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Abstract
Pretrained language models (PLMs) exemplified by BERT have proven to be remarkably
effective for ad hoc ranking. As opposed to pre-BERT models that required specialized
neural components to capture different aspects of query-document relevance, PLMs are
solely based on transformers where attention is the only mechanism used for extracting
signals from term interactions. Thanks to the transformer’s cross-match attention, BERTwas
found to be an effective soft matching model. However, exact matching is still an essential
signal for assessing the relevance of a document to an information-seeking query aside from
semantic matching. We assume that BERT might benefit from explicit exact match cues to
better adapt to the relevance classification task. In this work, we explore strategies for
integrating exact matching signals using marker tokens to highlight exact term-matches
between the query and the document. We find that this simple marking approach signifi-
cantly improves over the common vanilla baseline. We empirically demonstrate the effec-
tiveness of our approach through exhaustive experiments on three standard ad hoc
benchmarks. Results show that explicit exact match cues conveyed by marker tokens are
beneficial for BERT and ELECTRA variant to achieve higher or at least comparable per-
formance. Our findings support that traditional information retrieval cues such as exact
matching are still valuable for large pretrained contextualized models such as BERT.
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1 Introduction

Pretrained Language Models (PLMs), such as BERT (Devlin et al., 2019), ELECTRA
(Clark et al., 2020) and T5 (Raffel et al., 2020), have become the core components for
building highly effective ranking models. The success of PLMs is largely owed to the heavy
pre-training on language modeling objectives on the one hand, and learning deeply-con-
textualized representations of input sequences using the transformer architecture (Vaswani
et al., 2017) on the other. Thanks to the fine-tuning strategy and the availability of large
publicly-released training datasets, applying a PLM to document ranking is straightforward.
Nogueira and Cho (2019) was the first to propose a simple application of BERT to text
ranking using fine-tuning on the large public MS MARCO (Nguyen et al., 2016) dataset. In
this work, BERT was deployed as a relevance classifier trained to estimate the probability
each document is “relevant” w.r.t a given query.

Compared to the first wave of neural ranking models including DRMM (Guo et al.,
2016), DUET (Mitra et al., 2017), and KNRM (Xiong et al., 2017), referred to as pre-BERT
models, BERT and its variants do not appear to require any specialized neural architectural
components to capture different aspects of relevance between a query and a document (Lin
et al., 2020). The same architecture based on homogeneous transformer layers is employed
regardless of the downstream task. Qiao et al. (2019) study the behaviour of BERT for
ranking and revealed that it focuses more on document terms that directly match the query.
Compared to pre-BERT models such as Conv-KNRM (Dai et al., 2018) that prefer terms
related to the query in search, BERT’s pretraining on surrounding contexts favors text
sequence pairs that are closer in their semantic meaning (Qiao et al., 2019). Qiao et al.
(2019) conclude that BERT can be considered as an interaction-based sequence-to-sequence
soft matching model that owes its effectiveness to the transformer’s cross-match attention.
While soft semantic matching is, undeniably, a valuable signal for relevance that alleviates
the vocabulary mismatch problem, a ranking model needs proper handling of exact
matching cues as well (Guo et al., 2016; Mitra et al., 2017; Luan et al., 2020). Let us take
the following query: “Causes of left ventricular hypertrophy” form the MS MARCO pas-
sage ranking task, as an example. Table 1 reports extracts from the top passages retrieved by
BERT. We can see that all top ranked passages are related to “right ventricular hypertrophy”
due to the soft matching between “left” and “right”. This example is a reminder of the
importance of exact matching for relevance ranking. Boualili et al. (2020) suggest that a
PLM like BERT can benefit from explicit exact matching signals for passage ranking. The
authors propose MarkedBERT, a model that uses marker tokens to convey exact matches
between the query and document terms from the input sequence. Special tokens, i.e, ½ei� and
½=ei�, were added to the textual input sequence of BERT to indicate the start and the end,
respectively, of terms that match exactly with the i-th term of the query. For example:

Table 1 Extracts from top ranked passages by Vanilla BERT for the query: “causes of left ventricular
hypertrophy”

ID Passage

47203 Causes of Right Ventricular Hypertrophy. There are four usual causes of right ventricular
hypertrophy.

5197133 The last common cause of right ventricular hypertrophy is the ventricular septal defect.

7504775 The most common causes of right ventricle hypertrophy (RVH) are diseases that damage the lung.
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Query: Causes of ½e2�left½=e2� ½e3�ventricular½=e3� ½e4�hypertrophy½=e4�
Passage: ½e2�Left½=e2� ½e3�ventricular½=e3� ½e4�hypertrophy½=e4� can occur...
Exact term-matching integration via marking has proven to induce significant gains on

the MSMARCO passage ranking task over “Vanilla” BERT (monoBERT) (Nogueira and
Cho, 2019). Analysis of the attention shows that marker tokens bring more focus on the
exact matches allowing more relevant documents to be ranked higher. Table 2 shows
extracts from top ranked passages returned by MarkedBERT for the query “Causes of left
ventricular hypertrophy” where we can count more documents related to “left ventricular
hypertrophy” without explicit bias, since the passage 47203 ranked first by BERT is still
ranked high (second) by MarkedBERT.

In this work, we follow the same hypothesis stating that exact matching cues can enhance
PLMs and extend the previously proposed marking-based approach to ad hoc document
ranking. We introduce new simple marking strategies to identify which aspect of exact
match marking is important for ad hoc document ranking, namely: Does the model require
marking both query and document segments or is marking the document enough? Does the
model require query-term identification in the marker or is using the same marker for all
query terms enough? And which combination works better? We conduct extensive exper-
iments to determine the contribution of exact match marking on the most used PLM, BERT,
and the more recent and effective ELECTRA model on standard ad hoc benchmarks. We
empirically demonstrate the effectiveness of explicit exact match marking across different
experimental scenarios including in-domain, zero-shot transfer and multi-phase fine-tuning
settings. Since our approach aims at injecting an established traditional IR cue to recent
pretrained transformers, we study the effectiveness of our models with interpolating the
traditional BM25 scores. We find that best match scores obtained by BM25 are still valuable
since they contribute to the end-to-end effectiveness. Furthermore, the marking-based
models require less intervention from BM25 scores to achieve better ranking performance
than the vanilla baseline.

Our main contributions can be summarized as follows:

● We present, to our knowledge, the first work investigating the impact of exact match
integration into BERT for long document ranking.

● We extend the idea of exact match marking by introducing a new simple and unique
marker token for highlighting all the exact term-matches without distinction and explore
two marking levels: document and pair marking.

● We conduct extensive experiments to evaluate the effectiveness of our proposed marking
strategies on in-domain data using the MS MARCO document ranking benchmark, and

Table 2 Extracts from top ranked passages by MarkedBERT for the query: “causes of left ventricular
hypertrophy”

ID Passage

8332546 Left ventricular hypertrophy can occur when...show evidence of left ventricular hypertrophy at.

47203 Causes of Right Ventricular Hypertrophy. There are four usual causes of right ventricular
hypertrophy.

6484576 Left ventricular hypertrophy is a thickening of the wall of the heart’s main pumping chamber.
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zero-shot generalizability to out-of-domain data using the standard TREC ad hoc
Robust04 and GOV2 benchmarks.

● We investigate the impact of short key word queries vs. long natural descriptions and
propose a hybrid pipeline taking advantage of both the retriever and ranker strengths.

● We study the contribution of exact match scores from a bag-of-words model to the out-
of-domain effectiveness of our models.

● We study the contribution of multi-phase fine-tuning with additional in-domain fine-
tuning to the out-of-domain performance.

● We evaluate the robustness of our approach by considering different PLMs BERT and
ELECTRA.

● We compare our best configurations with diverse state-of-the-art approaches.

● We publish our source code as well as our ready-to-use checkpoints at: https://github.
com/BOUALILILila/ExactMatchMarking

2 Background and related work

In this paper, we focus on ad hoc document retrieval (also referred to as document ranking)
over corpora comprising either news articles or web pages. Following the standard for-
mulation: Given a corpus of documents C, potentially large, the task of a ranking system is
to produce a ranked list of k documents from the corpus in response to a user’s information
need expressed as query q.

2.1 Exact matching in pre-BERT models

Deep Learning approaches have steadily grown in popularity since their introduction in IR
over a decade ago. Even though Learning to Rank had reached its zenith early in the 2010s
(Liu, 2009; Li, 2011), its use of discrete hand-crafted features, numbering in the hundreds or
even more was a major limitation. The promise of Deep Learning models was precisely to
obviate the need of such costly manual-engineered features by relying on neural networks
and continuous vector representations. Soon, numerous neural ranking models emerged,
such as DRMM (Guo et al., 2016), DUET (Mitra et al., 2017), KNRM (Xiong et al., 2017)
and Conv-KNRM (Dai et al., 2018). We do not have sufficient space to thoroughly review
early neural ranking models and therefore refer the readers to existing overviews (Mitra
et al., 2018; Onal et al., 2018). Aside from the models that were specifically designed for
document ranking, models from the NLP community built for semantic similarity share
some architectural similarities and there has been cross-fertilization between NLP and IR
Lin et al. (2020). This interaction lead IR researchers to realise that relevance matching and
semantic matching (e.g: sentence similarity) are different tasks (Guo et al., 2016). While the
former requires proper handling of the exact matching signals, the later requires accurately
capturing semantics. Thus, neural ranking models required new architecture designs to
handle both semantic and exact matching signals. In Mitra et al. (2017), authors proposed a
duet architecture composed of two deep neural networks, a local model that captures exact
matching signals and a distributed model for semantic matching. Despite the reported
successes of these neural models, there has recently been some skepticism about whether
these successes, in the absence of large amounts of data, are not just inflated by comparison
to weak baselines. The study conducted over a 100 papers by Yang et al. (2019) on the
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Robust04 dataset showed that most models failed against strong non-neural baselines (RM3
(Lavrenko and Croft, 2001)).

