
Detecting shilling attacks in private environments

Ihsan Gunes1 • Huseyin Polat1

Received: 20 January 2015 / Accepted: 25 July 2016 / Published online: 20 September 2016
� Springer Science+Business Media New York 2016

Abstract Privacy-preserving collaborative filtering algorithms are successful approaches.

However, they are susceptible to shilling attacks. Recent research has increasingly focused

on collaborative filtering to protect against both privacy and shilling attacks. Malicious

users may add fake profiles to manipulate the output of privacy-preserving collaborative

filtering systems, which reduces the accuracy of these systems. Thus, it is imperative to

detect fake profiles for overall success. Many methods have been developed for detecting

attack profiles to keep them outside of the system. However, these techniques have all been

established for non-private collaborative filtering schemes. The detection of shilling attacks

in privacy-preserving recommendation systems has not been deeply examined. In this

study, we examine the detection of shilling attacks in privacy-preserving collaborative

filtering systems. We utilize four attack-detection methods to filter out fake profiles pro-

duced by six well-known shilling attacks on perturbed data. We evaluate these detection

methods with respect to their ability to identify bogus profiles. Real data-based experi-

ments are performed. Empirical outcomes demonstrate that some of the detection methods

are very successful at filtering out fake profiles in privacy-preserving collaborating filtering

schemes.

Keywords Detection � Shilling attack � Privacy � Collaborative filtering � Recommendation

1 Introduction

Electronic commerce has become widespread due to the rapid development of in Internet

technologies. A large number of products are sold via the Internet. Recommender systems

have been developed to help customers select appropriate products. One of the most
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commonly used recommender systems is collaborative filtering (CF) (Bobadilla et al.

2013; Jia and Liu 2015). Customers may not want their product preferences and the

products they rate to be known. To protect such personal preferences, privacy-preserving

collaborative filtering (PPCF) methods have been developed (Bilge et al. 2013a; Casino

et al. 2013, 2015; Jeckmans et al. 2013; Ozturk and Polat 2015). The goal of PPCF

schemes is to provide recommendations with acceptable accuracy while preserving private

data.

One common privacy-preserving technique utilized in PPCF algorithms is called ran-

domized perturbation (Bilge et al. 2013a), which disguises data by adding noise data. Thus,

data collectors storing the disguised data cannot learn actual rates but continue to produce

accurate predictions. A Gaussian or uniform distribution with a zero mean (l) and a

standard deviation (r) is used to produce random numbers. To hide the rated and/or unrated

products, some of the uniformly randomly selected unrated items cells are filled with

random numbers.

Malicious users who attempt to manipulate the outcomes of CF and PPCF systems can

attack such systems by adding fake profiles in their databases. The purpose of these attacks

is usually to increase the popularity of a target product (push attack) or reduce it (nuke

attack). These types of attacks are known as shilling attacks (O’Mahony et al. 2004; Gunes

et al. 2014). Mobasher et al. (2007) show that CF schemes are vulnerable to shilling

attacks. Various PPCF systems are also vulnerable to such attacks, as shown by Gunes

et al. (2013a, b) and Bilge et al. (2014a). Shilling attacks might significantly affect the

accuracy of the estimated predictions in PPCF schemes. Thus, it is very important to detect

these types of attacks and reduce their effects for recommendation systems to function

correctly. Different detection methods have been developed and applied to CF algorithms

to identify fake profiles (Li and Luo 2011; Zhang and Zhou 2014; Zhou et al. 2014a, b; Xia

et al. 2015; Zhang and Zhou 2015). However, only a single study by Gunes and Polat

(2015a) has focused on detecting shilling profiles in PPCF algorithms. The authors propose

a hierarchical clustering-based scheme to detect fake profiles in private environments.

They consider a single detection method. Hence, we apply the most commonly used four

detection methods to PPCF schemes. We modify the current four detection methods so that

they are applicable to PPCF methods and conduct experiments with real data sets. In

practice, six attacking models developed previously for attacking PPCF algorithms are

employed. Four of the most common detection schemes are utilized as detection technique,

where two common data sets are used for empirical analysis.

The contributions of this article in general can be summarized as follows:

1. Four widely used shilling attack detection techniques are modified in such a way to

detect shilling profiles generated by six shilling attacks (four push and two nuke

attacks) in masked data in PPCF systems’ databases.

2. Different sets of experiments are performed using two real data sets to evaluate the

success of the detection techniques for PPCF systems.

3. The modified detection methods are compared with the one proposed by Gunes and

Polat (2015a) with respect to detection performance. They are also compared with the

ones used in non-private environments.

The rest of the paper is structured as follows. In Sect. 2, related studies are reviewed,

and the differences between this work and existing work are briefly presented. Preliminary

work is concisely explained in Sect. 3. In Sect. 4, we explain how to apply these four

detection methods to PPCF algorithms and describe the modified detection techniques. We

explain in detail real data-based trials and their outcomes in Sect. 5. Empirical results are
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discussed in Sect. 6. We conclude the paper and provide future research directions in

Sect. 7.

2 Related work

Chirita et al. (2005) performed the first work on the detection of shilling profiles by

checking profile properties in CF systems. They considered the simplest attacking models

for random and average methods. Burke et al. (2006) studied the effectiveness of different

characteristics derived from user profiles for attack detection. Their study demonstrated

that a machine learning sorting method that included attributes derived from attack models

was more successful than more widespread detection algorithms. To detect attack profiles

in CF systems, variable selection based on principal component analysis (PCA) can be

utilized (Mehta et al. 2007). This approach can only be applied to a dense user-item matrix

because PCA cannot tolerate null values. Mehta (2007) and Mehta and Nejdl (2009)

attempted to detect attack profiles using PLSA-based clustering algorithm. Attack profiles

were distributed to the same clusters based on their similarities. Bhaumik et al. (2011)

reported that the similarity of the values of the detection attributes depends on the simi-

larity of the attack profiles. Based on these attributes, the profiles were separated into

clusters using a k-means algorithm.

Bhaumik et al. (2006) studied two statistical operation control methods and proposed

statistical process control-based methods as alternative solutions. Zhang et al. (2006b)

suggested an attack detection method establishing a low dimensional linear model. Hurley

et al. (2009) discussed the detection of standard attack models using statistical approaches.

Using the Neyman–Pearson method, they distinguished real and attack profiles. Li and Luo

(2011) established a probability model within the framework of a Bayesian network to

detect any possible attack. Zhou et al. (2014a, b) reported the utilization of statistical

metrics to determine the rating patterns of attackers and employed this metric to examine

differences in rating configurations between shilling and genuine profiles in shilling

attacks. Su et al. (2005) focused on detecting group attack users rather than individual

attacks using a similarity algorithm that evaluated the consistency of a user’s votes for

similar products. O’Mahony et al. (2006) recommended a signal detection approach for

determining shilling profiles. Zhang et al. (2006a) suggested the construction of a time

series of the votes for a product, in which a frame is used to group successive votes for a

product. In each frame, the sample average and entropy values are calculated, and the

results are interpreted to identify suspicious attitudes. Zhang et al. (2009) suggested using

trust values as a metric to protect systems based on trust.

Tang and Tang (2011) analyzed the time gaps between voting times to identify sus-

picious attitudes affecting top-N lists in prediction systems. Zhang (2011) focused on

protecting trust-based recommendation systems from attacks. A data genealogical tree

method was proposed to defend attacks by tracing the recommendation history and finding

the victim nodes. Noh et al. (2014) proposed a novel robust recommendation algorithm,

RobuNec, that provides admission control as a defense mechanism against shilling attacks.

Cao et al. (2013) intended to utilize semi-supervised learning to identify attack profiles and

described the application of semi-supervised learning to shilling attack detection. Zhang

et al. (2013) proposed two methods, CluTr and WCluTr, for building robust CF system to

prevent shilling attacks. CluTr filters out suspicious fake users in the formed clusters, and

WCluTr uses trust information to strengthen similarities among genuine users. Morid et al.
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(2013) proposed a new attack detection method that detects influential users instead of the

whole user set to improve detection performance. Xia et al. (2015) proposed a novel

detection scheme based on dynamic time interval segmentation. The method is able to

detect fake profiles regardless of specific attack types.

