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Abstract
Session-based recommendation, without the access to a user’s historical user-item interac-
tions, is a challenging task, where the available information in an ongoing session is very 
limited. Previous work on session-based recommendation has considered sequences of 
items that users have interacted with sequentially. Such item sequences may not fully cap-
ture the complex transition relationship between items that go beyond the inspection order. 
This issue is partially addressed by the graph neural network (GNN) based models. How-
ever, GNNs can only propagate information from adjacent items while neglecting items 
without a direct connection, which makes the latent connections unavailable in propagation 
of GNNs. Importantly, GNN-based approaches often face a serious overfitting problem. 
Thus, we propose Star Graph Neural Networks with Highway Net- works (SGNN-HN) 
for session-based recommendation. The proposed SGNN-HN model applies a star graph 
neural network (SGNN) to model the complex transition relationship between items in an 
ongoing session. To avoid overfitting, we employ the highway networks (HN) to adaptively 
select embeddings from item representations before and after multi-layer SGNNs. Finally, 
we aggregate the item embeddings generated by SGNN in an ongoing session to repre-
sent a user’s final preference for item prediction. Experiments are conducted on two pub-
lic benchmark datasets, i.e., Yoochoose and Diginetica. The results show that SGNN-HN 
can outperform the state-of-the-art models in terms of Recall and MRR for session-based 
recommendation.
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This article is an extension of our conference paper titled “Star Graph Neural Networks for Session-
based Recommendation” (Pan et al., 2020), which has appeared in CIKM’20. In this extension, 
we (1) investigate the effectiveness of the highway networks by replacing it with other aggregation 
methods in SGNN-HN; (2) test the sensitivity of SGNN-HN to the scale of training set as well as the 
hyper parameters; (3) analyze the time complexity theoretically and compare the computational cost 
empirically of SGNN-HN and the competitive baselines; (4) include more related works and provide a 
detailed analysis of the approach.
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1 Introduction

Recommender systems can help people obtain personalized information  (Adomavicius 
& Tuzhilin, 2005; Guo et al., 2017), which have wide applications in web search, e-com-
merce, etc. Many existing recommendation approaches apply users’ long-term historical 
interactions to capture their preference for recommending future items, e.g., collaborative 
filtering  (Zhang et  al., 2020; He et  al., 2017), Factorizing Personalized Markov Chains 
(FPMC)  (Rendle et  al., 2010), and deep learning based methods (Yu et  al., 2016; Song 
et al., 2019; Wang et al., 2019).

However, for some cases such as newly registered or anonymous users, the user’s long-
term historical interactions are unavailable, making it challenging to capture user’s pref-
erence in an accurate manner (Hidasi et al., 2016). Thus, session-based recommendation 
is proposed to generate recommendations merely based on the given ongoing session, 
where the session is typically defined as a user’s sequential interactions with items within 
a period of time, e.g., 24 hours. Comparing to other recommendation tasks, the most sig-
nificant characteristic of session-based recommendation is that the information contained 
in the current session is limited. Thus, how to accurately detect user’s purpose from 
a limited number of items in the ongoing session is the key to successful session-based 
recommendation.

As items are organized into the session according to the chronological order, most exist-
ing methods for session-based recommendation focus on modeling the sequential infor-
mation of items based on Recurrent Neural Networks (RNNs)  (Hidasi et  al., 2016) for 
capturing user’s instant preference. Besides, to treat the interactions with items differently, 
attention mechanism is utilized alone (Liu et al., 2018; Pan et al., 2020) or applied together 
with other methods like RNNs to distinguish different items (Li et  al., 2017; Wu et  al., 
2019). For example, Pan et  al. (2020) propose an importance extraction module to indi-
vidually estimate the item importance, and Li et al. (2017) apply an attention mechanism to 
capture a user’s main purpose based on RNNs. However, RNNs plus an attention mecha-
nism cannot fully take the transition relationship of items into consideration as the transi-
tion pattern is more complicated than a simple time order (Qiu et al., 2019). For instance, 
in an example session in Fig. 1, a user wants to buy a phone but issues clicks on a Macbook 
Pro and an AirPods out of curiosity. Such complex sequential interactions—with unrelated 
items—will mislead an RNN and attention mechanism, failing to accurately identify the 
user’s main purpose.

To more accurately model the transition pattern of items, GNNs have been utilized 
to model an ongoing session (Wu et al., 2019; Qiu et al., 2019). For instance, Wu et al. 
(2019) first propose to transform the session into a session graph and then utilize Gated 
Graph Neural Networks (GGNN) to model the transition relationship between items. 
Furthermore, Qiu et al. (2019) propose to utilize a weighted graph attention networks 
(WGAT) to dynamicly compute the information flow between items. However, GNN-
based methods mostly propagate information between adjacent items, thus neglecting 
items without direct connections, making the long-distance information cannot be prop-
agated. For instance, as shown in Fig. 1, when updating item embeddings for iPhone XS, 
only the information from recent items like AirPods can be propagated by GNNs, ignor-
ing the long-instance item iPhone X, though iPhone X and iPhone XS are highly similar. 
This is because that: (1) Current GNNs can merely propagate information from adja-
cent items according to the adjacent matrices at each GNN layer; (2) Although multi-
layer GNNs have subsequently been employed to propagate information between items 
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without direct connections, they easily lead to overfitting  (Wu et al., 2019; Qiu et al., 
2019). Besides, this serious overfiting problem of GNNs on session-based recommenda-
tion also restricts the number of deep layers of GNNs, limiting the information propa-
gating for generating accurate item embeddings.

In summary, the main challenges in GNNs for session-based recommendation are: 

1. How to design graph neural networks that can simultaneously propagate the information 
from adjacent items and long-distance items without direct connections?

2. How to solve the overfiting problem in GNNs for session-based recommendation to 
enable deep layers of GNNs for generating an accurate item representation?

To address the above issues, we propose Star Graph Neural Networks with Highway 
Networks (SGNN-HN) for session-based recommendation. We first use a star graph 
neural network (SGNN) to model the complex transition pattern in an ongoing session, 
which can solve the long-range information propagation problem by adding a star node 
to take the non-adjacent items into consideration on the basis of gated graph neural 
networks. Then, to circumvent the overfitting problem of GNNs, we apply a highway 
networks (HN) to dynamically select the item embeddings before and after multi-layer 
SGNNs, which can help to explore complex transition relationship between items. After 
that, we attentively aggregate item embeddings generated by the SGNN in an ongoing 
session so as to represent user’s preference for making item recommendation.

We conduct experiments on two publicly available benchmark datasets, i.e., Yoo-
choose and Diginetica. Our experimental results show that the proposed SGNN-HN 
model can outperform state-of-the-art baselines in terms of Recall and MRR. We also 

iPhone X

AirPods

SAMSUNG S20

MacBook Pro

iPhone 11

Main purpose

Unrelatd items

iPhone XS

Fig. 1  An example session, where the gray arrows indicate the sequential order of interacted items, and the 
items MacBook Pro and AirPods are regarded as “unrelated items” since they are uncorrelated to the user’s 
main purpose
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conduct detailed analysis to evaluate the effectiveness of each component in SGNN-HN 
and investigate the scalability and sensitivity of our proposal.

In summary, our contributions in this paper are as follows: 

1. To the best of our knowledge, we are the first to consider long-distance relations between 
items in a session for information propagation in graph neural networks for session-
based recommendation.

2. We propose a star graph neural network (SGNN) to model the complex transition rela-
tionship between items in an ongoing session and apply a highway networks (HN) to 
deal with the overfitting problem existing in GNNs.

3. We compare the performance of SGNN-HN against the state-of-the-art baselines on 
two public benchmark datasets and the experimental results show the superiority of 
SGNN-HN over the state-of-the-art models in terms of Recall and MRR.

2  Related work

We review the related work about general recommendation models in Sect. 2.1, the atten-
tion based recommendation models in Sect. 2.2, the sequential recommendation models in 
Sect. 2.3, and the graph neural networks based models in Sect. 2.4.

2.1  General recommendation models

General recommenders produce recommendations by relying on the long-term historical 
user-item interactions, most methods are based on collaborative filtering (CF), which can 
be mainly divided into KNN based methods and latent factor based methods. KNN based 
methods generate recommendations based on the similarity between users or items, which 
is defined as user-based KNN methods and item-based KNN methods, respectively. For 
example, Jin et al. (2004) propose to automatically obtain the weights for different items 
based on the scores rated by the training users. Moreover, Sarwar et al. (2001) propose an 
item-based technique to first discover the relationships from the user-item matrix, where 
the relationships are then utilized for generating the recommendation list. Differently, 
latent factor based methods consider the interactions with items based on the user-item 
rating matrix, where common methods include Matrix Factorization (MF), Singular Value 
Decomposition (SVD) and SVD++. For example, Koren (2008) proposes SVD++ to 
simultaneously exploit the explicit and implicit feedback in user behaviors. In recent years, 
deep learning has been widely investigated in CF. For instance, He et al. (2017) propose 
Neural Collaborative Filtering (NCF), which utilizes a multi-layer perceptron to express 
and generalize matrix factorization in a non-linear way. Furthermore, Chen et al. (2019) 
propose a Joint Neural Collaborative Filtering (J-NCF) to further learn deep features of 
users and items, and design a hybrid loss function to combine both point-wise and pair-
wise loss for optimizing by utilizing both implicit and explicit feedback.

