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Abstract One limitation of most existing probabilistic latent topic models for document

classification is that the topic model itself does not consider useful side-information,

namely, class labels of documents. Topic models, which in turn consider the side-infor-

mation, popularly known as supervised topic models, do not consider the word order

structure in documents. One of the motivations behind considering the word order structure

is to capture the semantic fabric of the document. We investigate a low-dimensional latent

topic model for document classification. Class label information and word order structure

are integrated into a supervised topic model enabling a more effective interaction among

such information for solving document classification. We derive a collapsed Gibbs sampler

for our model. Likewise, supervised topic models with word order structure have not been

explored in document retrieval learning. We propose a novel supervised topic model for

document retrieval learning which can be regarded as a pointwise model for tackling the

learning-to-rank task. Available relevance assessments and word order structure are inte-

grated into the topic model itself. We conduct extensive experiments on several publicly

available benchmark datasets, and show that our model improves upon the state-of-the-art

models.
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1 Introduction

Most existing probabilistic latent topic models such as Latent Dirichlet Allocation (LDA)
(Blei et al. 2001, 2003) are unsupervised probabilistic topic models which analyze a high

dimensional term space and discover a low-dimensional topic space (Blei et al. 2003;

Steyvers and Griffiths 2007; Blei and Lafferty 2009; Blei 2012). They have been employed

for tackling textmining problems (Sun et al. 2012) including document classification (Jameel

and Lam 2013b; Rubin et al. 2012; Li et al. 2015) and document retrieval (Wei and Croft

2006;Wang et al. 2007; Chen 2009; Yi and Allan 2009; Egozi et al. 2011; Andrzejewski and

Buttler 2011; Wang et al. 2011, 2013a; Lu et al. 2011; Yi and Allan 2008; Cao et al. 2007a;

Park and Ramamohanarao 2009; Duan et al. 2012). These models can achieve better per-

formance via detecting the latent topic structure and establishing a relationship between the

latent topic and the goal of the problem. One limitation of unsupervised topic models for

document classification is that the topic model itself does not consider the class labels of

documents during inference. Various advantages of considering this variable in the latent

topic models have been discussed in Zhu et al. (2012a), and Blei and McAuliffe (2008).

Another limitation of latent topicmodels is that they do not exploit theword order structure of

the documents. Someworks attempt to integrate the class label information into a topicmodel

for solving document classification, for example, supervised Latent Dirichlet Allocation

(sLDA) (Blei and McAuliffe 2008), multi-class supervised Latent Dirichlet Allocation

(mcLDA) (Wang et al. 2009), supervised Hierarchical Dirichlet Processes Zhang et al.

(2013), Storkey and Dai (2014), and maximum margin supervised topic model, MedLDA
(Zhu et al. 2012a). These models have shown to improve document classification perfor-

mance (Zhu et al. 2013a; Jiang et al. 2012; Zhu et al. 2014). However, one common limi-

tation of the above models is that they do not make use of the word order structure in text

documents that could interact with the class label information for solving the document

classification task. Obviously, technical challenges in considering the word order structure in

a supervised topic model are high. First, the mathematical derivation of Gibbs sampling

equations need to be revised from that of the unigram models as our classification model

considers distribution over bigrams. Such requirement involves refinement based on theo-

retical aspect. Bag-of-words models assume exchangeability in the probability space,

whereas models which maintain the order of words in the document relax such a strong

assumption (Aldous 1985). The form of input data to the model changes from the traditional

word document co-occurrence matrix to full documents with word order.

Likewise, unsupervised topic models such as Topical N-Gram (TNG) (Wang et al. 2007;

Wang and McCallum 2005) and Latent Dirichlet Allocation (LDA) have been used in

developing document retrieval model (Wang et al. 2007; Wei and Croft 2006). But they

have not been explored for document retrieval learning which can be essentially cast into a

learning-to-rank problem (Hang 2011). Learning-to-rank models make use of available

relevance judgment information of a document for a query in the training process. The task

is then to predict a desired ordering of documents. Several learning-to-rank models have

been introduced, for example, Wang et al. (2014), Zong and Huang (2014), Yu et al.

(2014) and Niu et al. (2014), but none of them considers the similarity between the

document and the query under a low-dimensional topic space within the topic model itself.

The main idea in both of our models is to conduct posterior regularization (Ganchev

et al. 2010) in a Bayesian inference parameter learning setup (Zhu et al. 2014). In posterior

regularization using Bayesian inference, we intend to find a new desired posterior which is

regularized using a regularization model. In our framework, our regularization is due to a
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maximum margin classifier which mainly helps predict the relevant class of the data. The

notion is that for points which are difficult to classify by the classifier, the classifier gets an

extra classifying signal from the topic model to help classify that point to its correct class.

Such hard points are mainly located at the margin of the classifier or may be generally mis-

classified by the classifier without any latent topic information. This posterior regular-

ization mainly is a new posterior obtained by the topic model.

1.1 Our main contributions

We propose two topic models that build upon previous works on topic models with word

order (Wallach 2006, 2008; Noji et al. 2013; Jameel and Lam 2013b, c; Kawamae 2014;

Wang et al. 2007), etc which discuss in detail the challenges, motivation, and advantages

of such models for solving various text mining tasks. One of the main advantages is that

such models can better capture the semantic fabric of the document, which is lost when the

order of words in the document is relaxed. In particular, our models incorporate the notion

of side-information within the latent topic model itself. In contrast, none of the existing

topic models with word order considers it. Side-information is mainly handled by the

maximum margin classifier which is tightly integrated into the topic model. Topic models

with word order have shown to produce more interpretable latent topics as compared to

unigram models (Wang et al. 2007; Jameel and Lam 2013b, c; Lindsey et al. 2012). In

addition, they have also shown to perform better on other quantitative tasks (Jameel and

Lam 2013b). But such models fail to take advantage of side-information to produce more

discriminative and interpretable latent topics. Our hybrid models can accomplish such

goal. Our first model is a low-dimensional latent topic model for document classification.

Class label information and word order structure are integrated into our supervised topic

model with maximum margin learning enabling more effective interaction among such

information for solving document classification. Mathematical derivation of Gibbs sam-

pling equations are quite complex due the Markovian assumption on the order of the words

for our model. Since our classification model considers the distribution over bigrams, the

framework described in Jiang et al. (2012) and Zhu et al. (2012a) needs considerable

changes due to the exchangeability (Heath and Sudderth 1976) assumption (Aldous 1985).

We adopt collapsed Gibbs sampler (Shao and Ibrahim 2000) framework with considerable

changes from Jiang et al. (2012) because it collapses out the nuisance variables and speeds

up the inference (Porteous et al. 2008). The design and the study of the interplay between

the side-information and word order is an interesting finding. Our model provides insights

about how word order interacts with the side-information in a topic model. The imple-

mentation of the model is also challenging, where the input is not the word co-occurrence

matrix, but a full document with word order.

