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Abstract
Today, the practice of returning entities from a knowledge base in response to search que-
ries has become widespread. One of the distinctive characteristics of entities is that they 
are typed, i.e., assigned to some hierarchically organized type system (type taxonomy). The 
primary objective of this paper is to gain a better understanding of how entity type infor-
mation can be utilized in entity retrieval. We perform this investigation in two settings: 
firstly, in an idealized “oracle” setting, assuming that we know the distribution of target 
types of the relevant entities for a given query; and secondly, in a realistic scenario, where 
target entity types are identified automatically based on the keyword query. We perform a 
thorough analysis of three main aspects: (i) the choice of type taxonomy, (ii) the represen-
tation of hierarchical type information, and (iii) the combination of type-based and term-
based similarity in the retrieval model. Using a standard entity search test collection based 
on DBpedia, we show that type information can significantly and substantially improve 
retrieval performance, yielding up to 67% relative improvement in terms of NDCG@10 
over a strong text-only baseline in an oracle setting. We further show that using auto-
matic target type detection, we can outperform the text-only baseline by 44% in terms of 
NDCG@10. This is as good as, and sometimes even better than, what is attainable by using 
explicit target type information provided by humans. These results indicate that identifying 
target entity types of queries is challenging even for humans and attests to the effectiveness 
of our proposed automatic approach.
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1 Introduction

Entities, such as people, organizations, or locations are natural units for organiz-
ing information; they can provide not only more focused responses, but often imme-
diate answers, to many search queries (Pound et  al. 2010). Entities can improve the 
user experience throughout the entire search process, by enabling techniques of query 
assistance, content understanding, result presentation, and contextual recommenda-
tions (Balog 2018). Indeed, entities play a key role in transforming search engines into 
“answer engines” (Mika 2013). The pivotal component that sparked this evolution is the 
increased availability of structured data published in knowledge bases, such as DBpedia, 
Freebase, or the Google Knowledge Graph. Knowledge bases are now primary sources 
of information for entity-oriented search (Balog 2018). Major web search engines also 
shaped users’ expectations about search applications; the single-search-box paradigm 
has become widespread, and ordinary users have little incentive (or knowledge) to for-
mulate structured queries. The task we consider in this paper, referred to as ad hoc 
entity retrieval (Pound et al. 2010), corresponds to this setting: returning a ranked list of 
entities from a knowledge base in response to a keyword user query.

One of the unique characteristics of entity retrieval that distinguishes it from docu-
ment retrieval is that entities are typed. Entity types (or types for short) are semantic 
categories that group together entities with similar properties. “An analogy can be made 
to object-oriented programming, whereby an entity of a type is like an instance of a 
class” (Balog 2018). Types are typically organized in a hierarchy, which we will refer to 
as type taxonomy hereinafter. Each entity in the knowledge base can be associated with 
(i.e., is an instance of) one or more types. For example, using the DBpedia Ontology, 
the type of the entity Albert Einstein is Scientist; according to Wikipedia’s 
category system, that entity belongs to the types Theoretical physicists and 
People with acquired Swiss citizenship, among others. It is assumed 
that by identifying the types of entities sought by the query (target types, from now on), 
one can use this information to improve entity retrieval performance (Zhu et al. 2008; 
Demartini et al. 2010a; Pehcevski et al. 2010; Bron et al. 2010; Balog et al. 2011; Raviv 
et al. 2012; Kaptein and Kamps 2013); see Fig. 1 for an illustration. The main high-level 
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Fig. 1  Illustration of type-aware entity retrieval, where the target types sought by the query (left) are 
matched against the types that are assigned to the given entity in the knowledge base (right)
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research question we are concerned with in this study is the following: How can one 
exploit entity type information to improve ad hoc entity retrieval?

The concept of entity types, while seemingly straightforward, turns out to be a mul-
tifaceted research problem that has not yet been thoroughly investigated in the liter-
ature. Most of the research related with the usage of type information has been con-
ducted in the context of the INEX Entity Ranking track (Demartini et al. 2010b). There, 
it is assumed that the user complements the keyword query with one or more target 
types, using Wikipedia’s category system as the type taxonomy. The focus has been on 
expanding the set of target types based on hierarchical relationships and dealing with the 
imperfections of the type system (Demartini et al. 2010a; Balog et al. 2011; Pehcevski 
et al. 2010; Kaptein and Kamps 2013). Importantly, these developments have been moti-
vated and driven by the peculiarities of Wikipedia’s category system. It is not known 
whether the same methods prove effective, and even if these issues persist at all, in case 
of other type taxonomies. One important contribution of this paper is that we consider 
and systematically compare multiple type taxonomies (DBpedia, Freebase, Wikipedia, 
and YAGO). Additionally, there is the issue of representing entity type information, 
more specifically, to what extent the hierarchy of the taxonomy should be preserved. Yet 
another question is how to combine type-based and text-based matching in the retrieval 
model. Therefore, the research questions we address are as follows:

– RQ1 What is the impact of the particular choice of type taxonomy on entity retrieval 
performance?

– RQ2 How can one represent hierarchical entity type information for entity retrieval?
– RQ3 How can one combine term-based and type-based matching for entity retrieval?

To answer the above questions, we conduct a series of experiments for all possible com-
binations of three dimensions:

 i. The way term-based and type-based information is combined in the retrieval model 
(Sect. 3).

 ii. The hierarchical representation of entity type information (Sect. 4.1).
 iii. The choice of the type taxonomy (Sect. 4.2).

Using a standard entity retrieval test collection (Hasibi et al. 2017), in Sect. 7 we per-
form a thorough experimental comparison and analysis of all possible configurations 
across the above identified three dimensions. Throughout this set of experiments, we 
make use of a so-called target type oracle. We assume that there is an “oracle” process 
in place that provides us with the correct target types for a given query. We employ 
this idealized setting to ensure that our results reflect the full potential of using type 
information, without being hindered by the imperfections of an automated type detec-
tor. We find that type information can yield up to 67% relative improvement in terms of 
NDCG@10 over a strong text-only baseline (cf. Sect. 7.3).

In a realistic setting, target entity types are not provided, but need to be automati-
cally identified based on the keyword query. This gives rise to the following research 
objective:

– RQ4 How can one automatically determine the target entity types of a query from a 
type taxonomy?
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We cast the problem of hierarchical target entity type identification as a ranking task and 
present both unsupervised and supervised approaches in Sect. 5. Using a custom-built test 
collection, based on DBpedia’s type system, we find that our supervised approach achieves 
an NDCG@5 score of 0.6, which represents a relative improvement of 58% over the best 
performing baseline (cf. Sect. 8.1).

Finally, we wish to test whether the findings we made using the oracle type detector also 
hold when automatic type detection is used instead. We ask the following question:

– RQ5 How does type-aware entity retrieval perform using automatic target entity type 
identification, compared to an “oracle” setting?

We show that using automatic type identification, we can outperform the text-only baseline 
by 44% in terms of NDCG@10 (cf. Sect. 8.2.2). Interestingly, these results are as good as, 
and sometimes even higher than, what could be achieved by using explicit target type anno-
tations by humans. This shows that identifying target entity types of queries is challenging 
even for humans and attests to the effectiveness of our proposed automatic approach.

In summary, our work is the first comprehensive study on the usage of entity type infor-
mation for entity retrieval. This paper makes the following main contributions:

– Methods for (i) representing types in a hierarchy, (ii) establishing type-based similarity, 
and (iii) combining term-based and type-based similarities for ad hoc entity retrieval.

– A systematic comparison of four type taxonomies (DBpedia, Freebase, Wikipedia, and 
YAGO) across the above three dimensions of interest.

– Methods and a purpose-built test collection for automatic entity type identification.
– An experimental evaluation of automatic target entity type identification both intrinsi-

cally (in isolation) and extrinsically (on the ad hoc entity retrieval task).

All resources developed within this study (including relevance assessments, pre-computed 
features, and all the generated rankings) are made publicly available at https ://githu b.com/
iai-group /irj-types .

The remainder of this paper is organized as follows. In Sect.  2, we review related 
research. Section 3 introduces type-aware entity retrieval models. Next, in Sect. 4 we dis-
cuss alternative ways of representing hierarchical entity type information and present dif-
ferent type taxonomies. Section 6 describes our experimental setup. Experimental results 
are discussed in two parts; we first report results using an oracle setting in Sect. 7, then 
we employ automatic target entity type identification in Sect. 8. Finally, we conclude in 
Sect. 9.

2  Related work

The task of entity ranking has been studied in different flavors. Ad hoc entity ranking takes 
a keyword query as input and seeks relevant entities to be returned (Pound et  al. 2010; 
Neumayer et  al. 2012). List search further assumes that sought results are semantically 
related (e.g., “US presidents since 1960” or “Axis powers of World War II”); these seman-
tic relationships may be specified with a set of target types, or a (small) set of example 
entities (Balog et al. 2012; Demartini et al. 2010b). Related entity finding, a special case of 
list search, requests result entities to be of a specific type and stand in a particular relation 
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with a given input entity (e.g., “airlines that currently use Boeing 747 planes”) (Balog et al. 
2010). Finally, answers to many questions in question answering are specific entities (e.g., 
“Who is the mayor of Berlin?”) (Lopez et al. 2013). Our interest in this work lies in the 
usage of type information for general-purpose entity retrieval against a knowledge base, 
where queries may belong to any of the above categories.