2.2 PLMs for multi-stage reranking

Recently, the inception of the transformer architecture (Vaswani et al., 2017) instigated a
new wave of approaches (Nogueira and Cho, 2019; MacAvaney et al., 2019; Akkaly-
oncu Yilmaz et al., 2019) that, at last, were able to significantly outperform well-tuned
traditional IR baselines such as RM3 (Lavrenko and Croft, 2001). Nogueira and Cho
(Nogueira and Cho, 2019) describe the first successful application of BERT (Devlin et al.,
2019)—known as monoBERT— to passage reranking where the ranking task is modeled as
a binary classification problem over individual candidate passages. This work marks the
beginning of the “BERT revolution”. The results of the TREC Deep Learning Track 2019
(Craswell et al., 2020) demonstrated clearly the effectiveness of BERT-based models and
revealed a significant distinction with the pre-BERT models. Regardless of its effectiveness,
BERT has a key limitation for document ranking: it cannot handle long input sequences that
are longer than 512 tokens. In order to address this challenge, (Yang et al., 2019) apply
inference on sentences individually, and then use interpolation of the original document
score —obtained by a traditional ranker— and the weighted top n sentence scores to rerank
the documents. Following the same strategy, Birch (Akkalyoncu Yilmaz et al., 2019) reports
state-of-the-art effectiveness on the TREC newswire test collections Robust04, Core17 and
Core18 using fine-tuned monoBERT on exclusively out of domain passage-level datasets
(TREC Microblog, MS MARCO and TREC CAR). Their experiments demonstrate that
relevance models can be transferred across different domains, which solves the problem of
the lack of passage-level relevance annotations in the target domain. Similarly, (Dai and
Callan, 2019) use passage-level evidence to fine-tune BERT by considering all passages
from a relevant document as relevant. For inference, the document is split into overlapping
passages and each passage is scored individually. Document scores based either on the score
of the first passage, the best passages or the sum of all passage scores have been investi-
gated, simple best passage score was found to be the best approach (BERT-MaxP). This was
the first work to highlight BERT’s capacity to exploit linguistically rich descriptions as
opposed to previous keyword search techniques. (MacAvaney et al., 2019) propose a new
approach (CEDR) that incorporates the BERT’s classification token [CLS] that encodes the
representation of the full input into existing pre-BERT neural IR models. The authors show
that this joint approach outperforms a vanilla BERT ranker. Instead of aggregating the
scores of individual passages as in Birch and BERT-MaxP, Parade (Li et al., 2020)
aggregates the passage representations. This yields an end-to-end differential model like
CEDR but without the use of pre-BERT models. In order to obtain the document repre-
sentation, several aggregation methods were investigated and using a small stack of
transformer encoders was found to be the best method. Arguing that exact matching is a
valuable cue for ranking, (Boualili et al., 2020) propose a new adaptation of monoBERT,
entitled MarkedBERT, that uses a marking technique to highlight exact match signals in the
input sequence. The authors demonstrate the effectiveness of MarkedBERT on the MS
MARCO passage ranking task and confirmed that marker tokens bring focus on exact
matching terms through attention analysis. Beyond BERT, (Nogueira et al., 2020) report
new state-of-the-art effectiveness on Robust04 using a novel adaptation of the pretrained
sequence-to-sequence model T5 (Raffel et al., 2020) to the document ranking task. This new
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generation-based approach proved to be more effective than BERT in the data-poor regime
with limited training data.

2.3 PLMs for sparse and dense retrieval

The commonly adopted monoBERT approach takes as input the concatenated query doc-
ument text through BERT and use BERT’s [CLS] output token to produce a relevance score.
The PLM rerankers compute full cross-attention between contextualized token representa-
tions, and thus referred to as cross-encoders. However, their cross-attention operations are
too expensive for full collection retrieval. To overcome this challenge, a line of work
resorted to augmenting lexical retrieval with PLMs. (Nogueira et al., 2019) propose Doc-
T5Query, a document expansion technique for reducing the vocabulary gap between queries
and documents. The idea is to train a sequence-to-sequence (T5 (Raffel et al., 2020)) model
that, given a text from a corpus, produces queries for which that document might be
relevant. Dai and Callan (2019) propose a different framework, DeepCT, for estimating a
term’s context-specific term importance based on contextual embeddings from BERT. These
term importance weights are then mapped into integers so that they can be directly inter-
preted as term frequencies, replacing term frequencies in a standard bag-of-words inverted
index.

Another line of research proposes bi-encorders as an alternative trading off the higher
effectiveness of cross-encoders for improved efficiency by encoding the query and docu-
ment separately. Single-vector systems encode each query and each document into a single
dense vector and relevance is modeled as a simple measure of vector similarity (Reimers
and Gurevych, 2019; Karpukhin et al., 2020; Xiong et al., 2021). MacAvaney et al. (2020)
proposed PreTTR, a hybrid model between bi and cross-encoders by eliminating cross
attention on some layers of a cross-encoder model. Luan et al. (2020) raises the limited
capacity of single-vector representation to support retrieval of long documents and propose
Me-BERT that encodes documents into a set of vectors. Similarly, poly-encoder (Humeau
et al., 2020) encodes queries into a set of vectors. Following the same paradigm, ColBERT
(Khattab and Zaharia, 2020) represents both queries and documents with token-level vectors
and estimates relevance using a late interaction mechanism capturing rich interactions
between the two sets of vectors. However, encoding documents with all tokens impose an
order-of-magnitude larger index complexity than all previous models.

For an exhaustive review of all research lines using BERT-like models we refer readers to
this recent survey (Lin et al., 2020).

2.4 Understanding BERT’s success

In the light of the improvements brought by BERT to a wide range of IR tasks, many
researchers investigate the reasons behind such substantial improvements. Padigela et al.
(2019) empirically study a set of hypotheses that show that BM25 is more biased towards
high query term frequency which hurts its performance while BERT retrieves passages with
more novel words. However, they found that BERT fails at capturing the query context for
long queries. Dai and Callan (2019) demonstrate that unlike traditional IR models, BERT
takes advantage of stop words and punctuation thanks to its capacity to model language
structure. Qiao et al. (2019) show that BERT is an interaction-based model (Guo et al.,
2016), its advantage lies in the cross query-document attentions. Discarding these cross
sequence interactions lead to a performance close to random. They also find that BERT

123

Information Retrieval Journal (2022) 25:414–460 419



assigns extreme matching scores to query-document pairs and most pairs get either one or
zero ranking scores, showing it is well tuned by pre-training on large corpora. Câmara and
Hauff (2020) analyze BERT using diagnostic datasets built from retrieval heuristics (Ren-
nings et al., 2019). Their experiments show that BERT does not fulfil most retrieval
heuristics created by IR experts and argue that these axioms are not suitable to understand
BERT performance. MacAvaney et al. (2020) introduce ABNIRML a new framework for
analysing the behavior of neural IR models. The authors found that neural ranking models
have fundamentally different characteristics from prior ranking models such as high sen-
sitivity to word order and increasing relevance scores when non-relevant content is added to
the document.

Our work falls in the category of cross-encoders, and this paper represents, to the best of
our knowledge, the first paper detailing with a general approach of highlighting exact
matching signals to enhance contextualized pretrained language models such as BERT and
reporting an exhaustive set of experiments using long-document ranking benchmarks.
Although, using a marking technique to emphasize exact term matches in the query-doc-
ument pair was first proposed in our own previous work entitled MarkedBERT (Boualili
et al., 2020) that represents our initial study. This last was limited to one marking technique
on a passage ranking task with a weak training regime, raising the question of its full
potential (Lin et al., 2020). Aside from MarkedBERT, marking techniques were mentioned
in the descriptions of our TREC-COVID challenge (Voorhees et al., 2021) submissions.
This present work is a generalisation of the approach followed in MarkedBERT where we
present a complete description of our ideas, comprehensive evaluation on in and out of
domain TREC ad hoc benchmarks with a better training regime, making it directly com-
parable to state-of-the-art models.

3 Augmenting pretrained contextualized language models with exact
match signals

In this section, we first describe the general architecture we adopt in this work and then
present the marking strategies we propose to explicitly highlight exact term matches in the
query-document pairs before feeding them to the BERT model. We consider the traditional
formulation of exact matching where two terms t1 and t2 match exactly if their stems are
identical. We use the Porter algorithm for stemming and stop words are not considered
during marking. By adding explicit indications of exact matching signals in the textual
inputs, the models can benefit from this traditional hint and adapt better to the ad hoc task.

3.1 Model architecture

We adopt the model configuration described by Nogueira and Cho (2019) referred to as
monoBERT or vanilla BERT. In this configuration, BERT is applied as a binary relevance
classifier for text ranking. The architecture of the model is shown in Fig. 1. Using the same
notation as Devlin et al. (2019), the query q is fed as Segment A and the candidate document
d as Segment B. The special token [CLS] is prepended to the input sequence, and the special
delimiter token [SEP] is placed at the beginning and end of the document segment to build
the input sequence S as follows:

S ¼ ½½CLS�;Q; ½SEP�;D; ½SEP�� ð1Þ
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where Q and D represent the sequences of tokens obtained after applying the WordPiece
tokenizer to the query q and document d texts, respectively.

Once the sequence S is passed through BERT, the final vector representation C of the
standard classification token [CLS], that captures the interaction between the query and the
document, is used as input to a single layer neural network that estimates a score R(d, q)
quantifying how relevant the candidate document d is to the query q. That is:

Rðd; qÞ ¼ PðRelevant ¼ 1jq; dÞ ð2Þ
The details of the fine-tuning and inference process are given in Sect. 4.

3.2 Exact match marking

We propose different marking strategies that only intervene at the textual input level to
augment the input sequence S defined in Eq. (1). Instead of altering the model’s architecture
in order to integrate the desired traditional signal, we prefer letting the model learn how to
use the given hints and avoid the risk of introducing a systematic bias towards exact term
matching. A marking strategy is defined by two(2) parameters:

1. Marker-Token type: we introduce two types of marker tokens, namely: Simple Markers
and Precise Markers.

2. Marking level: we investigate two levels for marking: Document Marking and Pair
Marking.

Table 3 illustrates all the four(4) marking strategies that can be defined using the two
marker-token types at the two different marking levels. Note that the Pre-Pair marking
strategy corresponds to the strategy used in the MarkedBERT model (Boualili et al., 2020).

3.2.1 Marker-token type

We investigate two types of marker tokens to investigate whether distinguishing query terms
is important or not to the model performance.

Fig. 1 BERT sentence pair classification architecture Devlin et al. (2019) used in vanilla BERT | monoBERT
(Nogueira and Cho, 2019)
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Simple Markers. Uses a simple unique marker (#) for all query terms without explicit
distinction. Considering a query Q ¼ fq1; . . .; qjQjg, whose terms qn and qm, with
1\n\m\jQj, occur in the document and thus have to be marked, we obtain the new

marked query segment ~Q as follows:

~Q ¼ fq1; . . .;#qn#; . . .;#qm#; . . .; qjQjg ð3Þ
Precise Markers. Uses precise markers consisting of newly introduced tokens ½ek � and ½=ek �,
where k ¼ f1; :::; jQjg identify query terms, that mark the start and the end of each matched
term, respectively. This marking technique associates each unique query-term qk with a
unique pair of marker tokens ½ek � and ½=ek � that identifies it and its occurrences. If a term is
repeated in the query, all occurrences of this query term will be highlighted using the same
identifier i.e that of the first occurrence. For example, the query Q described in the previ-
ously paragraph with simple markers would be marked as follows:

~Q ¼ fq1; . . .; ½en�qn½=en�; . . .; ½em�qm½=em�; . . .; qjQjg ð4Þ

3.2.2 Marking level

In order to better understand whether it is relevant to mark both the query and the document
segments or the document segment only, we investigate two marking levels: Document and
Pair marking. In the former, the occurrences of query terms in the document are marked in
the document segment while in the later, the exact matching terms are marked in both the
document and query segments as shown in Table 3. We use the same notations defined in
the model’s architecture where Q refers to the query segment and D refers to the document
segment that constitute the input sequence S.

