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Abstract Web spam pages exploit the biases of search engine algorithms to get higher

than their deserved rankings in search results by using several types of spamming tech-

niques. Many web spam demotion algorithms have been developed to combat spam via the

use of the web link structure, from which the goodness or badness score of each web page

is evaluated. Those scores are then used to identify spam pages or punish their rankings in

search engine results. However, most of the published spam demotion algorithms differ

from their base models by only very limited improvements and still suffer from some

common score manipulation methods. The lack of a general framework for this field makes

the task of designing high-performance spam demotion algorithms very inefficient. In this

paper, we propose a unified score propagation model for web spam demotion algorithms by

abstracting the score propagation process of relevant models with a forward score prop-

agation function and a backward score propagation function, each of which can further be

expressed as three sub-functions: a splitting function, an accepting function and a com-

bination function. On the basis of the proposed model, we develop two new web spam

demotion algorithms named Supervised Forward and Backward score Ranking (SFBR) and

Unsupervised Forward and Backward score Ranking (UFBR). Our experiments, conducted

on three large-scale public datasets, show that (1) SFBR is very robust and apparently

outperforms other algorithms and (2) UFBR can obtain results comparable to some well-

known supervised algorithms in the spam demotion task even if the UFBR is unsupervised.
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1 Introduction

Currently, people rely increasingly more on search engines (Hochstotter and Koch 2009) to

retrieve useful information from the growing mountain of data on the web. A user sends a

query containing one or more keywords to a search engine, and the search engine responds

with a long search result list, with pages sorted in descending order by their relevance and

importance. Previous studies have shown that, for 85% of queries, only the first search

engine result page is requested, and on average, only the first three to five links are clicked

(Silverstein et al. 1999). Therefore, a higher ranking in search engine results corresponds to

greater economic benefits due to the referral traffic from search engines. To obtain a higher

ranking in search results, several types of spamming techniques (Becchetti et al. 2008;

Chellapilla and Chickering 2006; Cormack et al. 2011; Ntoulas et al. 2006; Radlinski

2007) are used by spammers to deceive search engine algorithms. A web page is termed

web spam if it uses any spamming technique to trigger an unjustified ranking in search

engine results (Al-Kabi et al. 2012; Gyongyi and Garcia-Molina 2005). Web spam was

recognized as a key challenge for search engine companies (Henzinger et al. 2002) soon

after the concept was first invented in 1996 (Convey 1996). First, web spam causes a sharp

drop in search result quality and hence reduces the efficiency and reputation of search

engine companies. Second, spam sites squeeze out their competitors with undue compe-

tition to deprive normal websites of revenue that they might earn in the absence of web

spam (Spirin and Han 2012). Third, web spam is an important channel for the spread of

malware and adult content and thus leads customers to suffer from malicious attacks and

even economic losses. Fourth, the low quality of search results due to web spam leads to

poor user experiences, causing customers to spend more time and effort to find their

desired web sites, which may in turn result in customer churn for search engine companies

since the cost of switching from one search provider to another is nearly zero (Spirin and

Han 2012). Lastly, web spam causes great economic losses to search engine companies

because of the extra resource costs of storing, indexing and analysing spam pages.

Many web spam demotion algorithms (WSDAs) have been proposed to combat spam by

demoting their rankings in search engine results. Compared to conventional machine

learning-based methods (Becchetti et al. 2006, 2008; Chandra et al. 2015; Ntoulas et al.

2006) that aim to detect spam,WSDAs have some obvious advantages.WSDAs use only the

link structure of web pages, and constructing a link-based web graph is much easier than

obtaining all of the HTML of web pages for content analysis in terms of both time and

space consumption. Furthermore, a WSDA can achieve results comparable to those of a

supervised machine learning algorithm with much fewer labelled samples. Thus, WSDAs

can be applied to practical applications in which very few pages are labelled in general.

Most of the published WSDAs are based on the PageRank model (Page et al. 1999), in

which the ‘‘global importance’’ of each web page is estimated on the basis of the web

graph. With a similar idea, TrustRank (Gyöngyi et al. 2004) propagates trust scores

through hyper-links from a set of trusted seeds (i.e., normal pages) to evaluate the goodness

of web pages, as links between pages are considered an implication of trust. TrustRank

relies on an empirical observation called approximate isolation of the good set: good pages
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seldom point to bad pages (Gyöngyi et al. 2004). Although TrustRank can largely demote

web spam with little assistance from humans, its spam-demoting effectiveness decreases

with the rise of the number of good-to-bad links. Anti-Trust Rank (Krishnan and Raj 2006)

follows another intuition of the approximate isolation principle: it is very unlikely for spam

pages to be pointed to by good pages (Krishnan and Raj 2006). This means that a page is

highly likely to be spam if it points to many other spam pages. Thus, distrust is convened in

the inverse link from spam pages. On the basis of a bad seed set (i.e., spam pages), Anti-

TrustRank propagates distrust through inverse links of the web graph to evaluate the

badness of web pages. To take advantage of TrustRank and Anti-Trust Rank, Wu et al.

(2006) proposed LCRank to simply combine these two algorithms by linear fusion, and

they obtained slightly better results. Subsequently, several schemes conducting differential

score propagation were proposed, including TDR (Zhang et al. 2011) and GBR (Liu et al.

2013). Differential score propagation methods focus on designing a discriminatory score

propagation process for source (score propagated from) or target (score propagated to) web

pages. These types of score propagation methods obtained state-of-the-art performance by

propagating trust and anti-trust simultaneously and making use of the good and bad scores

of pages in the propagation process.

In this paper, we propose a unified score propagation model (USPM) for WSDAs. We

show that allWSDAs mentioned in the paper are specific implementations of the model and

that they differ from their base model via only very limited improvements. Utilizing the

proposed USPM, it is very easy to analyse differences and drawbacks of previous models

and hence guide researchers to design more complex and effective schemes. In summary,

our contributions in this paper are as follows:

(1) We formulate web spam demotion algorithm and develop the USPM by abstracting

the unified score propagation behaviours of different models with a forward score

propagation function (FSPF) and a backward score propagation function (BSPF),

each of which can further be expressed as three sub-functions: a splitting function,

an accepting function and a combination function. Different WSDAs can be thought

of as different combinations of these sub-functions.

(2) We summarize and analyse various published candidates, as well as introduce new

strategies for sub-functions of FSPF and BSPF.

(3) We adopt the normalized technique to overcome the loss of effectiveness of the

distribution vector of inconsistent1 WSDAs.

(4) We formulate metrics to evaluate the abilities ofWSDAs to demote and detect spam.

(5) We propose the first unsupervised WSDA by taking advantages of functions

introduced in the paper.

(6) We experimentally demonstrate the superiority of the proposed SFBR algorithm and

show promising results obtained by UFBR in some cases.

The remainder of this paper is organized as follows. Section 2 formulates the unified

score propagation model, USPM. In Sect. 3, different WSDA strategies are presented. Our

new algorithms are proposed in Sect. 4. Section 5 concerns the experiments and discus-

sions. Finally, conclusions are drawn in Sect. 6.

1 A WSDA is termed inconsistent if in-system scores will be lost or out-system scores will be brought in
during the score propagation process.
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2 Unified score propagation model

The web is modelled as a directed web graph G consisting of a set of nodes (web pages or

sites) N and a set of directed edges E. An edge p; qð Þ 2 E if there exist hyper-links from

page p to q. Self-links are removed, and multiple links between pages are treated as a

single link to simplify the model. The sets of incoming nodes (pages pointing to p) and

outgoing nodes (pages pointed to by p) of a page p are denoted as In(p) and Out(p),

respectively. Page p is a parent of its outgoing nodes and a child of its incoming nodes. The

notation |S| denotes the number of elements in set S. For example, |N | is the total number

of nodes in the web graph G.
As indicated in the approximate isolation principle (Marchiori 1997), both trust and

distrust are conveyed in links: trust is propagated along the link direction, while distrust is

propagated along the inverse link direction. Thus, trust and distrust can be used to estimate

the goodness and badness of a web page. More generally, each web page in the web graph

is assigned two scores in the proposed Unified Score Propagation Model (USPM), the

forward score (FS) and the backward score (BS), which are propagated through forward

links and backward links, respectively. The forward score represents the likelihood of a

web page being good, and the backward score represents the likelihood of a web page

being bad. Note, however, that FS or BS cannot provide an absolute probability of a web

page being good or bad. We hope that those scores could at least help us rank web pages,

which is called the ordered property of FS and BS.