Another contribution is that we propose a new supervised topic model for document

retrieval learning which can be regarded as a pointwise model for tackling learning-to-rank

task. Available relevance assessments and word order structure are integrated into the topic

model itself. We jointly model the similarity between the query and the document under a

low-dimensional topic space in a maximum margin framework. The main motivation for

proposing this model is that in the document retrieval learning setting, our model apart

from using the usual query-dependent features such as similarity metrics between the query

and the document and query-independent features (Qin et al. 2010) such as PageRank

(Brin and Page 1998), can also use the topic similarity feature which can help find the

similarity between the query and the document in the latent topic space. Fundamentally,

even if the words between the query and the documents do not overlap, but their low-
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dimensional representations are semantically close or the same in their latent topic

assignments, then we get a signal that they are describing about the same thematic content.

We conduct extensive experiments on several publicly available benchmark datasets, and

show that our model improves upon the state-of-the-art models. One major difference

between our model and existing learning-to-rank models is that existing learning-to-rank

models do not consider latent topic information in the learning framework. Our pointwise

learning-to-rank model lays a foundation upon which future research on document retrieval

learning can be done, for example, allowing further development of pairwise and listwise

document retrieval learning probabilistic latent topic models. Note that we develop our

model based on the design paradigm from Jiang et al. (2012) and Zhu et al. (2012a) for our

document retrieval learning and classification models. An important point to note is that

these methods have shown superior performance than the two-stage heuristic methods

which first compute the latent topic vector representation and then these vectors are fed to

another prediction model. In order to adapt the classification model for solving document

retrieval learning problem, new design has to be made. First, the definition of the dis-

criminant function needs to be designed to handle document retrieval learning task along

with the other formulations that follow the discriminant function. Second, the relevance

judgment associated with the query-document pair is also considered in our model. Third,

the prediction task on unseen query and document pairs needs to be formulated as the

prediction for the classification model will not directly work for document retrieval

learning task.

1.2 Our previous works

Recently, in Jameel and Lam (2013b) we presented a topic model which is inspired from

the Bigram Topic Model (BTM) (Wallach 2006). This model relaxes the bag-of-words

assumption, and generates collocations just like the LDA-Collocation Model (LDACOL)
(Griffiths et al. 2007). It also differs from our new models proposed in this paper as we

have incorporated side-information, where our previous model is unsupervised. Our

temporal model proposed in Jameel and Lam (2013c), also generates more interpretable

latent topics with word order. However, this model does not consider side-information and

cannot solve document retrieval learning task. Our nonparametric topic model proposed in

Jameel and Lam (2013a) significantly differs from the models proposed in this paper.

Although our model maintains the order of words, and shows promising empirical per-

formance, the model proposed in Jameel and Lam (2013a) does not incorporate side-

information and it is a nonparametric topic model. Recently, we also proposed a non-

parametric topic model where order of words is maintained (Jameel et al. 2015). This

model introduced a new non-exchangeable metaphor known as the Chinese Restaurant

Franchise with Buddy Customers (CRF-BC). This model is significantly different from the

models proposed in this work in that the CRF-BC model does not incorporate side-

information. Also, the model is well suited for generated collocations and is nonparametric.

2 Related work

Unsupervised and supervised topic models have been applied on the document classifi-

cation task (Blei et al. 2003; Blei and McAuliffe 2008; Wang et al. 2013b). An advantage

that supervised topic models have over unsupervised ones is that supervised topic models
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consider the available side-information as response variables in the topic model itself. This

helps discover more predictive low dimensional representation of the data for better

classification (Zhu et al. 2012a). Blei et al., proposed the Supervised Latent Dirichlet

Allocation (sLDA) (Blei and McAuliffe 2008) model which captures the real-valued

document rating as a regression response. The model relies upon a maximum-likelihood

based mechanism for parameter estimation. Wang et al. (2009) proposed multi-class sLDA
(mcLDA) which directly captures discrete labels of documents as a classification response.

The Discriminative LDA (DiscLDA) (Lacoste-Julien et al. 2008) also performs classifi-

cation in a different mechanism than sLDA. Different from the above models, Zhu et al.

(2012a) proposed Maximum Entropy Discrimination LDA model known as MedLDA that

directly minimizes a margin based loss derived from an expected prediction rule. The

MedLDA model uses a variational inference method for parameter estimation. Subse-

quently, Markov Chain Monte Carlo techniques were proposed in Zhu et al. (2013a, b, c)

and Jiang et al. (2012). Ramage et al. (2009) proposed a supervised topic model which

jointly models available class labels and text content by defining a one-to-one corre-

spondence between latent topics and class label information. This allows their model to

directly learn word-tag correspondences in the topic model itself. What has not been

studied in supervised topic modeling is the role that the word order structure in the text

content that could play along with the side-information in the document classification task.

Our proposed supervised topic model falls in the class of parametric topic models where

the number of latent topics has to supplied by the user, but recently, Kawamae Kawamae

(2014) presented a nonparametric supervised n-gram topic model based on a Pitman–Yor

process prior (Pitman and Yor 1997) for phrase extraction which takes the advantage of

labels during training process. However, it cannot perform document retrieval learning as

in our model. Moreover, in Bartlett et al. (2010), it has been stated that nonparametric

models with Pitman–Yor process priors cannot scale to large scale datasets. There are other

proposed supervised nonparametric topic modeling approaches such as (Perotte et al.

2011; Storkey and Dai 2014; Lakshminarayanan and Raich 2011; Xie and Passonneau

2012; Liao et al. 2014; Acharya et al. 2013). These models too cannot perform document

retrieval learning task. In addition, such nonparametric topic models are computationally

very expensive (Wallach et al. 2009).

Unsupervised topic models have also been used to perform document classification. As

mentioned above, they do not make use of the available side-information in the topic

model itself. The LDA model is one example and it achieves better performance than that

of Support Vector Machines (SVM) (Joachims 1998; Cortes and Vapnik 1995; Vapnik

2000). In (Rubin et al. 2012), the authors showed a model that maintains the order of words

in documents which helps achieve better classification results. In (Li and McCallum 2006),

the authors presented an unsupervised hierarchical topic model which generates super and

sub-topics. The authors showed good classification performance than the comparative

methods. The model is represented by a Directed Acyclic graph, which has a capability to

capture correlations between two levels of topics. In fact, topic models have also been used

on other datasets apart from text documents for classification under the unsupervised

setting (Bicego et al. 2010; Pinoli et al. 2014).

It has been studied in the past that considering the order of words in documents helps

improve both quantitative and qualitative performance of probabilistic topic models. For

example, Wallach (2008) has studied that word order is an important component in many

applications such as natural language processing, speech recognition, text compression, etc.

Therefore, bag-of-words models might not be very suitable for such applications. Wallach

proposed the Bigram Topic model (BTM) which is an extension to the LDAmodel. The BTM
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adopts a Markovian assumption on the order of words in documents, and has shown to

perform better than the LDA model in predictive tasks. But the BTM had limitation in that it

only generates bigram words, which may not be desirable for some tasks. Griffiths et al.

(2007) proposed theLDA collocationmodel (LDACOL) which can generate either unigram or

bigram words based on the context information. But in LDACOL model, only the first term

has a topic assignment whereas the second term does not, which was addressed in the topical

n-grammodel (TNG) (Wang andMcCallum 2005;Wang et al. 2007). Some improvements to

theBTM have been proposed inNoji et al. (2013). In all these works it has been suggested that

word order plays important role in topic models. In terms of qualitative results, words appear

more interpretable (Lindsey et al. 2012), and in terms of quantitative results it has been

shown to improve many applications such as document classification (Jameel and Lam

2013b), information retrieval (Wang et al. 2007), etc.