Document marking. It only augments the document segment D with marker tokens
indicating the start and the end of each query-term occurrences in the document. Consid-
ering a query Q ¼ fq1; . . .; qjQjg and a document D ¼ fd1; . . .; djDjg, if fdi; djg are occur-
rences of query term qn and dl is the only occurrence of qm in D with 1\n\m\jQj and
1\i\j\l\jDj, the augmented query and document sequences ~Q and ~D, respectively, are
as follows when using the simple markers:

Table 3 Example of the proposed marking strategies applied to the query Q: “causes of left ventricular
hypertrophy”, and the document D: “Left ventricular hypertrophy can occur when some factor ...”

Marker Level Strategy Marked input sequence

Simple Document Sim-Doc Q: causes of left ventricular hypertrophy

D: #Left# #ventricular# #hypertrophy# can occur.

Pair Sim-Pair Q: causes of #left# #ventricular# #hypertrophy#

D: #Left# #ventricular# #hypertrophy# can occur.

Precise Document Pre-Doc Q: causes of left ventricular hypertrophy

D: ½e2�Left½=e2� ½e3�ventricular½=e3� ½e4�hypertrophy½=e4� can occur.

Pair Pre-Pair Q: causes of ½e2�left½=e2� ½e3�ventricular½=e3� ½e4�hypertrophy½=e4�
D: ½e2�Left½=e2� ½e3�ventricular½=e3� ½e4�hypertrophy½=e4� can occur.
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~Q ¼ fq1; . . .; qn; . . .; qm; . . .; qjQjg
~D ¼ fd1; . . .;#di#; . . .;#dj#; . . .;#dl#; . . .; djDjg

and as follows when using the precise markers:

~Q ¼ fq1; . . .; qn; . . .; qm; . . .; qjQjg
~D ¼ fd1; . . .; ½en�di½=en�; . . .; ½en�dj½=en�; . . .; ½em�dl½=em�; . . .; djDjg

Pair marking. It augments both the query and document sequences with marker tokens
indicating the start and the end of each exact matched term between the query and the
document. In our experiments, a query term with no occurrences in the document is not
marked. Considering the same example as in the Document marking level, the augmented

query and document sequences ~Q and ~D, respectively, are as follows when using the simple
markers:

~Q ¼ fq1; . . .;#qn#; . . .;#qm#; . . .; qjQjg
~D ¼ fd1; . . .;#di#; . . .;#dj#; . . .;#dl#; . . .; djDjg

and as follows when using the precise markers:

~Q ¼ fq1; . . .; ½en�qn½=en�; . . .; ½em�qm½=em�; . . .; qjQjg
~D ¼ fd1; . . .; ½en�di½=en�; . . .; ½en�dj½=en�; . . .; ½em�dl½=em�; . . .; djDjg

4 Experimental setup

This section describes the experimental setup used for studying the effectiveness of our
models for document ranking. We present the detailed fine-tuning our models on the large-
scale MS MARCO passage dataset and describe the MS MARCO document ranking
benchmark used for in-domain evaluations, and the standard TREC Robust04 and GOV2
benchmarks used for studying the out-of-domain transfer capabilities of our models. We
further describe the inference process and the diverse state-of-the-art baselines we use to
comparatively evaluate our approach. We report results using the official metrics of each
collection, namely: nDCG@10 and MAP@100 for MS MARCO document ranking col-
lection in the context of TREC Deep Learning 2019 and 2020 tracks, and nDCG@20 and
P@20 for Robust04 and GOV2, enabling thus direct comparisons with previous work.

4.1 Datasets

We conduct experiments on two standard ad hoc benchmarks: Robust04 and GOV2. In
addition to these traditional benchmarks, we use the recent TREC Deep Learning (DL)
Document Ranking benchmark from 2019 and 2020 tracks. Robust041 is a news wire
collection comprising 500K documents (TREC Disks 4 and 5) and 249 judged topics. Each
topic is composed of three fields: The “title” is a short keyword query, the “description” is a
longer well-formed natural language sentence that describes the information need and the
“narrative” is a paragraph that provides guidance for relevance assessment. Table 4 provides

1 https://trec.nist.gov/data/robust/04.guidelines.html
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an example of a TREC Robust04 topic. GOV22 is a Web collection crawled from gov-
ernment Websites in early 2004 comprising 25M documents and only 149 topics in the same
format as Robust04 topics with title, description and narrative. Documents in the GOV2
corpus are on average much longer than those in the Robust04 corpus; see Table 5. MS
MARCO Document Ranking dataset is a benchmark for web search used in TREC DL 2019-
2020 tracks (Craswell et al., 2020, 2021). The dataset contains more than 3M documents
composed of three fields: title, URL and body. Dense NIST judgments are provided for 43
and 45 topics for DL 2019 and 2020, respectively.

Table 5 resumes some statistics on the evaluation benchmarks.

4.2 Baselines

We compare our models against diverse baselines including: Traditional non-neural
approaches also known as Lexical Retrieval methods, sparse retrieval approaches, dense
retrieval models (bi-encoders), and strong reranking models (cross-encoders).

4.2.1 Lexical retrieval baselines

● BM25, we use the Anserini (Yang et al., 2017) implementation with default parameters.
For description queries, we set k1 ¼ 0:9 for Robust04 and k1 ¼ 2:0 for GOV2 and
b ¼ 0:6 for both datasets. This unsupervised model serves both as a baseline and as the
first stage retriever in all our experiments.

● BM25?RM3, a query expansion model based on RM3 (Lavrenko and Croft, 2001)
considered as a strong non-neural baseline. We use the Anserini (Yang et al., 2017)
implementation with the default parameters. For description queries, we use 20
expansion terms following (Li et al., 2020).

Table 4 Example of Robust04 search topic: Topic 302

Title Poliomyelitis and Post-Polio

Description Is the disease of Poliomyelitis (polio) under control in the world?

Narrative Relevant documents should contain data or outbreaks of the polio disease (large or small scale),
medical protection against the disease, reports on what has been labeled as post-polio
problems. Of interest would be location of the cases, how severe, as well as what is being
done in the “post-polio” area.

Table 5 Benchmarks statistics

Benchmark # Judged topics # Documents # Words per document

Robust04 249 0.5M 0.470K

GOV2 149 25M 0.835K

MS MARCO Document 43/45 3.2M 1.123K

The MS MARCO document dataset has 43 judged topics in DL 2019 and 45 judged topics in DL 2020

2 http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

123

424 Information Retrieval Journal (2022) 25:414–460

http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm


4.2.2 Sparse retrieval baselines

● DeepCT (Dai and Callan, 2020), we report results on Robust04 and GOV2 obtained
using the BOW?DeepCT-Query model (Dai and Callan, 2019), and use the re-weighted
MS MARCO documents provided by the authors3 using the HDCT model (Dai and
Callan, 2020) in combination with Anserini’s BM25 with default parameters for TREC
DL 2019 and 2020 evaluations.

● DocT5Query (Nogueira et al., 2019), following the paper setup, we generate 40
expansion queries per document and use Anserini’s BM25 with default parameters. Due
to the large size of the GOV2 collection (see Table 5) and the high computational cost of
DocT5query we do not report results on this collection.

4.2.3 Dense retrieval baselines

● DPR (Karpukhin et al., 2020), we use DPR as a retriever with the open source imple-
mentation from the Transformers library (Wolf et al., 2020) and the publicly released
DPR checkpoints for Query4 and Context5 encoders.

● ANCE (Xiong et al., 2021), we use ANCE as a retriever and use the Sentence
Transformers library (Reimers and Gurevych, 2019) with the publicly released
checkpoint6.

● ColBERT (Khattab and Zaharia, 2020), we use ColBERT as a dense retriever using the
authors released code: after encoding the whole collection, we use the top-1000
documents retrieved using ANN with faiss (Johnson et al., 2017) and rerank them using
ColBERT late-interaction operation. Considering the size of the GOV2 collection (25M
documents), and the important space footprint of ColBERT indexes7, we could not
produce results on GOV2.

4.2.4 Reranking baselines

● Vanilla baseline, the vanilla monoBERT model is our main baseline since it represents
the core model we augment with explicit exact match cues in our proposed models. The
vanilla baseline as well as our models share the same configuration and evaluation setup
making it suitable for evaluating the impact of exact match marking.

● Birch (MS) and Birch (MS-MB) (Akkalyoncu Yilmaz et al., 2019), the notation in
parentheses indicate the fine-tuning dataset(s): Ms for MS MARCO and MS-MB refers
to the model fine-tuned first on MS MARCO and then further fine-tuned on Microblog
(MB) data. We use the results reported by Li et al. (2020) that uses BM25 instead of
BM25?RM3 as the first-stage retriever.

3 http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/rankings/
4 https://huggingface.co/sentence-transformers/facebook-dpr-question_encoder-multiset-base
5 https://huggingface.co/sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
6 https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
7 With less than 4M documents, the size of the MS MARCO Document index was already as big as 200GB.
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● BERT-MaxP (MS) (Dai and Callan, 2019), we report the results obtained with the re-
implementation by Li et al. (2020) where the results are improved using a BERT model
fine-tuned on MS MARCO rather than Bing search log.

● Parade (Li et al., 2020), we report results obtained using both BERT and ELECTRA
variant from the paper.

● T5 (Nogueira et al., 2020), the T5, also known as monoT5, with 3B parameters detains
the state-of-the-art across many ad hoc benchmarks like Robust04. We report the original
results from the paper.

4.3 Training

We use the base version (12 layers, 768 hidden size, 12 heads, 110M parameters) of BERT
due to hardware limitations. We fine-tune both our vanilla baseline and our models aug-
mented with the different marking strategies on the large publicly released MS MARCO
passage dataset. We use a batch-size of 128 and the maximum sequence length
(128 sequences� 512 tokens ¼ 65536 tokens=batch) for 100k on free Google Colab
TPUs8. We use Adam optimizer (Kingma and Ba, 2015) with the initial learning rate set to
3e�6 and linear decay of the learning rate. The drop out rate is set to 0.1 for all our
experiments. We use the open source implementation of BERT by Hugging Face (Wolf
et al., 2020). It is important to note that fine-tuning an augmented model with a marking
strategy does not add a computational cost compared to the vanilla model.