Zhang and Zhou (2014) constructed rating series for each profile based on originality

and product reputation. They employed an experimental mode decomposition method to

decompose each rating series and extract Hilbert spectrum-based characteristics to describe

shilling attacks. Zhang and Zhou (2015) also proposed a shilling attack detection method

based on a back propagation neural network and ensemble learning method. Bilge et al.

(2014b) recommended an original shilling attack identification technique for specific

attacks based on bisecting k-means clustering method. The results indicated that the

technique was exclusively successful against bandwagon, segment, and average attacks. Li

(2014) proposed a method that discloses latent factors appealing missing ratings under the

non-arbitrary-missing mechanism and further unites these hidden issues using a Dirichlet

process in the framework of a probabilistic generative model. Zhuo and Kulkarni (2014)

presented a technique to make CF systems resistant to shilling attacks. The maximum sub-

matrix is explored by converting the issue into a graph and combining nodes by heuristic

functions. Chung et al. (2013) suggested a Beta-protection approach to address the

drawbacks of current detection techniques.

Our study differs from those described above. We attempted to detect attacks on PPCF

schemes (private environments), whereas other studies have focused on attack detection on

CF schemes without privacy (non-private environments). A literature review revealed that

only one detection method has been used for attacks on PPCF. Gunes and Polat (2015a)

proposed a hierarchical clustering-based shilling attack detection method in private envi-

ronments. They scrutinized the ratings of target items to improve the overall performance

of their scheme. Their empirical results revealed that the proposed method could identify

shilling profiles with decent accuracy. We researched all of the detection methods applied

to CF algorithms described above and selected four that are the most used and most

applicable to PPCF schemes. We used each of these four methods to detect fake profiles in

the databases of PPCF systems.

In addition to detecting shilling attacks, robust PPCF schemes have been proposed

(Bilge et al. 2013b). Also, there are various studies focusing on the robustness analysis of

PPCF schemes, where the authors show how robust the schemes are against different

shilling attacks (Gunes et al. 2013a, b; Bilge and Polat 2013b; Bilge et al. 2014a; Gunes

and Polat 2015b; Yurekli and Kaleli 2016). Our study presented here is different from the

abovementioned ones because we focus on attack detection while they focus on robustness

analysis. Attack detection and robustness analysis require different approaches.

3 Preliminaries

3.1 Shilling attacks on disguised data

Applying traditional shilling attacks against PPCF systems is difficult due to disguised

data. Therefore, attackers must modify conventional shilling attacks. Gunes et al.

(2013a, b) redesigned well-known shilling attacks to enable their application to masked

databases. Attackers must decide on either a uniform or Gaussian random number distri-

bution to generate random numbers to mask their data. Moreover, standard deviations (r
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values) are uniformly randomly selected from the range (0, rmax] for each attack profile

prior to generating fake profiles, where rmax is a privacy parameter. Modified attacks can

be briefly explained as follows (Gunes et al. 2013a, b). In a typical shilling attack, one item

is selected as a target item whose popularity is manipulated by the attackers. A set of items

called filler items is selected to be filled with bogus ratings. Another set of items, referred

to as selected items, are selected to enable specific shilling attacks by filling these items

with values estimated from known knowledge about the attacked system. Finally, the

remaining items in a profile are left unrated.

In the random attack model, the set of selected items is empty. Randomly selected filler

items are filled with random values. The target item is assigned the highest possible

random value. Similarly, in the average attack model, the set of selected items is also

empty. Randomly selected filler items are filled with the item’s mean. Recall that such

mean values are estimated based on perturbed data due to privacy concerns in PPCF

schemes. The target item is given the maximum random value to increase its popularity. In

the bandwagon attack model, items are selected from popular items that are densely rated

and have high means. The selected items are chosen from among popular items. The

selected items and randomly chosen filler items are filled with random values. The selected

items are given the largest random numbers because they are popular items and are

expected to have higher ratings. Similarly, the target item is assigned the maximum

possible random value to push its popularity. The segment attack model is designed to

attack a specific group or segment of users. The selected items are chosen from among high

average products in a specific segment. The selected items and the target item are filled in a

similar manner as in the bandwagon attack model.

The reverse bandwagon and the love/hate attack models are nuke attacks. In a reverse

bandwagon attack, selected items are chosen from among unpopular items that are densely

rated and have low means. The selected items and randomly chosen filler items are filled

with random values. In this case, the selected items are given the lowest values, whereas

the target item is assigned the minimum random value so that the target item can be nuked.

In the case of a love/hate attack, a set of selected items is empty for the same reasons.

Randomly determined filler items are filled with high random values. The target item is

appointed the minimum random value to decrease its popularity.

3.2 Shilling attack detection methods

We explain the Chirita algorithm, kNN classifier, k-means clustering, and PCA-based

variable selection methods as shilling attack detection methods. Chirita et al. (2005)

attempted to classify profiles using eight generic attributes described as follows:

1. Number of prediction-differences (TFS): A prediction is determined for each user. TFS

describes the net difference after erasing the user from the system.

2. Standard deviation in user’s ratings: This metric shows the selecting degree above the

average of a user.

3. Degree of agreement with other users: This metric exhibits the difference degree of

each of a user’s selections from the average selecting degree of an item.

4. Degree of similarity with top neighbors: The weight of the similarities between a user

and the closest k number of users of her.

5. Rating deviation from mean agreement (RDMA): This metric determines the deviation

from the pre-given average values of some of specific items.
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6. Weighted deviation from mean agreement (WDMA): The RDMA is weighted by the

square of the number of votes for the item.

7. Weighted degree of agreement (WDA): This metric differs from the RDMA metric in

that the former is not divided by the total number of votes given by the user.

8. Length variance (lengthVar): The metric measures the extent to which the length of

the investigated profile differs from the average profile length.

In addition to generic attributes, Burke et al. (2006) subsequently used five model-

specific attributes for classifying profiles described as follows:

1. Filler mean variance (FMV): FMV calculates the variation between the average value

of the item and the value of each item (filler items IF) assumed to exist in the item set

of each profile.

2. Filler mean difference (FMD): The major difference between FMD and the model-

based metric is the use of the absolute value of the difference between the vote of the

user and the average of the votes instead of the square of the difference value.

3. Filler average correlation: This metric calculates the correlation between each item

value and the average item value in the filler item set of the investigated profile.

4. Filler mean target difference (FMTD): FMTD calculates the difference between the

average of the assumed filler item set and the average of the possible target item set.

5. Profile variance: This metric calculates the profile variance, which tends to be low

compared to authentic users.

3.2.1 Chirita algorithm

Chirita et al. (2005) proposed an algorithm (referred to as the Chirita algorithm) on RDMA

for detecting shilling attackers. The proposed algorithm is a two-step method as follows:

1. The algorithm computes the average similarity with the top neighbors for all users

using the Pearson correlation coefficient. Thus, only a subset of the total users are used

for computations. The algorithm then selects only those users with an average

similarity less than 0.5 of the maximum average similarity in the system to compute

the RDMA.

2. The algorithm associates with each value of RDMA a function that evaluates the

probability (PAu) that the respective user is a shilling attacker. The first s profiles,

sorted based on PAu, are considered attack profiles. PAu is used to decide whether a

profile is an attack profile or not. Higher PAu values for RDMA mean that the related

profiles are attack profiles.

3.2.2 kNN classifier-based detection algorithm

Mobasher et al. (2006, 2007) proposed a method based on classification that utilizes a total

of 15 detection attributes: six generic attributes (WDMA, RDMA, WDA, LengthVar,

DegSim with k = 450 and DegSim0 with k = 2, d = 963, where k is the number of

neighbors and d is co-rate factor); six average attack model attributes (filler mean variance,

filler mean difference and profile variance; computed for both push and nuke); two

bandwagon attack model (FMTD; computed for both push and nuke); and one target

detection model attribute (TMF). Class labels and detection attributes are generated for the

entire data set, which is divided into two equal-sized sub-sections of training and test data
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sets. A kNN with k = 9 is used in the classifier. The kNN classifiers are implemented using

Weka. For each test, the second half of the data is injected with attack profiles and then run

through the classifier built on the augmented first half of the data.