Learning-to-rank models have been extensively investigated and they can be catego-

rized into pointwise, pairwise, and listwise approaches (Liu 2009). One early work used

some bag-of-features in training a SVM model in order to conduct document retrieval

learning which can be regarded as a pointwise approach for the learning-to-rank task

(Nallapati 2004). This approach predicts a binary relevance prediction. Documents are then

ranked based on the confidence scores given by the discriminative classifier. Subsequently

other discriminative learning-to-rank models have been proposed such as those which

handle multi-class relevance assessments (Busa-Fekete et al. 2013; Li et al. 2007). Many

state-of-the-art learning-to-rank models have been proposed recently. For example, Gao

et al. (Gao and Yang 2014) recently presented a listwise learning-to-rank model, a novel

semi-supervised rank learning model which is extended to an adaptive ranker to domains

where no training data is available. In (Lai et al. 2013), the authors presented a sparse

learning-to-rank model for information retrieval. Dang et al. (2013) proposed a two-stage

learning-to-rank framework to address the problem of sub-optimal ranking when many

relevant documents are excluded from the ranking list using bag-of-words retrieval models.

In (Tan et al. 2013), the authors proposed a model which directly optimizes the ranking

measure without resorting to any upper bounds or approximations. However, a major

difference between these learning-to-rank models and our proposed document retrieval

learning model is that our model considers the latent topic information unified within a

discriminative framework.

In the past, few proposals have been made to conduct document retrieval where the low-

dimensional latent semantic space has been used. In (Li and Xu 2014), the authors sum-

marize many of those works. The main motivation for incorporating the semantic infor-

mation in document retrieval task is mainly to compute the similarity between the latent

factors which is based on the semantic content of the document. In (Bai et al. 2010), the

authors proposed a discriminative model called supervised semantic indexing which can be

trained on labeled data. Their model can compute query-document and document-docu-

ment similarity in the semantic space. Their focus is primarily on traditional document

retrieval than learning-to-rank using an extensive set of feature values. Gao et al. (2011),

and Jagarlamudi and Gao (2013) proposed topic models which jointly consider the query

and the title of the document to conduct document retrieval task using a language modeling

framework. Their motivation for considering title fields in the documents is mainly because

queries (Broder 2002) as well as titles are mostly short in nature, thus short document titles

could represent more informative power than the entire document for a query. One dif-

ference between our model and their framework is that their model is not designed to solve

the learning-to-rank task considering feature instances. Our model jointly learns the query

and document pair along with the associated relevance label in the latent topic space.
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Our document retrieval learning framework is also closely related to some works in

posterior regularization. The objective of the posterior regularization framework is to

restrict the space of the model parameters on unlabeled data as a way to guide the model

towards some desired behaviour. In (Ganchev et al. 2010), the authors proposed a

framework which incorporates side-information into the parameter estimation in the form

of linear constraints on posterior expectations. Recently, Zhu et al. (2012b, 2014) intro-

duced Bayesian posterior regularization under an information theoretic formulation, and

applied their framework on infinite latent SVM. Earlier, the same authors had extended the

Zellner’s view of the optimization framework described in Zellner (1988) to propose a

regularized Bayesian regularization framework for multi-task learning problem (Zhu et al.

2011). The authors mainly added a convex function to the optimization framework pro-

posed by Zellner. Models such as MedLDA (Zhu et al. 2009, 2012a) and some of its

extension are based on such frameworks (Zhu et al. 2013a; Jiang et al. 2012).

Relational topic models, such as the one described in Chang and Blei (2009), incor-

porate side-information in the form of connections on information networks. Such con-

nections can be social network friends as used in Yuan et al. (2013) or scholar citation

networks. In (Tang et al. 2011), the authors proposed a topic model with supervised

information for advertising. These models are not designed to handle document retrieval

learning which can be cast as a learning-to-rank problem. Also, in our model we incor-

porate the latent topic model from the BTM model to better capture latent semantic

information. The supervising signal is used in the maximum margin framework.

3 Background

We first present a brief background in this section that would help understand our proposed

models described later. We start with a basic topic model known as Latent Dirichlet

Allocation (LDA) (Blei et al. 2003). We present the details of main part of the LDA model.

Then we will present the optimization framework of the posterior distribution obtained

from LDA. This optimization framework will be then extended to incorporate loss func-

tions from maximum-margin classifier. We will present an example of a supervised topic

model that makes use of the optimization framework of LDA by extending it to incorporate

some posterior constraints in Bayesian inference leading to what is known as regularized

Bayesian inference framework.

3.1 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) is a generative probabilistic topic model for collections

of discrete data such as text document collections. The model assumes that documents

exhibit multiple latent topics. Therefore, each document is a mixture of a number of topics.

In LDA, it represents a latent topic as a probability distribution of words taken from a

vocabulary set. A document is denoted by d 2 1; . . .;Df g where D is the total number of

documents in the collection. LetW ¼ wd
� �D

d¼1
denote all the words in all the documents in

the collection where each wd denotes the words in the document d. Nd is the number of

words in the document d. wd
n is the word at the position n in the document d. K is the total

number of latent topics as specified by the user. zd
n is the topic assignment of the word wd

n.

Z ¼ zd
� �D

d¼1
are topic assignments to all the words. H ¼ hd

� �D

d¼1
are topic distributions

for all documents. Let U ¼ /kf gK
k¼1 denote the word-topic distribution. Let V denote the
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number of words in the vocabulary. Let a be the vector denoting the hyperparameter values

for the document-topic distributions. Let b denote the vector of hyperparameter values for

the word-topic distributions.

The LDA model describes the generative procedure of each document in the collection.

Each document is generated from a mixture of topics that pervades the document. Each of

those topics is in turn responsible for generating the words without giving importance to

the order of the occurrence of the words in those documents.

The generative process of the LDA model is written as:

1. Draw topic proportion for each document d denoted as hd from Dirichlet(a), hd is the

topic proportions for a document,

2. Draw /k for each topic k from Dirichlet(b),

3. For each word wd
n in the document d,

(a) Draw a topic assignment zd
njhd from Multinomial(hd)

(b) Draw the observed word wd
njzd

n;U from Multinomial(/zd
n
)

The probability of a document collection D in LDA is given as:

p Dja; bð Þ ¼
YD

d¼1

Z
P hdja
� � YNd

n¼1

X

zd
n

P zd
njhd

� �
P wd

njzd
n; b

� �
0

@

1

Adhd ð1Þ

The posterior distribution inferred by the LDA model can be written as:

P H;Z;UjW; a; bð Þ ¼ P0 H;Z;Uja; bð ÞP WjH;Z;Uð Þ
P Wja; bð Þ ð2Þ

where PðH;Z;UjW; a; bÞ is the posterior distribution of the model. Let the prior distri-

bution represented as P0ðH;Z;Uja; bÞ, and it is defined as:

P0 H;U;Zja; bð Þ ¼
YD

d¼1

P hdja
� �YNd

n¼1

P zd
njhd

� �
 !