4.4 Inference

We use a two-stage ranking pipeline. We retrieve an initial candidate list of top 1, 000
documents per query using BM25. We use the BM25 implementation from off-the-shelf
Anserini open-source IR toolkit (Yang et al., 2017).

The length of BERT’s input sequence cannot exceed 512 tokens due to the fact that the
positional embeddings were trained on sequences of a maximum length of 512 tokens. This
limitation prevents from directly applying our models to long documents. Following the
strategy proposed by Dai and Callan (2019), we split each document into overlapping
passages that can be handled individually by BERT. For Robust04 and GOV2, passages are
generated using a sliding window of 150 words and a stride of 75 words, formally expressed
as d ¼ fp1; :::; png where n is the number of passages in the document d. As a trade-off
between latency and effectiveness, we only consider a maximum of 30 passages per doc-
ument. The first and last passages are always picked while the remaining 28 are randomly
chosen. The fine-tuned BERT models on exclusively out-of-domain data are used afterwards
to predict the relevance of each passage w.r.t a query q independently. The best scoring
passage is then taken as a proxy for the Document-level relevance:

Rðd; qÞ ¼ maxðRðp1; qÞ; :::;Rðpn; qÞÞ ð5Þ
For the queries we consider both the topic titles that are preferred by most pre-BERT models
including BM25, and the descriptions that are more similar to MS MARCO’s natural
language questions.

8 https://colab.research.google.com
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For TREC DL Document ranking evaluation, we split each document into overlapping
passages with the same maximum length of 384 and a stride of 192 following the splitting
strategy in Yan et al. (2019). In addition, the title is added to the beginning of every passage
if it is available. Similarly to Robust04 and GOV2, we use the best scoring passage as proxy
for the whole document relevance.

5 Results and analysis

We address, in this section, our research questions. First, we investigate the effectiveness of
our proposed exact match marking strategies with a BERT core on in-domain data, i.e, MS
MARCO document ranking benchmark, and the robustness to out-of-domain collections, i.
e, Robust04 and GOV2. Then, we study how to improve domain-transfer capabilities of our
models using score interpolation with a bag-of-words model. We further investigate the
contribution of additional fine-tuning on limited target-domain data in a multi-phase fine-
tuning setting and how our exact match marking contributes in each phase. Finally, we
verify the contribution of our exact match marking on the more effective ELECTRA model,
and compare our best configurations to diverse state-of-the-art baselines.

5.1 Performance of the models augmented with exact match marking

We evaluate the contribution of our proposed exact match marking strategies and discuss
our research question RQ1 Is exact match marking beneficial to pretrained transformers
exemplified by BERT? by comparing the augmented models with exact match marking to the
vanilla baseline. We consider results in the in-domain setting with MS MARCO Document
dataset and the zero-shot transfer setting to out-of-domain datasets, namely: Robust04 and
GOV2.

Table 6 Reranking effectiveness on the TREC DL 2019 and DL 2020 Document ranking tasks

TREC DL Doc DL 2019 DL 2020

Model nDCG@10 MAP@100 nDCG@10 MAP@100

BM25 0.5176 – 0.2434 - 0.5286 – 0.3793 –

BM25?RM3 0.5169 – 0.2772 - 0.5248 – 0.4006 –

VanillaBERT 0.6726 – 0.3006 - 0.6340 – 0.4523 –

Sim-DocBERT 0.6858 þ2:0% 0.3038 þ1:1% 0.6340 þ0:0% 0.4414 �2:4%

Sim-PairBERT 0.6798 þ1:1% 0.3057 þ1:7% 0.6495 þ2:4% 0.4505 �0:4%

Pre-DocBERT 0.6777 þ0:8% 0.3061 þ1:8% 0.6368 þ0:4% 0.4513 �0:2%

Pre-PairBERT 0.7025 y þ4:4% 0.3018 þ1:8% 0.6498 þ2:5% 0.4497 �0:6%

Best performances are highlighted in bold

Significant improvements over the vanilla baseline with p\0:05 are indicated with y
Change rate over the vanilla baseline are reported for each metric (%)
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5.1.1 In-domain effectiveness

We re-rank the initial list of candidate documents retrieved by BM25 with RM3 query
expansion, using all our models and the vanilla baseline. We report the performance on the
TREC DL 2019 and 2020 test sets in Table 6, in terms of the official evaluation metrics:
nDCG@10 and MAP@100.

Comparison with baselines. Compared to BM25 and the first-stage retriever (BM25?
RM3), all BERT-based models perform significantly better. Interestingly, the non-neural
methods perform better on DL 2020 test set while the BERT-based models perform better on
the DL 2019 test set. Adding exact match marking regardless of the marking strategy, leads
to better or at least the same performance as the vanilla baseline (marking ablation). The
Pre-PairBERT model achieves the overall best performance on DL 2019 test topics, but also
on DL 2020 along with Sim-Pair BERT.

Impact of the marker type and marking level on the performance. On TREC DL
2019, using the pair marking strategy brings substantial gains in performance when used in
combination with the precise marker type, Pre-Pair BERT achieves þ3:7% relative gain over
the Pre-Doc BERT model. While it leads to a drop in performance when combined with the
simple marker, Sim-Pair BERT has a relative loss of �0:9% compared to Sim-Doc BERT.
Interestingly, on TREC DL 2020 using the Pair marking level has the same impact
regardless of the marker type.

Marking both the query and document segments seems to be more beneficial considering
results on both test collections. Using the precise marker type brings further gains in
performance on DL 2019.

5.1.2 Out-of-domain effectiveness

We use the fine-tuned models on exclusively MS MARCO passages to rerank the docu-
ments retrieved by BM25 in the first-stage. We do not train the models on the target
collections (Robust04, GOV2), we use all their queries and relevance judgements as a held-
out test set. Thus, this evaluation is an instance of a zero-shot transfer setting.

Table 7 shows the reranking effectiveness of our different models and baselines on the
top 1, 000 candidate documents retrieved by BM25 from Robust04 and GOV2 collections
using both the title and description fields of the TREC topics. We recall that titles are short
key word queries preferred by traditional bag-of-words models like BM25 and descriptions
are well-written natural language queries similar to MS MARCO’s questions on which the
BERT models are fine-tuned. We report results using the commonly used nDCG@20 and
P@20 metrics to enable direct comparisons with previous work on these collections.

Comparison with baselines. All BERT-based models achieve substantially better per-
formance on both collection compared to the traditional non-neural baselines at the only
exception of GOV2 titles. We observe a discrepancy in the impact of the exact match
marking on GOV2 compared to Robust04. While all our models, except Sim-Doc BERT,
significantly outperform the vanilla baseline on Robust04 descriptions or at least achieve
similar performance on titles, our models have no significant impact on GOV2. Importantly,
in no case a marking-based model leads to a significant degradation of performance on
GOV2. The disparity in the behavior of the models on the two benchmarks is probably due
to the nature of the documents involved. While Robust04 comprises well-written news
articles, GOV2 documents are web pages that include navigation bars, advertisements,
tables and discontinuous text. The zero-shot domain transfer –from the MS MARCO fine-
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tuned models to Robust04 articles– seems to be more attainable than to GOV2 web pages
even though MS MARCO passages were extracted from the web. We hypothesise that
further fine-tuning on domain-specific data may be required to learn better domain-specific
text representations. We investigate this in-domain adaptation in Sect. 5.3.

Impact of the marker type and marking level on the performance. On Robust04,
marking both the query and the document –models based on pair marking– has more impact
on the simple marker than the precise marker. On the description queries, Sim-Pair BERT

achieves an nDCG@20 of 0.4931 while Sim-Doc BERT has an nDCG@20 of only 0.4166,
and achieve 0.4773 compared to 0.4447, respectively, on title queries. While the marking
strategy has a lower impact on models using the precise markers (Pre-Doc BERT and Pre-Pair

BERT) especially on descriptions. On the other hand, results on the GOV2 collection are
quite mitigated.

Marking both the query and the document segments with a simple marker (#) appears to
be the best setting, Sim-Pair BERT has the best ranking accuracy among the four strategies
tested, with clear margins on the Robust04 collection especially on descriptions. We, thus,
choose to continue our analysis using the Sim-Pair BERT strategy, the full results using all the
marking strategies can be found in Appendix 1.

Table 7 Reranking effectiveness in the zero-shot transfer setting of the different models on Robust04 and
GOV2 collections

Robust04 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 – 0.3631 – 0.4058 – 0.3345 –

BM25?RM3 0.4407 – 0.3821 – 0.4255 – 0.3661 –

Vanilla BERT 0.4652 – 0.4046 – 0.4510 – 0.3851 –

Sim-Doc BERT 0.4447� �4:4% 0.3831� �5:3% 0.4166� �7:6% 0.3510� �8:9%

Sim-Pair BERT 0.4773 þ2:6% 0.4155 þ2:7% 0.4931 z þ9:3% 0.4169 z þ8:3%

Pre-Doc BERT 0.4767 þ2:5% 0.4084 þ0:9% 0.4789z þ6:2% 0.4026z þ4:5%

Pre-Pair BERT 0.4654 þ0:0% 0.4024 �0:5% 0.4795z þ6:3% 0.4034z þ4:8%

GOV2 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 – 0.5362 – 0.4264 – 0.4705 –

BM25?RM3 0.4851 – 0.5634 – 0.4212 – 0.4966 –

Vanilla BERT 0.4533 – 0.5272 – 0.4696 – 0.5248 –

Sim-Doc BERT 0.4588 þ1:2% 0.5349 þ1:5% 0.4686 �0:2% 0.5262 þ0:3%

Sim-Pair BERT 0.4468 �1:4% 0.5134 �2:6% 0.4687 �0:2% 0.5326 þ1:5%

Pre-Doc BERT 0.4485 �1:1% 0.5121 �2:9% 0.4768 þ1:5% 0.5315 þ1:3%

Pre-Pair BERT 0.4515 �0:4% 0.5238 �0:6% 0.4752 þ1:2% 0.5285 þ0:7%

Best performances are highlighted in bold

Significant improvements over the vanilla baseline with p\0:05 and p\0:01 after Bonferroni correction are
indicated with y and z respectively

Significant inferiority with p\0:05 is marked with �
For each measure, the improvement rate over the vanilla baseline is given (%)

123

Information Retrieval Journal (2022) 25:414–460 429



Title versus description queries. Since we are in a reranking configuration, it is
important to note that the first stage retriever BM25, as most pre-BERT ranking models,
prefers short key word queries to longer natural language descriptions (Dai and Callan,
2019; Nogueira et al., 2020). Table 8 shows the recall at rank 1, 000 of BM25 for both title
and description queries, where we notice a substantial difference in recall affecting the
quality of the candidate documents that the reranking models receive. Despite this disad-
vantageous initialization, the reranking models manage to reduce the gap between title and
description runs. The improvement rate over BM25 is much higher for description queries
compared to title queries on both collections especially on GOV2 where vanilla BERT has a
change rate of �5:0% over BM25, while it achieves over þ10% gain on descriptions. The
descriptions that are longer natural language queries carrying richer information that could
not be fully harnessed by the traditional bag-of-words method, are more effectively lever-
aged in the reranking stage. This BERT ability was already noted in previous work (Dai and
Callan, 2019), and Sim-Pair BERT follows the same preference, as it improves the search
accuracy of the description runs more effectively than the title runs. The overall perfor-
mance reported for our model using descriptions clearly surpasses that obtained using titles
by þ4:1% on average, despite the lower recall in the initial stage.