3.2.3 k-means clustering-based detection algorithm

The attack profiles are similar to each other because they are generated by known algo-

rithms. Consequently, when a k-means clustering algorithm is employed on the data set to

which attack profiles are added, most of the attack profiles should be distributed to the

same cluster. The most important issue at this stage is to identify the cluster in which the

attack profiles will be gathered. Mehta and Nejdl (2009) aimed to find the tightest cluster

(in which the elements are very similar to each other) in their study of clustered-based

detection. Consequently, for each cluster, the distance of the profiles from the center is

calculated. Then, the average distance is computed. The cluster with the shortest average

distance to the center is defined as the attack cluster. The determined cluster is finally

isolated.

3.2.4 PCA-based variable selection detection algorithm

In a recommendation system, if users are considered variables, there will be data with a

similar number of dimensions. Thus, dimensionality reduction would discard these

dimensions due to low covariance of the dimensions. Low covariance is observed not only

between shilling users but also shilling users and normal users. PCA computes principal

components that are oriented more toward real users, who exhibit the maximum variance

of the data. Consequently, those users who display the least covariance with all other users

should be selected. This quantity is used to select some variables from the original data to

which PCA was applied. In the algorithm below (Algorithm 1), Mehta and Nejdl (2009)

depicted their proposed approach for variable selection. The first s users are selected as the

attack profiles and are isolated from the system, where s is the number of attack profiles

added to the system.

Algorithm 1 PCA Select Users (D: user-item matrix & s: cut-off parameter)

1: D ← z-scores (D)

2: COV ← DTD {Covariance of DT}

4: UλUT = Eigenvalue Decomposition (COV)

5: PCA1 ← U (:, 1)                                                               {First Eigenvector of COV}

6: PCA2 ← U (:, 2)                                                           {Second Eigenvector of COV}

7: PCA3 ← U (:, 3)                                                             {Third Eigenvector of COV}

8: for all column id users in D do

9: Distance (user) ← PCA1(user)2 + PCA2(user)2 + PCA3(user)2

10: end for

11: Sort Distance

Output: Return s users with smallest Distance
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4 Shilling detection methods for PPCF schemes

The detection algorithms described above have been used for CF attacks. However, we use

these algorithms for PPCF attacks by adapting them to allow their use to identify shilling

attacks on masked data. There are two confidential data types in PPCF schemes: actual

rating values and rated and/or unrated items. To protect these private data, random

numbers are generated using either a uniform or Gaussian distribution with zero mean (l)
and r, which is uniformly randomly selected from (0, rmax]. These noise data are added to

actual votes. Additionally, some of the uniformly randomly selected unrated items cells are

filled with noise data. To select unrated cells, a b value is uniformly randomly selected

from (0, bmax], where bmax is a privacy parameter and represents the upper bound of b
values. Then, b percent of empty cells are filled with random numbers. The values of rmax

and bmax depend on the privacy and accuracy levels required by the CF users (Bilge et al.

2014a).

Recall that Chirita algorithm computes similarities using the Pearson correlation

coefficient. Such similarities can also be estimated with decent accuracy based on per-

turbed data (Bilge et al. 2014a). Similarly, RDMA can be computed from masked data.

Finally, the probability that a profile is an attack profile can be calculated using RDMA on

masked data. Therefore, the Chirita algorithm can be employed to determine shilling

profiles in PPCF schemes. The generic attribute values used in the Chirita algorithm are

calculated for disguised data. Chirita et al. (2005) define a = 10 in the formula to calculate

the probability that a profile is an attack profile. When the Chirita algorithm is used on

PPCF schemes, the best result is obtained when a = 1, and this value is used in our trials.

The second detection method, the kNN classifier, is based on detection attributes. The

values of such attributes can be determined from disguised data. The modified classifier

utilizes 14 detection attributes: six generic attributes (WDMA, RDMA, WDA, LengthVar,

DegSim with k = 450 and DegSim0 with k = 2, d = 963); six average attack models (filler

mean variance, filler mean difference, and profile variance; computed for both push and

nuke); and two bandwagon attack models (FMTD; computed for both push and nuke). As

in a non-private environment, class labels and detection attributes are generated for the

whole data set. A kNN with k = 9 is used as our classifier. This is the same value used in

the study by Mobasher et al. (2007) and allows the results of our proposed method to be

compared with the result obtained by Mobasher et al. (2007). All experiments in the

present study were conducted using both the proposed method and the one introduced by

Mobasher et al. (2007).

The k-means clustering-based detection method utilizes the Pearson correlation

coefficient to group users into k clusters. As shown by Bilge and Polat (2013a), k-means

clustering can group users into clusters with decent accuracy using disguised data. The

success of this method mainly depends on how accurately users are clustered. The

similarity of each profile in the clusters to the cluster center is calculated to determine

the attack cluster. The similarity between the attack profiles is higher than that of the

other profiles. The cluster with the highest average similarity is isolated from the system.

The selection of the cluster number is important for the performance of the application.

The results of the trials revealed that the ideal number of clusters is 12. The choice of

initial cluster centers can affect the results slightly. The steps of the k-means clustering-

based detection algorithm employed on perturbed data in PPCF schemes are defined as

follows:
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Algorithm 2 k-means clustering-based detection method for masked data

Let U0 = {u1, u2, …, un} be a set of disguised data vectors and C = {c1, c2, …, ck} be a

set of cluster centers.

1: Randomly select the ‘k’ cluster centers.

2: Estimate the similarity between each data vector and cluster centers.

3: Assign the data vector to the closest cluster.

4: Recalculate the new cluster center.

5: Recalculate the similarity between each data vector and new obtained cluster centers.

6: If no data vector is reassigned then stop, otherwise, repeat from step 3.

7: Determine the cluster with the highest average similarity as the shilling cluster.

The steps defined in Algorithm 1 for the PCA-based variable selection detection method

are also used in PPCF. However, in PPCF schemes, disguised z-score data are used as input

data. Although the data are disguised, random numbers with an average value of 0 are

added to z-scores, and masked values are obtained (z0uj = zuj ? ruj). Similarly, the average

of the z-score data is expected to be 0. Bilge and Polat (2013a) state that during the scalar

product and sum process, the effect of random numbers can be neglected because the

average of random numbers is 0. However, the same random numbers must be multiplied

while calculating the diagonal components of the matrix obtained as a result of the

COV / DT D process described in the third line of Algorithm 1. Multiplying the same

random numbers, ruj
2 , will create an excess value. To reduce these effects, the nrr

2 value is

extracted from the diagonal components, in which n indicates the number of random

numbers and rr indicates the standard deviation of the random numbers. After modifying

Algorithm 1 as described above, we utilize it as a detection method for filtering out shilling

profiles in PPCF schemes’ databases.

5 Experiments

To demonstrate the ability of the four modified shilling attack detection methods on

disguised databases in PPCF schemes for six shilling attack models, different sets of

experiments were performed on real data sets. The success of shilling attacks depends on

two control parameters: filler size and attack size. Filler size is the percentage of empty

cells that are filled in the attacker’s profile. Attack size denotes the number of attack

profiles to inject. In this sense, attack size is directly proportional to the number of users in

the system. For instance, a five percent attack size indicates that there are 50 attack profiles

in a system initially holding 1000 users. Privacy-preserving control parameters are first

kept constant, bmax = 25 % and rmax = 2. Then, to demonstrate how detection perfor-

mance changes with varying values of these parameters, different trials are performed by

changing their values.

5.1 Data sets and evaluation criteria

The MovieLens public data set (MLP) and Jester were used in the experiments. The

GroupLens research team collected MLP (http://www.grouplens.org). MLP comprises

100 K ratings of 1682 movies by 943 users. Within the set, the ratings are discrete values

from 1 to 5. Each user rated at least 20 movies. Jester data set was released from the Jester

Joke Recommender System (http://eigentaste.berkeley.edu/dataset/). Jester includes
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numeric continuous ratings ranging from -10 to 10. It is relatively dense (around 56 %).