However, both KNN and latent factor based methods generally neglect the sequential 
information, making it hard to capture user’s instant interest. Moreover, user’s latent factor 
cannot be generated in session-based recommendation since the long-term interactions are 
unavailable, making the latent factor based methods fail to work.
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2.2  Attention based recommendation models

Considering items in user’s interaction history have different importance, which means that 
they contribute differently to detecting user intent, attention mechanism is introduced for 
user preference modeling. Moreover, attention mechanism can be used alone (Liu et  al., 
2018; Pan et  al., 2020; Kang & McAuley, 2018) or combined with other methods like 
RNNs as a component (Li et  al., 2017; Wu et  al., 2019). For instance, Liu et  al. (2018) 
apply an attention mechanism to obtain a user’s general preference and recent interest by 
relying on the long-term and short-term memories in the current session, respectively. 
Moreover, in order to better distinguish the importance of items and avoid potential bias 
brought by unrelated items, Pan et al. (2020) propose to measure item importance using 
an importance extraction module, and consider the global preference and recent interest 
to make item prediction. For scenarios where user’s long-term historical interactions are 
available, attention mechanism is utilized for distinguishing the contribution of each item 
or session to detect user intent in the current session. For instance, Ying et al. (2018) pro-
pose a two-layer hierarchical attention network, where the first attention layer is applied to 
the historical interactions to obtain user’s general preference, which is combined with the 
recent interacted items by the second attention layer to generate the final preference. More-
over, to capture the dynamic interactions between user’s long- and short-term behaviors, 
Chen et al. (2019) design a dynamic co-attention networks for session-based recommen-
dation (DCN-SR) to generate co-dependent representations of user’s general and recent 
interests. Furthermore, different from DCN-SR that focuses on the distinction of historical 
items, Sun et al. (2019) propose to utilize a two-layer nonlocal architecture to identify rel-
evant historical sessions to the current session for producing the long-term user preference.

However, attention-based methods merely focus on the relative importance of items 
or sessions, without considering the complex transition relationship between items in an 
ongoing session, making it hard to model the complex user behavior pattern for generating 
recommendations.

2.3  Sequential recommendation models

Considering that items are organized into the session according to their chronological 
order, many sequential recommendation models are proposed to model the sequential sig-
nal for item prediction. Markov chains have been widely investigated to model the sequen-
tial behaviors. For instance, Rendle et al. (2010) propose Factorizing Personalized Markov 
Chains (FPMC) to combine Markov chains with matrix factorization for modeling user’s 
sequential interactions and capturing their long-term preference, respectively. Considering 
the utility of Recurrent neural networks (RNNs) like GRU for dealing with sequential data, 
RNNs have also been widely applied in session-based recommendation . For example, 
Hidasi et al. (2016) first propose GRU4REC, which utilizes GRU to model the sequential 
signal in session-based recommendation and adopts a session-parallel minibatch for model 
training. Then, Hidasi and Karatzoglou (2018) point that GRU4REC faces gradients van-
ishing problem in training and design novel loss functions for optimizing the model param-
eters. In addition, considering information in the current session is limited, many neigh-
bor-enhanced methods are proposed based on the sequential recommenders to incorporate 
similar sessions as neighbors for helping model the ongoing session. For instance, Jan-
nach and Ludewig (2017) introduce neighbor sessions with a K-nearest neighbor method 
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(KNN) and combine them with GRU4REC in a weighted hybrid approach. Different from 
traditional KNN, Wang et al. (2019) propose to incorporate neighbor sessions as auxiliary 
information via memory networks (Weston et al., 2015; Sukhbaatar et al., 2015).

However, Markov Chain based models can only capture information from adjacent 
transactions, making it hard to adequately capture interest migration. Moreover, sequential 
recommendation methods process the item sequences strictly according to the time order, 
which may introduce bias since user’s interaction patterns tend to be more complex than 
the simple sequential signal as pointed in Qiu et al. (2019).

2.4  Graph Neural Networks based models

Recently, because of their ability to model complex relationships between objects, graph 
neural networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2018; Li et al., 2016) 
have attracted much interest in the context of session-based recommendation. For instance, 
Wu et al. (2019) propose SR-GNN to apply gated graph neural networks (GGNN) for mod-
eling the transition relationship among items in the ongoing session so as to generate accu-
rate item embeddings and aggregate the items as the session representation using an atten-
tion mechanism. Xu et  al. (2019) propose a graph contextual self-attention model based 
on graph neural network (GC-SAN), that extends SR-GNN with adopting self-attention 
mechanism to obtain contextualized non-local representations for accurate recommen-
dation. Furthermore, Qiu et  al. (2019) propose a Full Graph Neural Networks (FGNN), 
which utilizes a weighted graph attention network (WGAT) based approach for generat-
ing item representation, which is then aggregated by a Readout function (Vinyals et  al., 
2016) as user preference for item prediction. Unlike the above methods, the global session 
graph to propagate information from similar sessions for generating item embeddings is 
also constructed. For instance, Qiu et al. (2020) improve FGNN by constructing a Broadly 
Connected Session (BCS) graph to connect different sessions and design a Mask-Read-
out function to generate the session representation. Moreover, Wang et al. (2020) propose 
Global Context Enhanced Graph Neural Networks (GCE-GNN) to exploit item transitions 
from session-level and global-level, which learns item embeddings from the session graph 
transformed from the current session and the global graph constructed from all sessions, 
respectively.

Although graph neural networks have achieved considerable performance in session-
based recommendation, there remains problems in the foregoing GNN based methods: (1) 
only the information from adjacent items can be propagated at each GNN layer, neglecting 
the long-distance items; (2) the overfitting problem is serious, limiting the layer number of 
deep GNNs.

3  Approach

In this section, we present our proposed SGNN-HN in detail. We first give the definition 
of the session-based recommendation task. Then, in Fig. 2, we plot the workflow of the 
SGNN-HN model. Specifically, we first transform the item sequence into a session star 
graph for each session by introducing the star node in Sect.  3.1. Then in Sect.  3.2, we 
feed in the nodes in the star graph into multi-layer SGNNs to learn their embeddings with 
utilizing the highway networks to combine the node vectors before and after SGNNs, and 
then restore the item sequence from the star graph. Finally, in Sect. 3.3, we integrate user’s 
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general and recent preferences to generate the session representation, which is utilized to 
make item recommendations by predicting the scores on all candidates in the item set.

Given the current session, session-based recommendation aims to predict the item for 
user to click at the next timestamp. This task can be formulated as follows. Assuming 
the item set is denoted as V = {v1, v2,… , v|V|} , which is constituted of all unique items 
in the dataset and |V| indicates the length of V. For each user, we are given user’s cur-
rent session as S = {v1, v2,… , vt,… , vn} which contains n chronological items, where 
vt ∈ V  is the item that user clicked at the t-th timestamp, the goal is to predict the next 
item vn+1 to click. More specifically, we calculate the prediction score of each item in V as 
ŷ = {ŷ1, ŷ2,… , ŷ|V|} , where ŷi ∈ ŷ denotes the probability of clicking item i. Finally, the 
items ranking at the top-K positions in prediction constitute the recommendation list for 
the user.

We list the main notations used in this paper in Table 1.

3.1  Session star graph construction

Given the current session S = {v1, v2,… , vt,… , vn} , a star graph is constructed for repre-
senting the complex transition relationship among the items in S. In the star graph, besides 
propagating information from the adjacent items, the non-adjacent items are also taken into 
consideration via the introduced additional star node, which leads to a more complete con-
nection of all items in the ongoing session than the existing graph neural networks such as 
GCN (Kipf & Welling, 2017) and GAT (Velickovic et al., 2018). Specifically, each session 
S is transformed into a star graph denoted as Gs = {Vs, Es} , where Vs = {{x1, x2,… , xm}, xs} 
indicates all nodes in the star graph. Among the nodes, {x1, x2,… , xm} denotes all unique 
items in the current session, which we regard as the satellite nodes, and xs is the addition-
ally introduced star node. Note that m ≤ n since in the session items may be clicked repeat-
edly (Ren et al., 2019; Wu et al., 2019). Moreover, Es indicates the edge set in Gs that can 
be divided into two types, i.e., satellite connections and star connections, which are utilized 
to propagate information from the corresponding satellite nodes and star node for updating 
the item embeddings, respectively.