Impact of the initial stage retriever. Considering that first stage ranker BM25 has
higher recall on title queries, and that the marking-based models prefer description queries,
we propose a hybrid reranking pipeline where the documents retrieved by BM25 using title
queries are reranked with the BERT-based models using the description queries. Using this
hybrid pipeline allow as to obtain a higher recall in the first stage since BM25 performs
better on short keyword queries, and thus better candidate documents for reranking.
Description queries are longer statements of information needs more suitable for pretrained
reranking models to fulfill their potential. This pipeline remains realistic as language queries
may be generated from standard key-word queries (Padaki et al., 2020). This hybrid
approach is also adopted in recent state-of-the-art ranking model based on T5 Nogueira et al.
(2020).

Table 9 shows the results obtained using the hybrid reranking pipeline on both test
collections. Unsurprisingly, using better candidate documents for reranking with descrip-
tions yields even better accuracy. The vanilla BERT model achieves an improvement rate of
þ14% over BM25 on Robust04 and þ3:4% on GOV2 (we recall that BM25 results are
obtained using titles). Adding exact match marking in the hybrid reranking pipeline out-
performs the vanilla baseline on both collections; significantly on Robust04 with a gain of
over þ8%.

5.1.3 In-domain versus out-of-domain effectiveness.

Results on both in-domain and out-of-domain benchmarks clearly indicate that exact match
marking, aside from the Sim-Doc marking strategy which significantly underperforms the

Table 8 Recall of BM25 on Robsut04 and GOV2 collections on both title and description queries

Collection Title Description

Robust04 0.6989 0.6519

GOV2 0.7106 0.6024
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vanilla baseline on Robust04, is more beneficial than using a vanilla baseline. Using Sim-
Pair (especially for out-of-domain experiments) or Pre-Pair (especially for in-domain
experiments) marking strategies seems to be working best.

In the next two sections, we focus on out-of-domain effectiveness and study common
techniques used in the literature to enhance the effectiveness of BERT-based models, and
how our models behave in combination with these techniques. Therefore, the MS MARCO
document ranking benchmark is not suitable and thus we only report results on Robust04
and GOV2 collections.

5.2 Contribution of the first-stage retriever scores to the end-to-end
effectiveness

Our experimental design is based on a two-stage ranking architecture also known as a
retrieve-then-rerank architecture where our BERT-based models rerank the documents
retrieved by the BM25 model. In this section we evaluate the contribution of the best match
scores from the initial bag-of-words retriever to the end-to-end effectiveness by simply
combining BM25’s document-level scores with the passage-level evidence from the
reranker using linear interpolation. We follow the linear combination defined in the Birch
model (Akkalyoncu Yilmaz et al., 2019).

Birch uses a monoBERT sentence-level relevance classifier at its core. To determine
document relevance sf , inference is applied over each individual sentence si in a candidate
document d, and then the top n sentence scores are combined with the original document
score sdoc given by the first-stage retriever as follows:

sf ¼ a:sdoc þ ð1� aÞ:
Xn

i¼1

wi:si ð6Þ

where si is the i-th top scoring sentence according to monoBERT. The parameters a and wi’s
are tuned via cross-validation. In other words, the relevance score of a document comes
from the combination of its document-level term-matching score and evidence contributions
from the top sentences in the documents as determined by monoBERT.

For our experiments, the linear interpolation is applied to the results obtained in the zero-
shot transfer setting with the best-scoring passage (n ¼ 1). In other words, we use the score

Table 9 Reranking effectiveness in the zero-shot transfer setting of the different models on Robust04 and
GOV2 collections using the hybrid pipeline

Robust04 GOV2

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 – 0.3631 – 0.4774 – 0.5362 –

BM25?RM3 0.4407 – 0.3821 – 0.4851 – 0.5634 –

VanillaBERT 0.4845 – 0.4147 – 0.4937 – 0.5611 –

Sim-PairBERT 0.5239 z þ8:1% 0.4446 z þ7:2% 0.4991 þ1:1% 0.5695 þ1:5%

Best performances are highlighted in bold

Significant improvements over the vanilla baseline with p\0:05 and p\0:01 after Bonferroni correction are
indicated with y and z respectively

For each measure, the improvement rate over the vanilla baseline is given (%)
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combination defined in Eq. (6) on the document scores obtained by the BM25 retriever at
cutoff 1, 000 and their corresponding scores estimated with the best-scoring passage method
by the reranking models. Table 10 first shows the results of the traditional BM25 model
alone, then the second and third sections are each dedicated to a reranker: vanilla and Sim-
Pair BERT models. For both rerankers, we remind the results of the model alone obtained in
the zero-shot transfer setting and then present the end-to-end effectiveness after interpo-
lating BM25 scores (þ BM25) with the indication of the change rate (%) over the reranker-
only effectiveness. These results allow us to answer our research question RQ2 Do exact
match scores from the first-stage retriever contribute to end-to-end effectiveness of the
pretrained transformers and how exact match marking affects this contribution?

5.2.1 Impact of interpolating BM25 scores

Interpolating BM25 scores (Best Match) that are solely based on surface-level features such
as TF and IDF leads to a significant gain in performance, indicating that BM25 document-
level scores provide an additional relevance signal that the BERT-based models alone could
not effectively capture. We notice that the improvement rate resulting from interpolating
BM25 scores is much substantial on the GOV2 collection (þ15% in average) compared to
Robust04 (þ5:7% in average). The fact that the BERT models outperform BM25 by a large
margin on Robust04 while this margin is much smaller on the GOV2 can explain why
BM25 scores have more incidence on the end-to-end effectiveness on GOV2 than on
Robust04.

5.2.2 Impact of exact match marking

From Table 10, we can clearly see that for Robust04, where the exact match marking is
effective, the improvement rate over the reranker-only effectiveness is lower when using
exact match marking, about þ12% in average, compared to the vanilla model with þ22%
gain in average. In other words, the impact of the BM25 scores is more important on the
vanilla model compared to the Sim-Pair model. While on GOV2 the improvement rate after
BM25 scores interpolation compared to the reranker-only performance is either comparable
or slightly higher when using exact match marking compared to the vanilla baseline.
However, the performance of the Sim-Pair BERT model with BM25 scores interpolation is, in
all cases, higher than the vanilla BERT ? BM25 performance regardless of the improvement
rate brought by the score combination. Since we use the results obtained in the zero-shot
domain transfer setting where, we recall, the exact the marking is more effective, the gains
of the Sim-Pair BERT?BM25 configuration over the vanilla BERT?BM25 are more sub-
stantial on Robust04 than on GOV2.

5.2.3 Contribution of BM25 scores

The contribution of BM25 scores is controlled by the parameter a in Eq. (6) which we tuned
via 5-fold in-collection cross validation. In all scenarios, the weight put on a is non-
negligible, in other words, the contribution of BM25 signals remain important, this
observation was also reported for the Birch model (Lin et al., 2020). However, we notice
that the weight of a is always lighter when combining with the Sim-Pair BERT model that
uses exact match marking. For Robust04 descriptions, the vanilla BERT?BM25 baseline puts
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a weight of a 2 f0:3; 0:4g on BM25 scores, when Sim-Pair BERT?BM25 only consider a
contribution of a ¼ 0:2 from BM25, while achieving substantially better performance. This
indicates that the vanilla model relies more on BM25 to complete its relevance estimation
unlike the marking-based model that is able to effectively capture more relevance signals
and thus needing less contribution from BM25 scores.

Figure 2 visualizes the end-to-end ranking accuracy measured by nDCG@20 for a 2
½0; 1� on both Robust04 and GOV2 collections. On Robust04, we can clearly see that Sim-
Pair BERT?BM25 reaches the most effective combination with smaller contribution from
BM25 scores (smaller a), while the vanilla baseline requires more intervention from BM25
and still cannot reach the performance of Sim-Pair BERT?BM25, especially on descriptions.
It is only logical that the most performing model, that outperforms BM25 by a large margin,
requires less contribution from this later. Nevertheless, if we take the example of the GOV2
descriptions, despite the similar starting performance at a ¼ 0:0 of vanilla and Sim-Pair
BERT models, the gap between their performance starts getting wider at only a ¼ 0:1 to
reach its peak at a ¼ 0:2.

Combining the original document score obtained in the first-stage retriever with passage-
level evidence from BERT-based reranking models to determine the final relevance score of
a document yields substantial gains in performance. Relevance scores based on traditional
IR axioms complete the relevance signals captured by contextual pretrained LMs such as
BERT. Moreover, using our simple marking strategy to highlight the exact matching signals
in the query-document pairs enhance BERT’s own ability to estimate relevance and thus,
requires less contribution from BM25 to achieve the best performance.

5.3 Multi-phase fine-tuning

In previous experiments, we leveraged out-of-domain relevance assessments to fine-tune our
BERT models. This fine-tuning aims at providing the model with general notions of rele-
vance matching. However, transferring these relevance patterns to the target corpus may, in
some cases, be ineffective. To overcome this domain-transfer limitation, we use additional
fine-tuning on labeled data drawn from the same distribution as the final task, in other
words, in-domain labeled data fine-tuning. This approach is known as “stage-wise” or
“multi-phase” fine-tuning (Lin et al., 2020).

Once the models are fine-tuned on the MS MARCO passage dataset following the
training setting described in Sect. 4.3, we further fine-tune them on the target task using 5-
fold cross validation for both Robust04 and GOV2 collections. We use the folds from (Yang
et al., 2019) for Robust04 and the 5-folds configuration adopted by Li et al. (2020).