There are 73,496 users and 100 jokes in the set. Although we used all users’ data in MLP,

we randomly selected 1000 users from Jester.

To measure the performance of the detection methods, the standard measurements of

precision and recall are used. The basic definition of such metrics is given as follows:

Precision = Number of true positives/(Number of true positives ? Number of false

positives)

Recall = Number of true positives/(Number of true positives ? Number of false

negatives)

Number of true positives is the number of correctly classified attack profiles, while

number of false positives is the number of authentic profiles misclassified as attack profiles,

and number of false negatives is the number of attack profiles misclassified as authentic

profiles.

5.2 Methodology

Our experimental methodology was as follows. Two distinct target item sets were first

formed for each real data set. In MLP, each target item set includes 50 movies for push and

nuke attacks. Due to the limited number of jokes in Jester, target item sets for push and

nuke attacks include 25 jokes. Target items were randomly selected by stratified sampling.

Intuitively, attempting to push a popular item or nuke an unpopular one is considered

unreasonable. Thus, the push and nuke attack sets comprised unpopular and popular items,

respectively. During the trials, attack profiles were created to manipulate the outcomes of

the target items. We did not perform segment attack in Jester because there is no joke

category in Jester. The tests were repeated 100 times due to randomization in the per-

turbation process.

5.3 Empirical results

5.3.1 Effects of filler size parameter

Experiments were performed to illustrate the performance of the detection methods with

varying filler size values while detecting fake profiles in masked databases. Filler size was

varied from 5 to 50 %, while attack size, bmax, and rmax were maintained constant at 15,

25, and 2 %, respectively. The overall averages of the precision and recall values for the

Chirita, kNN classifier, k-means clustering-based, and PCA-based detection algorithms

with varying filler size values are presented in Tables 1 and 2 for MLP and Jester,

respectively, where RB refers to the reverse bandwagon attack model.

As indicated in Tables 1 and 2, the empirical outcomes for precision and recall were

equal for the Chirita algorithm for both data sets. The profiles are listed from top to bottom

according to PAu, and the first s profiles are classified as attack profiles. Since s number of

attack profiles added to the system, the precision and recall values are equal. An increase in

the filler size value did not significantly change the precision and recall values for all attack

models. Therefore, the Chirita algorithm exhibited weak detection operation performance

in private environments. The best outcomes were usually observed when the filler size was

25 and 50 % for MLP and Jester, respectively. The most successful results were obtained

for a random attack and love/hate attack for MLP and Jester, respectively. For an average

attack, all filler size values received a value 0 because the Chirita algorithm performs the

classification operation by specifically considering the RDMA attribute value. The RDMA
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values will be higher for attack profiles than real profiles. However, while forming average

attack profiles, because the filler items are filled with the item mean, the RDMA value

decreases. Compared to the outcomes for a non-private environment published by Chirita

et al. (2005), the Chirita algorithm provides lower results for private environments. There

are couple of reasons why our results are lower. First, in the report by Chirita et al. (2005),

there were simultaneous attacks to three target items. Consequently, the RDMA values

were higher. Second, our values might be lower because of the use of disguised data in

PPCF schemes.

The kNN classifier algorithm was quite successful in the detection operation of the

PPCF attack models. As the filler size value increased from 5 to 50 %, nearly all of the

precision and recall values varied between 0.800 and 1.000 for all attack models for both

Table 1 Performance of detection algorithms with varying filler size (MLP)

Precision Recall

Filler size 5 10 25 50 5 10 25 50

Chirita

Random 0.206 0.214 0.221 0.217 0.206 0.214 0.221 0.217

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.143 0.181 0.209 0.207 0.143 0.181 0.209 0.207

Segment 0.169 0.141 0.175 0.138 0.169 0.141 0.175 0.138

RB 0.145 0.175 0.195 0.192 0.145 0.175 0.195 0.192

Love/hate 0.135 0.177 0.204 0.205 0.135 0.177 0.204 0.205

KNN classifier

Random 0.987 0.884 0.872 0.987 0.987 0.987 0.974 0.987

Average 1.000 0.927 0.938 0.987 0.987 0.987 0.987 0.987

Bandwagon 0.776 0.800 0.817 0.987 0.987 0.987 0.987 0.987

Segment 1.000 0.925 0.873 0.987 0.987 0.961 0.805 0.987

RB 0.987 0.920 0.962 0.987 0.974 0.896 0.987 0.987

Love/hate 0.917 0.936 0.884 0.987 0.286 0.948 0.987 0.984

k-means

Random 0.501 0.361 0.245 0.192 1.000 0.997 1.000 1.000

Average 0.349 0.347 0.308 0.255 0.838 1.000 1.000 1.000

Bandwagon 0.358 0.285 0.260 0.232 1.000 1.000 1.000 1.000

Segment 0.436 0.362 0.297 0.225 0.953 1.000 1.000 1.000

RB 0.350 0.313 0.290 0.248 1.000 1.000 1.000 1.000

Love/hate 0.340 0.275 0.231 0.229 0.995 1.000 1.000 1.000

PCA

Random 0.300 0.330 0.340 0.270 0.300 0.330 0.340 0.270

Average 0.440 0.610 0.650 0.300 0.440 0.610 0.650 0.300

Bandwagon 0.090 0.080 0.090 0.090 0.090 0.080 0.090 0.090

Segment 0.090 0.080 0.090 0.100 0.090 0.080 0.090 0.100

RB 0.076 0.079 0.082 0.088 0.076 0.079 0.082 0.088

Love/hate 0.060 0.058 0.057 0.057 0.060 0.058 0.057 0.057

The best outcomes are given in bold

Inf Retrieval J (2016) 19:547–572 557

123



data sets. In other words, they are very close to each other for both data sets. The change in

the precision value depicts the variability as a function of the filler size for the push attacks.

At precision values less than 1.0, some of the real profiles were classified as attack profiles.

However, in general, the kNN classifier algorithm was also successful in the PPCF algo-

rithm, as in the CF algorithm. The disguise operation in the PPCF algorithm does not

significantly affect the detection algorithm’s performance. Because the kNN classifier can

also create a model using training data, which were disguised in the PPCF schemes, the

attack profiles on masked data can be detected easily in the test set using this model. As

shown in Tables 1 and 2, like the precision values, the recall values of the kNN classifier

algorithm indicate high success rates. For all filler size values, the algorithm performs very

well with respect to recall. The recall value of the segment attack, which differs in purpose

from the other attacks, might be slightly lower than those of the other attacks for MLP. Our

results on MLP are similar to those calculated for the CF algorithm by Mobasher et al.

(2007).

Table 2 Performance of detection algorithms with varying filler size (Jester)

Precision Recall

Filler size 5 10 25 50 5 10 25 50

Chirita

Random 0.135 0.137 0.153 0.156 0.135 0.137 0.153 0.156

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.012 0.036 0.100 0.146 0.012 0.036 0.100 0.146

