cathode avoids side reactions due to binder instability during cell cycling. The Co-doped CNFs are characterized by field emission scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray diffraction and Raman analysis. CNFs are decorated by homogeneously distributed Co (0) nanoparticles, with sizes in the range of 10–50 nm and Co content lower than 10 wt%. N2 adsorption–desorption measurements show that the specific surface area of the CNFs is greatly affected by incorporation of the metal nanoparticles. The introduction of Co nanoparticles enhances the degree of graphitization of the CNFs, which is beneficial to CNF conductivity. Measured BET surface areas of Co-doped CNFs are in the range of 40–300 m2 g− 1, depending on Co content. Results show that the Li–O2 cell comprising the Co-doped CNF free-standing cathodes can deliver specific capacities of 3700 mA h g− 1 based on the total mass of the electrodes and good cycling performance is achieved at the curtailed capacity of 100 mA h g− 1. The good performance of the Co-doped CNFs may be attributed to the mesoporous structure of CNFs which could facilitate the deposition of solid products during discharge and decrease the mass transport resistance. Different morphologies of the Li2O2 crystals obtained during discharge with Co-doped CNF cathodes support the hypothesis that the presence of Co may induce alterations by forming easily decomposable Li2O2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao R, Lee J-S, Liu M, Cho J, (2012) Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 105:816–829

    Article  Google Scholar 

  2. Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192

    Article  CAS  Google Scholar 

  3. Ogasawara T, Débart A, Holzapfel M, Novàk P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128:1390–1393

    Article  CAS  Google Scholar 

  4. Yu R, Fan W, Guo X, Dong S (2016) Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries. J Power Sources 306:402–407

    Article  CAS  Google Scholar 

  5. Zhang L-L, Wang Z-L, Xu D, Zhang X-B, Wang L-M (2013) The development and challenges of rechargeable non-aqueous lithium–air batteries. Int J Smart Nano Mater 4:27–46

    Article  CAS  Google Scholar 

  6. Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, Passerini S, Scrosati B (2015) The lithium/air battery: still an emerging system or a practical reality? Adv Mater 27:784–800

    Article  CAS  Google Scholar 

  7. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  8. Laoire CO, Mukerjee S, Abraham KM (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J Phys Chem C 114:9178–9186

    Article  CAS  Google Scholar 

  9. Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li–air batteries. J Power Sources 220:253–263

    Article  CAS  Google Scholar 

  10. Song MJ, Kim IT, Kim YB, Shin MW (2015) Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim Acta 182:289–296

    Article  CAS  Google Scholar 

  11. Nasybulin E, Xu W, Engelhard MH, Nie Z, Li XS, Zhang J-G (2013) Stability of polymer binders in Li–O2 batteries. J Power Sources 243:899–907

    Article  CAS  Google Scholar 

  12. Geaney H, O’Dwyer C (2016) Examining the role of electrolyte and binders in determining discharge product morphology and cycling performance of carbon cathodes in Li-O2 batteries. J Electrochem Soc 163:A43–A49

    Article  CAS  Google Scholar 

  13. Zhao G, Niu Y, Zhang L, Sun K (2014) Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium–air battery cathode catalyst. J Power Sources 270:386–390

    Article  CAS  Google Scholar 

  14. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4:2952–2958

    Article  CAS  Google Scholar 

  15. Cui Y, Wen Z, Liu Y (2011) A free-standing-type design for cathodes of rechargeable Li–O2 batteries. Energy Environ Sci 4:4727–4734

    Article  CAS  Google Scholar 

  16. Yilmaz E, Yogi C, Yamanaka K, Ohta T, Byon HR (2013) Promoting formation of noncrystalline Li2O2 in the Li–O2 battery with RuO2 nanoparticles. Nano Lett 13:4679–4684

    Article  CAS  Google Scholar 

  17. Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50:8609–8613

    Article  CAS  Google Scholar 

  18. Wang J, Li Y, Sun X (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2:443–467

    Article  Google Scholar 

  19. Shao Y, Park S, Xiao J, Zhang J-G, Wang Y, Liu J (2012) Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2:844–847

    Article  CAS  Google Scholar 

  20. Lei Y, Lu J, Luo X, Wu T, Du P, Zhang X, Ren Y, Wen J, Miller DJ, Miller JT, Sun Y-K, Elam JW, Amine K (2013) Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium–O2 battery. Nano Lett 13:4182–4189