2.1  Using type information in entity ranking

Early work represented type information as a separate field in a fielded entity model (Zhu 
et al. 2008). Demartini et al. (2010a) additionally expand type information using the under-
lying hierarchy. In later works, types are typically incorporated into the retrieval method 
by combining term-based similarity with a separate type-based similarity component. This 
combination may be done (i) using a linear interpolation (Balog et al. 2011; Kaptein and 
Kamps 2013; Pehcevski et al. 2010) or (ii) in a multiplicative manner, where the type-based 
component essentially serves as a filter (Bron et al. 2010). Raviv et al. (2012) introduce a 
particular version of interpolation using Markov Random Fields, linearly aggregating each 
of the scores for the joint distribution of the query with entity document, type, and name. 
All the mentioned works have consistently reported significant performance improvements 
when a type-based component is incorporated into the (term-based) retrieval model. How-
ever, type-aware approaches have not been systematically compared to date. We formalize 
these two general combination strategies, interpolation and filtering, in Sect. 3, and then 
compare them experimentally in Sect. 7.

Different approaches have measured the type-based similarity by using lexical type label 
similarity (Vercoustre et  al. 2008), descriptions of entities (Kaptein and Kamps 2009), 
overlap ratio of type sets (Weerkamp et al. 2009), and even types added as a separated field 
in multi-field retrieval (Zhu et al. 2008; Demartini et al. 2008). In this work we use a state-
of-the-art solution proposed by Balog et al. (2011) (cf. Sect. 3.3).

2.2  Type taxonomies

The choice of a particular type taxonomy is mainly motivated by the problem setting, 
depending on whether a wide-coverage type system (like Wikipedia categories) or a 
curated, well-designed ontology (e.g., the DBpedia Ontology) is desired. The most com-
mon type system used in prior work is Wikipedia categories (Demartini et al. 2010a; Balog 
et al. 2011; Kaptein and Kamps 2013; Raviv et al. 2012; Bron et al. 2010). This is in part 
for historical reasons, as this was the underlying type system used at the INEX Entity Rank-
ing track, where type information was first exploited. Further choices include the DBpedia 
Ontology (Balog and Neumayer 2012; Tonon et al. 2013), YAGO types (Demartini et al. 
2010a; Sawant and Chakrabarti 2013; Tonon et al. 2013; Nakashole et al. 2013), Freebase 
(Lin et al. 2012), and schema.org (Tonon et al. 2013). To the best of our knowledge, ours is 
the first study to compare different type taxonomies for entity retrieval.

2.3  Representations of type information

Target types are commonly considered either as a set (Pehcevski et  al. 2010; Demartini 
et al. 2010a; Raviv et al. 2012; Kaptein and Kamps 2013) or as a bag (weighted set) (Val-
let and Zaragoza 2008; Balog et al. 2011; Sawant and Chakrabarti 2013). Various ways of 
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measuring type-based similarity have been proposed (Vercoustre et al. 2008; Kaptein and 
Kamps 2009; Weerkamp et al. 2009; Zhu et al. 2008; Demartini et al. 2008). In this work 
we employ a probabilistic approach that represents entity type information as multinomial 
probability distributions (Balog et al. 2011) (cf. Sect. 3.3). Within a taxonomy, types are 
arranged in a hierarchy. (Wikipedia represents a special case here, as its categories do not 
form a well-defined “is-a” hierarchy.) Several approaches have attempted to expand the 
set of target types based on the hierarchical structure of the type system (Pehcevski et al. 
2010; Balog et al. 2011; Bron et al. 2010; Demartini et  al. 2010a; Balog and Neumayer 
2012; Tonon et al. 2013). Crucially, the investigation of type hierarchies has been limited 
to Wikipedia, and, even there, mixed results are reported (Vercoustre et al. 2008; Zhu et al. 
2008; Demartini et al. 2008; Jämsen et al. 2008). It remains an open question whether con-
sidering the hierarchical nature of types benefits retrieval performance. We aim to fill that 
gap.

2.4  Target entity type identification

The INEX Entity Ranking track (Demartini et al. 2010b) and the TREC Entity track (Balog 
et  al. 2012) both featured scenarios where target types are provided by the user. When 
explicit target type information is lacking, one might attempt to infer types from the key-
word query. This subtask was introduced by Vallet and Zaragoza (2008) as the entity type 
ranking problem. They extract entity mentions from the set of top relevant passages, then 
consider the types associated with the top-ranked entities using various weighting func-
tions. Kaptein et al. (2010) similarly use a simple entity-centric model. Manually assigned 
target types tend to be more general than automatically identified ones (Kaptein and Kamps 
2013). Having a hierarchical structure, therefore, makes it convenient to assign more gen-
eral types. In (Balog and Neumayer 2012), a hierarchical version of the target entity type 
identification task is addressed using the DBpedia Ontology and language modeling tech-
niques. One approach uses an entity-centric strategy. Another one builds a textual type 
representation by concatenating the descriptions of all its assigned entities. We present a 
detailed description of these models in Sects.  5.1 and  5.2, and further expand on them 
in Sect. 5.3. Sawant and Chakrabarti (2013) focus on telegraphic queries and assume that 
each query term is either a type hint or a “word matcher.” They consider multiple interpre-
tations of the query and tightly integrate type detection within the ranking of entities. Their 
approach further relies on the presence of a large-scale web corpus. We consider target 
entity types identification using an oracle process, based on the set of known relevant enti-
ties (cf. Sect. 6.2), as well as using automatic methods (cf. Sect. 5).

2.5  Entity type assignments

A further complicating issue is that type information associated with entities in the knowl-
edge base is incomplete, imperfect, or missing altogether for some entities. Gangemi et al. 
(2012) distinguish between extensional coverage, i.e., the number of typed resources, 
and intensional coverage, i.e., conceptual completeness. Automatic typing of entities is 
a possible solution for alleviating some of these problems. For example, approaches to 
extend entity type assignments in DBpedia include mining associated Wikipedia articles 
for wikilink relations (Nuzzolese et al. 2012), patterns over logical interpretations of the 
deeply parsed natural language definitions (Gangemi et al. 2012), or linguistic hypotheses 
about category classes (Fossati et  al. 2015). Several works have addressed entity typing 
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over progressively larger taxonomies with finer-grained types (Fleischman and Hovy 2002; 
Giuliano 2009; Rahman and Ng 2010; Ling and Weld 2012; Yosef et al. 2012). Regarding 
the task of detecting and typing emerging entities, having fine-grained types for new enti-
ties is of particular importance for informative knowledge (Lin et al. 2012; Nakashole et al. 
2013).

3  Type‑aware entity retrieval

In this section, we formally describe the type-aware entity retrieval models we will be 
using for investigating the research questions stated in Sect. 1. Our contributions do not 
lie in this part; the techniques we present were shown to be effective in prior research. We 
refer to Table 1 for the notation used in this paper.

We formulate our retrieval task in a generative probabilistic framework. Given an input 
query q, we rank entities e according to

(1)P(e|q) ∝ P(q|e)P(e).

Table 1  Glossary of the notation used in this paper

Symbol Description

e Entity ( e ∈ )
 Set of all entities in the knowledge base
t Set of all entities typed with t
q Query
t Type ( t ∈  )
 Set of all types in the taxonomy
e Set of all types assigned to e ( e ⊂  )
w Term (word)
a(e, t) Entity-type association weight for e and t
f(w, e) Frequency of w in (the description of) e
n(t, e) Entity-type association importance for e and t
�(t) Parent type of t in the taxonomy
Relq Set of relevant entities for q according to the ground truth
rel(q, e) Relevance level of e for q according to the ground truth
Rk(q) Set of top-k ranked entities for q
scoreM(e, q) Retrieval score of entity e for query q, given by model M
scoreM(�i )

(t, q) Target type score of t for query q, given by model M, with array
(�i) of underlying retrieval model parameters (omitted if empty)

w2v(w) Pre-trained word2vec word embedding vector for w
v
w2v
content

Centroid of word2vec vectors for all content words in v
�(p) Binary indicator function which returns 1 iff p is true
�e Entity types distribution for e
�q Target types distribution for q
�t Weight of type-based component in interpolation model
k Target types ranking cutoff in strict filtering model
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When uniform entity priors are assumed, the final ranking of entities boils down to the 
estimation of P(q|e). We consider the query in the term space as well as in the type space. 
Hence, we write q = (qw, qt) , where qw holds the query terms (words) and qt holds the 
target types. Two ways of factoring the probability P(q|e) are presented in Sect. 3.1. All 
models share two components: term-based similarity, P(qw|e) , and type-based similarity, 
P(qt|e) . These are discussed in Sects. 3.2 and 3.3, respectively.

3.1  Retrieval models

We present two alternative approaches for combining term-based and type-based similarity.

3.1.1  Filtering

Assuming conditional independence between the term-based and type-based components, 
the final score becomes a multiplication of the components:

This approach is a generalization, among others, of the one used in Bron et  al. (2010) 
(where the term-based information itself is unfolded into multiple components, consider-
ing not only language models from textual context but also estimations of entity co-occur-
rences). We consider two specific instantiations of this model:

– Strict filtering, where P(qt|e) is 1 if the sets of target types and entity types have a non-
empty intersection, and is 0 otherwise.

– Soft filtering, where P(qt|e) ∈ [0..1] and is estimated using the approach detailed in 
Sect. 3.3.

3.1.2  Interpolation

Alternatively, a mixture model may be used, which allows for controlling the importance 
of each component. Nevertheless, the conditional independence between qw and qt is still 
imposed by this model:

where P(qt|e) is estimated using the approach detailed in Sect. 3.3. Examples of using the 
interpolation model include (Pehcevski et al. 2010; Balog et al. 2011; Raviv et al. 2012; 
Kaptein and Kamps 2013).