YK

k¼1

P /kjbð Þ ð3Þ

PðWjH;Z;UÞ is the likelihood. PðWja; bÞ is the marginal probability distribution.

3.2 Learning using Bayesian inference

Equation 2 presented in Sect. 3.1 can be further translated into an information theoretical

optimization problem (Jiang et al. 2012; Zhu et al. 2012a, 2013a, 2014). An advantage of

considering this paradigm is that it can be easily extended to incorporate some regular-

ization terms on the desired posterior distribution obtained using Bayes’ theorem. It can

lead to a learning model where the posterior distribution obtained using the Bayes’ theorem

is directly regularized using a learning model which considers side-information. The

regularizer can be obtained from the maximum-margin learning principle, and then can be

integrated into the Bayesian learning paradigm leading to regularized Bayesian inference

using maximum-margin learning. In principle, this hybrid model could achieve better

prediction performance than using a topic model or a maximum-margin classifier alone

because this hybrid model inherits the prediction power from both maximum margin

prediction learning and topic models. It is well known that maximum margin classifiers

have shown strong generalization performance (Burges 1998), and topic models have also
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shown good performance on document classification task (Rubin et al. 2012; Li and

McCallum 2006). Therefore, we can expect that the hybrid model can inherit advantages of

both of these models. When conducting posterior inference, we can directly regularize the

posterior distribution, which leads to a new posterior regularized by a constraint. Some

supervised topic models such as MedLDA (Zhu et al. 2012a), Monte Carlo MedLDA (Jiang

et al. 2012), etc. are based on this paradigm.

According to the findings described in Zellner (1988), Eq. (2) can be transformed to an

optimization problem which can be written as follows:

minimize
P H;Z;Uð Þ2P

KL P H;Z;UjW; a; bÞjjP0ðH;Z;Uja; bð Þ½ � � EP log P WjZ;Uð Þ½ �

subject to P H;Z;Uð Þ 2 P;

ð4Þ

where P is the probability distribution space, and KLðPjjP0Þ is the Kullback–Leibler

divergence from P to P0. The above optimization interpretation will be useful in our later

discussion where we will show how this technique can be used to derive a new maximum

margin learning framework using a topic model. We present how the posterior distribution

can be transformed into an optimization problem depicted in Eq. (4) in ‘‘Appendix’’.

3.3 Maximum Margin Entropy Discrimination - LDA (MedLDA)

As mentioned above, our proposed model can be regarded as a supervised topic model

where the class label information is incorporated into a topic model itself. Supervised topic

models have been used for both classification and regression tasks. One example of a

supervised topic model is supervised LDA (sLDA) (Blei and McAuliffe 2008) which is

based on extending LDA via the likelihood principle. Another recent supervised topic

model is MedLDA (Zhu et al. 2009, 2012a; Jiang et al. 2012) whose graphical model is

presented in Fig. 1. Note that in this model, b is not used explicitly, but can be used as a

prior to make the model fully Bayesian (Zhu et al. 2012a). MedLDA combines a maximum

margin learning algorithm based on Support Vector Machines (SVM) for label prediction,
and a topic model based on LDA for the semantic content of the words.

The class label for the document d is denoted by yd which takes on one of the values

Y ¼ 1; . . .;Mf g. Let zd denote a K dimensional vector with each element

zd
k ¼ 1

Nd

PNd

n¼1 Iðzd
n ¼ kÞ. Ið:Þ is an indicator function which equals to 1 if the predicate

holds else it is 0. f ðy; zdÞ is a MK-dimensional vector whose elements from (y � 1)K to yK

are zd and the rest are all 0. Let g denote the parameters of the maximum margin classi-

fication model. Let C be a regularization constant, nd be the slack variable, and ldðyÞ be the

wd
nzdnθdα φ

yd η

Nd

D

K

M

Fig. 1 Graphical representation of the MedLDA model

Inf Retrieval J (2015) 18:283–330 291

123



loss function for the label y; all of which are positive. n are the nonnegative auxiliary

parameters and are usually referred to as the slack variables. Consider the Zellner’s

interpretation shown in Equation 4. In a regularized Bayesian framework setting a convex

function is added to the optimization framework described above (Zhu et al. 2011). One

choice of such convex function is to borrow ideas from a maximum margin classifier

model, and this equation can be written as:

minimize
Pðg;H;Z;UÞ2P;n

KL½PðH;Z;UjW; a; bÞjjP0ðH;Z;Uja; bÞ� � EP½log PðWjZ;UÞ� þ BðnÞ

subject to Pðg;H;Z;UÞ 2 PðnÞ;
ð5Þ

where BðnÞ is a convex function which usually refers to the hinge loss function of the

maximum margin classifier. g denotes the parameters of the maximum margin classifier.

PðnÞ is the subspace of probability distribution that satisfies a set of constraints. One can

note that as stated in Sect. 3.2, we can add a loss function to the optimization view of the

Bayes’ theorem obtained from LDA. Thus the interpretation given by Zellner, can be easily

used to develop supervised topic models for prediction tasks.

Considering a maximum margin based topic model for label prediction, MedLDA, the
soft-margin for MedLDA can be written as:

minimize
p g;H;Z;Uð Þ2P;n

KL PðH;Z;UjW; a; bÞjjP0ðH;Z;Uja; bÞ½ � � EP log P WjZ;Uð Þ½ � þ C

D

XD

d¼1

nd

subject to Ep g|f yd; zd
� �

� f y; zd
� �� �

� ldðyÞ; nd � 0; 8d; 8y;

ð6Þ

One can see from the above equation that MedLDA conducts regularized Bayesian infer-

ence which is of the same form as depicted in Eq. (5). Therefore, MedLDA is a hybrid topic

model which takes advantages from topic model and maximum margin learning frame-

work. Equation (6) can also be written as:

minimize
P g;H;Z;Uð Þ2P;n

KL P H;Z;UjW; a; bð ÞjjP0 H;Z;Uja; bð Þ½ � � EP log P WjZ;Uð Þ½ �

þ C

D

X

d

argmaxy ld yð Þ
� �

� EP g| f yd; zd
� �

� f y; zd
� �� �� �

The component 1
D

P
d argmaxyðldðyÞÞ � Ep½g|ðf ðyd; zdÞ � fðy; zdÞÞ� is the hinge loss which

is defined as an upper bound of the prediction error on the training data.

One characteristic of MedLDA is to conduct posterior regularization where the pos-

terior distribution obtained using a topic model is regularized with maximum margin

constraints. This leads to a posterior which is mainly helpful in classifying those points

which lie on the margin of the classifier or are mis-classified. The latent topic information

supplied by the topic model helps classify such hard instances, for which the maximum

margin classifier would find it difficult to accomplish. This mechanism makes this model

different from those two stage approaches where one can compute the latent topic

information using a topic model, and then use that latent topic information as an added

feature in the classification task. Two stage approach for prediction might involve error

propagation from one stage to another, which can be mitigated in such single stage

models as MedLDA.
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4 Supervised topic model with word order for document classification

4.1 Model description

We propose a document classification model based on a latent topic model that integrates

the class label information and the word order structure into the topic model itself. It

enables interaction among such information for more effective modeling for document

classification. There are two main components. One component is a topic model with word

order. The other component is the maximum margin model. One fundamental difference

between MedLDA and our proposed model is that our model exploits the word order

structure of a document. The design of the above two components leads to latent topic

representation that is more discriminative, and also advantageous for supervised document

classification learning problem.