Satellite connections The satellite connections are utilized to represent the tran-
sition relationship between adjacent items in each session. Here, we adopt the gated 
graph neural networks (GGNN) (Li et al., 2016) as an example in our star graph neu-
ral network (SGNN). Actually, other GNNs such as GCN (Kipf & Welling, 2017) and 

Fig. 2  The workflow of SGNN-HN
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GAT (Velickovic et al., 2018) can also be adopted in SGNN to replace GGNN in our 
approach. As shown in Fig. 2, the satellite connections in the star graphs are indicated 
by the blue solid lines, each edge (xi, xj) ∈ Es means that the user clicks item xj after 
clicking xi . Specifically, the satellite connections in each session can be represented 
by the connection matrices, including an incoming matrix and an outgoing matrix. For 
example, considering a session S = {x2, x3, x5, x4, x5, x7} , the incoming and outgoing 
matrices of GGNN in SGNN can be constructed as in Fig. 3.

Star connections Borrowing the merits from Guo et al. (2019), we propagate long-
distance information from items without direct connections through the introduced star 
node. Specifically, as shown in Fig. 2, we add a bidirectional edge between the star node 
xs and each satellite node xi in the session star graph. On the one hand, the directed 
edges from the star node to the satellite nodes, i.e., the blue dotted lines (xs, xi) ∈ Es are 
utilized to update the representation of the satellite nodes. Through the star node, long-
distance information from unconnected items can be propagated across two hops by 
regarding the star node as an intermediate node. On the other hand, we use the directed 

Table 1  Main notations used in this paper

Notation Description

U A set of sessions in the dataset
V The item set containing all candidate items
S = {v1, v2, ..., vn} A session consisting of n sequential items
K The number of items recommended to the user
Gs = {Vs, Es} The constructed graph for session S with its nodes and edges
{x1, x2,… , xm} The satellite nodes in Vs

xs The incorporated star node in Vs

hl, xl
s

The item embeddings of the satellite nodes and star node at layer l

AI
,AO The incoming and outgoing matrices in the GGNN

WI
,WO The learnable parameters for the incoming and outgoing edges

al
i
, ĥ

l

i
The input and output of node i in GRU of GGNN at layer l

Wq1,Wk1,Wq2,Wk2 The learnable parameters of the self-attention mechanism in SGNN
�l
i

The similarity of satellite node i to the star node
� The importance of satellite nodes for updating the star node
Wg The trainable parameters in highway networks
g The gating score of each candidate items in SGNN
hf The hybrid item representation outputted by the highway networks
p The learnable position embeddings
W0,W1,W2,W3 The trainable parameters in the attention mechanism for aggregation
�i The weight of item i for session aggregating
zl, zr The global and recent preferences in the session
W4 The trainable parameters for combinating global and recent interests
zh, z̃h The representations of user preference before and after normalization
vi, ṽi The representations of candidate item xi before and after normalization
� A scale coefficient applied inside the softmax layer
ỹi, ŷ The prediction scores before and after scaled softmax
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edges from the satellite nodes to the star node, i.e., the red dotted lines (xi, xs) ∈ Es to 
update the star node representation by combining all the satellite nodes.

3.2  Learning item embeddings on graphs

Next, we illustrate how SGNN propagates information in the session star graph, including 
mainly three stages, i.e., the node initialization, the node update which consists of satellite 
nodes update and star node update, and the usage of the highway networks in multi-layer 
SGNNs.

3.2.1  Initialization

Before propagating information in the star graph, we initialize the representation of 
the satellite nodes and the star node. Specifically, given a star graph with a node set 
Vs = {{x1, x2,… , xm}, xs} , we first generate an embedding vector xi ∈ ℝ

d for each satellite 
node xi in {x1, x2,… , xm} through an embedding layer, where d is the dimension of xi . Thus 
the satellite nodes can be represented as:

As for the star node xs , we initialize a d-dimensional representation x0
s
∈ ℝ

d by utilizing an 
average pooling on the embeddings of the satellite nodes as:

3.2.2  Update

After obtaining the initialization of the nodes in the graph, we update the representation of 
the satellite nodes and the star node in each SGNN layer as follows:

Satellite nodes update When updating the representation of each satellite node, the neigh-
bors comes from two sources, i.e., the adjacent nodes and the star node, which helps propagate 
information from connected and unconnected items in the session, respectively. Compared to 
existing GNNs applied in session-based recommendation such as GGNN (Wu et al., 2019) 

(1)h0 = {x1, x2,… , xm},

(2)x0
s
=

1

m

m∑

i=1

xi,

Fig. 3  An example of adjacent matrices in GGNN
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and GAT (Qiu et al., 2019), the introduced star node in our SGNN can make long-distance 
information from items without connections available in propagating in a two-hop way.

First, we consider the information from adjacent items. For each satellite node xi in the star 
graph at layer l, we obtain the propagated information through the incoming matrix and the 
outgoing matrix in GGNN, which can be formulated as:

where [xl−1
1

, xl−1
2

,… , xl−1
m

] are the embedding vectors of the satellite nodes in layer l − 1 , 
AI

i
,AO

i
∈ ℝ

1×m are the i-th row of the incoming and the outgoing matrices, which deter-
mine the incoming and outgoing importance weights of different neighbors of node xi , 
respectively. WI ,WO ∈ ℝ

d×d and bI , bO ∈ ℝ
d denote the trainable parameters. Thus, we 

can obtain al
i
∈ ℝ

1×2d to represent the information propagated to satellite node xi from the 
adjacent items at layer l − 1 . After that, we feed al

i
 and the previous state hl−1

i
 of node xi into 

a GRU of GGNN as in Wu et al. (2019); Xu et al. (2019), to determine how much informa-
tion in al

i
 and hl−1

i
 is preserved, respectively:

where ĥ
l

i
 denotes the node vector of xi with propagated information from the adjacent 

items.
Next, we consider the long-distance information from unconnected items through the star 

node. In SGNN, the star node can provide an overall representation of all the satellite nodes 
in the graph. For each satellite node xi , we utilize a gating layer to selectively combine the 
information from the adjacent nodes ĥ

l

i
 and the star node xl−1

s
 as the final representation of xi:

where xl−1
s

 is the representation of the star node in layer l − 1 , and the weight �l
i
 for each 

satellite node is calculated using the self-attention mechanism as follows:

where Wq1,Wk1 ∈ ℝ
d×d denote the learnable parameters, and 

√
d is used to scale the gen-

erated attention scores.
Star node update In each SGNN layer, we generate the new star node vector based on the 

updated representation of the satellite nodes. Specifically, we obtain the feature vector of the 
star node xi by distinguishingly combing the satellite nodes hl as follows:

where � ∈ ℝ
m denote the weights of different satellite nodes, which are calculated based 

on the representation of xs in layer l − 1 (i.e., xl−1
s

 ) using a self-attention mechanism:

(3)
al
i
= Concat(AI

i
([xl−1

1
, xl−1

2
,… , xl−1

m
]�WI + bI),

AO
i
([xl−1

1
, xl−1

2
,… , xl−1

m
]�WO + bO)),

(4)ĥ
l

i
= GRU(al

i
, hl−1

i
),

(5)hl
i
= (1 − 𝛼l

i
)ĥ

l

i
+ 𝛼l

i
xl−1
s

,

(6)𝛼l
i
=

(Wq1ĥ
l

i
)
�

Wk1x
l−1
s√

d
,

(7)xl
s
= �hl,

(8)

�
� = softmax(

K�q√
d
),

K = Wk2h
l, q = Wq2x

l−1
s

,



339Information Retrieval Journal (2022) 25:329–363 

1 3

where q ∈ ℝ
d and K ∈ ℝ

d×m are the query and key for attention calculation, and 
Wq2,Wk2 ∈ ℝ

d×d are the learnable parameters.
In this way, we can generate an accurate representation of the star node, so as to bet-

ter transmit the long-distance information between every two non-adjacent items in the 
session. 

3.2.3  Highway networks

Through iteratively updating the satellite nodes and the star node, we can obtain accurate 
feature vectors of the nodes. Furthermore, in order to exploit the high-order connectivity 
between items, we can stack multi-layer SGNNs, where the l-layer of SGNN can be formu-
lated as:

However, multi-layer GNNs may introduce noise to the updating of the nodes, which leads 
to a serious overfitting problem in session-based recommendation as stated in Wu et  al. 
(2019); Qiu et al. (2019). To alleviate overfitting, we utilize the highway networks (Srivas-
tava et al., 2015) to selectively combine the representation of the satellite nodes before and 
after multi-layer SGNNs. The embeddings of the satellited nodes before SGNNs are initial-
ized in Eq. 1 as h0 . As L-layer SGNNs are stacked, the feature vectors of the satellite nodes 
after multi SGNN layers are denoted as hL . Then, we can formulate the highway networks 
as:

where the gating weight g ∈ ℝ
d×m is determined by both h0 and hL:

(9)hl, xl
s
= SGNN(hl−1, xl−1

s
,AI ,AO).