RB 0.010 0.023 0.053 0.068 0.010 0.023 0.053 0.068

Love/hate 0.227 0.216 0.182 0.181 0.227 0.216 0.182 0.181

kNN classifier

Random 1.000 1.000 0.974 0.835 0.987 0.987 0.987 0.987

Average 1.000 1.000 0.962 0.817 0.987 0.987 0.987 0.987

Bandwagon 1.000 0.974 0.894 0.894 0.987 0.987 0.987 0.987

RB 1.000 1.000 1.000 1.000 0.987 0.987 0.987 0.987

Love/hate 1.000 1.000 1.000 0.962 0.987 0.987 0.987 0.987

k-means

Random 0.493 0.344 0.228 0.227 1.000 1.000 1.000 1.000

Average 0.385 0.301 0.257 0.236 1.000 1.000 1.000 1.000

Bandwagon 0.306 0.222 0.204 0.205 1.000 1.000 1.000 1.000

RB 0.282 0.253 0.240 0.235 1.000 1.000 1.000 1.000

Love/hate 0.408 0.356 0.266 0.218 1.000 1.000 1.000 1.000

PCA

Random 0.929 0.879 0.783 0.681 0.929 0.879 0.783 0.681

Average 0.967 0.945 0.871 0.674 0.967 0.945 0.871 0.674

Bandwagon 0.359 0.306 0.247 0.220 0.359 0.306 0.247 0.220

RB 0.367 0.318 0.254 0.217 0.367 0.318 0.254 0.217

Love/hate 0.879 0.762 0.408 0.228 0.879 0.762 0.408 0.228

The best outcomes are given in bold
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As indicated in Tables 1 and 2, the recall values were very close to each other for all

attack models in MLP and they are the same for Jester. The precision values decreased

with increasing filler size values for all attack models. Recall that the k-means clustering-

based detection method performs the clustering operation by considering the similarities

between profiles. Consequently, the attack model type is not significant. Because all of the

attack models are formed using defined algorithms, they are all naturally similar to each

other. Based on this similarity, the k-means clustering-based detection method identifies

the tightest cluster and isolates that cluster from the system. As the filler size value

increases, the attack profiles become more similar to the real profiles. Thus, there will be

more real profiles in the cluster with the attack profiles. In this situation, more real profiles

were isolated from the system, leading to lower precision values. The increase in filler size

values only increased the number of real profiles in the cluster under search; and thus, the

recall value was unaffected. Consequently, the k-means clustering-based detection method

classifies nearly 100 % of the attack profiles correctly but pushes many of the real profiles

to the outside of the system.

As shown in Table 1, the best results for the average attack model were obtained when

the PCA-based detection method was utilized. Because this method generates average

attack profiles by filling the filler item set with values around the item mean, a small

covariance value of the attack profiles among each other is expected. Mehta et al. (2007)

reported that the covariance value among attack profiles is smaller than that among real

profiles. Consequently, the attack profiles might be detected by PCA-based variable

selection technique. As shown in Table 1, both the precision and recall values for the

average attack model reached 0.670. When establishing the other attack models, the filler

item set is filled with random numbers generated with a known standard deviation. In this

set of experiments, because rmax was set to 2, r was randomly selected from the range (0,

2]. If r is high, the covariance among the profiles will be high. In this case, the PCA-based

detection algorithm did not yield successful results. For Jester, we observed more suc-

cessful results, as shown in Table 2. This phenomenon can be explained the larger rating

range in Jester. That leads to higher covariance value of the genuine profiles. On the other

hand, covariance value of the attack profiles is smaller because similar ratings are used to

create attack profiles. Hence, PCA-based detection method successfully determine the

attack profiles and separate them from genuine ones.

5.3.2 Effects of the attack size parameter

Various sets of experiments were conducted to scrutinize the success of shilling attack

detection methods with changing attack size values on private environments. The influence

of attack size emphasizes the impact of determining the number of bogus profiles to be

inserted into a database as well as the utility perspective of an attack. The attack size

establishes a compromise between the detectability and the impact of the applied attack

model. Therefore, we performed experiments while varying the attack size from 1 to 15 %

with a constant filler size of 25 %. The overall averages of precision and recall with

varying attack size values for the Chirita, kNN classifier, k-means clustering-based, and

PCA-based detection schemes are presented in Tables 3 and 4 for MLP and Jester,

respectively.

The Chirita algorithm successfully detected shilling attacks with dense attacker profiles

but was unsuccessful against attacks with small size and high sparsity (Williams et al.

2007). As shown in Table 3, as the attack size increased, this algorithm was more suc-

cessful toward attacks, excluding the average attack. Because the RDMA values of the
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random attack profiles were higher, the most successful precision and recall values were

obtained for random attack. By contrast, the average attack profiles had lower RDMA

values because of the established methodology and because the Chirita algorithm could not

detect these attack profiles. Although the detection performance of the algorithms

improved with increasing attack size, they were not successful in detecting shilling pro-

files. As seen from Table 4, the detection performances of all methods for all attack size

values are smaller than the ones for MLP. This phenomenon can be explained the density

of Jester data set. As stated by Williams et al. (2007), the Chirita algorithm does not

perform well for dense data sets.

As shown in Tables 3 and 4, the precision and recall values usually ranged between 0.8

and 1.0 for the kNN classifier for both data sets. The success of the algorithm increased

Table 3 Performance of detection algorithms with varying attack size (MLP)

Precision Recall

Attack size 1 3 10 15 1 3 10 15

Chirita

Random 0.018 0.051 0.157 0.221 0.018 0.051 0.157 0.221

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.015 0.049 0.148 0.209 0.015 0.049 0.148 0.209

Segment 0.013 0.041 0.127 0.175 0.013 0.041 0.127 0.175

RB 0.014 0.043 0.132 0.195 0.014 0.043 0.132 0.195

Love/hate 0.017 0.049 0.144 0.204 0.017 0.049 0.144 0.204

kNN classifier

Random 0.000 0.750 0.847 0.872 0.000 0.706 0.962 0.974

Average 1.000 0.842 0.895 0.938 0.857 0.941 0.981 0.987

Bandwagon 0.000 0.375 0.850 0.817 0.000 0.176 0.981 0.987

Segment 0.000 0.750 0.872 0.873 0.000 0.706 0.788 0.805

RB 1.000 0.938 0.927 0.962 0.143 0.882 0.981 0.987

Love/hate 1.000 1.000 0.836 0.884 0.571 0.941 0.981 0.987

k-means

Random 0.095 0.152 0.248 0.245 0.883 0.915 0.927 1.000

Average 0.116 0.229 0.357 0.308 0.874 0.902 0.879 1.000

Bandwagon 0.108 0.226 0.316 0.260 0.885 0.913 0.937 1.000

Segment 0.103 0.179 0.329 0.297 0.910 0.920 0.922 1.000

RB 0.109 0.243 0.371 0.290 1.000 0.999 0.975 1.000

Love/hate 0.110 0.212 0.264 0.231 1.000 0.991 0.999 1.000

PCA

Random 0.120 0.180 0.290 0.340 0.120 0.180 0.290 0.340

Average 0.030 0.220 0.560 0.650 0.030 0.220 0.560 0.650

Bandwagon 0.040 0.050 0.070 0.090 0.040 0.050 0.070 0.090

Segment 0.110 0.150 0.060 0.090 0.110 0.150 0.060 0.090

RB 0.078 0.067 0.057 0.082 0.078 0.067 0.057 0.082

Love/hate 0.006 0.015 0.038 0.057 0.006 0.015 0.038 0.057

The best outcomes are given in bold
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when the attack size was 15 %. The number of attack profiles in the training and test data

was not sufficient for stable classification when the attack size was low. Thus, zero pre-

cision and recall values were obtained for an attack size of 1 % for random, bandwagon,

and segment attacks for MLP, whereas better results were obtained for other attack types.

For Jester, the detection performance of the kNN classifier method is zero for all attack

types. Because the training data set was used in all attack models for this method, it does

not matter which attack model is used. As long as there are sufficient training data, this

method will be successful. Therefore, the attack size parameter plays an important role in

the success of this method. Moreover, since similar training data was used for both data

sets, similar results were observed.

As indicated in Tables 3 and 4, there was a direct correlation between attack size and

the precision value of the k-means clustering-based detection algorithm toward the attacks

for both data set. As the attack size increased, the number of attack profiles in the cluster of

interest increased, thus improving the precision value. Because the tightest cluster was

identified and isolated from the database, many real profiles were omitted from this cluster.