The document content modeling component of our model is primarily a bigram topic

model which captures dependencies between the words in sequence. Each topic is char-

acterized by a distribution of bigrams. The goal of our model is to generate a latent topic

representation that is suitable for classification task. We adopt the same notation from

Sect. 3. In our model, word generation is defined by the conditional distribution

Pðwd
njwd

n�1; z
d
nÞ. The word-topic distribution denoted by U is different from MedLDA.

U ¼ /kvf gV ;K
v;k¼1 are word-topic distribution. We depict the graphical model of our model in

Fig. 2. Note that we show the hyperparameter b explicitly in the graphical model. The

generative process of our model is depicted below:

wd
n

wd
n−1 wd

n+1aaa a a a

zdnzdn−1 zdn+1aaa a a a

θd

α

φ β

yd

η

D

KVM

Fig. 2 Graphical representation of our proposed document classification model
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1. Draw Multinomial distribution /zw from a Dirichlet prior b for each topic z and each

word w,

2. For each document d

(a) Draw a topic proportion h d for the document d from Dirichlet (a ), where

Dirichlet (a) is the Dirichlet distribution with the parameter a,

(b) For each word wn
d,

(i) Draw a topic zn
d from Multinomial (h d)

(ii) Draw a word wn
d from the distribution over words for the context defined by

the topic zn
d and the previous word wn-1

d from Multinomial (/wd
n�1

zd
n
)

3. Draw the class label parameter g from Normal (0; g0), where g0 is the hyperparameter

for g and is sampled M times, where M is the number of classes considered in the

classification problem,

4. Draw a class label ydjðzd; gÞ according to Eqs. (8)–(10).

Let bd denote fbd
n;nþ1g

Nd�1
n¼1 , where bd

n;nþ1 denotes the words at the positions n and n þ 1 in

the document d written as bd
n;nþ1 ¼ ðwd

n;w
d
nþ1Þ. W ¼ fbdgD

d¼1 is the word order informa-

tion. The prior distribution defined in the model is expressed as:

P0ðH;U;ZÞ ¼
YD

d¼1

PðhdjaÞ
YNd

n

P zd
njhd

� �
 !

YK

k¼1

YV

v¼1

P /kvjbð Þ ð7Þ

In our model, the objective is to infer the joint distribution Pðg;H;Z;UjW; a; bÞ, where g

is a random variable representing the parameter of the classification model. In addition, the

discriminant function is defined as:

F y; g; z; bd
� �

¼ g|f y; zd
� �

ð8Þ

The above latent function cannot be directly used for prediction tasks for an observed input

document as it involves random variables. Therefore, we take the expectation and define

the effective discriminant function as follows:

F y; bd
� �

¼ E
p g;zjbdð Þ F y; g; z; bd

� �� �
ð9Þ

The prediction rule incorporating the word order structure in the classification task is:

ŷ ¼ argmax
y

F y; bd
� �

ð10Þ

Let C be a regularization constant, nd be the slack variable and ldðyÞ be the loss function

for the label y; all of which are positive. The soft-margin framework for our model can be

written as:

minimize
P g;H;Z;Uð Þ2P;n

KL P g;H;Z;UjW; a; bð ÞjjP0 g;H;Z;Uja; bð Þ½ � � Eq log P WjZ;Uð Þ½ �

þ C

D

X

d

argmaxy ld yð Þ
� �

� EP g| f yd; zd
� �

� f y; zd
� �� �� �

subject to EP g| f yd; zd
� �

� f y; zd
� �� �� �

� ldðyÞ � nd; nd � 0; 8d; 8y;

ð11Þ
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4.2 Posterior inference

We use Collapsed Gibbs sampling for computing the posterior inference considering the

word order structure in the document. Collapsed Gibbs sampler collapses out the nuisance

parameters, and speeds up the posterior inference (Shafiei and Milios 2006). Eq. (11) can

be solved in two steps in alternate manner. The first step is to estimate PðgÞ given

PðH;Z;UÞ. In the second step, we need to estimate PðH;Z;UÞ given PðgÞ. We can

estimate PðgÞ from the algorithm described in Jiang et al. (2012) where we make use of

Lagrange multipliers, but our topic modeling component is different and thus the distri-

bution PðH;Z;UÞ needs to be estimated. We define j as follows:

j ¼
XD

d¼1

X

yd

kd
ydDf yd;E zd

� �� �
; ð12Þ

where j is the mean of classifier parameters g. When we place a � with j, it denotes the
optimum solution. We describe an outline for estimation of topical bigrams below.

First, we can factorize the topic model component and the maximum margin parameter

component as follows:

P g;H;U;Zð Þ ¼ P gð ÞP H;U;Zð Þ ð13Þ

Let Df yd; zd
� �

be defined as follows:

Df yd; zd
� �

¼ f yd; zd
� �

� f y; zd
� �

ð14Þ

Based on Eq. (13), the formulation for the optimum solution is given as follows:

P H;Z;Uð Þ / P H;Z;U;Wð Þe
j �ð Þ|
PD

d¼1

P
yd kd

yd

� 	�

Df yd ;zdð Þ ð15Þ

where kd
yd is the Lagrange multiplier. The problem now is to efficiently draw samples from

PðH;Z;UÞ and also compute the expectation statistics of the maximum margin classifier

used in our model. In order to simplify the integrals, we can take advantage of conjugate

priors. We can integrate out the intermediate variables H;U and build a Markov chain

whose equilibrium distribution is the resulting marginal distribution PðZÞ.
Let Z be a normalization constant. We get the following marginalized posterior dis-

tribution for our model after integrating out H;U:

P Zð Þ ¼ P W;Zja; bð Þ
Z

e
j �ð Þ|
PD

d¼1

P
y
kd

yð Þ�Df y;zdð Þ ð16Þ

The original BTM model proposed in Wallach (2006) used EM algorithm for doing the

approximation. But we have used collapsed Gibbs sampler. Therefore, in order to solve the

first component on the right hand side of the above equation, collapsed Gibbs sampling for

the model has to be implemented. The second component can be solved using any existing

SVM implementation with some modifications based on the formulations used in our

model.

Let mzwv be the number of times the word w is generated by the topic z when preceded

by the word v. qdz is the number of times a word is assigned to the topic z in the document

d. The element jydk represents the contribution of the topic k in classifying a data point to
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the class yd. The transition probability along with the maximum margin constraint can be

expressed as:

P zd
njW;Z:n; a; b

� �
¼

azd
n
þ qdzd

n
� 1

PK
z¼1 az þ qdzð Þ � 1

� e
1

Nd

P
y
kd

yð Þ� j�
yd k

�j�
yk

� 	 !

�
bwd

n
þ mzd

nwd
nwd

n�1
� 1

PV
v¼1 bv þ mzd

nwd
nv

� 	
� 1

ð17Þ

Note that all the counts used above exclude the current case i.e., the word being visited

during sampling. When we use a : sign in the subscript of a variable, it means that the

variable corresponding to the subscripted index is removed from the calculation of the

count. In the above equation, �1 mainly arises from the chain rule expansion of the

Gamma function. The posterior estimates of the model can be written as:

P zd
njW;Z:n; a; b

� �
¼

azd
n
þ qdzd

nPK
z¼1 az þ qdzð Þ

� e
1

Nd

P
y
kd

yð Þ� j�
yd k

�j�
yk

� 	 !