3.2  Term‑based similarity

We base the estimation of the term-based component, P(qw|e) , on statistical language mod-
eling techniques since they have shown to be an effective approach in prior work, see, e.g., 
(Balog et al. 2011; Kaptein and Kamps 2013; Bron et al. 2010; Balog and Neumayer 2013; 
Hasibi et  al. 2016). Specifically, we employ the Sequential Dependence Model (SDM) 
(Metzler and Croft 2005). Following Hasibi et al. (2017), we set the default parameters 0.8, 
0.1, and 0.1 for terms, ordered, and unordered bigram, respectively. We note that the term-
based component is not the focus of this work; any other approach could also be plugged in 
(provided that the retrieval scores are mapped to probabilities).

(2)P(q|e) = P(qw|e)P(qt|e).

(3)P(q|e) = (1 − �t)P(qw|e) + �tP(qt|e),
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3.3  Type‑based similarity

Rather than considering types simply as a set, we assume a distributional representation 
of types, also referred to as bag-of-types. Namely, a type in the bag may occur with rep-
etitions, naturally rendering it more important. Following Balog et al. (2011), we repre-
sent type information as a multinomial probability distribution over types, both for que-
ries and for entities. Specifically, let �q denote the target type distribution for the query 
q (such that 

∑
t P(t��q) = 1 ). We assume that there is some mechanism in place that esti-

mates this distribution; in our experiments, we will rely on an “oracle” that provides us 
exactly with this information (cf. Sect. 6.2). Further, let �e denote the target type distri-
bution for entity e. We assume that a function n(t, e) is provided, which returns 1 if e is 
assigned to type t, otherwise 0. We present various ways of setting n(t, e) based on the 
hierarchy of the type taxonomy in Sect. 4. We note that n(t, e) is not limited to having 
a binary value; this quantity could, for example, be used to reflect how important type 
t is for the given entity e. We use a multinomial distribution to allow for such future 
extensions. Based on these raw counts, the type-based representation of an entity e is 
estimated using Dirichlet smoothing:

where the background type model is obtained by a maximum-likelihood estimate:

The smoothing parameter � in Eq. (4) is set to the average number of types assigned to an 
entity. In Eqs. (4) and (5), t′ is any type in the taxonomy ( t� ∈   ) and e′ is any entity in the 
knowledge base ( e� ∈ ).

With both �q and �e in place, we estimate type-based similarity using the Kullback–Lei-
bler (KL) divergence of the two distributions:

where z is a normalization factor:

Note that the smaller the divergence the more similar the distributions are, therefore in Eq. 
(6) we subtract it from the maximum KL-divergence, in order to obtain a probability distri-
bution. For further details we refer to Balog et al. (2011).

4  Entity type representation

This section introduces alternative ways of representing hierarchical entity type informa-
tion (Sect. 4.1) and the different type taxonomies that are considered in our experimental 
evaluation (Sect. 4.2).

(4)P(t��e) =
n(t, e) + �P(t)∑

t� n(t
�, e) + �

,

(5)P(t) =

∑
e� n(t, e

�)
∑

t�

∑
e� n(t

�, e�)
.

(6)P(qt|e) = z
(
max
e�

KL(�q ∥ �e� ) − KL(�q ∥ �e)

)
,

z = 1

/∑

e

max
e�

(KL(�q ∥ �e� ) − KL(�q ∥ �e)).
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4.1  Hierarchical entity type representation

We consider different ways of representing hierarchical entity type information. Specifi-
cally, we investigate how to set the quantity n(t, e), which is needed for estimating type-
based similarity between target types of the query and types assigned to the entity in 
the knowledge base. Before proceeding further, let us introduce some terminology and 
notation.

–   is a type taxonomy that consists of a set of hierarchically organized entity types, and 
t ∈   is a specific entity type.

–  is the set of all entities in the knowledge base, and e ∈  is a specific entity.
– e is the set of types that are assigned to the entity e in the knowledge base. We refer to 

this as a set of assigned types. Note that e might be an empty set.

We impose the following constraints on the type taxonomy.

 i. There is a single root node t0 that is the ancestor of all types (e.g., < ��� ∶ ����� > ). 
Since all entities belong to this type, it is excluded from the set of assigned types by 
definition.

 ii. We restrict the type taxonomy to subtype–supertype relations; each type t has a single 
parent type denoted as �(t).

 iii. Type assignments are transitive, i.e., an entity that belongs to a given type also belongs 
to all ancestors of that type: t ∈ e ∧ �(t) ≠ t0 ⟹ �(t) ∈ e.

We further note that an entity might belong to multiple types under different branches of 
the taxonomy. Assume that ti and tj are both types of e. It might be then that their nearest 
common ancestor in the type hierarchy is t0.

While e holds the types assigned to entity e, there are multiple ways of turning it into 
a numerical value, n(t, e), which reflects the type’s importance with respect to the given 
entity. This importance is taken into account when building the type-based entity repre-
sentation in Eq. (4). In this work, we treat all types equally important for an entity, i.e., use 
binary values for n(t, e).

We consider the following three options for representing hierarchical type information; 
see Fig. 2 for an illustration. In our definitions, we use �(x) as an indicator function, which 
returns the value 1 if condition x is true and returns 0 otherwise.

– Types along path-to-top It counts all types that are assigned to the entity in the knowl-
edge base, excluding the root (from constraint (iii) it follows that e contains all the 
types in the path to the top-level nodes): 

– Top-level type(s) Only top-level types are considered for an entity, that is, types that 
have the root node as their parent: 

– Most specific type(s) From each path, only the most specific type is considered for the 
entity: 

n(t, e) = �
(
t ∈ e

)
.

n(t, e) = �
(
t ∈ e ∧ �(t) = t0

)
.

n(t, e) = �
(
t ∈ e ∧ ∄ t� ∈ e ∶ �(t�) = t

)
.
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Even though there may be alternative representations, these three are natural ways of 
encoding hierarchical information.

4.2  Entity type taxonomies

In this paper we study multiple type taxonomies from various knowledge bases: DBpe-
dia, Freebase, Wikipedia, and YAGO. These vary a lot in terms of hierarchical structure 
and in how entity-type assignments are recorded. We normalize these type taxonomies to 
a uniform structure, adhering to the constraints specified in Sect. 4.1. Table 2 presents an 
overview of the type systems (after normalization). The number of type assignments are 
counted according to the representation along path-to-top. Properties of the four type sys-
tems and details of the normalization process are discussed below.

4.2.1  Type taxonomies

Wikipedia categories The Wikipedia category system, developed and extended by Wikipe-
dia editors, consists of textual labels known as categories. This categorization is not a well-
defined “is-a” hierarchy, but a graph; a category may have multiple parent categories and 
there might be cycles along the path to ancestors (Kaptein et al. 2010). Also, categories 
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t10 t11
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…
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t0

t1 …

(a) (b) (c)

Fig. 2  Alternative ways of representing entity-type assignments with respect to the type taxonomy. The 
dashed arrows point to the types that are assigned to entity e. The root node of the taxonomy is labeled with 
t0

Table 2  Overview of normalized type taxonomies and their statistics. The top block is about the taxonomy 
itself; the bottom block is about type assignments of entities

Type system DBpedia Freebase Wikipedia categories YAGO

Number of types 713 1719 423,636 568,672
Number of top-level types 22 92 27 61
Number of leaf-level types 561 1626 303,956 549,754
Height 7 2 35 19
Number of types used 408 1626 359,159 314,632
Number of entities with type 4.87M 3.27M 3.52M 2.88M
Avg. number of types per entity 2.8 4.4 20.8 13.4
Mode depth 2 2 11 4
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often represent only loose relatedness between articles; category assignments are neither 
consistent nor complete (Demartini et al. 2010b).

We transformed the Wikipedia category graph, consisting of over 1.16M categories, 
into a type taxonomy as follows. First, we selected a set of 27 top-level categories covering 
most of the knowledge domains.1 These became the top-level nodes of the taxonomy, all 
with a single common root type < ��� ∶ ����� > . All super-categories that these selected 
top-level categories might have in the graph were discarded. Second, we removed multiple 
inheritances by selecting a single parent per category. For this, we considered the popula-
tion of a category to be the set of its assigned articles. Each category was linked in the 
taxonomy with a single parent in the graph whose intersection between their populations 
is the maximal among all possible parents; in case of a tie, the most populated parent was 
chosen. Under this criterion, and for the purpose of understanding hierarchical relations, 
any category without a parent was discarded. Lastly, from this partial hierarchy (which is 
still a graph, not a tree), we obtained the final taxonomy by performing a depth-first explo-
ration from each top-level category, and avoiding to add those arcs that would introduce 
cycles. This depth-first approach was previously used by Fossati et al. (2015) for enforc-
ing taxonomic constraints on Wikipedia categories. The resulting taxonomy contains over 
423k categories and reaches a maximum depth of 35 levels.2

DBpedia ontology The DBpedia Ontology is a well-designed hierarchy since its incep-
tion; it was created manually by considering the most frequently used infoboxes in Wiki-
pedia. It continues to be properly curated to address some weaknesses of the Wikipedia 
infobox space. While the DBpedia Ontology is clean and consistent, its coverage is limited 
to entities that have an associated infobox. It consists of 713 classes, including the root, 
organized in a hierarchy of 7 levels.

YAGO taxonomy YAGO is a huge semantic knowledge base, derived from Wikipedia, 
WordNet, and GeoNames (Suchanek et  al. 2007). Its type classification schema is con-
structed by taking leaf categories from the category system of Wikipedia and then using 
WordNet synsets to establish the hierarchy of classes. The result is a deep subsumption 
hierarchy, consisting of over 568k classes. We work with the YAGO taxonomy from 
the current version of the ontology (3.0.2). We normalized it by adding a root node, 
< ��� ∶ ����� > , as a parent to every top-level type.