Following prior work by Dai and Callan (2019), we consider a maximum of 30 passages
per document as a trade-off between latency and effectiveness. During training, passages
issued from the top 1, 000 documents retrieved by BM25 for queries in the training folds are
sub-sampled to avoid catastrophic forgetting. Aside from the first passage, passages in a
document are randomly preserved with a probability of 0.1. Passages from a relevant
document according to the ground-truth (TREC relevance judgements) are taken as positive

[Robust04 titles] [Robust04 descrip.] [Robust04 hybrid] [GOV2 titles] [GOV2 descrip.] [GOV2 hybrid]

Fig. 2 The end-to-end ranking accuracy of the vanilla BERT and Sim-Pair BERT models with BM25 scores
interpolation on Robust04 and GOV2 collections. a ¼ 0:0 indicates the reranking model effectiveness only
without BM25 scores, and a ¼ 1:0 means that only BM25 scores are used
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examples and passages issued from the other remaining documents as negative examples.
We use a pointwise cross entropy loss and fine-tune the models for 1 single epoch with a
batch size of 32 training instances comprising a query and a passage. We use the Adam
optimizer with a learning rate of 1e�5 with warm up over the first 10% of the total training
steps.

For queries in the left-out test fold, we set the rerank threshold to 100 as a trade-off
between latency and effectiveness. We report the average performance across all test folds
measured in terms of P@20 and nDCG@20 using pytrec_eval9. In this setting, our vanilla
baseline corresponds to the pointwise trained BERT-MaxP model (Dai and Callan, 2019)
initialized with monoBERT fine-tuned on MS MARCO instead of Google’s BERT pre-
trained checkpoint without any prior fine-tuning on the text ranking task.

Table 11 reports the reranking effectiveness obtained using the multi-phase fine-tuning
setting compared to the single-phase MS MARCO fine-tuning (zero-shot transfer setting)
for both Robust04 and GOV2 collections. We report results obtained for reranking the top
100 documents retrieved by BM25 in both settings. Thanks to the additional in-domain fine-
tuning on the target collection, the performance on both collections improves regardless of
the topic field used. We notice in this setting that Sim-Pair BERT is able to achieve significant
gains over the vanilla baseline on the GOV2 collection, confirming our hypothesis that the
zero-shot domain transfer from MS MARCO was not sufficient for this collection.

Using the multi-phase fine-tuning setting BERT-based models are able to achieve better
performance on descriptions compared to titles on Robust04 by þ7:5% and þ8:3% for the
vanilla and Sim-Pair models respectively, despite the lower retrieval effectiveness of BM25
on descriptions compared titles (�4:3%). On the other hand, the difference in BM25
retrieval effectiveness between descriptions compared to titles is more important on GOV2,
about �11%. The BERT-based rerankers reduce this gap to �5:5% and �5:9% for the
vanilla and Sim-Pair models respectively but not enough to reverse the tendency. The end-
to-end effectiveness on this collection is thus higher on titles than descriptions as observed
in previous state-of-the-art models such as BERT-MaxP (Dai and Callan, 2019) or Parade
(Li et al., 2020)(see results in Sect. 5.5). Still, the hybrid pipeline outperforms both title and
description runs on both collections. The reranking accuracy achieved by the hybrid runs are
the highest reported results using a BERT-based model on both collections, at the time this
article was written.

5.3.1 Phase-wise marking

Previous results of the Sim-Pair BERT model presented in Table 11 in the multi-phase setting
are obtained using the exact match marking through out the two fine-tuning phases. While
the first phase fine-tuning focuses on learning general notions of relevance from a large
passage collection, the goal of adding in-domain fine-tuning is to learn directly from labeled
data with the same distribution as the target task. It is important to determine on which of the
two phases, the marking strategy is more beneficial and at which phase it can be omitted. To
this aim, we conduct an ablation study on the Sim-Pair BERT model. Table 12 shows the
results of the marking-strategy ablation on Robust04 and GOV2 collections using the
different topic fields. With these results, we can now discuss our research question RQ3 At
which phase the exact match marking is the most beneficial in a multi-phase fine-tuning
configuration?

9 https://pypi.org/project/pytrec-eval/
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MS marking (labelled run A in Table 12), uses exact match marking in the MS
MARCO (MS) fine-tuning phase only then use the original data without further marking for
the in-domain (ID) fine-tuning phase. We can see, in Table 12, that using the marking
strategy in the general fine-tuning phase is sufficient to outperform the vanilla baseline or at
least perform similarly for Robust04 titles. In other words, initializing BERT with the
weights learnt from marked inputs is better than those learnt from non-marked inputs.
Ablating marking in the in-domain fine-tuning phase can even surpass the performance of
the Sim-Pair BERT that uses marking across the two fine-tuning phases as observed for
descriptions on both collections and the hybrid run on GOV2.

ID marking (labelled run B in Table 12), uses the marking strategy to augment the
inputs during fine-tuning on the in-domain data while the BERT model was initialized with
the weights learnt from non-marked MS MARCO inputs. The results of this first-phase
marking ablation either has no substantial impact on the model’s performance or leads to a
degradation in performance. This behavior is predictable, since there is not enough in-
domain data for BERT to learn useful representations of the marker tokens and their con-
tribution to the relevance prediction.

Using a marking strategy during first general-purpose fine-tuning phase (MS marking) is
already enough to outperform the vanilla baseline without requiring additional marking
during the in-domain fine-tuning phase. At the end, the fine-tuned model using the Sim-Pair
marking strategy on MS MARCO is able to use the relevance matching patterns learned
using out-of-domain data, with explicit marking, for later phases even without the guidance
of the explicit markers. Nevertheless, additional marking in the in-domain fine-tuning phase
used in the classical Sim-Pair BERT approach is beneficial for title queries where it brings and
additional gain of þ1:6% and þ1:4% over the MS marking only (run A) on Robust04 and
GOV2, respectively.

5.4 Impact of exact match marking on ELECTRA variant

While BERT is the most famous and largely adopted pretrained language model, additional
variants such as RoBERTa (Liu et al., 2019) or ELECTRA (Clark et al., 2020) were
proposed in order to improve the model from different aspects. Recent state-of-the-art
results reported on Robust04 and GOV2 collections were achieved using the ELECTRA
model that appears to outperform BERT. ELECTRA (Clark et al., 2020) replaces the
Masked Language Modeling (MLM) with a novel more sample-efficient pretraining task
called replaced token detection. In this task, the model learns to distinguish real input tokens
from plausible but synthetically generated replacements by a small “generator” model. This
approach uses two components: the generator, a small two-layer BERT model that predicts
masked tokens and the ELECTRA discriminator model that both require training. However,
the new objective allows the model to learn from all input positions rather than only 15% of
the positions in the MLM task.

In order to be confident in our approach, we investigate if exact match marking is
beneficial for a BERT variant pretrained on a more robust task and study RQ4 Is exact
match marking beneficial in alternative transformer-based models such as ELECTRA?

For our experiments, we use the base version of the ELECTRA model as the core of our
model architecture illustrated in Fig. 1 as a replacement of the BERT model. We use the
same single-layer neural network that estimates a score R(d, q) quantifying how relevant the
candidate document d is to the query q. We also use the same fine-tuning hyper parameters
used with BERT.
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5.4.1 In-domain effectiveness

Using the same setting used for the BERT-based models, we report the results obtained on
TREC DL2019 and 2020 test collections in Table 13. For clarity, we only show results with
the Sim-Pair marking strategy, full results with all the strategies can be found in Appendix 3.

Interestingly using the ELECTRA core in place of BERT in the vanilla baseline does not
lead to increased performance and we even observe a slight drop in performance in TREC
DL 2020. Adding exact match marking, using both cores, leads to similar gains over the
vanilla baselines. While the gain in average precision is more pronounced with ELECTRA
on both DL 2019 and 2020, the effectiveness in terms of nDCG@10 is more interesting with
the BERT core on the DL 2020 test collection.

5.4.2 Zero-shot transfer setting

We use the fine-tuned models on exclusively out-of-domain data, i.e MS MARCO passage
dataset, and apply inference on the window-passages obtained by splitting each document
using the same passage length of 150 words and a 75 words stride used in the BERT
experiments. Table 14 shows the results obtained at cutoff 1, 000 on both Robust04 and
GOV2 collections. We recall the results of the Vanilla and Sim-Pair models with the BERT
core for comparison.

Exact Match Marking on ELECTRA Results indicate clearly that adding exact match
marking is still beneficial for the ELECTRA variant. As for the BERT version, Sim-Pair

ELECTRA is more effective on Robust04 with an average improvement rate of þ5% com-
pared to only half, þ2:5%, on GOV2. However, exact match marking has more
notable impact on titles rather than descriptions, when the vanilla ELECTRA baseline prefers
clearly description queries.

ELECTRA versus BERT core The Sim-PairELECTRA variant achieves better performance
than its BERT counterpart regardless of the topic field on the GOV2 collection. In contrast,
using the BERT core is more effective on Robust04 on both titles, descriptions and the
hybrid pipeline. The same tendency can be observed for the vanilla baseline with smaller
margins.

Table 13 Reranking effectiveness on the TREC DL 2019 and DL 2020 Document ranking tasks for Sim-Pair
and vanilla models with both BERT and ELECTRA cores

TREC DL Doc DL 19 DL 20

Model nDCG@10 MAP nDCG@10

BM25 0.5176 – 0.2434 – 0.5286 – 0.3793 –

BM25?RM3 0.5169 – 0.2772 – 0.5248 – 0.4006 –

Vanilla BERT 0.6726 – 0.3006 – 0.6340 – 0.4523 –

Sim-Pair BERT 0.6798 þ1:1% 0.3057 þ1:7% 0.6495 þ2:4% 0.4505 �0:4%

Vanilla ELECTRA 0.6738 – 0.2976 – 0.6236 – 0.4297 –

Sim-Pair ELECTRA 0.6816 þ1:2% 0.3062 þ2:9% 0.6331 þ1:5% 0.4543 y þ5:7%

Best performances are highlighted in bold

Significant improvements over the vanilla baseline with p\0:05 are indicated with y, for the same core

Change rate over the vanilla baseline for the same core type are reported for each metric (%)