    Article  CAS  Google Scholar 

  21. Yoon TH, Park YJ (2012) Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery. Nanoscale Res Lett 7:28

    Article  Google Scholar 

  22. Lee H, Kim YJ, Lee DJ, Song J, Lee YM, Kim HT, Park JK (2014) Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium–oxygen batteries. J Mater Chem A 2:11891–11898

    Article  CAS  Google Scholar 

  23. Ryu WH, Yoon TH, Song SH, Jeon S, Park YJ, Kim ID (2013) Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-Cycle Li–O2 batteries. Nano Lett 13:4190–4197

    Article  CAS  Google Scholar 

  24. Kim YJ, Lee H, Jin Lee D, Park JK, Kim HT (2015) Reduction of charge and discharge polarization by cobalt nanoparticles-embedded carbon nanofibers for Li–O2 batteries. ChemSusChem 8:2496–2502

    Article  CAS  Google Scholar 

  25. Shen C, Wen Z, Wang F, Wu T, Wu X, (2016) Cobalt metal based cathode for lithium-oxygen battery with improved electrochemical performance. ACS Catal 6:4149–4153

    Article  CAS  Google Scholar 

  26. Huang JS, Wang DW, Hou HQ, You TY (2008) Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18:441–448

    Article  CAS  Google Scholar 

  27. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7:23515–23520

    Article  CAS  Google Scholar 

  28. Martinez Crespiera S, Amantia D, Knipping E, Aucher C, Aubouy L, Amici J, Zeng J, Francia C, Bodoardo S (2016) Electrospun Pd-doped mesoporous carbon nano fibres as catalysts for rechargeable Li-O2 Batteries. RSC Adv 6:57335–57345

    Article  Google Scholar 

  29. Wang S, Cui Z, Cao M (2015) A template-free method for preparation of cobalt nanoparticles embedded in N-doped carbon nanofibers with a hierarchical pore structure for oxygen reduction. Chem Eur J 21:2165–2172

    Article  CAS  Google Scholar 

  30. Wang JT, Pan X, Sun X, Fan X, Guo Y, Xue H, He J (2013) Synthesis and electrochemical characterization of N-doped partially graphitized ordered mesoporous carbon–Co composite. J Phys Chem C 117:16896–16906

    Article  Google Scholar 

  31. Ma SB, Lee DJ, Roev V, Im D, Doo S-G (2013) Effect of porosity on electrochemical properties of carbon materials as cathode for lithium-oxygen battery. J Power Sources 244:494–498

    Article  CAS  Google Scholar 

  32. Zhang JG, Wang D, Xu W, Xiao J, Williford RE (2010) Ambient operation of Li/Air batteries. J Power Sources 195:4332–4337

    Article  CAS  Google Scholar 

  33. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146:766–769

    Article  CAS  Google Scholar 

  34. Xiao J, Wang D, Xu W, Wang D, Williford RE, Liu J, Zhang JG (2010) Optimization of air electrode for Li/Air batteries. J Electrochem Soc 157:A487–A492

    Article  CAS  Google Scholar 

  35. Kraytsberg A, Ein-Eli Y (2013) The impact of nano-scaled materials on advanced metal–air battery systems. Nano Energy 2:468–480

    Article  CAS  Google Scholar 

  36. Shang C, Li M, Wang Z, Wu S, Lu Z (2016) Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanoparticles as efficient oxygen reduction reaction catalysts. ChemElectroChem 3:143–1445

    Google Scholar 

  37. Nie H, Xu C, Zhou W, Wu B, Li X, Liu T, Zhang H (2016) Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li–O2 batteries. ACS Appl Mater Interfaces 8:1937–1942

    Article  CAS  Google Scholar 

  38. Gallant BM, Mitchell RR, Kwabi DG, Zhou J, Zuin L, Thompson CV, Shao-Horn Y (2012) Chemical and morphological changes of Li–O2 battery electrodes upon cycling. J Phys Chem C 116:20800–20805

    Article  CAS  Google Scholar 

  39. Lee J-H, Black R, Popov G, Pomerantseva E, Nan F, Botton GA, Nazar LF (2012) The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energy Environ Sci 5:9558–9565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has received funding from the Seventh Framework Programme FP7/2007–2013 (Project STABLE) under Grant Agreement No. 314508. The authors sincerely thank Mr Mauro Raimondo for FESEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bodoardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez Crespiera, S., Amantia, D., Knipping, E. et al. Cobalt-doped mesoporous carbon nanofibres as free-standing cathodes for lithium–oxygen batteries. J Appl Electrochem 47, 497–506 (2017). https://doi.org/10.1007/s10800-016-1035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1035-0

Keywords

Navigation