Formally, we define the state of a web page p as a pair of non-negative variables, its

forward score FS(p) and backward score BS(p), denoted as ST(p) = (FS(p), BS(p)). A web

spam demotion algorithm computes the state of every node in the web graph. Having the

states of all of the nodes, we can order pages by their FS to demote spam or by their BS to

detect spam (see Sect. 5 for details).

Next, we introduce a simplified WSDA framework on web graph G by walking through

its score computation steps.

(1) Score initialization The state of every node in the web graph is initialized with

assigned FS and BS. The simplest method for this is to assign uniform values of FSs

and BSs to all nodes, e.g., 1/|N |.

(2) Score propagation In a single score propagation iteration, every node propagates

FSs to its children and BSs to its parents. A splitting function is used to calculate the

FS or BS that should be propagated from a source node. The FS propagated from

node p to its children is calculated by the forward score splitting function fsplit
1 (p),

and the BS propagated from node p to its parents is calculated by the backward score

splitting function fsplit
2 (p). Once node p receives an FS (denoted as fs) from its parent

(say k), the forward score accepting function faccept
1 (p, fs) is used to determine the

accepted score from fs, where fs = fsplit
1 (k). Similarly, the backward score accepting

function faccept
2 (p, bs) is used to determine the accepted score from bs = fsplit

2 (q),

where q is p’s child. Taking advantage of accepting functions, node p can obtain a

set of accepted FSs (denoted as Sfs) from all of its parents and a set of BSs (denoted

as Sbs) from all of its children. Finally, node p uses the forward score combination

function to fuse FSs in Sfs and assigns its own FS with the result fcom
1 (Sfs). Similarly,

node p uses the backward score combination function to fuse BSs in Sbs and assigns

its own BS with the result fcom
2 (Sbs).
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As an example, the score propagation process of the forward score is described in

Fig. 1. It shows that the functionalities and responsibilities of the source page (score

propagated from) and target page (score propagated to) are separated in our model. The

source page (e.g., p in Fig. 1) concentrates on how to split its FS to every child (e.g., q in

Fig. 1), while the task of the target page is twofold: how to accept scores propagated from

parents and how to combine them. In the model, every function has its own responsibility

and is independent from others. Such a property allows researchers to focus on the parts in

the model that they are most interested in, and hence, they can define their own substitutes

for those functions to develop custom WSDAs.

We define the forward score propagation function (FSPF) to calculate the forward

score (FS) of a web page p:

FSðpÞ ¼ f 1comðSfsÞ; ð1Þ

where

Sfs ¼ sjs ¼ f 1acceptðp; f 1splitðqÞÞ; q 2 InðpÞ
n o

: ð2Þ

In a similar manner, BSPF is defined:

BSðpÞ ¼ f 2comðSbsÞ; ð3Þ

where

Sbs ¼ sjs ¼ f 2acceptðp; f 2splitðqÞÞ; q 2 OutðpÞ
n o

: ð4Þ

Formulas (1) and (3) present simplified definitions ofFSPF andBSPF since both theFS andBS

of a node are fully determined by its incoming and outgoing nodes. In the random surfer model

on the web, forward scores can be thought of as corresponding to the standing probability

distribution of a random walker who is visiting web pages by simply clicking on successive

links at random(Page et al. 1999; Diligenti et al. 2004).However, if a realweb surfer falls into a

loop of web pages, it is unreasonable to limit the behaviour of the surfer in such a way since the

surfer could jump to some other web pages even if there is no direct link between the source

page and the target page. An additional distribution vector is used to model this behaviour: the

surfer can jump to a randomly selectedwebpagebasedon the distribution vector. Therefore, the

p q

a set of nodes

a set of nodes

fs = fsplit
1(p)

Source node p:
1) p is a parent of q and it uses 
fsplit

1(p) to calculate FS that 
should be propagated to its 
children.

Target node q:
2) Accepting function is used 
to decide how to accept score 
fs propagated from p:
faccept

1(q, fs)

3) Combination function is 
used to decide how to combine 
accepted scores (denoted as 
Sfs) gained from accepting 
functions:
fcom

1(Sfs)

Fig. 1 Score propagation process of the forward score
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total FS and BS of a web page can be gained from two independent mechanisms, namely, the

score propagation process and the fixed distribution vector.

Having the distribution vector dv such that dv(p) denotes the corresponding value of

page p in dv, FSPF and BSPF can be rewritten as:

FSðpÞ ¼ ð1� a1Þ � f 1comðSfsÞ þ a1 � dv1ðpÞ; ð5Þ

BSðpÞ ¼ ð1� a2Þ � f 2comðSbsÞ þ a2 � dv2ðpÞ; ð6Þ

where a1 and a2 represent the jump probabilities.

The distribution vector is typically used to represent prior knowledge about labels (spam

or normal) of web pages in most supervised WSDAs. For example, we can set dv1(p) to a

very high value in the distribution vector if page p is identified as normal by human

experts, and we hope that the priori information can help the score propagation process in

such a way that p should always be assigned a high FS and pages directly pointed to by

p can also obtain a high FS from p since p is trustworthy.

Consider a WSDA for which only the FS is propagated with the initialization: (1) the

total FS equals 1, and (2) the L1 norm of the distribution vector is 1. It is shown in Eq. (5)

that the FS of a node consists of two parts, namely, one portion (determined by 1� a1)
from the score propagation and the other (determined by a1) from the distribution vector.

The total FS will be consistent (1 in the example) if there are no out-system scores added in

or in-system scores lost during the score propagation process. A function is score con-

sistent if it does not bring in out-system scores or lose in-system scores. A WSDA is

consistent if its total FS and BS are constants. Obviously, if all sub-functions are consistent,

the WSDA is consistent. An inconsistent total score of a WSDA causes effectiveness loss of

the distribution vector. For example, suppose that the total FS of a WSDA is amplified two

times after each iteration. That means that the FS of a page contributed from the score

propagation process will become increasingly larger, which in turn decreases the effec-

tiveness of the distribution vector. Finally, the FS of a page is dominated by the score

propagation process, and the effectiveness of the distribution vector is totally lost. To

overcome this problem, we introduce a score normalization mechanism that is carried out

after each score propagation iteration of a WSDA.

In summary, the complete WSDA framework is described as follows.

(1) Score initialization The state of every node in the web graph is initialized with

assigned FS and BS.

(2) Distribution vector initialization Elements of the distribution vector are initialized in

a predefined way.

(3) Score propagation In a single score propagation iteration, every node propagates

FSs to its children and BSs to its parents.

(4) Score normalization is carried out to regularize scores in the system after each score

propagation iteration, i.e., to maintain the total FS and BS as constant. Repeat steps

(3) and (4) until algorithm convergence.
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3 WSDA strategies

In this section, we first discuss key features of different WSDA sub-functions, including

published strategies and some new ones introduced here. For convenience, only sub-

functions of the forward score propagation function are discussed since all of these

functions can also be applied to the backward score propagation function with minor

changes. Then, the methods for seed selection and jump probability setting are presented.

3.1 Splitting function for FSPF

A splitting function fsplit
1 (p) is used to determine the forward score propagated from parent

p to its children.

3.1.1 Uniform splitting (Page et al. 1999)

The parent p uniformly divides its FS to its children:

f 1splitðpÞ ¼
FSðpÞ
jOutðpÞj : ð7Þ

The FS propagated from a page p is inversely proportional to the number of its outgoing

nodes. This function models the lack of ability of a page to maintain its link qualities if it

has a large number of outgoing links. The more outgoing links a page has, the higher the

probability of the page pointing to spam. Hence, the propagated FS of a page decreases as

the number of its outgoing links increases. Uniform splitting was put forward in PageRank

(Page et al. 1999) for the first time and was widely adopted in many other algorithms

(Gyöngyi et al. 2004; Krishnan and Raj 2006; Page et al. 1999; Wu et al. 2006). However,

Wu et al. (2006) noted the issue caused by uniform splitting: why should equally trusted

pages (e.g., pages with the same FSs) propagate different FSs to their children just because

they have different numbers of outgoing links? This is alarming in the sense that less

trusted pages may propagate more scores than trusted pages due to their very few outgoing

links. For example, page p is pointed to by pages A and B, which have different FSs of 0.1

and 0.01, respectively. However, A might propagate a lower FS than B to p if A has more

than ten times the number of outgoing links as B, even though A is more likely to be good.