�
bwd

n
þ mzd

nwd
nwd

n�1

PV
v¼1 bv þ mzd

nwd
nv

� 	

ð18Þ

4.3 Prediction for unseen documents

Our prediction framework also follows similar strategy for unseen documents using topic

models as used in many other works (Jiang et al. 2012; Yao et al. 2009). Let the unseen

document be denoted as dnew. We consider the notion of word order. The input for pre-

diction task are unlabeled test data. The output is to predict the label for the new document

dnew. We compute the point estimate of topics obtained in the matrix U from the training

data. This matrix is used in the prediction task. When the unseen document is given to the

model, we need to determine the latent dimensions zdnew

for this unseen document. This is

computed using the MAP estimate of U to obtain Û. Specifically, we compute the zdnew

n in

each new document dnew as follows:

P zdnew

n jzdnew

:n

� �
/ /̂

zdnew
n ;wdnew

n ;wdnew

n�1ð Þ azdnew
n

þ qdzdnew
n

� 	
ð19Þ

Expectation statistics computation can be derived in a similar manner as the classifier

described in Jiang et al. (2012).

5 Document classification experiments

5.1 Experimental setup

We conduct extensive experiments on document classification using some benchmark test

collections. We also compare with many related comparative methods. In addition, we

present some high quality topical words showing how our model generates interpretable

topical words. In all our experiments for topic models, we run the sampler for 1000
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iterations.1 We have also removed stopwords2 and performed stemming using Porter’s

stemmer.3 Text pre-processing and vector space generation was done using Gensim

package.4 Fivefold cross validation is used as in Zhu et al. (2012a). In each fold, the

macro-average across the classes is computed. Each model is run for five times. We take

the average of the results obtained for all the runs and in all the folds.

We use four datasets, namely, 20 Newsgroups dataset,5 OHSUMED-23 dataset.6

TechTC-300 Test Collection for Text Categorization,7 and Reuters 21578 text catego-

rization collection.8 In OHSUMED-23, as adopted in Joachims (1998), we used the first

20,000 documents. We present the details about the datasets in Table 1. In the table, the

first column presents the names of different datasets. The second column describes the total

number of classes in the dataset. The third column presents the total number of documents

in that entire dataset. The fourth column shows the average number of documents in the

each class. The fifth column presents the average length of the documents in the entire

dataset. One can see that we have used both small and large document collections.

In all our datasets, we used the validation set for determining the number of topics. The

validation set consisted of approximately 20 % of the documents. The training set com-

prised of approximately 60 % documents and the test set consisted of approximately 20 %

of the documents. We use Precision, Recall and F-measure to measure the classification

performance. The definitions for these metrics in the classification task can be found in

Jameel and Lam (2013b). We solve multiclass classification problem by decomposing into

binary classification problems in each class. But this procedure also introduces the problem

related to unbalanced data as stated in Nallapati (2004). We therefore adopted the tech-

nique of under-sampling in which samples from majority class in both classes are made

equal (Nallapati 2004). Empirical evidence suggests that such method generally produces

better results as pointed by Zhang and Mani (2003). We used the training set to train the

model and we varied the number of topics from 10 to 100 in steps of 10 as in Jameel and

Lam (2013b). Then the trained model was validated on the validation set. We performed

this procedure in each fold and computed the average F-measure. The number of topics

which produced the best F-measure is the output of the validation process process. Then we

used the test set to test the models using the number of topics obtained from the validation

process. We set the loss function (ldðyÞ) to a constant function 16 just as in Jiang et al.

(2012). For simplicity, we assume all symmetric bigram Dirichlet prior, and we set the

value of b to 0.01. The settings for other hyperparameters remain the same as in Jiang et al.

(2012) for fair comparison. As experimented in Wang and McCallum (2006), we also

found not much variation in results with different hyperparameter values. Hyperparameter

values of the other topic models (supervised and unsupervised) are the same as used in

their respective works and their available publicly shared implementations. This ensures

that we are using the best configurations for each of the models. In (Jiang et al. 2012), the

1 In (Jiang et al. 2012), the authors have found out empirically that less than 100 iterations are sufficient for
convergence of the collapsed Gibbs sampler. In contrast, we have set much a higher value.
2 http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop.
3 We also tested the models without performing stemming. We found that stemmed collections fared better.
4 https://radimrehurek.com/gensim/.
5 http://qwone.com/*jason/20Newsgroups/.
6 http://disi.unitn.it/moschitti/corpora.htm.
7 http://techtc.cs.technion.ac.il/techtc300/techtc300.html.
8 http://ai-nlp.info.uniroma2.it/moschitti/corpora/Reuters21578-Apte-90Cat.tar.gz.
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authors conduct extensive experimentation to find the best C value. We use the same C

value for fair comparison. We also found that different values of C did not have much

effect on the results.

We chose a wide range of comparative methods as follows. (1) Gibbs MedLDA (Zhu

et al. 2013a) denoted as gMedLDA, (2) Variational MedLDA (Zhu et al. 2009) denoted as

vMedLDA, (3) Supervised LDA denoted as sLDA (Blei and McAuliffe 2008), (4) Dis-

criminative LDA (Lacoste-Julien et al. 2008) denoted as DiscLDA, (5) LDA (Blei et al.

2003), (6) We use LDA?SVM in the same way as described in (Zhu et al. 2012a), (7)

Bigram Topic Model BTM (Wallach 2006), (8) Following procedure as adopted for

LDA?SVM, we do the same for BTM?SVM, (9) LDA-Collocation model (LDACOL)
(Griffiths et al. 2007), (10) LDACOL?SVM, (11) Topical N-gram (TNG) (Wang et al.

2007), (12) TNG?SVM, Joachims (1998), (13) a recently proposed model NTSeg (Jameel

and Lam 2013b), (14) NTSeg?SVM, (15) SVM. The features for linear SVM are same as

that in Zhu et al. (2013a).

5.2 Quantitative results

We present our main classification results in Tables 2, 3, 4 and 5. We observe that our

model has outperformed all the comparative methods. In all datasets, our F-measure results

are statistically significant based on the sign test with a p value \0.05 against each of the

comparative methods. By maintaining the word order and considering an extra side-in-

formation helps in improving classification results to a great extent. Since we are capturing

the inherent word order semantics in the document, just like other structured unsupervised

topic models, we obtained improvements over the comparative methods.

In Table 6 we present the results for the number of topics obtained during the validation

process. These topics were subsequently used in the test set to compute the final results that

we have depicted in Tables 2, 3, 4 and 5.