Freebase types Freebase has a two-layer categorization system, where types on the bot-
tom level are grouped under high-level domains. We used the latest public Freebase dump 
(2015-03-31), discarding domains meant for administering the Freebase service itself (e.g.; 
base, common). Additionally, we made < ��� ∶ ����� > the common root of all the 
domains, and finally obtained a taxonomy of 1719 types.

1 The selected top-level categories are the main categories for each section of the portal https ://en.wikip 
edia.org/wiki/Porta l:Conte nts/Categ ories . (As an alternative, we also considered the categories from https ://
en.wikip edia.org/wiki/Categ ory:Main_topic _class ifica tions , and found that it comprises a similar category 
selection).
2 We have confirmed experimentally that enforcing the Wikipedia category graph to satisfy the taxonomi-
cal constraints does not hurt retrieval performance. In fact, it is the opposite: it results in small, but statisti-
cally significant improvements (Garigliotti and Balog 2017).

https://en.wikipedia.org/wiki/Portal:Contents/Categories
https://en.wikipedia.org/wiki/Portal:Contents/Categories
https://en.wikipedia.org/wiki/Category:Main_topic_classifications
https://en.wikipedia.org/wiki/Category:Main_topic_classifications
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4.2.2  Entity‑type assignments

Now that we have presented the four type taxonomies, we also need to discuss how type 
assignments of entities are obtained. We use DBpedia 2015-10 as our knowledge base, 
which makes DBpedia types, Wikipedia categories, and YAGO type assignments read-
ily available. For the fourth type taxonomy, Freebase, we followed same-as links from 
DBpedia to Freebase (which exist for 95% of the entities in DBpedia) and extracted type 
assignments from Freebase. It should be noted that entity-type assignments are provided 
differently for each of these taxonomies; DBpedia and Freebase supply a single (most 
specific) instance type for an entity, Wikipedia assignments include multiple categories 
for a given entity (without any restriction), while YAGO adheres to the representation 
along path. We treat all entity-type assignments transitively, adhering to constraint (iii) 
in Sect. 4.1.

5  Target entity type identification

Target entity types may be provided by the user explicitly as part of the search request, 
for example, via faceted user interfaces. Often, however, users would prefer to use sim-
ple keyword queries as input. In that case, target entity types need to be identified auto-
matically based on the keyword query. In this section, we discuss how to assign target 
entity types to queries from a type taxonomy.

As our starting point, we take the definition of the hierarchical target type identifica-
tion (HTTI) task, as introduced in (Balog and Neumayer 2012): “finding the single most 
specific type within the ontology that is general enough to cover all relevant entities.” 
We point out two major limitations with this definition and suggest ways to overcome 
them.

First, it is implicitly assumed that every query must have a single target type, which 
is not particularly useful in practice. Take, for example, the query “Finland car industry 
manufacturer saab sisu,” where both Company and Automobile are valid types. We shall 
allow for possibly multiple main types, if they are sufficiently different, i.e., lie on different 
branches in the taxonomy. Second, it can happen—and in fact it does happen for 33% of 
the queries considered in Balog and Neumayer (2012)—that a query cannot be mapped to 
any type in the given taxonomy (e.g., “Vietnam war facts”). However, those queries were 
simply ignored in Balog and Neumayer (2012). Instead, we shall allow a query not to have 
any type (or, equivalently, to be tagged with a special NIL-type). This relaxation means 
that we can now take any query as input. Our revised task definition is thus as follows.

Definition 1 Hierarchical target entity type identification (HTTIv2) is the task of find-
ing the main target types of a query, from a type taxonomy, such that (i) these correspond 
to the most specific category of entities that are relevant to the query, and (ii) main types 
cannot be on the same branch in the taxonomy. If no matching type can be found in the tax-
onomy then the query is assigned a special NIL-type.

Let us note that detecting NIL-types is a separate task on its own account, which we 
are not addressing in this paper. For now, the importance of the NIL-type distinction is 
restricted to how the query annotations are performed.
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5.1  Entity‑centric model

The entity-centric model can be regarded as the most common approach for determining 
the target types for a query, see, e.g., Kaptein et al. (2010), Balog and Neumayer (2012), 
Vallet and Zaragoza (2008). This model also fits the late fusion design pattern for object 
retrieval (Zhang and Balog 2017). The idea is simple: first, rank entities based on their 
relevance to the query, then look at what types the top-K ranked entities have. The final 
score for a given type t is the aggregation of the relevance scores of entities with that type. 
Formally:

where RK(qw) is the set of top-K ranked entities for the keyword query qw . The retrieval 
score of entity e is denoted by scoreM(e, qw) . In our experiments, we consider both Lan-
guage Models and BM25 as the underlying entity retrieval model M. The rank cut-off 
threshold K is set empirically. The entity-type association weight, a(e, t), is set uniformly 
across entities that are typed with t, and is 0 otherwise:

We denote this entity-centric target type score by ECM,K(t, qw).

5.2  Type‑centric model

Alternatively, one can also build for each type a direct term-based representation (pseudo 
type description document), by aggregating descriptions of entities that belong to the given 
type. Then, those type representations can be ranked much like documents. This model has 
been presented in Balog and Neumayer (2012) using Language Models, and has been gen-
eralized to arbitrary retrieval models (and referred to as the early fusion design pattern for 
object retrieval) in Zhang and Balog (2017). The pseudo-frequency of word w given type t 
is defined as:

where f(w, e) is the frequency of the term w in (the description of) entity e and a(e, t), as 
before, denotes the entity-type association weight. The relevance score of a type for a given 
query qw = ⟨q1,… , qn⟩ is then calculated as the sum of the individual query term scores:

where scoreM(qi, f̃ ,𝜑) is the underlying term-based retrieval model M (e.g., LM or BM25), 
parameterized by � . This model assigns a score to each query term qi , based on the word 
pseudo-frequencies f̃  . We denote this type-centric target type score by TCM(t, qw).

scoreEC(M,K)
(t, qw) =

∑

e∈RK (qw)

scoreM(e, qw) a(e, t),

a(e, t) =

�
1

�t�
∑

e� �(e
� ∈ t) e ∈ t

0 otherwise.

(7)f̃ (w, t) =
∑

e

f (w, e) a(e, t),

scoreTC(M)
(t, qw) =

n∑

i=1

scoreM(qi, f̃ ,𝜑)
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5.3  Learning to rank

The entity-centric and type-centric models capture different aspects of the task, and it is 
therefore sensible to combine the two. While this idea has been suggested in Balog and 
Neumayer (2012), to the best of our knowledge, our work is the first to realize it, using a 
learning-to-rank (LTR) approach (Garigliotti et al. 2017). In addition, there are other sig-
nals that one could leverage, including taxonomy-driven features and type label similari-
ties. Table 3 summarizes the features we use for target entity type identification.

5.3.1  Knowledge base features

We assume that a knowledge base provides a type system of reference along with entity-
type mappings. In this setting, features related to the hierarchy of the type taxonomy 
emerge naturally. In particular, instead of using absolute depth metrics of a type like in 
Tonon et al. (2016), we use a normalized depth with respect to the height of the taxonomy 
(feature #13). We also take into account the number of children and siblings of a type (fea-
tures #14 and #15). Intuitively, the more specific a type, the deeper it is located in the 
type taxonomy, and the less its number of children, while the more its number of siblings. 
Hence all three of these features capture how specific a type is according to its context in 
a type taxonomy. The type coverage (feature #16) is also directly related to the intuition of 
type specificity; the more general the type, the larger number of entities it tends to cover.

5.3.2  Type label features

We consider several signals for measuring the similarity between the surface form of the 
type label and the query. The type label length (feature #17) and the IDF-related statistics 
(features #18–19) are closely related to type specificity. The Jaccard similarities (features 
#20–21) capture shallow linguistic similarities by n-gram matches between the set of n 
consecutive terms in the query and the type labels, where n ≤ 2 , since the textual phrases 
in any of these labels are expected to be short. In particular, the bigram match ( n = 2 ) 
makes sense for capturing some typical type label patterns, e.g., ⟨adjective⟩⟨noun⟩ in Ger-
man physicists. A more constrained version, defined in feature #22, measures the 
query-type Jaccard similarity over single terms ( n = 1 ), which are nouns.

We use pre-trained word embeddings provided by the word2vec toolkit (Mikolov et al. 
2013). However, we only consider content words (linguistically speaking, i.e., nouns, 
adjectives, verbs, or adverbs). Feature #23 captures the compositional nature of words in 
type labels:

where the query and type vectors are taken to be the w2v centroids of their content words. 
Feature #24 measures the pairwise similarity between content words in the query and the 
type label:

where w2v(w) denotes the word2vec vector of term w. Feature #25 SIMAVG(t) is defined 
analogously, but using avg instead of max.

SIMAGGR(t, q) = cos(qw2v
content

, tw2v
content

),

SIMMAX(t, q) = max
wq ∈ q,wt ∈ t

cos(w2v(wq),w2v(wt)),
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6  Experimental setup

We base our experiments on the DBpedia knowledge base (version 2015-10). DBpedia 
(Lehmann et al. 2015), as a central hub in the Linked Open Data cloud, provides a large 
repository of entities, which are mapped—directly or indirectly; cf. Sect.4.2.2—to each of 
the type taxonomies of interest.

6.1  Test collection

Our experimental platform is based on the DBpedia-Entity v2 test collection3 developed 
in Hasibi et al. (2017). The dataset contains 467 queries, synthesized from various entity-
related benchmarking evaluation campaigns. These range from short keyword queries to 
natural language questions; see Table 4.