Uniform splitting is particularly vulnerable to link farm spamming that a set of spam

pages are generated to boost the FS of a target page by pointing to it. Pages in a link farm

can propagate a considerable total FS to the target page due to their very few outgoing

links. Thus, uniform splitting is not a good choice to demote spam for its bad anti-

spamming ability.

3.1.2 Logarithm splitting (Wu et al. 2006)

Logarithm splitting is a variant of uniform splitting, and it aims to decrease the effect of the

number of out-going links:

f 1splitðpÞ ¼
FSðpÞ

logð1þ jOutðpÞjÞ : ð8Þ
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3.1.3 Attenuation splitting (Wu et al. 2006)

f 1splitðpÞ ¼ d � FSðpÞ; 0\d\1: ð9Þ

Attenuation splitting is designed to address the problem caused by uniform splitting (see

Sect. 3.1.1) such that the FS propagated from the source node is independent of its number

of out-links. The decay factor d is used to model the fact that the further away a page is

from the good seed set, the less certain it is that the page is good. Obviously, attenuation

splitting is inherently biased to pages near the seeds since they can obtain higher scores

than pages that are far from the seeds.

3.1.4 Constant splitting

The FS propagated from page p to its child q is equal to p’s FS without attenuation:

f 1splitðpÞ ¼ FSðpÞ: ð10Þ

Constant splitting is simple but can solve problems caused by uniform splitting and

attenuation splitting. With constant splitting, (1) pages with higher FSs can propagate

higher scores to their children; (2) the high FSs of seeds can propagate to remote nodes,

and hence, the model’s sensitivity to the seed set is greatly decreased. Although spam

pages can benefit from good-to-bad links in such cases, referring to the approximate

isolation principle that good pages seldom point to bad pages, very few spam pages can

obtain FSs from good pages. However, constant splitting suffers from the problem of score

bombing such that the total FSs of all nodes largely increase after every iteration, which

causes difficulty in maintaining stable running of the algorithm.

3.1.5 Linear fusion

f 1splitðpÞ ¼
b � FSðpÞ � ð1� bÞ � BSðpÞ; b � FSðpÞ[ ð1� bÞ � BSðpÞ
0; b � FSðpÞ� ð1� bÞ � BSðpÞ ;

�
0\b\1: ð11Þ

The FS propagated from page p to its child is penalized by its gained BS. Formula (10)

is quite similar to the fusion function used in LCRank (Wu et al. 2006). However, there are

some apparent differences between these two schemes. FS and BS are calculated separately

in LCRank, and they are combined after algorithm convergence. LCRank can be seen as a

fusion scheme of the ranking results of two algorithms (i.e., TrustRank and Anti-Trus-

tRank), whereas FS and BS are actually combined in the splitting process of linear fusion.

The parameter b is used to adjust the weights of FS and BS in the linear fusion.

3.1.6 Proportional splitting

f 1splitðpÞ ¼
BaseðpÞ � b � FSðpÞ

b � FSðpÞ þ ð1� bÞ � BSðpÞ ;FSðpÞ 6¼ 0

BaseðpÞ; FSðpÞ ¼ 0

8<
: ; 0�b� 1; ð12Þ

where the base score function Base(p) is based on the current node p and its value is called

the base score. A web page is described by two different aspects in our model: the good
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side and bad side, which are evaluated by FS and BS, respectively. The part of Formula

(12) b � FSðpÞ=ðb � FSðpÞ þ ð1� bÞ � BSðpÞÞ is used to calculate the likelihood of a web

page p being good based on its current state. That likelihood is then used as a decay factor

(called the proportional decay factor) for the base score. The parameter b is introduced to

adjust the weights of FS and BS in Formula (12).

TDR and GBR experimentally showed the effectiveness of the proportional decay factor

with the base score calculated by the uniform splitting function in Eq. (7). However, TDR

and GBR simply inherit the computation method for the base score from TrustRank, and

hence, we doubt its effectivity in demoting spam because the uniform splitting has some

obvious weaknesses. We investigate other base score functions for the proportional

splitting function in Sect. 4.

3.2 Accepting function for FSPF

An accepting function, faccept
1 (p, fs), is used to determine the score that should be accepted

by target node p on the basis of the score fs propagated from p’s parent q, where fs is

calculated through the splitting function fsplit
1 (q).

3.2.1 Constant accepting (Page et al. 1999)

f 1acceptðp; fsÞ ¼ fs: ð13Þ

The propagated score fs from the parent is accepted by the child without any change.

Constant accepting is widely used in many algorithms (Gyöngyi et al. 2004; Krishnan and

Raj 2006; Liu et al. 2013; Page et al. 1999) for its simplicity. However, the effect of the

constant accepting function has not been well studied.

3.2.2 Proportional accepting

f 1acceptðp; fsÞ ¼
fs� b � FSðpÞ

b � FSðpÞ þ ð1� bÞ � BSðpÞ ; FSðpÞ 6¼ 0

fs;FSðpÞ ¼ 0

8<
: ; ð14Þ

where 0�b� 1. The portion of FS in the child node is computed and then used to damp

the final accepted score from the propagated fs. The parameter b is introduced to adjust the

weights of FS and BS in the function.

3.2.3 Uniform accepting

f 1acceptðp; fsÞ ¼
fs

InðpÞj j : ð15Þ

The accepted score is decayed using the number of incoming links of the child node. As

a consequence, the page accepts small FSs if it has many incoming links. This method may

be useful to combat link-farm spamming because the qualities of parents are emphasized

instead of the quantity.
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3.2.4 Logarithm accepting

f 1acceptðp; fsÞ ¼
fs

logð1þ InðpÞj jÞ : ð16Þ

In the web environment, a page cannot manage incoming links itself. Uniform accepting

can address the problem caused by link farm spamming but greatly decreases the FS of a

good page that has many incoming links, especially for a very popular web site, such as

Google or Yahoo!.

Logarithm accepting has similar effectiveness as uniform accepting but decreases the

effect of the number of incoming links of the target node.

3.3 Combination function for FSPF

A child node can obtain a set of accepted FSs (denoted as a set S) from its parent nodes. A

combination function for FSPF is used to determine how to combine scores in S.

3.3.1 Simple summation combination (Page et al. 1999)

f 1combinationðSÞ ¼
X
e2S

e: ð17Þ

Scores in S are simply accumulated. All algorithms (Gyöngyi et al. 2004; Krishnan and

Raj 2006; Liu et al. 2013; Page et al. 1999; Wu et al. 2006; Zhang et al. 2011) adopt this

method to combine accepted forward scores. It is known that PageRank and its variants are

inherently biased to two types of web pages: (1) pages with many parent pages and (2)

pages with parent pages that have high FSs. By defining the combination function in our

model, it is obvious that such biasness is largely due to the simple summation combination

function. A page receives the total summation of forward scores propagated from its

parents so that the page obtains a high forward score if it has many parents, even though all

of them have small FSs. In such a case, a large quantity of parent pages compensates for

their low qualities. Web spam is so rampant because spammers can utilize this defect to

‘‘transform’’ quantity to quality. Moreover, it is quite easy for spammers to do so by

creating a large number of incoming links for their own pages, i.e., link farm spamming.

3.3.2 Maximum share combination (Wu et al. 2006)

f 1combinationðSÞ ¼ MaxðSÞ; ð18Þ

where Max(S) denotes the maximum element in set S.

The maximum value in S is selected as the final FS of the node. This method can

eliminate the effect of the number of incoming links. A page obtains a high FS if and only

if it has at least one parent page with a high FS.
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3.3.3 Maximum parent combination (Wu et al. 2006)

f 1combinationðSÞ ¼ Min
X
e2S

e; a

( ) !
; ð19Þ

where a ¼ MaxðfFSðqÞjq 2 INðpÞgÞ, p is the current node and Min(S) denotes the mini-

mum element in set S.

The simple summation is first performed, and then, its value is compared with the FS of

p’s most-trusted parent. The smaller of these two values is assigned to p. In other words,

the node p can obtain a score as high as possible from the set S with the constraint that it

never exceeds the FS of its most-trusted parent.

3.3.4 Top-n score combination

f 1combinationðSÞ ¼
Xn
i¼1

SsortðiÞ; ð20Þ

where Ssort denotes the result set by sorting S in descending order and Ssort(i) represents the

i-th largest element in Ssort.