(10)hf = g⊙ h0 + (1 − g)⊙ hL,



340 Information Retrieval Journal (2022) 25:329–363

1 3

where [⋅] stands for the concatenation, Wg ∈ ℝ
d×2d is the trainable matrix that transforms 

the concatenated vector from ℝ2d to ℝd , and � denotes the sigmoid function.
Through the highway networks, the satellite nodes can be finally denoted as hf  , and 

the star node is xL
s
 (here we denote as xs for brevity). After generating the node repre-

sentations based on multi-layer SGNNs, we restore the item sequence from the corre-
sponding satellite nodes in the star graph, which is a reverse operation of the session star 
graph construction in Sect. 3.1. Then we can get the representation of the item sequence as 
u = {u1, u2,… , un} , where ui ∈ ℝ

d is the feature vector of the item that user clicks at the 
i-th timestamp in the session, and n denotes the session length.

In Algorithm 1, we detail the procedure of SGNN. First, we construct the star graph by 
adding a star node and define the adjacent matrices in line 1. Then we initialize the repre-
sentation of the satellite nodes and star node in line 2 and 3. Next, we update the represen-
tations through the L-layer SGNNs by lines from 4 to 9. In detail, at each SGNN layer, we 
first propagate information from adjacent items in line 5, then selectively combine it with 
the star node in line 6 and 7 to update the satellite nodes, and finally generate the new star 
node in line 8. After that, we utilize the highway networks to combine the representation 
of the satellite nodes before and after multi-layer SGNNs in line 10. Finally, we recover the 
item sequence from the session star graph in line 11 and return the representations of the 
sequential items and the star node.

3.3  Session representation and prediction

After obtaining the accurate embeddings of the chronological items in the ongoing ses-
sion, we aggregate the items to generate the session representation as the user preference 
for item recommendation. In order to incorporate the sequential information into SGNN-
HN, we add learnable position embeddings p = [p1, p2,… , pn] to the item representations 
u = [u1, u2,… , un] as:

where pi ∈ ℝ
d is the embedding of the absolute position i corresponding to item xi in the 

session.
Then we integrate both user’s global preference and recent interest within the session as 

the session representation. Since previous work has proved that the last item in a session 
can reflect user’s recent interest (Liu et al., 2018; Wu et al., 2019), we directly regard the 
last item embeddings as user’s recent interest:

As for the global preference, considering that items in a session have different degrees of 
priority, we obtain the importance of each item using an attention mechanism. Specifically, 
for item xi the importance is determined by both the star node vector xs and the recent 
interest zr as follows:

(11)g = �(Wg[h
0;hL]),

(12)up = u + p,

(13)zr = up
n
,

(14)�i = W0
��(W1u

p

i
+W2xs +W3zr + b),
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where W0 ∈ ℝ
d , W1,W2,W3 ∈ ℝ

d×d and b ∈ ℝ
d are learnable parameters in the soft 

attention. Then we combine the embeddings of items according to their importance scores 
to obtain the global preference zg ∈ ℝ

d as follows:

After generating user’s global preference zg and current interest zr , we integrate them 
together as the final session representation as follows:

where [⋅] denotes concatenation and W4 ∈ ℝ
d×2d is the trainable parameter.

Then we make item recommendations by utilizing the session representation to calcu-
late the prediction scores on all items in the candidate item set V, which indicates the prob-
abilities of clicking each item in the next timestamp. To address the long-tail problem in 
recommendations as pointed in  Gupta et al. (2019); Abdollahpouri et al. (2017), we apply 
the layer normalization on the representation of the current session zh and each candidate 
item vi , respectively:

Then for a given candidate item xi in the item set V, we calculate its prediction score by 
multiplying its item embeddings with the session representation as follows:

Finally, we adopt a softmax layer to normalize the scores. It is worth noting that after nor-
malization there is a convergence problem as the softmax loss will be trapped at a very 
high value on the training set (Wang et al., 2017; Gupta et al., 2019). To solve this prob-
lem, we apply a scale coefficient � in the softmax to generate the final prediction scores:

where ŷ = (ŷ1, ŷ2,… , ŷ|V|) . Finally, the items with the highest scores in ŷ will constitute 
the recommendation list for the user.

To train SGNN-HN, we adopt the cross-entropy loss as the objective function:

where y denotes the one-hot encoding vector of the ground truth. Finally, the Back-Prop-
agation Through Time (BPTT) algorithm (Rumelhart et al., 1986) is utilized to train our 
proposed SGNN-HN.

To make the proposal more clearly, we show the training process of our SGNN-HN 
model in Algorithm 2. We first input each session into SGNNs and obtain the representa-
tions of the items as well as the star node using the multi-layer SGNNs in step 3. Then, we 
add the position embeddings in step 4. Next, we generate the session representation in step 
5 to 8. Specifically, we get the recent interest in step 5, obtain the global preference in step 

(15)zg =

n∑

i=1

�iu
p

i
,

(16)zh = W4[zg;zr],

(17)
z̃h = LayerNorm(zh),

ṽi = LayerNorm(vi),

(18)ỹi = z̃�
h
ṽi,

(19)ŷ =
exp (𝜏ỹi)∑
i exp (𝜏ỹi)

, ∀i = 1, 2,… , �V�,

(20)L(ŷ) = −

|V|∑

i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi),
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7 by using the importance scores generated in step 6, and conduct a preference fusion in 
step 8 to get the final user preference. After that, we generate the prediction scores in step 
9. Finally, we adopt the cross-entropy as the loss function and utilize the back propagation 
to optimize the parameters of our SGNN-HN model in step 11 and 12. 

4  Experiments

4.1  Research questions

To examine the performance of SGNN-HN, we address seven research questions: 

 (RQ1) Can the proposed SGNN-HN model beat the competitive baselines for the session-
based recommendation task?

 (RQ2) What is the contribution of the star graph neural networks (SGNN) to the overall 
recommendation performance?
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 (RQ3) Do the highway networks alleviate the overfitting problem of graph neural networks 
in session-based recommendation?

 (RQ4) How does the layer number of SGNNs affect the recommendation performance?
 (RQ5) How does SGNN-HN perform on sessions with different lengths compared to the 

baselines?
 (RQ6) Can SGNN-HN beat the baselines with different amount of training data for optimiz-

ing the parameters?
 (RQ7) What is the impact of the hyper parameters in SGNN-HN on the recommendation 

performance?
 (RQ8) How is the time complexity and computational cost of SGNN-HN compared with the 

baselines?

4.2  Datasets

We evaluate the performance of SGNN-HN and the baselines on two publicly available 
benchmark datasets, i.e., Yoochoose and Diginetica.

• Yoochoose1 is a public dataset released by the RecSys Challenge 2015, which contains 
click streams from an e-commerce website within a 6 month period.

• Diginetica2 is obtained from the CIKM Cup 2016. Here we only adopt the transaction 
data.

For Yoochoose, following (Li et al., 2017; Liu et al., 2018; Wu et al., 2019), we filter out 
sessions of length 1 and items that appear less than 5 times. Then we split the sessions for 
training and test, respectively, where the sessions of the last day is used for test and the 
remaining part is regarded as the training set. Furthermore, we remove items that are not 
included in the training set. As for Diginetica, the only difference is that we utilize the ses-
sions of the last week for test. After preprocessing, 7,981,580 sessions with 37,483 items 
are remained in the Yoochoose dataset, and 204,771 sessions with 43,097 items constitute 
the Diginetica dataset.

Similar to Li et  al. (2017); Liu et  al. (2018); Wu et  al. (2019), we use a sequence 
splitting preprocess to augment the training samples. Specifically, for ses-
sion S = {v1, v2,… , vn} , we generate the sequences and corresponding labels as 
([v1], v2), ([v1, v2], v3),… , ([v1,… , vn−1], vn) for training and test. Moreover, as Yoochoose 
is too large, following Li et al. (2017); Liu et al. (2018); Wu et al. (2019), we only utilize 
the recent 1/64 and 1/4 fractions of the training sequences, denoted as Yoochoose 1/64 and 
Yoochoose 1/4, respectively. The statistics of the three datasets, i.e., Yoochoose 1/64, Yoo-
choose 1/4 and Diginetica are provided in Table 2. We also plot the distribution of sessions 
with different number of items in three datasets in Fig. 4, where we can observe that most 
sessions are concentrated on the short lengths, especially in the Yoochoose datasets.

1 http:// 2015. recsy schal lenge. com/ chall ege. html
2 http:// cikm2 016. cs. iupui. edu/ cikm- cup

http://2015.recsyschallenge.com/challege.html
http://cikm2016.cs.iupui.edu/cikm-cup
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4.3  Evaluation metrics and baselines

Following previous works (Li et  al., 2017; Wu et  al., 2019), we adopt Recall@K and 
MRR@K to evaluate the recommendation performance, where the Recall@K score 
measures whether the target item is included in the top-K items in the recommendation 
list, and MRR@K is a normalized hit which takes the position of the target item into 
consideration.