6.2  Target entity types oracle

Throughout our first set of experiments (in Sect.  7), we make use of a so-called target 
entity types oracle. We assume that there is an “oracle” process in place that provides us 
with the (distribution of) correct target types for a given query. This corresponds to the 
setting that was employed at previous benchmarking campaigns (such as the INEX Entity 
Ranking track (Demartini et  al. 2010b) and the TREC Entity track (Balog et  al. 2012)), 
where target types are provided explicitly as part of the topic definition. We employ this 
idealized setting to ensure that our results reflect the full potential of using type informa-
tion, without being hindered by the imperfections of an automated type detector.

For a given query q, we take q =
⋃

e∈Relq
e , the union of all types of all entities that are 

judged relevant for that query. Each of these types t ∈ q becomes a target type, and its 
probability P(t|�q) is set proportional to the number of relevant entities that have that type. 
Formally, the oracle O scores target types as follows:

where t denotes the set of entities that are assigned to type t and rel(e, q) is the relevance 
score of entity e for query q, according to the ground truth. Then, the oracle target distribu-
tion is given by:

(8)scoreO(t, q) =
∑

e∈Relq∩t

rel(e, q),

Table 4  Query categories in the DBpedia-entity collection

Category Description Example

INEX-LD General keyword queries “Guitar origin blues”
ListSearch Entity list queries “Products of Medimmune, Inc.”
QALD-2 Natural language queries “Who was called Scarface?”
SemSearch ES Named entity queries “Brooklyn bridge” or “Ashley Wagner”

3 http://tiny.cc/dbped ia-entit y.

http://tiny.cc/dbpedia-entity
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Table 5 summarizes the statistics of target entity types obtained by the oracle for each 
type taxonomy. As it can be seen, deeper taxonomies (Wikipedia categories and YAGO) 
have larger average number of types per query, which is similar to what we observed for 
entity type assignments in Table 2. For Freebase, the number of target types appears dis-
proportionately large compared to the entity type assignments in Table 2. Figure 3 shows 
how the target types are distributed hierarchically within each taxonomy.

6.3  Entity retrieval models

As our baseline, we use a term-based approach, specifically the Sequential Dependence 
Model (SDM) (Metzler and Croft 2005), which we described in Sect.  3.2. We compare 
three type-aware retrieval models (cf. Sect. 3.1): strict filtering, soft filtering, and interpola-
tion. For the latter, we perform a sweep over the possible type weights �t ∈ [0, 1] in steps 
of 0.05, and use the best performing setting when comparing against other approaches. 
(Automatically estimating the �t parameter is outside the scope of this work.)

6.4  Target entity type identification models

For the entity-centric (Sect. 5.1) and type-centric (Sect. 5.2) models, the Language Mod-
eling (LM) approach uses Dirichlet prior smoothing with the smoothing parameter set 
to 2000; for BM25, we use k1 = 1.2 and b = 0.75 . For the LTR approach (Sect. 5.3), we 

(9)P(t��q) =
scoreO(t, q)∑
t� scoreO(t

�, q)
.

Table 5  Statistics of the target entity types oracle

Type system DBpedia Freebase Wikipedia cat-
egories

YAGO

Number of types used 213 716 10,852 10,080
Number of queries with type 451 478 469 470
Avg. number of types per query 3.05 19.10 31.32 54.84
Mode depth 4 2 10 6

(a) (b) (c)

Fig. 3  Distribution of oracle target types within hierarchical levels of the DBpedia, Wikipedia, and YAGO 
taxonomies. Freebase is omitted since all target types are on the leaf level, i.e., have depth = 2. a DBpedia, 
b Wikipedia and c YAGO
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employ the Random Forest algorithm for regression as our supervised ranking method. We 
set number of trees (iterations) to 1000, and the maximum number of features in each tree, 
m, to (the ceil of the) 10% of the size of the feature set.

6.5  Type assignments

In the default setting, we include all entities from the knowledge base and use the original 
set of relevance assessments. By doing so, some entities and queries do not have types 
assigned from one or more taxonomies. Therefore, we introduce an additional experimen-
tal setting, referred to as 1TT, to ensure that the differences we observe are not a result of 
missing type assignments.

In the 1TT setting, for each type taxonomy, we restrict our set of entities to those that 
have at least one type assigned in the taxonomy. We also restrict the set of queries to those 
that have target types in that type system; queries without any relevant results (as a conse-
quence of these restrictions) are filtered out. This leaves us with a total of 446 queries for 
DBpedia, 454 for Freebase, 463 for Wikipedia, and 450 for YAGO.

6.6  Test collection of target entity types

We build a test collection for the revised hierarchical target type identification task (cf. 
Sect. 5). Having the DBpedia Ontology (version 2015-10) as our type taxonomy, we collect 
relevance labels via crowdsourcing for all the 485 queries in the DBpedia-Entity v1 col-
lection (Balog and Neumayer 2013) (which is a superset of the DBpedia-Entity v2 queries 
that we use for evaluating entity ranking).

A pool of target entity types is constructed from four baseline methods, taking the top 10 
types from each: entity-centric (cf. Sect. 5.1) using K=100, and type-centric (cf. Sect. 5.2), 
with both BM25 and LM as underlying retrieval methods. Additionally, we included all 
types returned by the target entity types oracle (cf. Sect. 6.2), to ensure that all reasonable 
types are considered when collecting human annotations.

We obtained target type annotations via the CrowdFlower crowdsourcing platform. Spe-
cifically, crowd workers were presented with a search query (along with the narrative from 
the original topic definition, where available), and a list of candidate types, organized hier-
archically according to the taxonomy. We asked them to “select the single most specific 
type, that can cover all results the query asks for” (in line with Balog and Neumayer 2012). 
If none of the presented types are correct, they were instructed to select the “None of these 
types” (i.e., NIL-type) option.

The annotation exercise was carried out in two phases. In the first phase, we sought to 
narrow down our pool to the most promising types for each query. Since the number of 
candidate types for certain queries was fairly large, they were broken down to multiple 
micro-tasks, such that for every top-level type, all its descendants were put in the same 
micro-task. Each query-type batch was annotated by 6 workers. In the second phase, all 
candidate types for a query were presented in a single micro-task; candidates include all 
types that were selected by at least one assessor in phase one, along with their ancestors up 
to the top level of the hierarchy. Each query was annotated by 7 workers. The Fleiss’ Kappa 
inter-annotator agreement for this phase was 0.71, which is considered substantial.

Note that according to our HTTIv2 task definition, main target types of a query can-
not lie on the same path in the taxonomy. To satisfy this condition, if two types were on 
the same path, we merged the more specific type into the more generic one (i.e., the more 
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generic type received all the “votes” of the more specific one). This affected 120 queries. 
Figure 4 shows the distribution of queries according to the number of main types. In the 
resulting collection, 280 of all queries (57.73%) have a single target type, while the remain-
der of them have multiple target types. It is noticeable that as the number of main types 
increases, so does the proportion of NIL-type annotations.

7  Results using Oracle target entity type identification

In this section, we present evaluation results for all combinations of the three proposed 
dimensions: type taxonomies, type representation modes, and retrieval models. When dis-
cussing the results, we use the term configuration to refer to a particular combination of 
type taxonomy, type representation, and retrieval model.

Recall that we distinguish between two settings (cf. Sect.  6.5): ranking all entities in 
the knowledge base (ALL) and considering only entities that have types assigned to them 
in a given type taxonomy (1TT). Tables  6 and  7 show results corresponding to these 
two settings, respectively. Our main evaluation metric is normalized discounted cumula-
tive gain with a cutoff of 10 (NDCG@10); we also report on NDCG@100. We test sta-
tistical significance to measure our confidence in rejecting the null hypothesis that states 
that our improvements occur by chance. Specifically, we use a two-tailed paired t test at 
p < 0.05 and p < 0.001 , denoted by † and ‡ , respectively. For an easier visual inspection, 
the NDCG@10 scores are also plotted in Fig.  5, where the red line corresponds to the 
term-based baseline. 

7.1  Type taxonomy

Let us begin with our first research question (RQ1), which concerns the impact of the par-
ticular choice of type taxonomy.

– RQ1 What is the impact of the particular choice of type taxonomy on entity retrieval 
performance?

Fig. 4  Distribution of the number of main target types in our test collection (Color figure online)
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It is clear that Wikipedia, in combination with the Most specific type representation, 
performs best for both settings (ALL and ITT, Fig. 5c, g), and yields substantial and 
highly significant improvements for all three retrieval models. As for the other two 
type representations for Wikipedia, performance slightly improves for Along path (sig-
nificant for 1TT). Top-level Wikipedia types do not contribute when using the interpo-
lation model ( �t = 0 ), and are rather harmful when using either strict or soft filtering.

DBpedia and Freebase also show improvements for the ALL setting in all configura-
tions, except the strict filtering model (Fig. 5a, b). The improvements for these smaller, 
shallower taxonomies are highly significant for all configurations in the 1TT setting 
(Fig.  5e, f). The case of YAGO is similar: all but the strict filtering configurations 
improve in the ALL setting (Fig. 5d), and all 1TT configurations yield highly signifi-
cant improvements (Fig. 5h).

Comparing the results for the Top-level representation between YAGO and Wikipe-
dia, it is clear that the Top-level Wikipedia categories that were chosen for enforcing 
taxonomic constraints are not appropriate for conveying entity type information.

Table 6  Entity retrieval performance using oracle target types, returning all entities from the knowledge 
base (ALL). For the interpolation model, �

t
 is value of the best empirically found interpolation parameter. 