Table 4 Performance of detection algorithms with varying attack size (Jester)

Precision Recall

Attack size 1 3 10 15 1 3 10 15

Chirita

Random 0.015 0.039 0.109 0.153 0.015 0.039 0.109 0.153

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.008 0.025 0.074 0.100 0.008 0.025 0.074 0.100

RB 0.005 0.015 0.040 0.053 0.005 0.015 0.040 0.053

Love/hate 0.017 0.049 0.137 0.182 0.017 0.049 0.137 0.182

kNN classifier

Random 0.000 0.000 1.000 0.974 0.000 0.000 0.987 0.987

Average 0.000 1.000 0.987 0.962 0.000 0.987 0.987 0.987

Bandwagon 0.000 0.000 0.550 0.692 0.000 0.000 0.165 0.195

RB 0.000 1.000 1.000 1.000 0.000 0.013 0.325 0.714

Love/hate 0.000 0.000 1.000 1.000 0.000 0.000 0.987 0.987

k-means

Random 0.051 0.107 0.203 0.242 0.972 0.972 0.947 0.969

Average 0.051 0.111 0.248 0.287 1.000 0.996 0.992 0.994

Bandwagon 0.051 0.102 0.188 0.223 0.972 1.000 1.000 1.000

RB 0.049 0.104 0.204 0.259 1.000 1.000 1.000 1.000

Love/hate 0.047 0.098 0.205 0.292 1.000 1.000 1.000 1.000

PCA

Random 0.528 0.642 0.753 0.783 0.528 0.642 0.753 0.783

Average 0.473 0.687 0.841 0.871 0.473 0.687 0.841 0.871

Bandwagon 0.153 0.202 0.231 0.247 0.153 0.202 0.231 0.247

RB 0.167 0.214 0.243 0.254 0.167 0.214 0.243 0.254

Love/hate 0.292 0.369 0.409 0.408 0.292 0.369 0.408 0.408

The best outcomes are given in bold
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Because real profiles were omitted from the user-item matrix, the precision value was

lower than the recall value. Since the attack profiles were so similar, they were located in

the same cluster. Therefore, the recall value was successful in all attack models. As shown

in the tables, the recall values varied between approximately 0.9 and 1.0 for all attacks for

both data sets. Differences in attack size can only increase the number of attacks in a

cluster and thus did not significantly affect the recall value.

As in the case of the application based on the filler size parameter describe above, the

application based on the attack size parameter yielded the best results for the average

attack for the PCA-based detection scheme, as shown in Tables 3 and 4. Since fake profiles

are generated using mean values in the average attack, the covariance is smaller for this

attack. This leads to better results. The increase in the attack size value resulted in an

increase in the precision and recall values of nearly all of the attack models. For MLP, the

precision and recall values of the average attack were as high as 0.65, an acceptable and

successful value. Better results were obtained for Jester due to the higher covariance of the

genuine profiles. Shilling profiles have lower covariance. Thus, it becomes easy to dis-

tinguish fake profiles from genuine ones. This method was unsuccessful for the other attack

models because the covariance values of the profiles were higher due to the generating

algorithms.

5.3.3 Effects of the bmax parameter

We performed another set of experiments to illustrate how changing the values of bmax

affects the success of detection schemes. We fixed the filler size, attack size, and rmax at

25, 15, and 2 %, respectively, while bmax parameter was varied from 5 to 25 %. The

overall averages of the precision and recall values for the four detection algorithms on six

attack models are presented in Tables 5 and 6 for MLP and Jester, respectively.

As shown in Tables 5 and 6, in general, the success of the detection algorithms

decreased with increasing bmax values. The only exception was the recall values for the k-

means clustering-based detection method. The recall values for this algorithm slightly

improved with increasing bmax values due to increasing similarity among shilling profiles.

Although the detection performance of the algorithms decreased with increasing bmax

values, the outcomes remained close to each other for both data sets. The value of bmax had

a greater effect on the Chirita algorithm than the other algorithms. The best outcomes for

precision and recall were observed for the Chirita and kNN classifier algorithms for a bmax

value of 5. For the k-means clustering-based method, bmax = 25 provided the best recall

values. However, the best precision values differed for the same algorithm with varying

bmax values. Similar trends in precision and recall were observed for the PCA-based

detection scheme. As indicated in Tables 5 and 6, the precision and recall values for

varying bmax values were closer to each other for the k-means clustering-based

scheme compared to the other algorithms.

Increasing bmax values significantly affected the ratings distribution of genuine user

ratings profiles due to the sparse nature of such profiles. In this case, it might become

difficult to differentiate fake profiles from genuine profiles because the filled profiles will

become more similar to each other. Creating fake profiles by filling some filler items does

not change the general rating distribution of the filled profiles. The detection schemes, in

general, then will have difficulties detecting bogus profiles due the increase in bmax values.

For example, in the Chirita algorithm, increasing bmax increases the number of random

values inserted into genuine profiles. These noise data increase RDMA values due to larger

dispersion. As stated by Chirita et al. (2005), due to the high standard deviation among the
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rating dispersions in attack profiles, the RDMA attribute value will be higher for attack

profiles than for real profiles. Larger RDMA values make it difficult to detect fake profiles

using the Chirita algorithm. Hence, the detection rate of the Chirita algorithm diminishes

with increasing bmax.

Noise data is inserted into genuine profiles for privacy protection. Moreover, shilling

profiles are created using noise data. This leads to very similar results for k-means and

PCA-based detection algorithms for both data sets, as seen from Tables 5 and 6. Therefore,

it is difficult to determine the optimum values of bmax for k-means and PCA-based

detection algorithms for both data sets.

Table 5 Performance of detection algorithms with varying bmax (MLP)

Precision Recall

bmax 5 10 15 25 5 10 15 25

Chirita

Random 0.516 0.448 0.314 0.221 0.516 0.448 0.314 0.221

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.514 0.440 0.370 0.209 0.514 0.440 0.370 0.209

Segment 0.387 0.349 0.288 0.175 0.387 0.349 0.288 0.175

RB 0.516 0.446 0.381 0.195 0.516 0.446 0.381 0.195

Love/hate 0.515 0.436 0.379 0.204 0.515 0.436 0.379 0.204

kNN classifier

Random 1.000 1.000 0.962 0.872 0.987 0.987 0.987 0.974

Average 1.000 1.000 0.962 0.938 0.987 0.987 0.987 0.987

Bandwagon 1.000 1.000 0.950 0.817 0.987 0.987 0.987 0.987

Segment 1.000 1.000 0.960 0.873 0.987 0.987 0.935 0.805

RB 1.000 1.000 0.836 0.962 0.987 0.974 0.987 0.987

Love/hate 1.000 1.000 0.641 0.884 0.987 0.987 0.993 0.987

k-means

Random 0.189 0.263 0.378 0.245 0.892 0.962 0.946 1.000

Average 0.421 0.351 0.378 0.308 0.993 0.993 0.993 1.000

Bandwagon 0.443 0.382 0.502 0.260 0.993 0.994 0.993 1.000

Segment 0.214 0.333 0.177 0.297 0.900 0.986 0.957 1.000

RB 0.424 0.420 0.523 0.290 0.987 0.993 0.993 1.000

Love/hate 0.213 0.268 0.258 0.231 0.982 0.992 0.989 1.000

PCA

Random 0.130 0.135 0.123 0.340 0.130 0.135 0.123 0.340

Average 0.761 0.754 0.750 0.650 0.761 0.754 0.750 0.650

Bandwagon 0.089 0.091 0.088 0.090 0.089 0.091 0.088 0.090

Segment 0.095 0.088 0.090 0.090 0.095 0.088 0.090 0.090

RB 0.089 0.090 0.084 0.082 0.089 0.090 0.084 0.082

Love/hate 0.126 0.115 0.100 0.057 0.126 0.115 0.100 0.057

The best outcomes are given in bold
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5.3.4 Effects of the rmax parameter

To illustrate how the detection methods perform with varying values of rmax, we per-

formed another set of experiments. We fixed filler size, attack size, and bmax at 25, 15, and

25 %, respectively, while varying the value of rmax from 0.5 to 2. The overall averages of

precision and recall values for all detection methods on the six attack models after running

the trials 100 times are presented in Tables 7 and 8 for MLP and Jester, respectively.

The results in Tables 7 and 8 show that the performance of the Chirita algorithm with

respect to both precision and recall improved with increasing rmax. Smaller rmax values

resulted in smaller RDMA values. Smaller RDMA values increase the difficulty of

detecting attack profiles using the Chirita algorithm. Therefore, with decreasing rmax

values, the RDMA values become smaller; and the performance of the Chirita algorithm

consequently decreases.