The top n largest elements in S are accumulated. The trade-off between quantity and

quality can be adjusted by using different n. A larger n implies that most of the elements in

Swill be accumulated, where quantity has higher priority than quality. A smaller nmeans that

only those most-trusted scores in S will be considered to determine the FS of the target page.

All of the above functions used for FSPF can also be applied to BSPF with minor

changes. Thus, sub-functions for BSPF are not discussed again because of their similar

meanings to functions for FSPF.

3.4 Seed selection methods

As discussed in Sect. 2, the typical usage of the distribution vector is to enable the use of a

priori labelling information of web pages for a more effective score propagation process. In

general, we expect a small seed set of pages that can be labelled by human experts within a

feasible amount of time and hope that the seed set can improve the performance of the

algorithm. Several heuristics have been proposed to select the seed set. One popular

approach for good seeds is to select pages that point to many other pages. Thus, the FSs of

seed pages can be widely spread to others. To achieve this goal, the Inverse-PageRank is

introduced to select good seeds in [4] (Gyöngyi et al. 2004). Inverse-PageRank utilizes only

BSPF, and it evaluates the ‘‘importance’’ of a web page by investigating its outgoing links.

Pages will be assigned high Inverse-PageRank scores if they point to many other pages or if

pages pointed to by them have high Inverse-PageRank scores. The method is propitious to

fast propagation of FSs in the graph since seed pages are likely to point to others.

Another common method is to select pages with high PageRank scores because those

pages will appear high in query result lists, and hence, it is more important for search

engine to ascertain the goodness of those pages [4] (Gyöngyi et al. 2004). In this paper, we

use the PageRank algorithm to select good seeds. Via a similar idea, the bad seed set is

selected by Inverse-PageRank since it is important for a search engine that aims to find bad

pages to ascertain the badness of pages with high positions in result lists.

Inf Retrieval J (2017) 20:547–574 557

123



3.5 Jump probability

The jump probability is also known as the decay factor in other studies (Baeza-Yates et al.

2006; Caverlee and Liu 2007; Gyöngyi et al. 2004; Page et al. 1999; Wu et al. 2006; Zhang

et al. 2011). In the PageRank-based functional ranking model (Baeza-Yates et al. 2006),

the decay factor is an argument of the damping function affecting the speed of score

attenuation.

In the proposed USPM, a page’s FS (BS) consists of two parts [refer to Formulas (5) and

(6)]: the first part receives the score from the score propagation process, and the second

part receives the score from the distribution vector. The jump probability is used to adjust

the weights of the two parts to determine the final score of a page. A smaller jump

probability is highly trusted in the first part (score propagation) and less trusted in the

distribution vector. It is reasonable to set a small jump probability since human experts can

only evaluate very small web pages, and hence, the states (spam or normal) of most pages

are unknown. In this paper, we set the jump probability to 0.15 as most previous models

did for simplicity.

4 Proposed algorithms

In this section, we first review some published WSDAs and point out their defects. Then,

two new WSDAs are introduced by taking advantage of the sub-functions proposed in the

paper.

4.1 Review of WSDAs

On the basis of the USPM, a WSDA can be thought of as a decomposable system that

consists of five components: splitting function, accepting function, combination function,

initializer and jump probability, each of which implements two different versions for the

forward score propagation function and backward score propagation function.

In this manner, we list some well-known WSDAs in Tables 1 and 2. The initialization

function of the page state is ignored because all algorithms listed here use the same

initialization method for the page state and distribution vector.

As we can see in Tables 1 and 2, the uniform splitting function is adopted in all

algorithms except for GBR, which uses a proportional decay factor for uniform splitting.

However, as discussed in Sect. 3, uniform splitting suffers from the problem that less

trusted pages may propagate greater scores than trusted pages due to their very few

outgoing links.

TDR is the first algorithm focusing on designing a differential propagation process by

utilizing information contained in the target node. This yields a breakthrough in the def-

inition of the score propagation function since the score can be propagated in a target

differential manner. However, TDR has a drawback in that its accepting function largely

limits the spread of scores. The accepting functions for FSPF and BSPF defined in TDR

are
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f 1acceptðp; fsÞ ¼
fs� b �FSðpÞ

b �FSðpÞ þ ð1� bÞ �BSðpÞ ; FSðpÞ 6¼ 0 or BSðpÞ 6¼ 0

fs;FSðpÞ ¼ BSðpÞ ¼ 0

8<
: ; 0�b�1;

ð21Þ

f 2acceptðp;bsÞ ¼
bs� ð1� bÞ �BSðpÞ

b �FSðpÞ þ ð1� bÞ �BSðpÞ ; FSðpÞ 6¼ 0 or BSðpÞ 6¼ 0

bs;FSðpÞ ¼ BSðpÞ ¼ 0

8<
: ; 0�b�1:

ð22Þ

Pages that are not in the seed set are initialized with zero FS and BS in TDR. From

Eqs. (21) and (22), it is obvious that a non-seed page with zero FS and zero BS can accept a

non-zero FS or BS. However, if the page has a non-zero BS and a zero FS, it cannot accept

the FS from its parents any longer due to the zero numerator in Eq. (21). Similarly, a page

cannot accept the BS any longer if it has a non-zero FS and a zero BS due to the zero

numerator in Eq. (22). Thus, a very large portion of web pages cannot receive any FS or BS

in the score propagation process in TDR.

Different from TDR, which restricts the score propagation at the target end, GBR

restricts the propagation process at the source end (Liu et al. 2013). As reported in (Liu

et al. 2013), GBR can yield slightly better results than TDR. However, why can we not

restrict score propagation at both the source and target ends? Indeed, it is truly very

difficult to analyse these empirical models without high abstraction. In essence, TDR and

GBR are quite different in that they focus on different aspects of the USPM (i.e., the

splitting function and accepting function, respectively), even though they use very similar

methods to penalize the base score.

Another interesting phenomenon is that all algorithms in Tables 1 and 2 are based on

the simple summation combination function, which is vulnerable to deliberate manipula-

tion. This again demonstrates the importance of the highly abstracted USPM because of its

Table 1 FSPF settings of WSDAs

Algorithms fsplit
1 (p) faccept

1 (q, fs) fcom
1 (S) dv1(p)

PageRank FSðpÞ
jOutðpÞj

fs
P
i2S

i 1
N

InversePageRank – – – –

TrustRank FSðpÞ
jOutðpÞj

fs
P
i2S

i 1=jSDnj; p 2 SDn;
0; p 62 SDn:

�

Anti-TrustRank – – – –

LCRank FSðpÞ
jOutðpÞj

fs
P
i2S

i 1=jSDnj; p 2 SDn;
0; p 62 SDn:

�

TDR FSðpÞ
jOutðpÞj

fs�b�FSðqÞ
b�FSðqÞþð1�bÞ�BSðqÞ

P
i2S

i 1=jSDnj; p 2 SDn;
0; p 62 SDn:

�

GBR FSðpÞ
jOutðpÞj �

FSðpÞ
FSðpÞþBSðpÞ

fs
P
i2S

i 1=jSDnj; p 2 SDn;
0; p 62 SDn:

�

Jump probability is set to 0.15. N: number of nodes in the web graph; SDn: the set of non-spam seeds; –: the
algorithm does not use FSPF; b: parameter used to adjust weights of FS and BS in functions, 0� b� 1
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good interpretability. For example, following the mathematical form of PageRank like

most algorithms do, we cannot easily define other mathematical forms of the score sum-

mation function because of the very specific meanings of the PageRank model.

Algorithms that propagate both trust and distrust (e.g., LCRank, TDR and GBR) adopt

quite similar methods for the forward and backward score propagations. In other words, the

mathematical definition of trust score and distrust score propagations of these algorithms

are symmetrical, i.e., they use the same functions for FSPF and BSPF. This is open to

argument. For example, in the web environment, a link between two web pages can be seen

as an implication of trust from the source page to the target page in most cases. Thus, it is

reasonable to say that trust can be propagated from a parent page to its children through

links. However, score propagation for distrust is not as simple as trust because we cannot

say that distrust is convened in the inverse link if we do not know the goodness of the target

page (Krishnan and Raj 2006). Thus, it is more reasonable that FS and BS should be

propagated in different manners. Unfortunately, symmetrical algorithms do not meet the

requirement.

4.2 Our algorithms

To overcome the above-mentioned drawbacks of previous algorithms, we propose a new

algorithm named SFBR (Supervised Forward and Backword Ranking) based on the sub-

functions introduced in the paper.