123

Information Retrieval Journal (2022) 25:414–460 439



Ta
bl
e
14

R
er
an
ki
ng

ef
fe
ct
iv
en
es
s
in

th
e
ze
ro
-s
ho
t
tr
an
sf
er

se
tti
ng

fo
r
th
e
S
im

-P
ai
r
an
d
va
ni
lla

m
od
el
s
on

R
ob
us
t0
4
an
d
G
O
V
2
co
lle
ct
io
ns

us
in
g
bo
th

B
E
R
T
an
d
E
L
E
C
T
R
A

co
re
s

R
ob
us
t0
4

T
itl
e
ru
n

D
es
cr
ip
tio

n
ru
n

H
yb
ri
d
ru
n

M
od

el
nD

C
G
@
20

P
@
20

nD
C
G
@
20

P
@
20

nD
C
G
@
20

P
@
20

B
M
25

0.
42
40

–
0.
36

31
–

0.
40
58

–
0.
33
45

–
0.
42
40

–
0.
36
31

–

B
M
25
?
R
M
3

0.
44
07

–
0.
38

21
–

0.
42
55

–
0.
36
61

–
0.
44
07

–
0.
38
21

–

V
an
ill
a

B
E
R
T

0.
46
52

–
0.
40

46
–

0.
45
10

–
0.
38
51

–
0.
48
45

–
0.
41
47

–

S
im

–P
ai
r
B
E
R
T

0.
47
73

þ2
:6
%

0.
41

55
þ2

:7
%

0.
49
31

z
þ9

:3
%

0.
41
69

z
þ8

:3
%

0.
52
39

z
þ8

:1
%

0.
44
46

z
þ7

:2
%

V
an
ill
a

E
L
E
C
T
R
A

0.
44
16

–
0.
38

33
–

0.
44
82

–
0.
38
31

–
0.
47
82

–
0.
41
41

–

S
im

-P
ai
r
E
L
E
C
T
R
A

0.
47
17

z
þ6

:8
%

0.
41

24
þ7

:6
%

0.
45
97

þ2
:6
%

0.
38
86

þ1
:4
%

0.
50
43

z
þ5

:5
%

0.
42
63

þ2
:9
%

G
O
V
2

T
itl
e
ru
n

D
es
cr
ip
tio

n
ru
n

H
yb

ri
d
ru
n

M
od

el
nD

C
G
@
20

P
@
20

nD
C
G
@
20

P
@
20

nD
C
G
@
20

P
@
20

B
M
25

0.
47

74
–

0.
53
62

–
0.
42

64
–

0.
47
05

–
0.
47
74

–
0.
53

62
–

B
M
25
?
R
M
3

0.
48

51
–

0.
56
34

–
0.
42

12
–

0.
49
66

–
0.
48
51

–
0.
56

34
–

V
an
ill
a

B
E
R
T

0.
45

33
–

0.
52
72

–
0.
46

96
–

0.
52
48

–
0.
49
37

–
0.
56

11
–

S
im

-P
ai
r
B
E
R
T

0.
44

68
�1

:4
%

0.
51
34

�2
:6
%

0.
46

87
�0

:2
%

0.
53
26

þ1
:5
%

0.
49
91

þ1
:1
%

0.
56

95
þ1

:5
%

V
an
ill
a

E
L
E
C
T
R
A

0.
46

68
–

0.
53
32

–
0.
49

86
–

0.
56
01

–
0.
51
47

–
0.
57

65
–

S
im

-P
ai
r
E
L
E
C
T
R
A

0.
48

81
z

þ4
:6
%

0.
55
77

z
þ4

:6
%

0.
50

30
þ0

:9
%

0.
56
34

þ0
:6
%

0.
52
49

þ2
:0
%

0.
59

23
þ2

:7
%

B
es
t
pe
rf
or
m
an
ce
s
ar
e
hi
gh

lig
ht
ed

in
bo

ld

S
ig
ni
fi
ca
nt

im
pr
ov

em
en
ts
ov

er
th
e
va
ni
lla

ba
se
lin

e
w
ith

p\
0:
05

an
d
p\

0:
01

ar
e
in
di
ca
te
d
w
ith

ya
nd

zr
es
pe
ct
iv
el
y
fo
r
th
e
sa
m
e
co
re

C
ha
ng

e
ra
te

ov
er

th
e
va
ni
lla

ba
se
lin

e
fo
r
th
e
sa
m
e
co
re

ty
pe

ar
e
re
po

rt
ed

fo
r
ea
ch

m
et
ri
c
(%

)

123

440 Information Retrieval Journal (2022) 25:414–460



5.4.3 Multi-phase fine-tuning

Table 15 shows the results obtained using the multi-phase fine-tuning on both MS MARCO
passage dataset and in-domain labeled data, described in Sect. 5.3 for BERT. The ELEC-
TRA-based models outperform the BERT-based models on both collections regardless of
the topic field used indicating that ELECTRA is a more effective core PLM than BERT in a
multi-phase fine-tuning setting. However, adding exact match marking has no significant
impact in this setting. Sim-Pair ELECTRA performs slightly better than the vanilla ELECTRA

baseline on the Robust04 collection across title, description and hybrid runs. On the other
hand, exact match marking leads to better ranking accuracy on GOV2 titles, but provokes a
slight degradation in performance when the description field is used for reranking (de-
scription and hybrid runs).

Exact match marking is indeed beneficial for the ELECTRA model, especially in a zero-
shot transfer setting where no labeled data is available in the target domain. Sim-Pair

ELECTRA is able to achieve significant gains on titles, where Sim-Pair BERT is less effective.
However, for description and hybrid runs that use descriptions for reranking, exact match
marking appears to have more substantial impact when using a BERT core. On TREC DL
2019 and 2020 benchmarks, both vanilla and Sim-Pair models perform similarly with both
BERT and ELECTRA cores. The only advantage of the ELECTRA core is increased
average precision with Sim-Pair. Finally, we can say that, in most cases, the ELECTRA-
based versions of our models are more effective compared to their BERT counterparts.

5.5 Comparison with state-of-the-art baselines

In this section we try to situate our approach with regard to what has already been proposed
for document ranking. In a first part, we try to conduct comparative evaluations with models
presenting a similar experimental setup for a fair comparison. Then in a second part, we
compare our best runs to a wide variety of SOTA approaches with different configurations.

5.5.1 Comparison in the same experimental design.

In order to fairly compare a novel approach with previously proposed ones, it is important to
conduct the evaluation in the same experimental conditions. Here, we try to reproduce as
much of the original settings used to produce the results of the Birch and BERT-maxP
baselines, respectively.

Birch (MS) This baseline is fine-tuned exclusively on MS MARCO passages, therefore
we use our Sim-Pair BERT ? BM25 model equally fine-tuned on MS MARCO passages and
augmented with BM25 scores interpolation following the same Equation 6 used in Birch
(Akkalyoncu Yilmaz et al., 2019). All Robust04 and GOV2 topics and relevance judge-
ments are used as a held-out test set.

Table 16 shows the results of our Sim-Pair BERT ? BM25 model compared to the Birch
(MS) baseline. The results clearly indicate that our model outperforms Birch (MS). Since
our model already outperforms the baseline with a BERT Base version, it unnecessary to
conduct the same experiment with a BERT Large whose computational cost is, unfortunately,
beyond our hardware limitations.

BERT-MaxP (MS) The configuration of this baseline is the same we used in the multi-
phase fine-tuning setting. We compare the results of Sim-Pair BERT fine-tuned first on MS
MARCO and then further fine-tuned on the target task obtained with a 5-fold cross
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validation with BERT-MaxP (MS) in Table 17. We report the results when using the exact
match marking during fine-tuning on MS MARCO passages only [MS], and the results with
the full marking on both MS MARCO and in-domain data, i.e., Sim-Pair BERT. Our
approach outperforms clearly the BERT-maxP baseline on titles, and performs slightly better
on descriptions. It is important to notice that the BERT-MaxP results reported by Li et al.
(2020) are better than our vanilla BERT baseline in the multi-phase fine-tuning setting,

Table 16 Reranking effectiveness of the Sim-Pair BERT with interpolating BM25 scores vs. Birch (MS)
baseline on both Robust04 and GOV2 collections

Robust04 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 – 0.3631 – 0.4058 – 0.3345 –

Birch (MS) 0.4227 – 0.3616 – 0.4053 – 0.3341 –

Sim-Pair BERT þ
BM25

0.4947 þ17:% 0.4265 þ18:% 0.5098 þ26:% 0.4279 þ28:%

GOV2 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 – 0.5362 – 0.4264 – 0.4705 –

Birch (MS) 0.4722 – 0.5352 – 0.4260 – 0.4701 –

Sim-Pair BERT þ BM25 0.5327 þ13:% 0.6000 þ12:% 0.5235 þ23::% 0.5893 þ25:%

Best performances are highlighted in bold

Table 17 Reranking effectiveness of the Sim-Pair BERT with multi-phase fine-tuning vs. BERT-MaxP (MS)
baseline on both Robust04 and GOV2 collections

Robust04 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4240 – 0.3631 – 0.4058 – 0.3345 –

BERT–MaxP (MS) 0.4931 – 0.4277 – 0.5453 – 0.4522 –

Sim-Pair BERT 0.5058 þ2:6% 0.4371 þ2:2% 0.5479 þ0:5% 0.4574 þ1:1%

Sim-Pair BERT [MS] 0.4978 þ1:0% 0.4281 þ0:1% 0.5521 þ1:2% 0.4592 þ1:5%

GOV2 Title run Description run

Model nDCG@20 P@20 nDCG@20 P@20

BM25 0.4774 – 0.5362 – 0.4264 – 0.4705 –

BERT–MaxP (MS) 0.5600 – 0.6352 – 0.5506 – 0.6087 –

Sim-Pair BERT 0.5743 þ2:6% 0.6540 þ3:0% 0.5406 �1:8% 0.6084 �0:0%

Sim-Pair BERT [MS] 0.5665 þ1:2% 0.6430 þ1:2% 0.5509 þ0:1% 0.6161 þ1:2%

[MS] indicates that the run uses MS marking: exact match marking is only used during fine-tuning on MS
MARCO and ablated in the in-domain fine-tuning phase

Best performances are highlighted in bold
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especially on GOV2. This slight difference can be exaplined by the the traditional use of the
pointwise loss function (monoBERT (Nogueira and Cho, 2019)) while they use a pairwise
loss function.

5.5.2 Comparison with different experimental designs

Each approach has the optimal experimental conditions that lead to the best ranking
accuracy possible, and these optimal conditions are hardly the same for the different models
we want to compare. Independently of the experimental framework employed to obtain the
results, or the nature of the approach, Table 18 compares our best runs with both BERT and
ELECTRA cores obtained in the multi-phase fine-tuning setting, with the best baseline runs.
While Table 19 compares our best in-domain runs to both TREC best runs from the TREC
DL 2019 and 2020 tracks and the SOTA baselines.

Robust04 and GOV2 collections nsurprisingly, the reranking models achieve the best
results and largely outperform all other baselines. For a fair comparison with the sparse and
dense retrieval methods (runs [03-07]) which do not use target-domain fine-tuning, we add
our runs in the zero-shot setting on descriptions (runs [08-09]). Nevertheless, our rerankers
still outperform the retrievers.

Results obtained using the best Sim-Pair BERT, run [17] in Table 18, outperform all the
BERT-based models that represent the state of the art and achieves better performance than
T5 for both base and large versions on robust04. The Sim-Pair ELECTRA variant (run [18])
achieves comparable performance with the T5-3B model while using only 3:6% of its
parameters and outperforms the Parade ELECTRA model on both Robust04 and GOV2 col-
lections by a varying margin from þ3% to more than þ4%. The T5 baseline is by far the
strongest baseline, it is important to note that it uses a zero-shot transfer setting without the
need for in-domain fine-tuning as opposed to BERT-MaxP, Parade and our best runs [17-
18], however, its large size make it unpractical compared to a BERTBase or ELECTRA Base.