Performance is measured in terms of NDCG@10 and NDCG@100

For a given type taxonomy and a given retrieval model, the best performance across the type representation 
modes according to each metric is remarked in bold
Statistical significance, tested using a two-tailed paired t test at p < 0.05 and p < 0.001 , is denoted by † and 
‡ , respectively

Model Strict filtering Soft filtering Interpolation

@10 @100 @10 @100 @10 @100 �
t

Baseline (Metzler 
and Croft 2005)

0.4185 0.5143 0.4185 0.5143 0.4185 0.5143 –

DBpedia
Along path 0.3998 0.4947 0.4440† 0.5279† 0.4549‡ 0.5337‡ 0.25
Top-level 0.3998 0.4947 0.4307 0.5187 0.4414‡ 0.5253‡ 0.25
Most specific 0.4389 0.5186 0.4404† 0.5259† 0.4579‡ 0.5366‡ 0.15
Freebase
Along path 0.4113 0.5003 0.4766‡ 0.5486‡ 0.4702‡ 0.5453‡ 0.35
Top-level 0.4113 0.5003 0.4758‡ 0.5461‡ 0.4690‡ 0.5428‡ 0.40
Most specific 0.4306 0.5127 0.4734‡ 0.5467‡ 0.4664‡ 0.5432‡ 0.35
Wikipedia
Along path 0.4310‡ 0.5170 0.4256 0.5215 0.4283‡ 0.5211‡ 0.05
Top-level 0.1102 0.3243 0.2707 0.4271 0.4185 0.5143 0.00
Most specific 0.5362‡ 0.5775‡ 0.4742‡ 0.5506‡ 0.4603‡ 0.5432‡ 0.25
YAGO
Along path 0.3814 0.4770 0.4718‡ 0.5483‡ 0.4647‡ 0.5421‡ 0.35
Top-level 0.3814 0.4770 0.4186 0.5129 0.4314‡ 0.5223‡ 0.25
Most specific 0.4235 0.5038 0.4685‡ 0.5492‡ 0.4561‡ 0.5429‡ 0.20
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7.2  Type representation

The second research question (RQ2) is about type representation.

– RQ2 How can one represent hierarchical entity type information for entity retrieval?

The question has a clear answer: keeping only the Most specific types in the hierarchy 
provides the best performance across the board, for all configurations. This fact is also in 
line with findings in past work (cf. Sect. 2). As for the other two representations, Along 
path is the better performing representation. The difference between Along path and Top-
level, however, are generally small, in particular for the smaller taxonomies, DBpedia and 
Freebase.

Overall, we have verified that hierarchical relationships from ancestor types result in 
improved retrieval effectiveness, but simply resorting to the Most specific type assignments 
in the knowledge base is the most effective way of representing entity type information.

Table 7  Entity retrieval performance using oracle target types, considering only entities that have types 
assigned to them in the respective type taxonomy (1TT). For the interpolation model, �

t
 is value of the 

best empirically found interpolation parameter. Performance is measured in terms of NDCG@10 and 
NDCG@100

For a given type taxonomy and a given retrieval model, the best performance among the type representation 
modes (and including the baseline) according to each metric is remarked in bold
Statistical significance, tested using a two-tailed paired t test at p < 0.05 and p < 0.001 , is denoted by † and 
‡ , respectively

Model Strict filtering Soft filtering Interpolation

@10 @100 @10 @100 @10 @100 �
t

DBpedia
Baseline (Metzler and Croft 2005) 0.3036 0.4119 0.3036 0.4119 0.3036 0.4119 –
Along path 0.4600‡ 0.5079‡ 0.4353‡ 0.4894‡ 0.4172‡ 0.4746‡ 0.65
Top-level 0.4600‡ 0.5079‡ 0.4196‡ 0.4779‡ 0.4141‡ 0.4725‡ 0.70
Most specific 0.5092‡ 0.5393‡ 0.4309‡ 0.4864‡ 0.4075‡ 0.4696‡ 0.55
Freebase
Baseline (Metzler and Croft 2005) 0.3322 0.4403 0.3322 0.4403 0.3322 0.4403 –
Along path 0.4513‡ 0.5106‡ 0.4471‡ 0.5085‡ 0.4408‡ 0.5021‡ 0.65
Top-level 0.4513‡ 0.5106‡ 0.4492‡ 0.5076‡ 0.4443‡ 0.5031‡ 0.70
Most specific 0.4736‡ 0.5251‡ 0.4393‡ 0.5034‡ 0.4300‡ 0.4966‡ 0.60
Wikipedia
Baseline (Metzler and Croft 2005) 0.3666 0.4727 0.3666 0.4727 0.3666 0.4727 –
Along path 0.4121‡ 0.5000‡ 0.4145‡ 0.5014‡ 0.3944‡ 0.4877 0.40
Top-level 0.0963 0.2950 0.2193 0.3777 0.3666 0.4727 0.00
Most specific 0.5874‡ 0.6071‡ 0.4741‡ 0.5393‡ 0.4474‡ 0.5180‡ 0.65
YAGO
Baseline (Metzler and Croft 2005) 0.3076 0.4180 0.3076 0.4180 0.3076 0.4180 –
Along path 0.4325‡ 0.4904‡ 0.4453‡ 0.5041‡ 0.4313‡ 0.4879‡ 0.75
Top-level 0.4325‡ 0.4904‡ 0.3630‡ 0.4476‡ 0.3807‡ 0.4513‡ 0.85
Most specific 0.4843‡ 0.5231‡ 0.4347‡ 0.4998‡ 0.4211‡ 0.4850‡ 0.70
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7.3  Type‑aware entity retrieval

Our third research question (RQ3) concerns the type-aware retrieval model.

– RQ3 How can one combine term-based and type-based matching for entity retrieval?

According to the 1TT setting (Table 7), strict filtering with the Most specific type repre-
sentation is the best retrieval model for all configurations (achieving, in particular, a rel-
ative improvement of 67% in terms of NDCG@10 on DBpedia types), significantly out-
performing the baseline in all cases. This no longer holds in the ALL setting (Table 6). 
The soft filtering and interpolation models perform best for all taxonomies, with small 
differences between the two, depending on the type representation. In the ALL setting, 
strict filtering always performs the worst and is often even below the baseline when 
Along path or Top-level type representation is used.

Comparing the respective �t type weights in Tables 6 and 7, it is noticeable that the 
interpolation model relies more on the type component in the 1TT than in the ALL set-
ting. This is makes perfect sense since in the ALL setting many entities lack type infor-
mation in the knowledge base.

Note that the interpolation model has a parameter �t that controls the weight of the 
type-based component. Figure  6 shows the performance of the interpolation model 
when varying the value of �t . We observe that with the exception of Wikipedia using 
the Top-level type representation, type information always improves over the baseline. 
In the ALL setting, performances generally peak in the 0.2–0.4 range, while for 1TT it 
is higher, around 0.5–0.7.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5  Entity retrieval performance for all combinations of type taxonomies, type representation modes, and 
retrieval models. Top: all entities in the knowledge base (ALL); bottom: only entities with types from the 
given type taxonomy (1TT). The red line corresponds to the term-based baseline(s). Performance is meas-
ured by NDCG@10. a ALL, DBpedia, b ALL, Freebase, c ALL, Wikipedia, d ALL, YAGO, e 1TT, DBpe-
dia, f 1TT, Freebase, g 1TT, Wikipedia and h 1TT, YAGO (Color figure online)
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7.4  Analysis

We perform a more detailed analysis of particular configurations in order to gain a 
deeper understanding of each of the dimensions of entity type information. We focus on 
the bottom row of bar plots in Fig. 5e–h, that is, the 1TT experimental setting. There, as 
we previously explained, it is ensured that the differences we observe are not a result of 
missing type assignments. Figure 7 shows, for each of the selected configurations, the 
differences in NDCG@10 scores ( �NDCG@10 hereinafter) on the level of individual 
queries between a given configuration and the corresponding (term-based) baseline. For 
the ease of visual comprehension, queries are ordered by �NDCG@10. Table  8 lists 
specific queries with the largest �NDCG@10 differences, along with their “best” oracle 
target types (according to the scoring function defined by Eq. 8).

The best performing configuration uses Most specific Wikipedia types with the 
strict filtering model (Fig. 5g). As it can be observed in Fig. 7a, most of the queries are 
improved while none of them are hurt. The queries with the highest �NDCG@10 are 
mostly named entity queries, with a very suitable best oracle target type to be used as 
strict filter (first block of Table 8).

By changing type representation from Most specific to Top-level, the performance 
for Wikipedia types with strict filtering goes from best to worst (Fig. 5g). As we can 
see in Fig. 7b, the vast majority of queries is negatively affected. Queries that are most 
harmed are natural language queries like “classis does the Millepede belong to” and “is 
the residence of the prime minister of Spain” (second block of Table 8). For queries that 
are improved, we observe that the best oracle target types are high-level and with a large 

(a) (b) (c)

(d) (e) (f)

Fig. 6  Retrieval performance using the interpolation model with different type weights, �
t
 . Top: all entities 

in the knowledge base (ALL); bottom: only entities with types from the given type taxonomy (1TT). The 
leftmost data points ( �

t
= 0) correspond to the term-based baseline. a ALL, Types along path, b ALL, Top-

level type(s), c ALL, Most specific type(s), d 1TT, Types along path, e 1TT, Top-level type(s) and f 1TT, 
Most specific type(s)
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(a) (b)

(c) (d)

Fig. 7  Differences in NDCG@10 per query between a given type-aware entity retrieval configuration and 
its corresponding (term-based) baseline, using only entities with types from that type taxonomy (1TT). a 
Strict filtering, most specific Wikipedia types, b Strict filtering, top-level Wikipedia types, c Interpolation, 
most specific Wikipedia types and d Interpolation, most specific DBpedia types

descendants subtree like “Social sciences,” corresponding more to broad knowledge 
domains that result in more permeable filters.