As reported in (Liu et al. 2013; Zhang et al. 2011), TDR and GBR can achieve better

results than PageRank, TrustRank and LCRank. This indicates the positive effect of the

proportional decay factor on the propagation process, either at the source side or target

side. Thus, we also adopt the proportional decay factor in the splitting functions of SFBR.

The forward splitting function of SFBR is defined as

Table 2 BSPF settings of WSDAs. Jump probability is set to 0.15

Algorithms fsplit
2 (p) faccept

2 (q, bs) fcom
2 (S) dv2(p)

PageRank – – – –

InversePageRank BSðpÞ
jInðpÞj

bs
P
i2S

i 1
N

TrustRank – – – –

Anti-TrustRank BSðpÞ
jInðpÞj

bs
P
i2S

i 1=jSDsj; p 2 SDs;
0; p 62 SDs:

�

LCRank BSðpÞ
jInðpÞj

bs
P
i2S

i 1=jSDsj; p 2 SDs;
0; p 62 SDs:

�

TDR BSðpÞ
jInðpÞj

bs�ð1�bÞ�BSðqÞ
b�FSðqÞþð1�bÞ�BSðqÞ

P
i2S

i 1=jSDsj; p 2 SDs;
0; p 62 SDs:

�

GBR BSðpÞ
jInðpÞj �

BSðpÞ
FSðpÞþBSðpÞ

bs
P
i2S

i 1=jSDsj; p 2 SDs;
0; p 62 SDs:

�

N: number of nodes in the web graph; SDs: the set of spam seeds; –: the algorithm does not use BSPF; b:
parameter used to adjust weights of FS and BS in functions, 0� b� 1
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f 1splitðpÞ ¼
Base1ðpÞ �

b � FSðpÞ
b � FSðpÞ þ ð1� bÞ � BSðpÞ ; FSðpÞ 6¼ 0

Base1ðpÞ;FSðpÞ

8<
: ; 0�b� 1; ð23Þ

and the backward splitting function is

f 2splitðpÞ ¼
Base2ðpÞ �

ð1� bÞ � BSðpÞ
b � FSðpÞ þ ð1� bÞ � BSðpÞ ; BSðpÞ 6¼ 0

Base2ðpÞ;BSðpÞ ¼ 0

8<
: ; 0�b� 1: ð24Þ

To overcome the drawbacks of the uniform splitting base score function used in TDR and

GBR, we adopt the logarithm splitting for forward and backward splitting functions in

SFBR. It is reasonable to model the behaviour of the score splitting process such that scores

propagated from a source page should have a negative relation with its number of outgoing

links since the possibility of a web page linking to spam increases with the number of links

that it has increases (Wu et al. 2006). However, there is no obvious clue that the negative

relation between the propagated score and the number of outgoing links is linear (as in

TDR and GBR). We investigate the proportion of outgoing spam pages of top-10 ranked

normal pages in the WEBSPAM-UK2007 (Yahoo! 2007) dataset using the PageRank

algorithm. The results show that of 169 labelled outgoing links of the top ranked 10 normal

pages, only one of them is spam. Making use of logarithm splitting can decrease the effect

of the number of outgoing links, as well as keep the propagated score closer to the source

page’s forward score. Thus, we have the forward and backward splitting functions of the

SFBR algorithm:

f 1splitðpÞ ¼

FSðpÞ
logð1þ OutðpÞj jÞ �

b � FSðpÞ
b � FSðpÞ þ ð1� bÞ � BSðpÞ ; FSðpÞ 6¼ 0

FSðpÞ
logð1þ OutðpÞj jÞ ; FSðpÞ ¼ 0

8>><
>>:

; 0�b� 1;

ð25Þ

and

f 2splitðpÞ ¼

BSðpÞ
logð1þ InðpÞj jÞ �

ð1� bÞ � BSðpÞ
b � FSðpÞ þ ð1� bÞ � BSðpÞ ; BSðpÞ 6¼ 0

BSðpÞ
logð1þ InðpÞj jÞ ; BSðpÞ ¼ 0

8>><
>>:

; 0� b� 1:

ð26Þ

In the USPM, the score propagation is modelled by three sub-functions. Intuitively, we

expect a WSDA to achieve better performance if the sub-functions defined in the WSDA

make the model more coincident with the real case. However, it is difficult to accurately

capture every aspect of the real case, so we focus on the most important aspects of the

model as most previous algorithms have done, e.g., the approximate isolation principle for

good sites and bad sites.

The success of the PageRank algorithm has demonstrated some valuable merits of the

model in the propagation of FS. For example, the simple summation function plays a

significant role in the performance of quantity and quality examinations of a page’s par-

ents, even though it easily suffers from deliberate human manipulation. However, it vio-

lates the principle of designing a WSDA such that we adopt other summation functions to
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eliminate the effect caused by deliberate manipulation, such as link boosting, since such

link structures are very common in real web environments among normal pages and

eliminating those links would also result in a huge negative effect on many normal pages.

With this in mind, we adopt the same accepting and combination functions as PageRank

for FS:

f 1acceptðp; fsÞ ¼ fs; ð27Þ

f 1combinationðSÞ ¼
X
e2S

e: ð28Þ

The constant accepting and simple combination functions defined in Eqs. (27) and (28)

are inherently suitable for FS propagation since citation count is a very important measure

in the real web (Page et al. 1999). However, this is not true for BS propagation. The

approximate isolation principle for bad sites notes that it is very unlikely for spam pages to

be pointed to by good pages, and thus, distrust can be propagated through inverse links

from the bad source sites. However, it is meaningless to say that the inverse links convey

distrust if we do not know the goodness or badness of the source site. Thus, the inverse

citation count cannot be directly used as a measure for spam. A very important issue in the

design of the propagation of BS is to ensure that a normal page would not receive too high

BS even if it points to some suspected pages due to careless, which probability can likely

be roughly evaluated by its number of outgoing links (Gyöngyi et al. 2004). Therefore, a

page’s accepted BS is penalized if it has many outgoing links:

f 2acceptðp; bsÞ ¼
bs

OutðpÞj j : ð29Þ

The top-n score combination function is used to further penalize BS for pages with many

outgoing links. With n = logð1þ OutðpÞj jÞb c,

f 2combinationðSÞ ¼
Xlogð1þ OutðpÞj jÞb c

i¼1

SsortðiÞ; ð30Þ

where p is the current page, Ssort denotes the result set by sorting S in descending order and

Ssort(i) represents the i-th largest element in Ssort. This combination function accumulates

the most dis-trusted scores obtained from source pages. Thus, a page gets high BS if it

points to some pages with high BSs.

SFBR is asymmetrical since different sub-functions are used in FSPF and BSPF. To the

best of our knowledge, SFBR is the first asymmetrical algorithm designed to demote spam.

We simply obtain an unsupervised version of SFBR by eliminating the effects of good and

bad seeds and initialize the FS, BS and distribution vector value of every node to 1/N,

where N is the number of sites in the web graph. This unsupervised algorithm is named

Unsupervised Forward and Backward Ranking (UFBR). Tables 3 and 4 present an intuitive

view of SFBR and UFBR.
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5 Experiments and discussions

5.1 Datasets

We conducted experiments on three large public datasets: WEBSPAM-UK2006 (Castillo

et al. 2006), WEBSPAM-UK2007 (Yahoo! 2007) and EU2010 (András et al. 2010). The

first dataset is used for the web spam challenge 2007 (Cormack 2007) and contains 77 M

pages from 11,402 hosts crawled from the UK domain. The base data of WEBSPAM-

UK2007 is a set of 100 M pages in 114,529 hosts. The data were downloaded in May 2007

and used for the web spam challenge 2008 (Castillo et al. 2008). Some hosts in the

WEBSPAM-UK2007 dataset are labelled as undecided, and we removed them from the

labelled host set in our experiment since they are useless for the web spam demotion study.

EU2010 was created for the ECML/PKDD Discovery Challenge 2010 on Web Quality and

is a large collection of annotated Web hosts labelled by the Hungarian Academy of

Sciences (English), European Archive Foundation (French) and L3S Hannover (German).

The base data of EU2010 is a set of 23 M pages in the EU domain (András et al. 2010).

For convenience, all isolation nodes (no incoming and outgoing links) are removed

from the graph since they cannot contribute to the score propagation process. Some

statistics of these three datasets are shown in Table 5.

5.2 Evaluation metrics

In the proposed USPM, the state of a web page is defined by a pair of values, i.e., the

page’s FS and BS. We formalize metrics for evaluating the ability of a WSDA to demote

and detect spam based on FSs and BSs, respectively.