The baselines adopted for comparison in this paper are the following: 1. Two tradi-
tional methods, i.e., S-POP (Adomavicius & Tuzhilin, 2005) and FPMC (Rendle et al., 
2010); 2. Three RNN-based methods, i.e., GRU4REC (Hidasi et al., 2016), NARM (Li 
et  al., 2017) and CSRM  (Wang et  al., 2019); 3. Two purely attention-based methods, 
i.e., STAMP (Liu et al., 2018) and SR-IEM (Pan et al., 2020); and 4. Two GNN-based 
methods, i.e., SR-GNN (Wu et al., 2019) and NISER+ (Gupta et al., 2019). We list all 
the models to be discussed in Table 3.

4.4  Experimental setup

We implement SGNN-HN with six layers of SGNNs to obtain the item embeddings. 
The hyper parameters are selected on the validation set which is randomly selected 
from the training set with a proportion of 10%. Following (Wu et al., 2019; Gupta et al., 
2019; Pan et al., 2020), the batch size is set to 100 and the dimension of item embed-
dings is 256. We adopt the Adam optimizer with an initial learning rate 1e−3 and a decay 
factor 0.1 for every 3 epochs. Moreover, L2 regularization is set to 1e−5 to avoid overfit-
ting, and the scale coefficient � is set to 12 on three datasets. We set the maximum ses-
sion length to 10 as in Kang and McAuley (2018); Pan et al. (2020), which means that 

Table 2  Statistics of the datasets 
used in our experiments

Statistics Yoochoose 1/64 Yoochoose 1/4 Diginetica

# clicks 557,248 8,326,407 982,961
# training sessions 369,859 5,917,746 719,470
# test sessions 55,898 55,898 60,858
# items 16,766 29,618 43,097
Average session length 6.16 5.71 5.12

(a) (b) (c)

Fig. 4  Distribution of sessions with various lengths in the training set of three datasets
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for too long sessions we only adopt the most recent 10 items for training. All parameters 
are initialized using a Gaussian distribution with a mean of 0 and a standard deviation 
of 0.1.

5  Results and discussion

5.1  Overall performance

5.1.1  General comparison

We present the results of the proposed session-based recommendation model SGNN-HN 
as well as the baselines in terms of Recall@20 and MRR@20 in Table 4. For the baselines 
we can observe that the neural methods generally outperform the traditional baselines, i.e., 
S-POP and FPMC. The neural methods can be split into three categories:

RNN-based neural baselines As for the RNN-based methods, we can see that NARM 
generally performs better than GRU4REC, which validates the effectiveness of emphasiz-
ing the user’s main purpose. Moreover, comparing CSRM to NARM, by incorporating 
neighbor sessions as auxiliary information for representing the current session, CSRM out-
performs NARM for all cases on three datasets, which means that neighbor sessions with 
similar intent to the current session can help boost the recommendation performance.

Attention-based neural baselines As for the purely attention-based methods, STAMP 
and SR-IEM, we see that SR-IEM generally achieves a better performance than STAMP, 
where STAMP employs a combination of the mixture of all items and the last item as 
“query” in the attention mechanism while SR-IEM extracts the importance of each item 
individually by comparing each item to other items. Thus, SR-IEM can avoid the bias 
introduced by the unrelated items and make accurate recommendations.

Table 4  Model performance in terms of Recall@20 and MRR@20

The results of the best performing baseline and the best performer in each column are underlined and bold-
faced, respectively.  denotes a significant improvement of SGNN-HN over the best baseline using a paired 
t-test (p < 0.01)

Method Yoochoose 1/64 Yoochoose 1/4 Diginetica

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

S-POP 30.44  18.35  27.08  17.75  21.06  13.68 
FPMC 45.62  15.01  – – 31.55  8.92 
GRU4REC 60.64  22.89  59.53  22.60  29.45  8.33 
NARM 68.32  28.63  69.73  29.23  49.70  16.17 
CSRM 69.85  29.71  70.63  29.48  51.69  16.92 
STAMP 68.74  29.67  70.44  30.00  45.64  14.32 
SR-IEM 71.15  31.71  71.67  31.82  52.35  17.64 
SR-GNN 70.57  30.94  71.36  31.89  50.73  17.59 
PEN4Rec 71.53  31.71  – –  52.50  18.56 
NISER+ 71.27  31.61  71.80  31.80  53.39  18.72 
SGNN-HN 72.06▴ 32.61▴ 72.85▴ 32.55▴ 55.67▴ 19.45▴
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GNN-based neural baselines Considering the GNN-based methods, i.e., SR-GNN and 
NISER+, we can observe that the best performer NISER+ can generally outperform the 
RNN-based and attention-based methods for most cases on the three datasets, which veri-
fies the effectiveness of graph neural networks on modeling the transition relationship of 
items in the session. In addition, NISER+ can outperform SR-GNN for most cases on the 
three datasets except for Yoochoose 1/4, where NISER+ loses against SR-GNN in terms of 
MRR@20. This may be due to the fact that the long-tail problem and the overfitting prob-
lem become more prevalent in scenarios with relatively few training data. In addition, by 
designing a second-stage retrieval process to strengthen the effect of relevant sessions for 
modeling the user preference evolving trajectory, PEN4Rec achieves the best performance 
in terms of both metrics on the Yoochoose 1/64 dataset.

In later experiments, we take the best performer in each category of the neural methods 
for comparison, i.e., CSRM, SR-IEM and NISER+.

Next, we move to the proposed model SGNN-HN. From Table  4, we observe that 
SGNN-HN can achieve the best performance in terms of Recall@20 and MRR@20 for all 
cases on the three datasets. The improvement of the SGNN-HN model against the baselines 
mainly comes from two aspects. One is the proposed star graph neural network (SGNN). 
By introducing a star node as the transition node of every two items in the session, SGNN 
can help propagate information not only from adjacent items but also long-distance items 
without direct connections. Thus, each node can obtain abundant information from their 
neighbor nodes. The other one is that by using the highway networks to solve the overfit-
ting problem, our SGNN-HN model can stack more layers of SGNNs, leading to a better 
representation of items.

Moreover, we find that the improvement of SGNN-HN over the best baseline in terms 
of Recall@20 and MRR@20 on Yoochoose 1/64 are 1.11% and 2.84%, respectively, and 
1.46% and 2.07% on Yoochoose 1/4. The relative improvement in terms of MRR@20 is 
more obvious than that of Recall@20 on both Yoochoose 1/64 and Yoochoose1/4. In con-
trast, a higher improvement in terms of Recall@20 than of MRR@20 is observed on Digi-
netica, returning 4.27% and 3.90%, respectively. This may be due to the fact that the num-
ber of candidate items are different on Yoochoose and Diginetica, where the number of 
candidate items in Yoochoose 1/64 and Yoochoose 1/4 are obviously less than that of the 
Diginetica dataset.

Our results indicate that our proposed SGNN-HN model can help put the target item at 
an earlier position when there are relatively few candidate items and is more effective on 
hitting the target item in the recommendation list for cases with relatively many candidate 
items.

5.1.2  Recommendation hits in top positions

To examine the recommendation ability of our proposal for a limited length of recom-
mendation list, we present the result of SGNN-HN as well as the baselines in terms of 
Recall@K and MRR@K with the recommendation number K = 5 and 10. The results are 
shown in Table 5.

As shown in Table 5, we can observe that our proposed SGNN-HN can achieve the best 
performance in terms of both Recall@K and MRR@K when K = 5 on three datasets. The 
same phenomenon can also be observed when K = 10. This indicates that SGNN-HN can 
be applied to practical scenarios with a small number of recommended items. Similar to 
the results when K = 20, CSRM performs worst among four models for all cases on three 
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datasets. Moreover, as for SR-IEM and NISER+, when K = 10, NISER+ generally per-
forms better than SR-IEM except the case where NISER+ loses the competition against 
SR-IEM in terms of MRR on Yoochoose 1/64, which is consistent with the findings when 
K = 20. Differently, when K =5, SR-IEM outperforms NISER+ in terms of both metrics 
on Yoochoose 1/64 and in terms of Recall on Yoochoose 1/4. This indicates that by accu-
rately estimating the importance of each item without introducing bias, SR-IEM can rec-
ommend the target item at an early position in the recommendation list.

Moreover, the improvement of SGNN-HN against the respective best baselines SR-IEM 
and NISER+ when K = 5 and 10 are analogous in terms of both Recall@K and MRR@K 
on Yoochoose 1/64 and Yoochoose 1/4. However, the improvement of SGNN-HN over the 
best baseline NISER+ on Diginetica is more obvious when K = 5 than that when K = 10. 
Specifically, the improvement in terms of Recall@5 is 5.18% while it is 3.75% in terms of 
Recall@10; and the improvement in terms of MRR@K are 4.06% and 3.76% when K = 
5 and 10, respectively. The difference may be caused by the size of candidate item set of 
Yoochoose and Diginetica, which means that, when the number of candidate items is large, 
SGNN-HN can achieve relatively more obvious improvement with a limited number of 
recommendations.