Let us now observe the results after changing another dimension of the best perform-
ing setting: Most specific Wikipedia types now with the interpolation model (Fig. 5g). 
Figure  7c shows the distribution of �NDCG@10 values. Four out of the 5 most 
improved queries are named entity queries (third block of Table 8), whereas the most 
hurt queries belong to diverse categories. The �t parameter is set here to 0.65, which 
means that the type component is given slightly more weight than the term component. 
Yet, mean performance is much lower for the interpolation model than for strict filtering 
(0.4474 vs. 0.5874).

Finally, from this last configuration (interpolation with Most specific Wikipedia types), 
we compare against the configuration where the third dimension, type taxonomy, is 
changed to a smaller, shallower taxonomy like DBpedia (Fig. 5e). The best performing �t 
is set here to 0.55, which represents a balanced interpolation. The �NDCG@10 values in 
Fig. 7d are positive for a large proportion of queries. Around 100 queries are unaffected, 
while a few are moderately negatively impacted by the type-aware model. It is difficult 
to identify any patterns here (last block of Table 8), apart from noting that most queries 
with the largest impact (either positive or negative) are natural language queries. Moreover, 
given that the DBpedia taxonomy has a depth of 6 levels, its shallowness has a conse-
quence that even Most specific types are not specific enough.

Additionally, to answer the question whether the same queries are helped/hurt using 
different taxonomies, we show in Table  9 the top ten queries according to average �
NDCG@10 across all four taxonomies. All the queries in this configuration result to have 
non-negative �NDCG@10 in every type taxonomy. We can observe that most of the que-
ries that are helped are named entity queries.
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8  Results using automatic target entity type identification

In the previous section, we have presented results using an idealized setting, where tar-
get types were provided by an oracle. We now instead use the methods we introduced 
Sect.  5 to automatically identify target entity types (Sect.  8.1), and subsequently use 
these for type-aware entity retrieval (Sect.  8.2). In this part, we focus only on DBpe-
dia, for the following main reason. Both for evaluation and for supervised learning, one 
needs relevance assessments for target entity types of queries. For the two large taxono-
mies, human assessments are problematic; Wikipedia is not a proper type taxonomy and 
is huge, while YAGO does not provide human-readable labels for types. As we have 
seen in the previous section, Freebase behaves similarly to DBpedia, but it is not par-
ticularly interesting in the taxonomical sense, given that it has only two levels. This 
leaves us with DBpedia. The DBpedia Ontology is small enough to be manageable by 
humans, and is a proper taxonomy. For the details on the construction of the test collec-
tion for target type identification, we refer back to Sect. 6.6.

We note that none of the elements of our our supervised learning approach are 
specific to this taxonomy, and our methods for target entity type identification can be 
applied on top of any type taxonomy.

8.1  Target entity type identification

The research question we seek to answer concerns the automatic identification of entity 
types:

– RQ4 How can one automatically determine the target entity types of a query from a 
type taxonomy?

Table 9  Queries with the largest average �NDCG@10 improvements across all type taxonomies, using 
most specific types with strict filtering and the 1TT setting

Differences greater than 0.05 are shown in italic

Avg. � 
across 
taxos.

Query �NDCG@10

DBpedia Free-base Wiki-pedia YAGO

+ 1.0 SemSearch_ES-129 (“pizza populous Detroit MI”) + 1.0 + 1.0 + 1.0 + 1.0
+ 0.69 SemSearch_ES-4 (“NAACP Image Awards”) + 0.79 + 0.56 + 0.85 + 0.56
+ 0.68 SemSearch_ES-115 (“goodwill of Michigan”) + 0.64 + 0.64 + 0.63 + 0.78
+ 0.6 INEX_XER-140 (“Airports in Germany”) + 0.59 + 0.59 + 0.57 + 0.63
+ 0.59 QALD2_tr-42 (“are the official languages of the 

Philippines”)
+ 1.0 + 0.49 + 0.5 + 0.36

+ 0.59 SemSearch_ES-78 (“sharp pc”) + 0.65 + 0.33 + 0.71 + 0.65
+ 0.58 SemSearch_ES-1 (“44 magnum hunting”) + 0.32 + 1.0 + 0.47 + 0.52
+ 0.58 SemSearch_ES-124 (“motorola bluetooth hs850”) + 0.03 + 0.7 + 0.65 + 0.92
+ 0.57 SemSearch_ES-50 (“laura steele bob and tom”) + 0.49 + 0.67 + 0.8 + 0.32
+ 0.56 QALD2_te-60 (“a list of all lakes in Denmark”) + 0.54 + 0.51 + 0.61 + 0.57
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First, we evaluate target entity type identification intrinsically. We follow (Balog and Neu-
mayer 2012) and approach the task as a ranking problem and report on NDCG at rank posi-
tions 1 and 5. Following Garigliotti et al. (2017), the NIL-type labels are ignored in our 
experimental evaluation. For the LTR method, we used 5-fold cross-validation.

Table 10 presents the evaluation results. For each of the underlying retrieval models, 
BM25 and LM, we select only a single entity-centric (EC) method according to the best 
performing cut-off K (here, K = 10 for both models). We find that our supervised learn-
ing (LTR) approach significantly and substantially outperforms all baseline methods (with 
p < 0.001 using a two-tailed paired t test), in particular, achieving an NDCG@5 score of 
0.6.

8.1.1  Analysis of LTR features

We analyze the discriminative power of our features, by sorting them according to their 
information gain, measured in terms of Gini importance. Table 11 presents the resulting 
features order, with their respective information gains; this is also shown as the vertical 
bars in Fig. 8. The top 3 features are: SIMMAX(t, q) , SIMAVG(t, q) , and SIMAGGR(t, q) . 
This underlines the effectiveness of textual similarity, enriched with distributional seman-
tic representations, measured between the query and the type label. Then, we incremen-
tally add features, one by one, according to their importance and report on performance in 
NDCG@5 metric in Table 11 (and also shown as the line plot in Fig. 8). In each iteration, 
we set the m parameter of the Random Forests algorithm to 10% of the size of the feature 
set.

8.2  Type‑aware entity retrieval

Next, we turn to extrinsic evaluation of the automatically identified target types, by using 
them for ad hoc entity retrieval (that is, our end-to-end task):

– RQ5 How does type-aware entity retrieval perform using automatic target entity type 
identification, compared to an “oracle” setting?

In this section, we present evaluation results for all combinations of retrieval models, type 
representation modes, and target entity type identification models. We refer to the latter 
models simply as identification models when discussing the results. We then use the term 
configuration now to refer to a particular combination of retrieval model, type representa-
tion, and identification model. Throughout this section, we will focus on the 1TT setting.

Table 10  Target entity type 
identification performance, 
measured in terms of NDCG@1 
and NDCG@5

The best performing method according to each metric is remarked in 
bold

Method NDCG@1 NDCG@5

EC, BM25 ( k = 10) 0.1335 0.2657
EC, LM ( k = 10) 0.1039 0.2625
TC, BM25 0.2305 0.3216
TC, LM 0.2508 0.3757
LTR 0.4420 0.5968
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Table 12 shows the results for all configurations. We also present results using the target 
type labels provided by the human assessors as target entity types, referred as Oracle 2. 
Additionally, we report on our original oracle as well (which uses the type assignments of 
relevant results), referred to as Oracle 1. Again, our main evaluation metric is NDCG@10, 
and we also report on NDCG@100. The NDCG@10 scores are also plotted in Fig. 9 for an 
easier visual inspection, with the red line corresponding to the term-based baseline.

For the strict filtering model, we introduce a cut-off parameter k. This parameter con-
trols how many of the highest ranked types we consider as target types. Clearly, that the 
larger the cut-off value k, the more lenient the filtering gets. Hence, we perform a sweep 
over the possible cut-offs k ∈ {5, 10, 15,… , 100} to calculate P(qt|e) , and use the best per-
forming setting when comparing against other approaches.

8.2.1  Type representation

We now revisit our second research question (RQ2) about type representation, and answer 
it for automatically identified target entity types. We observe that for all methods, Along 
path and Top-level representations provide better performance compared to the Most spe-
cific representation. The difference between these representations is small, which is similar 

Table 11  Performance of our 
LTR approach, measured by 
NDCG@5, after incrementally 
adding features proportional to 
their information gain, measured 
by Gini score

Added feature NDCG@5 Gain

SIMMAX(t, q) 0.3672 0.1138
+ SIMAVG(t, q) 0.3863 0.1097
+ SIMAGGR(t, q) 0.4186 0.1045
+ ENTITIES(t) 0.4888 0.0479
+ ECLM,5 0.5551 0.0461
+ ECLM,10 0.5519 0.0444
+ ECBM25,100 0.5555 0.0443
+ ECBM25,50 0.5700 0.0417
+ TCBM25(t, q) 0.5644 0.0416
+ ECBM25,20 0.5757 0.0385
+ ECLM,20 0.5661 0.0385
+ ECLM,50 0.5782 0.0371
+ CHILDREN(t) 0.5905 0.0362
+ ECBM25,10 0.5856 0.0340
+ SIBLINGS(t) 0.5868 0.0326
+ ECLM,100 0.5882 0.0307
+ IDFSUM(t) 0.5992 0.0301
+ ECBM25,5 0.6003 0.0276
+ IDFAVG(t) 0.5924 0.0240
+ DEPTH(t) 0.5983 0.0190
+ JNOUNS(t, q) 0.5898 0.0185
+ JTERMS1(t, q) 0.5944 0.0178
+ LENGTH(t) 0.5967 0.0126
+ TCLM(t, q) 0.6001 0.0078
+ JTERMS2(t, q) 0.5980 0.0008
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to our observations using oracle types (cf. Sect.  7.2). The Most specific representation 
brings significant improvements only for the LTR method, which is the top performing 
method in Table 10. Overall, our results show that when target entity types are identified 
automatically, using hierarchical relationships from ancestor types is the most effective 
way of representing entity type information; keeping only the most specific types is helpful 
only when an accurate target entity type identification method is employed.