Table 3 FSPF settings of SFBR and UFBR

Algorithms fsplit
1 (p) faccept

1 (q, fs) fcom
1 (S) dv1(p)

SFBR FSðpÞ
logð1þ OutðpÞj jÞ �

b�FSðpÞ
b�FSðpÞþð1�bÞ�BSðpÞ

fs
P
i2S

i 1=SDn; p 2 SDn

0; p 62 SDn

�

UFBR FSðpÞ
logð1þ OutðpÞj jÞ �

b�FSðpÞ
b�FSðpÞþð1�bÞ�BSðpÞ

fs
P
i2S

i 1
N

Jump probability is set to 0.15. N: number of nodes in the web graph; SDn: the set of non-spam seeds; b:
parameter used to adjust weights of FS and BS in functions, 0� b� 1

Table 4 BSPF settings of SFBR and UFBR

Algorithms fsplit
2 (p) faccept

2 (q,
bs)

fcom
2 (S) dv2(p)

SFBR BSðpÞ
logð1þ InðpÞj jÞ �

ð1�bÞ�BSðpÞ
b�FSðpÞþð1�bÞ�BSðpÞ

bs
OutðpÞj j Plogð1þ OutðpÞj jÞb c

i¼1

SsortðiÞ
1= SDsj j; p 2 SDs

0; p 62 SDs

�

UFBR BSðpÞ
logð1þ InðpÞj jÞ �

ð1�bÞ�BSðpÞ
b�FSðpÞþð1�bÞ�BSðpÞ

bs
OutðpÞj j Plogð1þ OutðpÞj jÞb c

i¼1

SsortðiÞ
1
N

Jump probability is set to 0.15. N: number of nodes in the web graph; SDs: the set of spam seeds; b:
parameter used to adjust weights of FS and BS in functions, 0� b� 1
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5.2.1 Top-k spam factor

FSs can be used to rank web pages for search engine applications in a similar manner to the

PageRank scores because FS is designed to characterize the good side of a web page in the

USPM. Pages are reordered by their FSs, and the pages with higher rankings are expected

to have a higher likelihood of being good than those with lower rankings. The top-k spam

factor metric is defined to evaluate the ability of a WSDA to demote web spam by

examining the number of spam sites and their rankings in the list ordered by FSs in

descending order.

Given a ranked list Lf of n sites s1, s2, …, sn that is sorted in descending order by FSs,

the top-k spam factor (TKSF) of Lf is

TKSFðLf ; kÞ ¼
Pk

i¼1 wðsiÞ � 1
iPk

i¼1
1
i

; where 0\k� n and wðsiÞ ¼
1; if si is spam

0; if si is normal

�
:

ð31Þ

TKSF increases if more spam sites that have high rankings are ranked in the top-

k results. TKSF equals 0 if there is no spam site in the top-k results and equals 1 if all of

them are spam. The spam factor used in (Liu et al. 2013) is a specific case of TKSF by

setting k to n, in which all spam sites will be ranked in the top-k results, and so only

rankings of them affect the final result. It is essential for search engines to demote spam in

top-ranked sites since most users are only interested in them. We use different k to evaluate

the ability of a WSDA to eliminate spam sites from top positions.

5.2.2 Top-k spam precision

BS describes the badness of a web page and can be used to detect spam in a simple manner.

We can choose a threshold t and predict a page as spam if its BS is larger than t. Alter-

nately, in another approach, we can predict pages with the highest rankings as spam in the

list reordered by BSs in descending order. We use the later method to evaluate the ability of

a WSDA to detect spam by their pages’ BSs since the score computed in the WSDA is a

local relative value, and hence, we cannot find a reasonable threshold t to evaluate the

performance of a WSDA on different datasets. For example, if page A and page B are in

different datasets, it is almost meaningless to say that page A is more ‘‘important’’ than

page B even if A has a higher PageRank score than B.

Given a ranked list Lb of n sites s1, s2, …, sn that is sorted in descending order by BSs,

the top-k spam precision (TKSP) of Lb is

Table 5 Statistics of WEBSPAM-UK2006/2007 and EU2010 datasets

Dataset Hosts Labeled
hosts

Normal
hosts

Spam
hosts

Spam
ratio (%)

Isolation
spam

Isolation
normal

WEBSPAM-UK2006 11,402 7473 5549 1924 26 4 0

WEBSPAM-UK2007 114,529 6053 5709 344 6 24 0

EU2010 191,388 1966 1897 69 3.5 10 0
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TKSPðLb; kÞ ¼
Pk

i¼1 wðsiÞ
k

; where 0\k� n and wðsiÞ ¼
1; if si is spam

0; if si is normal

�
: ð32Þ

The TKSP value is affected only by the number of spam sites, not by their positions, and

it increases with more spam sites ranked in the top-k results of the list Lb.

5.3 Experimental results

Experiments are conducted on three publically available datasets, WEBSPAM-UK2006

(Castillo et al. 2006), WEBSPAM-UK2007 (Yahoo! 2007) and EU2010 (András et al.

2010). All algorithms, including previous schemes (Gyöngyi et al. 2004; Krishnan and Raj

2006; Liu et al. 2013; Page et al. 1999; Wu et al. 2006; Zhang et al. 2011) and the proposed

SFBR, use the same set of seeds selected by PageRank (for good seeds) and Inverse-

PageRank (for bad seeds) for comparison. Experiments are conducted regarding the effect

of the seed set size, which varies according to the data distribution of different datasets. For

WEBSPAM-UK2006 and WEBSPAM-UK2007, the seed set consists of the same number

of good and bad sites, and its size is changed from 40 to 160, with an increment of 40 per

experiment. For the EU2010 dataset, the seed set is fixed at 40 spam pages and 100 normal

pages since there are very few labelled spam samples and many good sites are in small

connected components. Thus, we need a larger good seed set to ensure propagation of FSs.

5.3.1 Spam demotion

The performance of an algorithm for spam demotion is evaluated through the top-k spam

factor (TKSF). The parameter k of TKSF is changed from 50 to the largest size of the

dataset, with an increment of 50 per experiment, to test the performance of the algorithm

on different sizes of top ranked results. For simplicity, we only present the most mean-

ingful experimental data in the paper, instead of providing all of them, due to the large

amount of data.

The experimental results are shown in Tables 6, 7 and 8, in which the best performance

of each row is highlighted in bold. The ‘‘k’’ used in these tables varies according to results

on datasets. For example, the TKSFs of all algorithms except PageRank are 0 in the top

1650 results on the WEBSPAM-UK2006 dataset. Thus, we do not provide those data

because of their low value for algorithm comparison. The global views of the results are

drawn in Figs. 2, 3 and 4.

It is shown that the proposed SFBR always outperforms the others on the three datasets.

The results demonstrate the robustness and effectiveness of SFBR in demoting web spam.

A very interesting phenomenon in Figs. 2, 3 and 4 is that the shapes of the result curves of

all previous supervised algorithms (Gyöngyi et al. 2004; Liu et al. 2013; Wu et al. 2006;

Zhang et al. 2011) are very similar. Referring to Tables 1 and 2, we can see that those

algorithms are largely based on the uniform splitting, constant accepting and simple

summation combination. The disadvantages of the base components used in those algo-

rithms limit their performance. SFBR breaks the limitations by taking advantage of dif-

ferent sub-functions for FSPF and BSPF depending on their different behaviours of score

propagation. For example, SFBR uses a constant accepting function and a simple sum-

mation function for FSPF since the number of citations is indeed a very important indi-

cator for good pages, and hence, SFBR can benefit from constant accepting and simple

summation to assign high FSs to popular pages. However, the case for BSPF is quite
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different because inverse-citations are not explicit indications of bad pages. Therefore,

SFBR adopts some proposed sub-functions to keep good pages from receiving backward

scores as much as possible.