In contrast to the Chirita algorithm, in general, the performance of the PCA-based

detection scheme with respect to both precision and recall increased with decreasing rmax

Table 6 Performance of detection algorithms with varying bmax (Jester)

Precision Recall

bmax 5 10 15 25 5 10 15 25

Chirita

Random 0.189 0.185 0.172 0.153 0.189 0.185 0.172 0.153

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.129 0.122 0.120 0.100 0.129 0.122 0.120 0.100

RB 0.163 0.153 0.145 0.053 0.163 0.153 0.145 0.053

Love/hate 0.205 0.195 0.192 0.182 0.205 0.195 0.192 0.182

kNN classifier

Random 1.000 0.962 0.974 0.974 0.987 0.987 0.981 0.987

Average 1.000 0.987 0.962 0.962 0.987 0.987 0.987 0.987

Bandwagon 0.925 0.607 0.781 0.652 0.961 0.221 0.325 0.195

RB 0.926 0.952 0.961 1.000 0.325 0.441 0.961 0.714

Love/hate 1.000 1.000 0.987 1.000 0.987 0.987 0.987 0.987

k-means

Random 0.241 0.260 0.234 0.228 0.816 0.876 0.746 1.000

Average 0.362 0.356 0.366 0.257 0.981 0.986 0.984 1.000

Bandwagon 0.357 0.318 0.320 0.204 1.000 1.000 1.000 1.000

RB 0.292 0.306 0.303 0.240 1.000 1.000 1.000 1.000

Love/hate 0.285 0.271 0.292 0.266 0.999 1.000 1.000 1.000

PCA

Random 0.776 0.775 0.786 0.783 0.776 0.775 0.786 0.783

Average 0.851 0.852 0.869 0.871 0.851 0.852 0.869 0.871

Bandwagon 0.239 0.243 0.248 0.247 0.239 0.243 0.248 0.247

RB 0.252 0.242 0.247 0.254 0.252 0.242 0.247 0.254

Love/hate 0.394 0.397 0.408 0.408 0.394 0.397 0.408 0.408

The best outcomes are given in bold
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values for both data sets. As rmax increases, the covariance value among profiles also

increases; therefore, the PCA-based variable selection-based detection method may not be

able to detect these attack profiles. In studies by Mehta (2007), Mehta et al. (2007), and

Mehta and Nejdl (2009), the authors state that attack profiles are expected to have lower

covariance values than real profiles because the filler items set is generally completed with

the item mean or system overall mean when creating attack profiles. Hence, the success of

the PCA-based detection algorithm can be improved if smaller rmax values are used.

The kNN classifier and k-means clustering-based methods behaved similarly with

varying rmax values. The best precision values were observed when rmax was 0.25 for both

detection algorithms for both data sets. In contrast to the precision values, both schemes

produced the most promising outcomes with respect to recall when rmax was 2. Although

Table 7 Performance of detection algorithms with varying rmax (MLP)

Precision Recall

rmax 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Chirita

Random 0.000 0.000 0.014 0.221 0.000 0.000 0.014 0.221

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.000 0.000 0.012 0.209 0.000 0.000 0.012 0.209

Segment 0.000 0.000 0.087 0.175 0.000 0.000 0.087 0.175

RB 0.000 0.000 0.012 0.195 0.000 0.000 0.012 0.195

Love/hate 0.000 0.000 0.013 0.204 0.000 0.000 0.013 0.204

kNN classifier

Random 1.000 0.800 0.750 0.872 0.941 0.941 0.857 0.974

Average 1.000 0.842 0.750 0.938 0.941 0.941 0.857 0.987

Bandwagon 1.000 0.833 0.714 0.817 0.941 0.882 0.714 0.987

Segment 1.000 0.790 0.750 0.873 0.941 0.882 0.857 0.805

RB 0.941 0.857 0.714 0.962 0.941 0.857 0.714 0.987

Love/hate 0.889 0.857 0.667 0.884 0.941 0.857 0.857 0.987

k-means

Random 0.470 0.436 0.403 0.245 0.992 0.980 0.970 1.000

Average 0.532 0.458 0.387 0.308 0.993 0.990 0.980 1.000

Bandwagon 0.485 0.451 0.404 0.260 0.992 0.982 0.960 1.000

Segment 0.499 0.412 0.352 0.297 0.993 0.980 0.960 1.000

RB 0.467 0.419 0.384 0.290 0.993 0.990 0.970 1.000

Love/hate 0.485 0.425 0.350 0.231 0.990 0.990 0.980 1.000

PCA

Random 0.853 0.705 0.454 0.340 0.853 0.705 0.454 0.340

Average 0.591 0.656 0.750 0.650 0.591 0.656 0.750 0.650

Bandwagon 0.498 0.257 0.139 0.090 0.498 0.257 0.139 0.090

Segment 0.839 0.668 0.388 0.090 0.839 0.668 0.388 0.090

RB 0.682 0.257 0.117 0.082 0.682 0.257 0.117 0.082

Love/hate 0.066 0.062 0.061 0.057 0.066 0.062 0.061 0.057

The best outcomes are given in bold
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the recall values seemed to decrease with decreasing rmax values for MLP, this change was

very stable, especially for k-means clustering-based method. The recall values for Jester

are almost the same for both methods. Smaller rmax values decrease the amount of noise

data inserted into profiles during data disguising. The reduced amount of noise does not

weaken the effects of filler items during fake profile generation and facilitates the suc-

cessful retrieval of fake profiles by k-means clustering and the kNN classifier.

6 Discussion

An examination of the empirical results presented in the tables above revealed that the kNN

classifier method is the most successful method for all attack models. The disguise

operation in private environments does not have a significant effect on detection algorithm

performance. The kNN classifier detection algorithm calculates a number of generic and

model-specific attribute values for each profile, creates a new data table, and performs

Table 8 Performance of detection algorithms with varying rmax (Jester)

Precision Recall

rmax 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Chirita

Random 0.000 0.000 0.018 0.153 0.000 0.000 0.018 0.153

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bandwagon 0.000 0.000 0.001 0.100 0.000 0.000 0.001 0.100

RB 0.000 0.000 0.002 0.053 0.000 0.000 0.002 0.053

Love/hate 0.000 0.000 0.032 0.182 0.000 0.000 0.032 0.182

kNN classifier

Random 1.000 1.000 0.985 0.974 0.987 0.987 0.987 0.987

Average 1.000 1.000 0.938 0.962 0.987 0.987 0.987 0.987

Bandwagon 1.000 0.974 0.916 0.894 0.987 0.987 0.987 0.987

RB 0.962 0.938 0.950 1.000 0.987 0.987 0.987 0.987

Love/hate 0.987 1.000 0.987 1.000 0.987 0.987 0.987 0.987

k-means

Random 0.411 0.333 0.330 0.242 0.730 0.895 0.834 0.763

Average 0.465 0.351 0.415 0.373 0.820 0.975 0.969 0.983

Bandwagon 0.503 0.403 0.359 0.354 0.975 1.000 1.000 1.000

RB 0.483 0.424 0.363 0.302 1.000 1.000 1.000 1.000

Love/hate 0.461 0.323 0.306 0.310 0.971 0.984 0.978 0.981

PCA

Random 0.999 0.975 0.914 0.772 0.999 0.975 0.914 0.772

Average 0.939 0.939 0.921 0.861 0.939 0.939 0.921 0.861

Bandwagon 0.963 0.848 0.521 0.243 0.963 0.848 0.521 0.243

RB 0.968 0.858 0.550 0.251 0.968 0.858 0.550 0.251

Love/hate 0.986 0.937 0.751 0.406 0.986 0.937 0.751 0.406

The best outcomes are given in bold
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classifications using this new data table. The kNN classifier detection algorithm divides this

attribute table into two groups under the headings of training and test data. Because it

creates a model using training data, data masking does not have significant effects for the

kNN classifier. The use of a training set generated from perturbed data enables the creation

of a new model to detect PPCF attack profiles in the test set.