8.2.2  Type‑aware entity retrieval

Revisiting our third research question (RQ3) about type-aware retrieval model, we observe 
that strict filtering achieves the best performance among all configurations, and the best 
results are obtained when it is combined with LTR identification model. Specifically, by 
using this retrieval model with the Along pathrepresentation, we can outperform the text-
only baseline by 44% in terms of NDCG@10. The soft filtering and interpolation mod-
els perform best when used with Top-level representation, significantly outperforming the 
baseline for LTR model. Similar to the oracle setting for 1TT (Table 7), the �t type weight 
is the highest for Top-level representation, showing that the type component contribution to 
the interpolation model is high in this configuration.

8.2.3  Target entity type identification method

The top row of Fig. 10 shows the performance of interpolation model, when varying the 
value of �t parameter. We observe that assigning high weights (i.e., > 0.2 ) to type-based 
information is harmful for the Most specific and Along path representations. On the other 

Fig. 8  Performance of our LTR approach, measured by NDCG@5, when incrementally adding features 
according to their information gain, measured by Gini score
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Table 12  Entity retrieval performance using automatically identified target types from DBpedia. �
t
 and k 

are the best empirically found interpolation and strict filtering parameters, respectively. For reference com-
parison, the results using human annotated target type collection (“Oracle 2”) and the original “Oracle 
1”(cf. Sect. 6.2) are also included. Performance is measured in terms of NDCG@10 and NDCG@100

For a given type representation mode and a given retrieval model, the identification model which leads to 
the best type-aware entity retrieval performance according to each metric is remarked in bold
Statistical significance, tested using a two-tailed paired t test at p < 0.05 and p < 0.001 , is denoted by † and 
‡ , respectively

Model Strict filtering Soft filtering Interpolation

@10 @100 k @10 @100 @10 @100 �
t

Baseline (Metzler 
and Croft 2005)

0.3036 0.4119 – 0.3036 0.4119 0.3036 0.4119 –

Along path
EC, BM25 0.3501‡ 0.4048 65 0.3210† 0.4154 0.3214† 0.4204‡ 0.30
TC, LM 0.4304‡ 0.5043‡ 20 0.2678 0.3805 0.3066 0.4116 0.10
LTR 0.4378‡ 0.5151‡ 20 0.2988 0.4029 0.3126† 0.4150 0.15
Oracle 2 0.4245‡ 0.4797‡ – 0.3638 0.4406‡ 0.3587‡ 0.4384‡ 0.40
Oracle 1 0.4600‡ 0.5079‡ – 0.4353‡ 0.4894‡ 0.4172‡ 0.4746‡ 0.65
Top-level
EC, BM25 0.3501‡ 0.4048 65 0.3348† 0.4251† 0.3304 0.4226‡ 0.50
TC, LM 0.4295‡ 0.5038‡ 65 0.3254 0.4159 0.3313 0.4228 0.55
LTR 0.4371‡ 0.5157‡ 5 0.3705‡ 0.4453‡ 0.3748‡ 0.4460‡ 0.80
Oracle 2 0.4245‡ 0.4797‡ – 0.3791‡ 0.4477‡ 0.3732‡ 0.4430‡ 0.60
Oracle 1 0.4600‡ 0.5079‡ – 0.4196‡ 0.4779‡ 0.4141‡ 0.4725‡ 0.70
Most specific
EC, BM25 0.3075 0.3350 65 0.3048 0.4038 0.3119 0.4159 0.15
TC, LM 0.3078 0.3352 65 0.2274 0.3500 0.3036 0.4119 0.00
LTR 0.3880‡ 0.4367† 45 0.2997 0.3980 0.3161 0.4159 0.20
Oracle 2 0.3064 0.4009 – 0.2792 0.3809 0.3185† 0.4176 0.15
Oracle 1 0.5092‡ 0.5393‡ – 0.4309‡ 0.4864‡ 0.4075‡ 0.4696‡ 0.55

(a) (b) (c)

Fig. 9  Entity retrieval performance for all combinations of retrieval models and type representation modes, 
using automatically identified target types from DBpedia. The red line corresponds to the term-based base-
line. Performance is measured by NDCG@10. a Strict filtering, b soft filtering and c interpolation (Color 
figure online)
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hand, when using Top-level representation, the retrieval performance improves until it 
reaches a peak (ranging between 0.5 and 0.8), and then it gradually decreases.

The bottom row of Fig. 10 presents the retrieval performance while varying the cut-off 
value k. We find that retrieval performance for the soft filtering model plateaus quickly by 
increasing the number of ranked types, especially when using the LTR model. This veri-
fies that an effective target entity type identification method, returning relevant types at 
top ranks, can bring considerable retrieval improvements using the strict filtering retrieval 
model.

In order to better understand the effects of automatic target type identification, we break 
down entity retrieval results into the four query categories present in the DBpedia-Entity 
v2 collection (cf. Table  4). Figure  11 shows retrieval performance per query category 
for each of the two filtering retrieval models using top-level DBpedia types. We find that 
type-aware retrieval using the LTR method significantly and consistently outperforms the 
term-based baseline for all query categories. Moreover, target types identified by our LTR 

(a) (b) (c)

(d) (e) (f)

Fig. 10  Retrieval performance using automatically identified target types from DBpedia. Top: interpola-
tion model with different type weights, �

t
 ; bottom: strict filtering model with different ranking cutoffs k. 

The leftmost data points ( �
t
= 0) correspond to the term-based baseline. a Types along path, b Top-level 

type(s), c Most specific type(s), d Types along path, e Top-level type(s) and f Most specific type(s)

Fig. 11  Entity retrieval performance per query category (cf. Table 4) for the strict filtering (left) and soft fil-
tering (right) retrieval models, using automatically identified top-level target types from DBpedia. The red 
line corresponds to the term-based baseline. Performance is measured by NDCG@10 (Color figure online)
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method yield better performance than human type annotations, for 3 out of the 4 categories 
using strict filtering, and for QALD2 (natural language) queries in case of soft filtering.

Furthermore, we conduct an analysis at the query level for each of these query cate-
gories. It can be seen in Fig. 12 that every category exhibits a similar distribution, with 
all �NDCG@10 values being positive. Specially, the ListSearch category has the largest 
proportion of improved queries as well as the largest differences. Finally, Table  13 lists 
queries with the largest �NDCG@10 differences, either positive or negative, along with 
their respective types using automatic detection (LTR) and human annotators (Oracle 2). 
Comparing with the top-level ancestor(s) of the target types provided by the human oracle, 
it is clear that in most of the cases the set of LTR-detected query types contains one or 
more types than the oracle. The additional type(s) relax the filtering criterion by allowing 
some non-relevant entities to be kept on the ranking and then hurting the performance. Par-
ticularly, when the additional type is Agent, the one with largest coverage in the knowledge 
base, it potentially introduces many entities including all persons and organizations. In the 
other hand, the positively affected queries result to have more target types detected by LTR. 
The more lenient filtering given by the additional type(s) allows to retain relevant enti-
ties, then outperforming the contributions of the human oracle target types. The QALD2 
category exhibits the distribution of �NDCG@10 differences where LTR-detected target 
types perform the best in comparison with the human oracle. This fact is in line with our 
observations in Sect. 8.1, since the most important LTR features, the continuous semantic 
representations, are more effective in these longer, natural language queries.

(a) (b)

(c) (d)

Fig. 12  Differences in NDCG@10 per query between type-aware entity retrieval and its corresponding 
(term-based) baseline, using the strict filtering model with top-level DBpedia target types automatically 
detected by LTR, grouped by query categories (cf. Table 4). a INEX_LD, b ListSearch, c QALD2 and d 
SemSearch_ES
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9  Conclusions

In this paper we have furthered our understanding on the usage of target type informa-
tion for entity retrieval over structured data sources. A main contribution of this work is 
the systematic comparison of four well-known type taxonomies (DBpedia, Freebase, Wiki-
pedia, and YAGO) across three dimensions of interest: the representation of hierarchical 
entity type information, the way to combine term-based and type-based information, and 
the impact of choosing a particular type taxonomy. Using an idealized “oracle” setting for 
identifying the target entity types, we have found that type information can significantly 
and substantially improve a strong text-only entity retrieval baseline.

For realistic scenarios, where the target entity types are not provided, we have developed 
methods for identifying target entity types automatically. Our experiments have shown that 
using automatic target entity types not only improves entity retrieval performance, but also 
brings the same, or even higher, level of performance achievable by human target type 
annotations.

We identify the following directions for future work. First, we plan to detect NIL-types 
for queries that cannot be assigned any type. Second, we observed that performance is 
hindered by missing entity type assignments. We aim to address this issue by automati-
cally identifying (missing) entity types in knowledge bases. Third, when addressing the 
task of automatic target type identification, our analysis has suggested that using a subset 
of the full feature set may be sufficient (cf. Fig. 8). As a follow-up, we wish to investigate 
whether the same observation would also hold when using the detected types for the end-
to-end entity ranking task. Fourth, as we have noted in Sect. 3.2, the particular term-based 
component we have employed as our baseline is not the focus of this work, and any other 
approach could be plugged in instead. Another line of further investigation is then to carry 
out evaluations analogous to the ones conducted here, but utilizing a different baseline 
(possibly a non-text-only method, e.g., Hulpuş et al. 2015; Hasibi et al. 2016). Finally, we 
plan to investigate continuous representations of text and type information, and their inte-
gration (e.g., recent work on mixture of text and structural graph embeddings Wang et al. 
2017; Subramanian and Chakrabarti 2018; Jain et al. 2018), for entity retrieval.
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