Table 6 TKSFs of algorithms on WEBSPAM-UK2006

Seed set
size

k PageRank TrustRank LCRank TDR GBR SFBR UFBR

40 1700 0.04985 2.64E-04 3.56E-04 2.62E-04 3.49E-04 0 9.46E-05

1800 0.05090 3.41E-04 3.53E-04 3.42E-04 3.46E-04 7.98E205 9.39E-05

1900 0.05128 4.16E-04 5.01E-04 4.16E-04 4.21E-04 7.92E205 9.32E-05

80 1700 0.04985 4.67E-04 5.63E-04 4.56E-04 4.71E-04 0 9.46E-05

1800 0.05090 5.42E-04 5.59E-04 5.32E-04 5.48E-04 8.01E205 9.39E-05

1900 0.05128 5.38E-04 7.05E-04 5.28E-04 5.44E-04 7.95E205 9.32E-05

120 1700 0.04985 4.46E-04 5.46E-04 5.24E-04 5.38E-04 0 9.46E-05

1800 0.05090 5.26E-04 5.42E-04 5.20E-04 5.34E-04 7.99E205 9.39E-05

1900 0.05128 5.22E-04 6.87E-04 5.16E-04 5.30E-04 7.93E205 9.32E-05

160 1700 0.04985 4.67E-04 3.96E-04 4.56E-04 4.67E-04 0 9.46E-05

1800 0.05090 4.63E-04 4.75E-04 4.53E-04 4.63E-04 7.97E205 9.39E-05

1900 0.05128 4.60E-04 4.72E-04 4.49E-04 4.60E-04 7.91E205 9.32E-05

The best performance of each row is highlighted in bold

Table 7 TKSFs of algorithms on WEBSPAM-UK2007

Seed set size k PageRank TrustRank LCRank TDR GBR SFBR UFBR

40 100 0.013441 0.003094 0.003220 0.002836 0.005177 0 0

200 0.014253 0.005368 0.005873 0.005708 0.005923 0.002259 0.005236

300 0.014804 0.005673 0.007581 0.005273 0.005472 0.002730 0.005570

80 100 0.013441 0.003404 0.003610 0.003054 0.002978 0 0

200 0.014253 0.003987 0.004337 0.003733 0.003704 0.001365 0.005236

300 0.014804 0.004371 0.005432 0.004312 0.004344 0.002802 0.005570

120 100 0.013441 0.003094 0 0 0 0 0

200 0.014253 0.002660 0.001151 0.001072 0.002601 0 0.005236

300 0.014804 0.003389 0.002382 0.001691 0.003145 0.001529 0.005570

160 100 0.013441 0.002647 0 0 0 0 0

200 0.014253 0.002275 0.002130 0.001119 0.002507 0 0.005236

300 0.014804 0.003876 0.001968 0.001922 0.003179 0.001511 0.005570

The best performance of each row is highlighted in bold

Table 8 TKSFs of algorithms on EU2010

Seed set size k PageRank TrustRank LCRank TDR GBR SFBR UFBR

100 normal 40
spam

150 0.011959 0.001521 0.001521 0.001532 0.001532 0.001490 0.019416

250 0.013850 0.002345 0.001370 0.001380 0.001380 0.001342 0.020383

350 0.013594 0.003476 0.001286 0.001295 0.002487 0.001259 0.023949

The best performance of each row is highlighted in bold
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Fig. 2 TKSFs of 6 algorithms on WEBSPAM-UK2006. X-axis: K; Y-axis: Top-k spam factor. The
PageRank algorithm is removed from the figure since its performance is much worse than others. Adding it
into the figure leads to very poor visualization of data. a TKSFs on WEBSPAM-UK2006 with seed size 40.
b TKSFs on WEBSPAM-UK2006 with seed size 80. c TKSFs on WEBSPAM-UK2006 with seed size 120.
d TKSFs on WEBSPAM-UK2006 with seed size 160
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Fig. 3 TKSFs of 7 algorithms on WEBSPAM-UK2007. X-axis: K; Y-axis: Top-k spam factor. a TKSFs on
WEBSPAM-UK2007 with seed size 40. b TKSFs on WEBSPAM-UK2007 with seed size 80. c TKSFs on
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Inf Retrieval J (2017) 20:547–574 567

123



Another important clue for proving the effectiveness of SFBR is the very promising

result obtained by its unsupervised version, UFBR. Figure 2 clearly shows that UFBR

obtains better results than the previous algorithms on WEBSPAM-UK2006, even though

UFBR is unsupervised. This indicates that the functions used in SFBR and UFBR are better

approximations of the real underlying score propagation behaviours. On WEBSPAM-

UK2007, UFBR still outperforms the others besides SFBR in the top-100 results for dif-

ferent sizes of the seed set. The result is encouraging since it shows the possibility of

designing unsupervised WSDAs that can yield comparable results to supervised algorithms

by constructing reasonable propagation functions.

We present some detail data of the experiment on WEBSPAM-UK2006 dataset to

illustrate how the unsupervised algorithm UFBR can achieve better results than supervised

algorithms. The top-10 ranked spam sites of TrustRank and UFBR are listed in Table 9 as

an example.

As shown in Table 9, there are 4 sites (10980, 4707, 6078 and 6072) contained in both

lists and only the site 10980 has higher ranking position in UFBR than in TrustRank.
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Fig. 4 TKSFs of 7 algorithms on EU2010 with seed set consisting of 40 spam sites and 100 normal sites.
X-axis: K; Y-axis: Top-k spam factor

Table 9 Top-10 ranked spam
site lists of TrustRank and UFBR

Number TrustRank UFBR

Site ID Ranking position Site ID Ranking position

1 9863 1558 10980 1506

2 6372 1603 6078 2047

3 10980 1700 7307 2091

4 7668 1781 7047 2163

5 4707 1814 6072 2276

6 3447 2016 4707 2315

7 6078 2033 5890 2396

8 6072 2093 3999 2577

9 9161 2205 8328 2586

10 4159 2253 3880 2668
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TrustRank propagates FS scores from a set of seeds. In an iteration of score propagation

processing, the FS propagated from a seed moves one distance forward, as shown in Fig. 5.

The FS contribution of the seed p1 to node decreases exponentially fast as the distance

of the node to p1 increases. Therefore, sites that are near seeds have much higher proba-

bility of being assigned higher forward scores than sites that are far from seeds. We

computed the shortest distances to seeds for sites in the list of TrustRank and found that all

of them are smaller than 5. That means TrustRank is vulnerable to good-to-bad links, and

hence spam sites that can be accessed from seed sites in few steps could get high forward

scores. For example, the site 3447 contains only 3 in-links, but it is ranked higher than

many normal sites by TrustRank just because of its short distance to the seeds (the shortest

distance is 4).

The unsupervised algorithm UFBR uses heuristics to guide the algorithm to demote

spam because of the lack of prior human labeled knowledge. The in-link structure is used

αFS( p )1 α2FS(p  )1 α3FS(p  )1
p1 p2 p3 p4

Fig. 5 Example of score propagation processing of TrustRank. p1 is a seed site and its FS is FS(p1). In the
first iteration, p1 propagates its decayed forward score aFS(p1) to its child p2, where a is the jump
probability. Because the initial FS scores and distribution probabilities for p2, p3 and p4 are zeros, p3 and p4
cannot get any FS scores in the first iteration. In the second iteration, p3 gets forward score aFS(p2) from p2.
By substituting FS(p2), p3 obtains a

2FS(p1) forward score. Similarly, p4 will get a
3FS(p1) forward score in

the third iteration

Table 10 TKSPs of algorithms on WEBSPAM-UK2006

Seed set size k InversePageRank AntiTrustRank LCRank TDR GBR SFBR UFBR

40 50 0.9000 0.9200 0.9200 0.9200 0.9200 0.9200 0.7800

100 0.8900 0.9300 0.9300 0.9300 0.9300 0.9400 0.5800

200 0.8100 0.8900 0.8950 0.8900 0.8900 0.9050 0.5250

350 0.5660 0.7114 0.7828 0.7857 0.7485 0.8371 0.4771

550 0.4180 0.5036 0.5909 0.6418 0.5363 0.7454 0.4636

80 50 0.9000 0.9200 0.9200 0.9200 0.9200 1.0000 0.7800

100 0.8900 0.9300 0.9300 0.9300 0.9300 0.9400 0.5800

200 0.8100 0.8950 0.9000 0.9000 0.9000 0.9250 0.5250

350 0.5660 0.7285 0.7857 0.8142 0.7600 0.8542 0.4771

550 0.4180 0.5127 0.6000 0.6381 0.5527 0.7345 0.4636

120 50 0.9000 0.9400 0.9400 0.9400 0.9400 0.9800 0.7800

100 0.8900 0.9300 0.9300 0.9300 0.9300 0.9500 0.5800

200 0.8100 0.8950 0.9000 0.9050 0.8950 0.9400 0.5250

350 0.5660 0.7371 0.7942 0.8257 0.7600 0.8514 0.4771

550 0.4180 0.5145 0.6036 0.6545 0.5563 0.7400 0.4636

160 50 0.9000 0.9200 0.9200 0.9400 0.9400 0.9400 0.7800

100 0.8900 0.9300 0.9300 0.9400 0.9400 0.9700 0.5800

200 0.8100 0.8950 0.9000 0.9100 0.8950 0.9250 0.5250

350 0.5660 0.7371 0.7942 0.8600 0.7628 0.8542 0.4771

550 0.4180 0.5181 0.6254 0.6800 0.5727 0.7290 0.4636

The best performance of each row is highlighted in bold
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to evaluate the goodness of a node and the out-link structure is used to evaluate the badness