In Tables 7, 8, 9, and 10, we study the effect of document classification performance as

measured by F-measure when we vary the number of topics from 10 to 100 for topic

models in different datasets. As we begin from K ¼ 10 in the 20 Newsgroups dataset, we

see that our model does not perform very well in the beginning. Nevertheless, it still

outperforms other topic models. Our model performs very well after K � 70. Similarly, in

the OHSUMED-23 dataset, our model also does not perform well until K � 60. Never-

theless, it still outperforms other topic models. Then it gains good improvement as we

increase the number of latent topics. Also, the unsupervised n-gram9 topic models’ per-

formance cannot be discarded. One observation is that the recently proposed unsupervised

n-gram topic model NTSeg has done well when compared to other unsupervised topic

Table 1 Details about different datasets used in the document classification experiments

Dataset name Number of
classes

Total
documents

Average
document per class

Average
document length

20 Newsgroups 20 20,417 1024 1638

OHSUMED-23 23 20,000 923 700

TechTC-300 295 57,706 47 12,892

Reuters-21578 91 15,437 85 1017

9 By n-gram we mean either a unigram, a bigram, etc.
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model in the 20 Newsgroups dataset. Similar pattern is observed in the OHSUMED-23

dataset. In the TechTC300, all the models show poor performance. This shows that the

dataset has difficult examples which the topic models find difficult to classify. In Reuters

too our model shows good performance as the number of latent topics is varied from 10 to

100. It suggests that considering the word order can offer some contributions to document

classification performance. Our model can outperform the other comparative methods

because it inherits the advantages of both n-gram unsupervised topic models and

Table 2 Table depicting preci-
sion, recall and F-measure values
for different models in the 20
Newsgroups dataset

Best results are shown in bold

Models Precision Recall F-measure

Our Model 0.880 0.939 0.875

gMedLDA 0.869 0.869 0.868

vMedLDA 0.865 0.865 0.867

sLDA 0.805 0.812 0.809

DiscLDA 0.756 0.780 0.751

LDA 0.859 0.858 0.858

LDA?SVM 0.835 0.920 0.862

BTM 0.877 0.848 0.862

BTM?SVM 0.835 0.920 0.862

LDACOL 0.843 0.914 0.862

LDACOL?SVM 0.845 0.932 0.864

TNG 0.845 0.932 0.865

TNG?SVM 0.832 0.866 0.861

NTSeg 0.766 0.905 0.866

NTSeg?SVM 0.869 0.845 0.858

SVM 0.825 0.910 0.852

Table 3 Table depicting preci-
sion, recall and F-measure values
for different models in the
OHSUMED-23 dataset

Best results are shown in bold

Models Precision Recall F-measure

Our Model 0.496 0.910 0.639

gMedLDA 0.456 0.814 0.633

vMedLDA 0.489 0.821 0.629

sLDA 0.456 0.802 0.620

DiscLDA 0.402 0.735 0.587

LDA 0.465 0.801 0.626

LDA?SVM 0.463 0.798 0.631

BTM 0.422 0.767 0.610

BTM?SVM 0.545 0.776 0.622

LDACOL 0.534 0.742 0.630

LDACOL?SVM 0.534 0.744 0.625

TNG 0.432 0.711 0.623

TNG?SVM 0.442 0.710 0.620

NTSeg 0.531 0.779 0.634

NTSeg?SVM 0.522 0.765 0.623

SVM 0.483 0.903 0.630
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supervised topic models. Note that as exemplified in Jameel and Lam (2013b) and many

other works which follow word order, computational complexity of the models that follow

word order is generally higher than those of their bag-of-words counterparts. Nevertheless,

models incorporating word order structure have shown superior performance than the bag-

of-words models (Jameel and Lam 2013b). Several attempts have been made recently to

speed up the inference procedures for both supervised and unsupervised topic models such

as Zhu et al. (2013b, (2013c) and Porteous et al. (2008).

Table 4 Table depicting preci-
sion, recall and F-measure values
for different models in the
TechTC300 dataset

Best results are shown in bold

Models Precision Recall F-measure

Our Model 0.321 0.315 0.314

gMedLDA 0.319 0.309 0.310

vMedLDA 0.319 0.309 0.310

sLDA 0.314 0.309 0.304

DiscLDA 0.311 0.308 0.303

LDA 0.303 0.304 0.301

LDA?SVM 0.302 0.305 0.305

BTM 0.304 0.305 0.304

BTM?SVM 0.304 0.304 0.301

LDACOL 0.305 0.303 0.299

LDACOL?SVM 0.304 0.305 0.299

TNG 0.304 0.306 0.302

TNG?SVM 0.304 0.301 0.296

NTSeg 0.306 0.306 0.295

NTSeg?SVM 0.308 0.304 0.298

SVM 0.314 0.311 0.309

Table 5 Table depicting preci-
sion, recall and F-measure values
for different models in the Reu-
ters dataset

Best results are shown in bold

Models Precision Recall F-measure

Our Model 0.421 0.414 0.419

gMedLDA 0.409 0.408 0.403

vMedLDA 0.413 0.408 0.408

sLDA 0.309 0.401 0.319

DiscLDA 0.309 0.399 0.311

LDA 0.311 0.401 0.321

LDA?SVM 0.311 0.401 0.321

BTM 0.312 0.401 0.320

BTM?SVM 0.311 0.401 0.321

LDACOL 0.311 0.403 0.319

LDACOL?SVM 0.311 0.402 0.309

TNG 0.313 0.401 0.311

TNG?SVM 0.313 0.403 0.312

NTSeg 0.313 0.399 0.312

NTSeg?SVM 0.314 0.402 0.311

SVM 0.413 0.409 0.402
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5.3 Examples of topical words

We present some high probability topical words in topics and compare our model with

some related n-gram and supervised topic models, including BTM (Wallach 2006),

LDACOL (Griffiths et al. 2007), TNG (Wang et al. 2007), PDLDA (Lindsey et al. 2012),

NTSeg (Jameel and Lam 2013b), MedLDA (Zhu et al. 2012a). We present top five most

Table 6 Table depicting the number of latent topics K obtained using the validation process, which was
used in the test set for different models in different datasets

Models 20 Newsgroups OHSUMED-23 TechTC300 Reuters-21578

Our Model 80 70 10 20

gMedLDA 50 40 30 20

vMedLDA 30 60 50 30

sLDA 60 60 20 10

DiscLDA 70 70 30 50

LDA 50 40 40 70

LDA?SVM 50 40 20 80

BTM 80 60 30 90

BTM?SVM 80 40 60 20

LDACOL 60 50 10 50

LDACOL?SVM 70 50 20 70

TNG 70 60 20 10

TNG?SVM 60 60 20 20

NTSeg 60 40 40 50

NTSeg?SVM 60 40 90 10

Table 7 The effect of the number of topics on document classification measured by F-measure in the 20
Newsgroups dataset