The performance of the Chirita algorithm against attacks in private environments was

not highly successful. Chirita et al. (2005) stated that due to the high standard deviation

among the rating dispersions in attack profiles, the RDMA attribute values of attach

profiles will be higher than those of real profiles. The attack profiles generated on the PPCF

schemes were filled with random numbers. When the rmax value was small, the RDMA

value for the attack profiles was small, and the Chirita algorithm could not detect these

PPCF attacks successfully. We hypothesized that at higher rmax values, the Chirita algo-

rithm may become more successful. This hypothesis was verified by the empirical out-

comes presented in Tables 7 and 8. Larger rmax values significantly enhanced the

performance of the Chirita algorithm. Because the item mean was used to fill the profiles in

the average attack, the RDMA value was low even when larger rmax values were used. In

this case, as shown in Tables 7 and 8, the Chirita algorithm will be unsuccessful for the

average attack.

Although the precision value of the k-means algorithm was not very good, the recall

value was highly successful. Our k-means algorithm performs clustering by considering the

similarities between profiles. A certain profile is created for each attack model in non-

private and private environments. Therefore, these profiles are similar to each other and are

expected to be dispersed in the same cluster. Moreover, shilling profiles mimic real profiles

to effectively manipulate the outcomes. Consequently, in k-means clusters, many real

profiles may cluster together with the attack profiles and be omitted form the database upon

isolation of the defined attack clusters, reducing the precision.

The PCA-based detection method was successful for the average attack only when rmax

was 2 due to smaller covariance values among the profiles because the filler items set was

completed with the item mean when creating the average attack profiles. In other attack

models, the filler items specified in the profiles are completed with random numbers

generated with a certain rmax value. If the rmax values are high, the covariance value

among profiles also becomes high, and the PCA algorithm may not be able to detect these

attack profiles. Consequently, the success of the PCA-based detection algorithm might be

improved using smaller rmax values. It performs better for Jester due to higher covariance

of the fake profiles.

We compared the detection methods used for PPCF with those used in CF schemes

under the same conditions. In Table 9, the precision and recall values are compared for

corresponding algorithms in non-private and private environments. The results of the

experiments conducted for CF schemes were compiled from related studies, where MLP

was used. The comparison with the results of the study by Burke et al. (2006) of the Chirita

algorithm reveals a similar precision value as for our results; however, the CF algorithm is

more successful for the recall value. Our results for the kNN classifier algorithm and those

of Mobasher et al. (2007) differ but are similar at a higher filler size and attack size.

Bhaumik et al. (2011) utilized the k-means algorithm on CF in a different manner than in

the present study. They defined generic attribute values and performed the cluster process

using these values. A comparison of the results indicates that their results were more

successful than ours. The precision and recall values achieved for the PCA method in the

study by Mehta and Nejdl (2009) are considerably higher than the values we obtained

because we selected higher rmax values to generate attack profiles.
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We finally compared the precision and recall of the four detection algorithms with those

of the algorithm proposed by Gunes and Polat (2015a) under the same conditions. The

profiles in a perturbed user-item matrix are clustered using hierarchical clustering, and the

cluster that probably contain fake profiles is identified as the attacked cluster. The authors

also scrutinized the ratings of target items to enhance the performance of their scheme.

They slightly improved their method by investigating the ratings of target items. The

results of the four detection methods presented in this study and the hierarchical clustering-

based method are compared in Table 10.

As shown in Table 10, the kNN classifier performs better than the hierarchical clus-

tering-based method in terms of precision for the random, average, and love/hate attack

models. However, the hierarchical clustering-based scheme provides more promising

results than our methods with respect to precision for the bandwagon, segment, and reverse

bandwagon attack models. In terms of recall, our k-means clustering-based scheme pro-

vides the best outcomes. The hierarchical clustering-based method performs very similar to

our k-means clustering-based method for average, bandwagon, segment, and reverse

bandwagon attacks. All of our algorithms achieve better outcomes than the hierarchical

clustering-based method for the random attack model.

7 Conclusions and future work

Detecting shilling profiles is important in privacy-preserving collaborative filtering

methods. We modified four widely used detection algorithms, proposed for detecting

shilling profiles in non-private environments, in such a way to determine fake profiles

created using six shilling attacks in private environments. We compared the modified

methods with their correspondence for non-private environments. Also, we compared them

Table 9 Comparison of detection algorithms in non-private and private environments

Non-private environment Private environment

Algorithm Chirita kNN k-means PCA Chirita kNN k-means PCA

Precision

Random 0.020 0.350 0.980 0.960 0.018 0.000 0.095 0.120

Average 0.020 0.330 0.920 0.900 0.000 1.000 0.116 0.030

Bandwagon 0.020 0.350 0.900 0.960 0.015 0.000 0.108 0.040

Segment 0.050 0.280 0.980 – 0.013 0.000 0.103 0.110

RB – – – – 0.014 1.000 0.109 0.093

Love/hate 0.010 0.350 – – 0.017 1.000 0.110 0.058

Recall

Random 0.680 1.000 1.000 1.000 0.018 0.000 0.883 0.120

Average 0.620 1.000 1.000 1.000 0.000 0.857 0.874 0.030

Bandwagon 0.650 1.000 1.000 1.000 0.015 0.000 0.885 0.040

Segment 0.650 0.920 1.000 – 0.013 0.000 0.910 0.110

RB – – – – 0.014 0.143 1.000 0.078

Love/hate 0.670 1.000 – – 0.017 0.571 1.000 0.006
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with the hierarchical clustering-based detection method, which is proposed for private

environments. We evaluated the schemes in terms of precision and recall by conducting

experiments on two real data sets.

Our key findings can be summarized as follows:

1. The most successful detection methods are the kNN classifier and k-means methods.

However, the kNN classifier requires a training data set. The k-means method might

isolate a great number of real profiles, which will negatively affect system accuracy.

2. The PCA algorithm performs better for the data set including ratings with larger range.

It classifies profiles according to the covariance value. When the rating range is larger,

the covariance value of genuine profiles becomes larger. Shilling profiles have smaller

covariance value. Thus, PCA then can successfully differentiate them.

3. Although the kNN classifier requires a training set for detection, it might be considered

the best algorithm of the presented detection algorithms for both non-private and

private environments according to the empirical outcomes.

4. The success of the Chirita algorithm is generally low compared to other algorithms,

particularly for attacks with a smaller attack size.

5. With increasing filler size values, in general, the detection performance of the

detection method for both data sets decreases.

6. The methods, in general, perform better for larger attack size values due to increasing

number of attacks.

7. Increasing bmax values negatively affect the performance of the algorithms.

8. Smaller rmax values improve the detection performance of all algorithms except the

Chirita method due to smaller randomness.

We are planning to develop new detection methods to reduce the disadvantages of these

algorithms. We also want to investigate how to further improve the success of the existing

detection algorithms. In addition to numeric ratings-based recommendation schemes, there

are binary ratings-based prediction algorithms. Therefore, we are planning to develop

detection algorithms that can filter out binary ratings-based shilling profiles. Another

important future research is to study how shilling attacks affect the top-N recommendation

Table 10 Comparison of detec-
tion algorithms for PPCF

The best outcomes are given in
bold

Algorithm Chirita kNN k-means PCA Hierarchical

Precision

Random 0.221 0.872 0.245 0.340 0.003

Average 0.000 0.938 0.308 0.650 0.918

Bandwagon 0.209 0.817 0.260 0.090 1.000

Segment 0.175 0.873 0.297 0.090 1.000

RB 0.195 0.962 0.290 0.082 1.000

Love/hate 0.204 0.884 0.231 0.057 0.640

Recall

Random 0.221 0.974 1.000 0.340 0.002

Average 0.000 0.987 1.000 0.650 0.830

Bandwagon 0.209 0.987 1.000 0.090 0.999

Segment 0.175 0.805 1.000 0.090 0.967

RB 0.195 0.987 1.000 0.082 1.000

Love/hate 0.204 0.987 1.000 0.057 0.329
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lists. In other words, we are planning to scrutinize how shilling attacks change the position

or rank of the targeted items in top-N recommendation lists.
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