of a node. UFBR can get good result if the defined heuristics match the underlying data

distribution. We point out one obvious clue that the heuristics used in UFBR match the

underlying data distribution of WEBSPAM-UK2006 dataset in some extent. The experi-

ment result of InversePageRank in Table 10 shows that a site has high probability of being

spam if it plays a very important role in the inverse-link structure. So using a badness score

computed based on inverse-link structure to penalize forward score can demote many spam

sites in the dataset. For example, the top ranked spam site (ID: 9863) by TrustRank is

ranked 4958 by UFBR due to its too many outgoing links (more than 100). However, if a

spam site has many in-links but few out-links, UFBR fails to demote it, such as the top

ranked spam site 10980.

Table 11 TKSPs of algorithms on WEBSPAM-UK2007

Seed set size k InversePageRank AntiTrustRank LCRank TDR GBR SFBR UFBR

40 50 0.1800 0.4400 0.4400 0.4400 0.4400 0.5400 0.0200

100 0.1700 0.2900 0.3000 0.3200 0.3000 0.3200 0.0200

200 0.1200 0.2000 0.2050 0.2300 0.2050 0.2050 0.0450

500 0.0860 0.1060 0.1160 0.1360 0.1140 0.1260 0.0380

1000 0.0690 0.0750 0.0810 0.1000 0.0780 0.0830 0.0510

80 50 0.1800 0.8000 0.8000 0.8000 0.8000 0.8200 0.0200

100 0.1700 0.4300 0.4400 0.4400 0.4400 0.4800 0.0200

200 0.1200 0.2300 0.2350 0.2550 0.2350 0.2750 0.0450

500 0.0860 0.1100 0.1220 0.1400 0.1180 0.1480 0.0380

1000 0.0690 0.0790 0.0830 0.0930 0.0830 0.0950 0.0510

120 50 0.1800 1.0000 1.0000 1.0000 1.0000 1.0000 0.0200

100 0.1700 0.6000 0.6000 0.6000 0.6000 0.6100 0.0200

200 0.1200 0.3100 0.3100 0.3300 0.3100 0.3400 0.0450

500 0.0860 0.1320 0.1360 0.1560 0.1360 0.1600 0.0380

1000 0.0690 0.0830 0.0860 0.0980 0.0870 0.0930 0.0510

160 50 0.1800 0.9800 0.9800 1.0000 0.9800 1.0000 0.0200

100 0.1700 0.8000 0.8000 0.8000 0.8000 0.8000 0.0200

200 0.1200 0.4000 0.4050 0.4050 0.4050 0.4200 0.0450

500 0.0860 0.1509 0.1509 0.1600 0.1509 0.1690 0.0418

1000 0.0690 0.0890 0.0910 0.1010 0.0920 0.0990 0.0510

The best performance of each row is highlighted in bold

Table 12 TKSPs of algorithms on EU2010

Seed set size k InversePageRank AntiTrustRank LCRank TDR GBR SFBR UFBR

100 normal ?
40 spam

50 0.0000 0.8400 0.8400 0.8400 0.8400 0.8400 0.0200

100 0.0100 0.4200 0.4200 0.4200 0.4200 0.4200 0.0200

200 0.0250 0.2100 0.2150 0.2150 0.2100 0.2150 0.0200

300 0.0233 0.1400 0.1566 0.1433 0.1433 0.1566 0.0266

400 0.0175 0.1125 0.1200 0.1075 0.1150 0.1200 0.0275

The best performance of each row is highlighted in bold
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We found that the performance of UFBR drops largely on the EU2010 dataset. We

further investigated the issue and found that it is related to the data distribution of the

dataset. Different from WEBSPAM-UK2006 and WEBSPAM-UK2007, which are com-

posed of a few large connected components, EU2010 consists of many small connected

components, which leads to the difficulty of score propagation. For supervised algorithms,

the performance is largely related to the seed set in such cases because pages of most

components cannot obtain any FS and BS if there is no seed selected in them. Unfortu-

nately, the seed select methods PageRank and InversePageRank are inherently biased to

large connected components. Thus, on the EU2010 dataset, supervised algorithms can only

propagate scores from the seed set to connected components that contain seed pages.

However, all pages can still obtain FS and BS in unsupervised algorithms due to the

uniform distribution vector. Thus, the score propagation process of unsupervised algo-

rithms can be thought of as conducting the same algorithms on different graphs (each

connected component is a graph) while still ranking these scores in the same list. Fortu-

nately, this issue would not cause any problem of comparison for supervised algorithms, as

they use the same seed set, and the page scores can be propagated to still be the same.

5.3.2 Spam detection

The performance of our proposed algorithm for spam detection is evaluated through top-

k spam precision (TKSP). Adopting the same strategy used for TKSF, the parameter k of
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Fig. 6 TKSPs of 7 algorithms on WEBSPAM-UK2006. X-axis: K; Y-axis: Top-k spam precision. a TKSPs
on WEBSPAM-UK2006 with seed size 40. b TKSPs on WEBSPAM-UK2006 with seed size 80. c TKSPs on
WEBSPAM-UK2006 with seed size 120. d TKSPs on WEBSPAM-UK2006 with seed size 160
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TKSP is changed from 50 to the largest size of the dataset with an increment of 50 per test.

The TKSPs of algorithms are shown in Tables 10, 11 and 12. The global views of the

results are drawn in Figs. 6, 7 and 8.

In summary, SFBR has the best performance among all algorithms in spam detection.

From the results, we empirically provide the following conclusions:

(1) The constant accepting and top-n score summation can keep good pages from

receiving backward scores as much as possible. Thus, the spam precision of SFBR is

almost the largest.

(2) As the result of Inverse-PageRank shows, the number of outgoing links may be an

indication of spam in some cases, e.g., in WEBSPAM-UK2006. This assumption

needs further study since the WEBSPAM-UK2006 dataset has the most labelled

spam sites, and hence, their distribution may be more uniform than that in the other

two datasets.

(3) The bad performance of UFBR is not supervising since its design principle is to keep

good pages from receiving backward scores instead of encouraging the BS to be

propagated to other suspected pages. The reason is that the heuristic estimations of a

suspected page cannot be easily defined, while this is much easier (or, in other

words, more accurate) for normal pages.
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6 Conclusions

In this paper, we proposed a unified score propagation model (USPM) for web spam

demotion algorithms (WSDAs). A forward score propagation function (FSPF) and a

backward score propagation function (BSPF) are introduced to model score propagation

processes through links. FSPF and BSPF can be further expressed as three sub-functions: a

splitting function, an accepting function and a combination function. Under the USPM,

different algorithms can be simply thought of as scoring systems using different sub-

functions. A set of candidate sub-functions, including previous methods and some newly

introduced in this paper, are discussed. Taking advantage of the USPM, we noted some

drawbacks of previous algorithms and then proposed two new WSDAs, namely, Supervised

Forward and Backward Ranking (SFBR) and Unsupervised Forward and Backward

Ranking (UFBR). Our experimental results, evaluated on three large datasets, demon-

strated the superior performance of SFBR in both spam demotion and spam detection. The

very promising results obtained by the USPM on the WEBSPAM-UK2006 dataset implied

that, to a certain extent, it is possible to design unsupervised WSDAs that yield comparable

results to supervised algorithms in the spam demotion task.

There are still some issues that need further study. For example, the performance of

Inverse-PageRank on WEBSPAM-UK2006 suggested that the number of outgoing links

may be an indication of spam. However, we cannot confirm this given the limitations of the

datasets used. Another issue that has been mentioned in the paper is the score propagation

for an unconnected graph. In such a case, the most commonly used seed selection methods

are not suitable because of their inherent bias to large connected components. In a future

study, we will investigate this problem by exploring local features of connected compo-

nents to adjust the score propagation approach within them.
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