5.2  Utility of star graph neural networks

In order to answer RQ2, we compare the star graph neural networks (SGNN) in our pro-
posal with a gated graph neural network (GGNN) (Li et al., 2016) and a self-attention 
mechanism (SAT) (Vaswani et al., 2017). On the one hand, GGNN can only propagate 
information from the adjacent nodes while neglecting nodes without direct connec-
tions. Correspondingly, we only need to update the satellite nodes at each SGNN layer. 
In other words, the SGNN will be simplified to GGNN. On the other hand, SAT can 
be regarded as a full-connection graph that each node can obtain information from all 
nodes in the graph. In particular, if we remove the GGNN part from the SGNN, set the 
number of star nodes as the number of items in the session and then replace Eq. (2) 
by an identity function, i.e., xs = {x1, x2,… , xn} , where xs ∈ ℝ

d×n , then the SGNN will 
become a self-attention mechanism. Generally, SGNN can be regarded as a dynamic 

Table 5  Model performance in terms of Recall@K and MRR@K where K = 5 and 10

The results of the best performing baseline and the best performer when K = 5 and 10 in each column are 
underlined and boldfaced, respectively.  denotes a significant improvement of SGNN-HN over the best 
baseline using a paired t-test (p < 0.01)

K Method Yoochoose 1/64 Yoochoose 1/4 Diginetica

Recall@K MRR@K Recall@K MRR@K Recall@K MRR@K

5 CSRM 45.75  27.17  45.51  26.84  25.95  14.39 
SR-IEM 48.05  29.26  48.44  29.37  27.09  15.15 
NISER+ 48.03  29.23  48.22  29.43  28.38  16.26 

48.54
▴

30.13
▴

48.75
▴

29.99
▴

29.85
▴

16.92
▴

10 CSRM 58.88  28.94  59.27  28.68  37.88  15.97 
SR-IEM 60.76  30.97  61.18  31.08  38.79  16.70 
NISER+ 60.84  30.96  61.35  31.20  40.32  17.84 
SGNN-HN 61.54

▴

31.88
▴

62.08
▴

31.79
▴

41.83
▴

18.51
▴
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combination of GGNN and SAT. To prove the effectiveness of SGNN, we substitute 
SGNN in our proposal with two alternatives for propagating information between items 
and evaluate the performance on various recommendation numbers from 5 to 50 in 
terms of Recall@K and MRR@K on three datasets. The variants are denoted as: (1) 

(a) (b)

(c) (d)

(e) (f)

Fig. 5  Performance comparison in terms of Recall@20 and MRR@20 to assess the utility of star graph 
neural networks under different recommendation numbers
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GGNN-HN, which replaces SGNN with a simple GGNN; (2) SAT-HN, which replaces 
SGNN with GAT. We plot the results in Fig. 5.

As shown in Fig. 5, we can see that SGNN-HN can achieve the best performance for all 
cases in terms of both Recall@K and MRR@K on three datasets. Moreover, as for the var-
iants, GGNN-HN generally performs better than SAT-HN for all cases on three datasets. 
We attribute this to the fact that the self-attention mechanism propagates information from 
all items in a session, which will bring a bias of unrelated items. However, the GNN-based 
methods, i.e., GGNN-HN and SGNN-HN, can both explore the complex transition rela-
tionship between items via GNNs to avoid the bias brought by the unrelated items, thus in 
general, a better performance is achieved than SAT-HN. Moreover, comparing GGNN-HN 
to SGNN-HN, we see that GGNN-HN presents a lower performance as GGNN-HN can 
only propagate information from adjacent items, missing much long-distance information 
from unconnected items.

5.3  Unity of highway networks

To answer RQ3, we replace the highway networks in SGNN-HN with different aggregation 
methods, then we compare their performance in terms of Recall@20 and MRR@20 on 
three datasets. We mainly divide the variants into two categories according to the SGNN 
layers they combine. Specifically, we mark SGNN combining all layers of SGNNs as all, 
while regard that combining the item embeddings before and after multi-layer SGNNs as 
pair. Here in order to save space, we only list the variants that combine the item embed-
dings in the way of all as an example:

• SGNN-Aveall which combines the item embeddings of all SGNN layers using an aver-
age pooling;

• SGNN-SATall which adopts a self-attention mechanism on the item embeddings of 
all SGNN layers and then combines them using an average pooling as in Zhang et al. 
(2018);

• SGNN-GRU all which regards the output of all SGNN layers as a sequence and adopts 
GRU for combination;

• SGNN-Concatall which combines the item embeddings of all SGNN layers by concat-
enation;

• SGNN-Gatingall which combines the output of all SGNN layers using a gating network 
(Wang et al., 2019);

Correspondingly, by replacing the output of all SGNN layers in the above variants with the 
item embeddings before and after multi-layer SGNNs, we can get SGNN-Avepair , SGNN-
SATpair , SGNN-GRU pair , SGNN-Concatpair and SGNN-Gatingpair , respectively. Moreover, 
we also incorporate the variant that removes the highway networks from SGNN-HN, i.e., 
SGNN-SR, into comparison, where SGNN-SR directly adopts the output of the last SGNN 
layer as item representation. The results are given in Table 6.

From Table  6, by comparing SGNN-SR with other methods, we can conclude that 
combining different SGNN layers can indeed improve the recommendation performance. 
Clearly, SGNN-HN can generally outperform the variants in terms of both Recall@20 
and MRR@20 on three datasets, verifying the effectiveness of the highway networks for 
solving the serious overfitting problem in GNNs for session-based recommendation. As 
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for Recall@20, we can see that a simple average pooling can outperform most variants 
on small datasets Yoochoose 1/64 and Diginetica. This could be due to the fact that there 
are many parameters in other aggregation method like SAT and GRU, which are hard to 
be well learnt. Moreover, the most similar method to our highway networks is the gating 
networks, i.e., Gating, where SGNN-Gatingpair and SGNN-Gatingall also show a competi-
tive performance. The distinction between the highway networks and the gating networks 
is that the gating in the highway networks is applied to the embedding level while Gating 
works on the item level. Adaptively gating the item representation at the embedding level 
before and after SGNNs makes the combination flexible, thus SGNN-HN can generate rel-
atively accurate final representation of items.

In terms of MRR@20, we can see that different from the phenomenon in terms of 
Recall@20, most pair based models can outperform their corresponding all based models 
for different aggregation methods. This may be due to the fact that the last SGNN layer con-
tains the information from previous SGNN layers, combining all SGNN layers may cause 
information redundancy, thus resulting in negative influence in ranking the target item in 
the recommendation list. Moreover, we can observe that the improvement of SGNN-HN 
above the variants are more obvious in terms of MRR@20 than in terms of Recall@20. For 
example, on Diginetica, the improvement of SGNN-HN against the best variant in terms of 
Recall@20 and MRR@20 are 0.12% and 1.25%, respectively. This indicates that by com-
bining the item embeddings before and after multi-layer SGNNs, SGNN-HN can make use 
of both the individual item representation and the neighborhood information from other 
items, thus push the target item at an early position when making recommendations for 
users.

5.4  Impact of layer number in SGNNs

For RQ4, in order to investigate the impact of the number of GNN layers on the pro-
posed SGNN-HN model, we compare SGNN-HN to its variant SGNN-SR, which 

Table 6  Model performance in terms of Recall@20 and MRR@20 of SGNN-HN with different aggrega-
tion methods for combining information of different SGNN layers

The results of the best performer in each column is boldfaced

Method Yoochoose 1/64 Yoochoose 1/4 Diginetica

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

SGNN-SR 71.41 30.55 72.01 31.10 52.04 17.48
SGNN-Avepair 72.12 31.91 72.76 32.25 55.54 19.21
SGNN-Aveall 71.97 31.71 72.64 31.89 55.47 19.13
SGNN-SATpair 71.81 31.82 72.67 32.03 54.96 18.91
SGNN-SATall 71.76 32.10 72.71 32.02 55.15 18.98
SGNN-GRU pair 71.71 31.30 72.65 32.13 54.46 18.65
SGNN-GRU all 70.94 30.74 72.63 32.05 53.78 18.29
SGNN-Gatingpair 72.03 32.10 72.78 32.35 55.58 19.20
SGNN-Gatingall 72.06 31.90 72.78 32.32 55.60 19.16
SGNN-Concatpair 71.78 31.92 72.71 32.05 54.98 18.90
SGNN-Concatall 71.80 31.81 72.65 32.03 55.05 18.93
SGNN-HN 72.06 32.61 72.85 32.55 55.67 19.45
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removes the highway networks from SGNN-HN. In addition, the comparison involves 
the best performer in the category of GNN-based methods, i.e., NISER+. Specifically, 
we increase the number of GNN layers from 1 to 6, to show the performance in terms 
of Recall@20 and MRR@20 of NISER+, SGNN-SR and SGNN-HN on three datasets. 
The results are shown in Fig. 6.