TREC DL Document Ranking task imilarly to the Robust04 and GOV2 results, the best
TREC runs which are cross-encoding rerankers outperform all other baselines. For TREC
DL 2019, we include the best idst_bert_r1 run (Yan et al., 2019) which uses Struct-
BERT (Wang et al., 2020), a BERT model which better models sentence relationships
thanks to an improved Next Sentence Prediction task, and ucas_runid1 Chen et al.
(2019) which uses BERT-MaxP Dai and Callan (2019). We also include Parade results Li
et al. (2020). Our runs outperform Parade and ucas_runid1 but cannot outperform
idst_bert_r1 –StructBERT core– in terms of nDCG@10. In TREC DL 2020, the best
run d_d2q_duo Pradeep et al. (2020) is a large multi-stage ranking model including a
BM25 retriever, DocT5Query document expansion and two cascading T5-3B rerankers,
making hard to outperform. The ICIP_run1 Chen et al. (2020), uses a BERT-Large model
at its core with a refined fine-tuning process including passage filtering and better negative
sampling which explains its higher performance. Nevertheless, our runs are still competitive
and outperform Parade which has the same model size as our models. Interestingly, the
performance on TREC DL 2020 are lower in terms on nDCG@10 compared to TREC DL
2019 for the same model as observed for both our runs and the Parade run.
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6 Discussion and future work

Our research is related to effectively harnessing the exact matching signals from the query-
document pairs to enhance document ranking with pretrained language models (PLMs)
exemplified by BERT. We have shown through the empirical experiments reported in this
paper that PLMs such as BERT can benefit from explicit exact match cues conveyed via
marker tokens to be more effective for ad hoc ranking.

BERT as the most famous PLM, was successfully applied to text ranking as well as a
wide range of other tasks without requiring any specialized neural architectural components
to capture different relevance signals as opposed to pre-BERT neural ranking models.
Previous work by Qiao et al. (2019) study the behaviour of BERT for ranking and find that it
is able to capture semantic matching signals between paraphrase tokens. However, research
from the pre-BERT era have proven that, in addition to semantic matching, exact matching
is still an important cue for neural ranking models (Guo et al., 2016; Mitra et al., 2017). Guo
at al. Guo et al. (2016) argue that “exact matching of terms in documents with those in
queries is still the most important signal in ad hoc retrieval due to the indexing and search
paradigm in modern search engines”. This is why, (Boualili et al., 2020) suggest to
emphasize the exact match signals for BERT using a marking technique that does not
involve redesigning the model’s architecture, which will cost the immense benefits of self-
supervised pretraining.

In this paper we extend (Boualili et al., 2020) and study four research questions that aim
to investigate the effectiveness of our newly proposed marking strategies for ad hoc doc-
ument ranking.

First, we investigated the benefits of exact match marking for a BERT-based model in
both in-domain and zero-shot transfer settings. The results of the experiment showed that
combining a simple soft marker with a pair marking strategy (Sim-Pair) is the most simple
yet effective marking strategy. Moreover, experiments on Robust04 and GOV2 showed this
exact match marking approach has a higher effectiveness on the description field of the topic
compared to the title field. This preference for well-written natural language questions is in
line with BERT’s preference for descriptions revealed by Dai and Callan (2019). On the
other hand, we follow a retrieve-then-rerank architecture where the retriever is a bag-of-
words model that prefers short key word queries while the reranker is a BERT-based model
that prefers long natural language questions (Dai and Callan, 2019; Nogueira et al., 2020).
In order to get the best of the two stages, we propose a hybrid pipeline where titles are used
during the retrieving stage and then replaced by descriptions in the reranking stage which
leads to substantial gains in performance.

Second, we investigate how to improve effectiveness on the out-of-domain collections
using two methods: (1) linear interpolation of BM25 document-level scores with BERT-
based passage-level scores, and (2) adding in-domain fine-tuning on the target collection.
With the first method, we find exact term matching scores from traditional bag-of-words
models like BM25 are still beneficial for BERT-based document reranking for out-of-
domain collections. Indeed, combining document-level scores from BM25 with passage-
evidence from out BERT-based models with a simple linear interpolation leads to substantial
gains in performance. The document-level scores from initial BM25 retrieval based on
traditional IR cues (TF, IDF) provide additional relevance signals that complete the passage-
level scores from BERT-based models. Furthermore, using exact match marking appears to
better take advantage of the combination with BM25 scores to achieve better performance
than the vanilla model.
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With the second method, when adding in-domain fine-tuning on top of the first general-
purpose fine-tuning phase on out-of-domain data, we demonstrated through an ablation
study that using exact match marking in the general-purpose fine-tuning phase on large out-
of-domain data is enough to achieve substantial leaps in performance especially on
descriptions. We publish our fine-tuned checkpoints on MS MARCO so it can be accessible
to the community as a more effective alternative to a vanilla checkpoint.

Third, we study the contribution of our exact match marking strategy on a BERT variant,
ELECTRA, that has been recently used in state of the art models such as Parade (Li et al.,
2020). Experiments showed that exact match marking is indeed beneficial for ELECTRA,
especially in the zero-shot transfer setting where no in-domain annotated data is used for
training. In addition, the ELECTRA-based models were able to outperform their BERT
counterparts in most cases.

Finally, we compared our best runs using both BERT and ELECTRA to a wide range of
transformer-based ranking models that represent the state of the art at the time this article
was written. On the one hand, the comparative evaluation showed that our exact match
marking approach combined with the hybrid pipeline, that uses titles for BM25 retrieval and
descriptions for BERT reranking, achieves near state-of-the-art results on Robust04 com-
pared to the strong and larger T5-3B baseline, and outperforms previously proposed models
on GOV2. On the other hand, the comparative evaluation on the TREC DL Document
rankings tasks of 2019 and 2020, showed that our marking-based approach is a competitive
model compared to the best TREC runs. Even if this evaluation is an in-domain setting, the
benefits from exact match marking seem to be less prominent than those observed on
Robust04 or GOV2. Differently from the title and description queries used with Robust04
and GOV2, the TREC DL queries are questions. Additionally, documents and other aspects
of evaluation also differ. Further analysis is needed to determine the factors behind these
discrepancy.

At the end, what does this mean for a deployment choice of a vanilla BERT vs. Sim-Pair

BERT? We would argue Sim-Pair BERT induces focus on exact match signals leading to better
performance than the vanilla BERT (in 24 comparisons, with 9 being significant), or at least
to comparable performance (only in 4 comparisons, with no significant loss). Importantly,
our extensive experiments did not show a single case where Sim-Pair BERT perform sig-
nificantly worse, thus we would recommend it. On the efficiency side, our approach inherits
the efficiency issue of the monoBERT cross-encoder. However, we do not add more
complexity to the model making our approach a better substitute for a vanilla BERTwith the
exact same number of parameters (110M).

Our approach was empirically proven to be effective on standard ad hoc benchmarks,
however in terms of explicability, there is still a lot of analysis that need to be done in order
to understand how exactly the marking conveys the exact match signals to BERT and how
are they integrated in the relevance prediction process. To this day, only so little is
understood about the inner workings of BERT and PLMs in general regardless of all the
efforts put into studying their behaviors. Previous research attempted to reveal insights
about how BERT “works” in the limited context of passage retrieval, but studies lack when
it comes to long documents ranking. Aside from the explicability limitation, our approach is
rather simple and considers all query terms to be of equal importance when, in reality, they
hardly have the same importance in the query especially in long descriptions.

For future work, we plan to develop diagnostic tests in attempt to shed light on the
contribution of the exact match marking to the inner workings of BERT. Once the inter-
vention of the markers determined, their representations can be leveraged for relevance
classification in addition or instead of the current standard [CLS]. Identifying the subset of
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queries that are most likely to be improved by adding explicit exact match cues can be used
to choose whether to use marking or not. Furthermore, our approach could be further
improved by integrating the query term importance. Finally, other methods may be inves-
tigated to better integrate exact match signals into BERT.

7 Conclusion

Pretrained language models perform well on an impressively wide range of tasks. They were
proven to excel at semantic matching, nevertheless exact matching is essential for relevance
matching. In the light of this fact, we proposed to use marker tokens to convey exact match
cues from the textual input that yield strong performance while maintaining the same
architecture i.e number of parameters. We showed through empirical experiments that using
a simple marker combined with a pair marking level is the most simple strategy that yields
the best effectiveness. We show that applying this marking strategy in a hybrid retrieve-
than-rerank pipeline that uses short key word queries for the first bag-of-words retriever and
then adopts long natural language queries for reranking with PLMs like BERT and
ELECTRA produce competitive effectiveness compared to state-of-the-art models. We
published our fine-tuned checkpoints on marked data on the HuggingFace model hub so it
can be easily used by the community via the famous “transformers” library without changes
to their setups while benefiting from the improvements brought by exact match marking and
build upon them.

Appendix 1. Results using the BERT core with all marking strategies

Appendix 1.1 Zero-shot transfer setting

Table 20 shows the full results obtained using all the proposed strategies on Robust04 and
GOV2 collections at cutoff 100 and 1, 000. We report results using the title, description and
hybrid runs. The results at cutoff 1, 000 complement the reported results in Tables 7 and 9.
For the 100-cutoff results, they complement the results of Table 11 for the zero-shot transfer
section. We report the results at cutoff 100 for direct comparison with the multi-phase fine-
tuning setting where we only rerank the top-100 documents retrieved by BM25 as a trade-
off between effectiveness and efficiency.

Appendix 1.2 Multi-phase fine-tuning setting

Table 21 shows the results obtained using the multi-phase fine-tuning setting described in
Sect. 5.3 for all our models using all proposed marking strategies. These results expand
those presented in Table 11.

Appendix 2. Results using the ELECTRA core with all marking strategies

Appendix 2.1 Zero-shot transfer setting

Table 22 resumes the results of applying all proposed marking strategies on the ELECTRA
core model for Robust04 and GOV2 collections. This table complements the results pre-
sented in Table 14. We add the results at the reranking cutoff 100 in order to give an idea
about the zero-shot setting results without in-domain fine-tuning directly comparable with
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the multi-phase fine-tuning setting that uses the same reranking threshold of 100 in
Table 23.

Appendix 2.2 Multi-phase fine-tuning setting

Table 23 results complements the results presented in Table 15 obtained in the multi-phase
fine-tuning setting using all exact match marking strategies proposed in this paper.

Appendix 3. TREC deep learning track document ranking task

Table 24 reports the results of all our models with both BERT and ELECTRA cores on the
TREC DL 2019 and 2020 Document ranking tasks.
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