(a) (b)

(c) (d)

(e) (f)

Fig. 6  Model performance in terms of Recall@20 and MRR@20 of different number of GNN layers
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As shown in Fig.  6, SGNN-HN achieves the best performance in terms of both 
Recall@20 and MRR@20 for almost all cases on three datasets. For Recall@20, from 
Fig.  6a,  c and e , we can observe that as the number of GNN layers increases, the per-
formance of both SGNN-SR and NISER+ drops rapidly on the three datasets, especially 
on Diginetica. Graph neural networks for session-based recommendation face a serious 
overfitting problem. Moreover, SGNN-SR outperforms NISER+ for all cases on the three 
datasets, which indicates that the proposed SGNN has a better ability than GGNN to repre-
sent the transition relationship between items in a session. As to the proposed SGNN-HN 
model, as the number of layers increases, we can see that the performance in terms of 
Recall@20 decreases slightly on Yoochoose 1/64 as well as Yoochoose 1/4 and remains rel-
atively stable on Diginetica. In addition, as the number of layers goes up, the performance 
of SGNN-HN shows a large gap over SGNN-SR and NISER+. By introducing the high-
way gating, SGNN-HN can effectively solve the overfitting problem and avoid the rapid 
decrease in terms of Recall@20 when the number of GNN layers increases.

For MRR@20, we can observe that as the number of layers increases, SGNN-SR shows 
a similar decreasing tread on the three datasets. However, the performance of NISER+ 
goes down on Yoochoose 1/64 and Diginetica while it increases on Yoochoose 1/4. In addi-
tion, NISER+ shows a better performance than SGNN-SR with relatively more GNN lay-
ers on the Yoochoose datasets. Unlike SGNN-SR, we can observe that SGNN-HN achieves 
the best performance for most cases on the three datasets. Moreover, with the number of 
layers increasing, the performance of SGNN-HN increases consistently, which may be due 
to the fact that the highway networks in SGNN-HN can adaptively select the embeddings 
of item representations before and after the multi-layer SGNNs. Furthermore, comparing 
SGNN-HN to SGNN-SR, we can see that the improvement brought by the highway net-
works is more obvious when incorporating more GNN layers. This could be due to the fact 
that with the highway networks, more SGNN layers can be stacked, thus more information 
about the transition relationship between items can be obtained.

Moreover, comparing the effect of the highway networks on Recall@20 and MRR@20 
in our SGNN-HN model, we can observe that the highway networks can improve the 
MRR@20 scores as the number of GNN layers increases while maintaining a stable 
Recall@20 score. This could be due to the fact that SGNN-HN is able to focus on the 
important items so that it can push the target item at an earlier position by using the high-
way networks.

5.5  Impact of the session length

To answer RQ5, we evaluate the performance of SGNN-HN and the state-of-the-art base-
lines, i.e., CSRM, SR-IEM and NISER+ under various session lengths on three datasets. 
We divide the sessions into groups according to their corresponding length, i.e., 1, 2, ..., 9 
and [10,+∞) . Note that for long sessions, we merely take the recent 10 items for training 
as stated in Sect. 4.4. The result are plotted in Fig. 7.

First, from Fig. 7, we can observe that SGNN-HN can generally outperform the base-
lines in terms of both Recall@20 and MRR@20 in the setting of various session lengths 
on three datasets, especially on Diginetica. Moreover, we can observe that CSRM performs 
worst for most cases on three datasets, especially on sessions with long length, which 
indicates that the transition relationship in the session is more complicated than a simple 
sequential signal. As for Recall@20, as shown in Fig. 7a, c and e , we can observe that with 
the session length increasing, the performance of all models generally first increases and 
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then shows a continuing downward trend. This could be explained by the fact that for ses-
sions with short lengths, along with the item number increasing, more information about 
user purpose can be utilized for intent detection. After achieving the peak performance 
at a certain session length (e.g., 3 on the Yoochoose datasets and 2 on Diginetica), bias 
may be introduced by the unrelated items and thus degrades the recommendation perfor-
mance. Moreover, comparing NISER+ to SR-IEM, we can observe that their performance 
are similar on short sessions, especially on the Yoochoose datasets, while NISER+ shows 

(a) (b)

(c) (d)

(e) (f)

Fig. 7  Model performance in terms of Recall@20 and MRR@20 under various session lengths
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an obvious better performance on sessions with longer lengths. This may be due to that by 
modeling the complex transition relationship between items, GNNs can well deal with long 
sessions so as to hit the target item. In addition, comparing SGNN-HN to the baselines, we 
can see that the gap of the performance between SGNN-HN and the best baseline NISER+ 
is relatively larger on short sessions than long ones, especially on the Yoochoose datasets, 
which indicates that SGNN-HN is effective on hitting the target item when the user-item 
interactions are relatively few.

As for MRR@20, the performance in terms of MRR@20 generally decreases on the 
Yoochoose datasets without an upward trend at the beginning like that on Diginetica. The 
could be explained by that the distributions of session length on the Yoochoose datasets 
and Diginetica are different. As shown in Fig. 4, the number of sessions decreases more 
sharply from length 1 to 2 on the Yoochoose datasets than that on Diginetica, leading to 
different performance trends. Moreover, NISER+ does not show better performance than 
SR-IEM for most cases on Yoochoose 1/64, and the same phenomenon is observed on 
Yoochoose 1/4. However, SGNN-HN generally shows an obvious improvement than SR-
IEM on the three datasets. We attribute the difference of the performance of NISER+ and 
SGNN-HN to: (1) SGNN makes the information from long-range items available in infor-
mation propagating; and (2) the highway networks in SGNN-HN paves the way for inves-
tigating the complex transition relationship via the multi-layer SGNNs, which helps to hit 
the target item early in the list of recommended items. In addition, we can observe that the 
improvement of SGNN-HN against the best baselines SR-IEM and NISER+ is relatively 
more obvious on long sessions on the Yoochoose datasets, while relatively more improve-
ment is achieved on short sessions on Diginetica. This difference may be due to the fact 
that the average session length is different; it is larger on the Yoochoose datasets than that 
on Diginetica. As there are proportionally more long sessions in the Yoochoose datasets, 
a larger improvement on sessions of long lengths than of short lengths on the Yoochoose 
datasets is returned.

5.6  Sensitivity to the training set scale

To answer RQ6, we preprocess the Yoochoose and Diginetica datasets by taking different 
fractions of the training sequences for optimizing the parameters in SGNN-HN and the 
baselines CSRM, SR-IEM and NISER+ to investigate the sensitivity of models to different 
scales of training set. Specifically, we fix the test set as that in Sect. 4.2, where the sessions 
of the last day and the last week are used for testing in Yoochoose and Diginetica, respec-
tively. For the Yoochoose dataset, we take the recent 1/64, 1/32, 1/16, 1/8 and 1/4 training 
sequences for learning the parameters. Considering that relatively less training data is con-
tained in the Diginetica dataset, the recent 1/16, 1/8, 1/4, 1/2 and 1/1 training sequences 
are adopted. The performance in terms of Recall@20 and MRR@20 of SGNN-HN and 
the baselines on different scales of training sets on Yoochoose and Diginetica are shown in 
Fig. 8.

First, we can observe that our proposed SGNN-HN model can beat the baselines 
for most cases in term of Recall@20 and MRR@20 on both datasets, which indicates 
the scalability of SGNN-HN that can adapt to scenarios with different amount of train-
ing data. On Yoochoose, we can observe that the performance of the baselines all 
increases in the first fractions in terms of both Recall@20 and MRR@20, achieving 
the peak performance around the 1/16 fraction; and after that they all show a descend-
ing trend. We attribute the reason that user’s behavior pattern could be influenced by 
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some time-sensitive factors like the season or the fashionable style. For instance on 
Yoochoose, the shopping behavior data for winter clothes is obviously not suitable for 
training a recommender used in spring. Moreover, different from the baselines, SGNN-
HN shows a stable performance on large fractions, indicating that SGNN-HN can solve 
the above-mentioned problem to some extent, thus hits the target item accurately using 
large scales of training sets.

On the Diginetica dataset, which is a smaller dataset than Yoochoose, we can see 
that the performance of all models generally increases with more training data. Moreo-
ver, the gap between NISER+ and SR-IEM is more obvious in terms of MRR@20 than 
that in terms of Recall@20 on various fractions, indicating that GNNs make sense for 
pushing the target items. Moreover, we can observe that the performance of SGNN-HN 
is similar to that of NISER+ on small training fractions However, the gap of SGNN-
HN against NISER+ generally increases with the fraction increasing in terms of both 
Recall@20 and MRR@20. This may be due to the fact that SGNN-HN contains more 
learnable parameters in the networks than NISER+, which can be better learnt with 
large amount of training data.

(a) (b)

(c) (d)

Fig. 8  Model performance in terms of Recall@20 and MRR@20 on different scales of training set on Yoo-
choose and Diginetica 
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5.7  Sensitivity to the hyper parameters

To answer RQ7, we conduct experiments to evaluate the scalability of SGNN-HN by stud-
ying how the embedding dimension and the L2 regularization affect the recommendation 
accuracy. Specifically, we set the embedding dimension in {16, 32, 64, 128, 256, 512} and 
tune the L2 regularization in {1e–8, 1e–7, 1e–6, 1e–5, 1e–4, 1e–3}. The performance in 
terms of Recall@20 and MRR@20 of SGNN-HN on three datasets are presented in Fig. 9.

From Fig.  9a and b , we can observe that with the dimension increasing, the recom-
mendation performance consistently increases, especially from the point of 16 to 32, which 
is due to that the embeddings of large dimensions have a powerful ability to represent the 
characters of items. However, we can see that from the point of 256 to 512, the perfor-
mance improvement in terms of both Recall@20 and MRR@20 are negligible. Consider-
ing both the recommendation ability and computational efficiency, we argue the dimen-
sion with a moderate number, e.g., 256, is applicable. Moreover, the performance in terms 
of MRR@20 in Yoochoose 1/64 and Yoochoose 1/4 are highly similar, which means that 
adopting relatively more amount of training sessions not only has no contribution to the 
ability of ranking the target item when dimension is 256 (as stated in Sect. 5.6), and the 
same phenomenon also occur under various representation ability of items.

Next, we consider the influence of L2 regularization. Different from the highway net-
works in SGNN-HN, L2 regularization is used to deal with the issue of overfitting by 
restricting the trainable parameters in the networks. On Yoochoose 1/64, we can see that 

(a) (b)

(c) (d)

Fig. 9  Model performance in terms of Recall@20 and MRR@20 under different hyper parameters



358 Information Retrieval Journal (2022) 25:329–363

1 3

SGNN-HN performs stablely in terms of Recall@20 with L2 regularization increasing, and 
the performance presents a slight drop at the end. Similar phenomenon can be observed in 
terms of MRR@20, except the case where the performance in terms of MRR@20 shows a 
sharp decrease from the point of 1e–5 to 1e–3. On Diginetica, the performance in terms of 
Recall@20 and MRR@20 first increases, achieving the peak performance at 1e–5, and then 
shows a decreasing trend. Similar phenomenon can be found on Yoochoose 1/4. This is due 
to that a proper L2 can help solve the overfitting problem, however, a too large L2 will lead 
to difficulty in learning the parameters. Hence, 1e–5 is applicable for L2 regularization.

5.8  Computational complexity

In order to answer RQ8, we theoretically analyze the time complexity of our proposed 
SGNN-HN and the competitive baselines including CSRM, SR-IEM and NISER+ for 
modeling a session of length n. We also empirically measure their training time and test 
time on a single GeForce RTX 3090 GPU. The results are presented in Table 7.

In Table 7, n denotes the session length, d is the embedding dimension, |V| indicates 
the number of candidate items in the item set V, L means in the layer number of GNNs, 
m represents the unique item number in the session, and M is the number of incorporated 
neighbor sessions in CSRM. From the theoretical analysis of time complexity, we can first 
observe that borrowing the merit from the high efficiency of self-attention mechanism, 
SR-IEM achieves the lowest time complexity among the compared models. However, the 
performance of SR-IEM is not satisfactory as shown in Table 4 since it fails to take the 
complicated item transitions into consideration. Moreover, since M > Lm2 , CSRM gener-
ally has the highest time complexity because of the large computational cost of RNNs. 
In addition, we can observe that SGNN-HN theoretically shares the same time complex-
ity as the state-of-the-art GNN-based baseline NISER+, except that SGNN-HN introduces 
an additional time complexity of nd2 from the star node and highway networks, which is 
neglected in the time complexity calculation since n << Lm2.

In addition, to clearly compare the time cost of four models for training and test, we set 
the time consumption of SGNN-HN to 1 unit in each case and present the relative time cost 
of CSRM, SR-IEM and NISER+. From Table 7, we can observe that the training and test 
time of four models generally shows a consistent phenomenon with their corresponding 
theoretical time complexity. First, CSRM costs the most time on all three datasets, espe-
cially for test. Moreover, comparing two GNN-based methods, i.e., NISER+ and SGNN-
HN, SGNN-HN slightly increases the time cost due to introducing the star node and the 
highway networks for propagating latent connections between items and alleviating the 

Table 7  Computational complexity and efficiency

We set the time cost of SGNN-HN in each case to 1 unit, and present the relative time cost of other models

Method Time complexity Yoochoose 1/64 Diginetica Yoochoose 1/4

Training Test Training Test Training Test

CSRM O(Md2 + nd2 + |V|d) 4.51 18.24 4.12 18.93 1.24 1.90
SR-IEM O(nd2 + |V|d) 0.29 0.33 0.34 0.35 0.11 0.33
NISER+ O(Lm2d2 + nd2 + |V|d) 0.94 0.97 0.91 0.95 0.94 0.96
SGNN-HN O(Lm2d2 + nd2 + |V|d) 1.00 1.00 1.00 1.00 1.00 1.00
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over-fitting problem, respectively. In addition, we can see that the increasing rates of time 
consumption are relatively smaller for test than those for training. Specifically, SGNN-HN 
increases the training time by 6.38, 9.89 and 6.38% above NISER+ on Yoochoose 1/64, 
Diginetica and Yoochoose 1/4, respectively, while the corresponding increasing rates are 
3.09, 5.26 and 4.16% for test. This indicates that after training, our proposal has a compa-
rable time cost with the state-of-the-art baseline during the inference stage when making 
recommendations for users.

5.9  Case study

To provide a deep insight on the working mechanism of our proposal SGNN-HN, we ran-
domly select two example sessions from Diginetica, and show the generated session graph 
of SGNN-HN as well as SGNN-SR in Fig. 10. The category information in the Diginetica 
dataset marked in red in Fig. 10 can help us capture the relations between items in the ses-
sion. The purple circle and green circles denotes the star node and the sequential items in 
the session, respectively. The gray arrows indicates the chronological order between items. 
Here we omit the satellite connection for brevity. The numbers on the blue lines connecting 
the star node and each item indicates how much information can be transferred from the 
star node to the sequential items in the session when updating their embeddings.

From the session graphs in Fig. 10, we can get some interesting findings:

• As in session 35,627, the item 25,863 does not belong to any category of other items, 
which means that it may be an unrelated item. In this case, we can observe that the 
corresponding weight is relatively small, i.e., 0.31, while the weights corresponding 

(a) (b)

(c) (d)

Fig. 10  Illustration of the working mechanism of the proposed SGNN-HN
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to other items are relatively large. This indicates that by introducing the star node, 
the information from relevant items can be propagated in a two-hop way through the 
star node, which can effectively avoid the negative impact brought by the unrelated 
items. Differently, as in session 59,596 where items belong to the same category, the 
weights between items with the star node are relatively large and similar. This could 
be explained that, since the sequential items are similar, i.e., in the same category, the 
learnt star node is also highly similar to items in the session.

• Moreover, comparing the generated graphs of SGNN-HN and SGNN-SR on both ses-
sions, we can observe that the weights of different items are dispersive in SGNN-HN 
while they are closely similar in SGNN-SR. This could be explained by that multi-layer 
GNNs face an over-smoothing problem (Xu et  al., 2018), making the embeddings of 
items after SGNNs highly similar and resulting in a difficulty to focus on the important 
items. However, by utilizing the highway networks, SGNN-HN can effectively solve 
this problem, which makes it possible to introduce relatively more layers of SGNNs to 
learn accurate representations of the items.

6  Conclusions and future work

In this paper, we propose a novel approach, i.e., Star Graph Neural Networks with Highway 
Networks (SGNN-HN), for session-based recommendation. SGNN-HN applies the star 
graph neural networks (SGNN) to model the complex transition relationship between items 
in a session to generate accurate item embeddings. Moreover, to deal with the overfitting 
problem of graph neural networks in session-based recommendation, we utilize the high-
way networks to dynamically combine information from item embeddings before and after 
multi-layer SGNNs. Finally, we apply an attention mechanism to combine item embed-
dings in a session as user’s general preference, which is then concatenated with user’s 
recent interest expressed by the last clicked item in the session for making item recommen-
dation. Experiments are conducted on two public benchmark datasets, i.e., Yoochoose and 
Diginetica, and the results show that SGNN-HN can significantly improve the recommen-
dation performance in terms of Recall and MRR metrics. Moreover, we provide a detailed 
analysis on star graph neural networks (SGNN) and the highway networks by replacing the 
respective module with other alternatives for comparison to verify their respective effec-
tiveness. Furthermore, we investigate the impact of the layer number of SGNN-HN on the 
recommendation ability, and examine how SGNN-HN performs for cases with different 
session lengths. We find that deep SGNN layers contribute more to the recommendation 
accuracy in terms of MRR@20 than Recall@20. In addition, the improvement in terms of 
Recall@20 is relatively more obvious on short sessions than long ones.

As to future work, we would like to incorporate the neighbor sessions to enrich the tran-
sition relationship in the current session. Moreover, we are interested in applying star graph 
neural networks to other tasks like conversational recommendation (Lei et al., 2020) and 
dialogue systems (Zhang et al., 2019) to investigate its scalability. In addition, we plan to 
take the multi behaviors (Gu et  al., 2020; Jin et  al., 2020) in e-commerce recommender 
systems into consideration for user purpose modeling.
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