Models 10 20 30 40 50 60 70 80 90 100

Our Model 0.783 0.843 0.845 0.856 0.859 0.865 0.874 0.875 0.875 0.874

gMedLDA 0.424 0.694 0.826 0.859 0.868 0.866 0.858 0.869 0.852 0.850

vMedLDA 0.245 0.667 0.867 0.852 0.843 0.831 0.818 0.802 0.789 0.777

sLDA 0.301 0.505 0.578 0.789 0.800 0.809 0.766 0.698 0.653 0.493

DiscLDA 0.245 0.452 0.643 0.654 0.701 0.743 0.751 0.699 0.636 0.545

LDA 0.410 0.683 0.816 0.849 0.858 0.856 0.848 0.859 0.842 0.840

LDA?SVM 0.752 0.802 0.827 0.837 0.862 0.844 0.850 0.851 0.842 0.839

BTM 0.715 0.775 0.831 0.846 0.854 0.853 0.857 0.862 0.859 0.856

BTM?SVM 0.552 0.602 0.807 0.816 0.849 0.857 0.863 0.862 0.856 0.787

LDACOL 0.601 0.633 0.701 0.699 0.843 0.862 0.854 0.833 0.765 0.799

LDACOL?SVM 0.545 0.601 0.812 0.824 0.834 0.859 0.864 0.851 0.855 0.799

TNG 0.552 0.615 0.803 0.819 0.831 0.857 0.865 0.835 0.803 0.772

TNG?SVM 0.556 0.612 0.816 0.824 0.835 0.861 0.866 0.859 0.862 0.845

NTSeg 0.601 0.612 0.654 0.670 0.840 0.866 0.845 0.756 0.722 0.626

NTSeg?SVM 0.646 0.640 0.745 0.801 0.855 0.858 0.806 0.703 0.603 0.515
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representative words from a topic describing semantically similar theme from each model.

We chose the documents from comp.graphics class in order to present the list of topical

words in this experiment experiments as adopted in Zhu et al. (2012a).

The objective for presenting a list of topical words for comparison is to show the words

in each topic and whether they give some insight about the topic. Obviously, words which

Table 8 The effect of the number of topics on document classification measured by F-measure in the
OHSUMED-23 dataset

Models 10 20 30 40 50 60 70 80 90 100

Our Model 0.597 0.600 0.605 0.616 0.630 0.633 0.639 0.639 0.638 0.638

gMedLDA 0.543 0.555 0.580 0.633 0.621 0.613 0.588 0.590 0.574 0.534

vMedLDA 0.542 0.556 0.552 0.558 0.585 0.629 0.632 0.611 0.589 0.534

sLDA 0.543 0.545 0.512 0.555 0.534 0.620 0.613 0.603 0.603 0.585

DiscLDA 0.503 0.502 0.512 0.507 0.532 0.611 0.587 0.575 0.545 0.543

LDA 0.545 0.593 0.565 0.626 0.611 0.615 0.601 0.599 0.546 0.600

LDA?SVM 0.542 0.585 0.556 0.631 0.605 0.610 0.587 0.585 0.535 0.598

BTM 0.546 0.590 0.594 0.630 0.630 0.610 0.576 0.554 0.523 0.554

BTM?SVM 0.511 0.545 0.578 0.622 0.625 0.613 0.572 0.553 0.526 0.524

LDACOL 0.513 0.575 0.565 0.631 0.630 0.601 0.569 0.523 0.514 0.515

LDACOL?SVM 0.499 0.504 0.560 0.631 0.625 0.601 0.567 0.522 0.512 0.531

TNG 0.523 0.572 0.554 0.610 0.625 0.623 0.621 0.524 0.552 0.520

TNG?SVM 0.524 0.573 0.550 0.606 0.622 0.620 0.622 0.527 0.543 0.519

NTSeg 0.524 0.579 0.560 0.634 0.629 0.598 0.554 0.515 0.512 0.555

NTSeg?SVM 0.516 0.560 0.554 0.623 0.612 0.584 0.498 0.515 0.513 0.525

Table 9 The effect of the number of topics on document classification measured by F-measure in the
TechTC-300 dataset

Models 10 20 30 40 50 60 70 80 90 100

Our Model 0.314 0.314 0.314 0.313 0.314 0.313 0.312 0.312 0.313 0.313

gMedLDA 0.310 0.310 0.310 0.310 0.309 0.309 0.309 0.309 0.310 0.309

vMedLDA 0.310 0.310 0.309 0.310 0.310 0.310 0.309 0.309 0.309 0.310

sLDA 0.304 0.304 0.304 0.304 0.303 0.304 0.304 0.303 0.303 0.302

DiscLDA 0.302 0.301 0.303 0.303 0.303 0.303 0.303 0.302 0.302 0.301

LDA 0.299 0.299 0.298 0.301 0.301 0.301 0.301 0.301 0.290 0.292

LDA?SVM 0.304 0.305 0.305 0.304 0.304 0.304 0.303 0.304 0.303 0.303

BTM 0.302 0.302 0.304 0.303 0.303 0.303 0.303 0.304 0.301 0.302

BTM?SVM 0.299 0.300 0.301 0.300 0.300 0.301 0.301 0.299 0.299 0.300

LDACOL 0.299 0.299 0.298 0.298 0.297 0.292 0.293 0.291 0.293 0.291

LDACOL?SVM 0.299 0.299 0.298 0.298 0.297 0.298 0.296 0.295 0.291 0.295

TNG 0.301 0.302 0.301 0.301 0.299 0.301 0.294 0.298 0.291 0.298

TNG?SVM 0.295 0.296 0.296 0.295 0.294 0.293 0.294 0.294 0.295 0.292

NTSeg 0.293 0.292 0.293 0.295 0.295 0.293 0.291 0.292 0.291 0.290

NTSeg?SVM 0.291 0.291 0.293 0.291 0.292 0.294 0.295 0.297 0.298 0.298
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are ambiguous will not make sense to a reader about the topic, and we can then infer that

the topic model is unable to generate interpretable latent topics. Note that many works

related to topic models present some top-k words from some topics, but this analysis

cannot be regarded as a very strong indication about the superiority of one topic model

over the other. This is why quantitative analysis is very important which we have already

shown, and where our model has performed better than the comparative methods.

From the results shown in Tables 11 and 12, we can make two observations. First, our

model generates more fine grained topical words as compared to other topic models.

Second, our model generates more interpretable latent topics as compared to other topics.

Words such as ‘‘video memory’’, ‘‘ simple routing’’, ‘‘package zip’’ appear to make some

sense to a reader. For example, ‘‘package zip’’ is a bigram which might be describing about

zipping the contents of a file. Overall, most of the bigrams in the topic generated by our

model seem to suggest that our model has generated words which relate to the domain

‘‘computer graphics’’. Other models rather generate ambiguous n-grams or they generate

unigrams which do not offer much understanding to the user, for instance, bigrams gen-

erated by the BTM model does not seem to suggest that the topic is describing about

‘‘computer graphics’’ as words such as ‘‘compgraph path’’, ‘‘xref compgraph’’, etc are not

very insightful to a reader.

Table 10 The effect of the number of topics on document classification measured by F-measure in the
Reuters-21578 dataset

Models 10 20 30 40 50 60 70 80 90 100

Our Model 0.415 0.419 0.418 0.418 0.418 0.417 0.413 0.414 0.415 0.413

gMedLDA 0.401 0.403 0.403 0.401 0.402 0.401 0.403 0.402 0.402 0.401

vMedLDA 0.401 0.401 0.408 0.408 0.407 0.402 0.401 0.403 0.404 0.407

sLDA 0.319 0.315 0.312 0.312 0.310 0.310 0.310 0.309 0.310 0.306

DiscLDA 0.310 0.309 0.309 0.311 0.311 0.302 0.304 0.303 0.305 0.307

LDA 0.311 0.315 0.312 0.317 0.315 0.319 0.321 0.321 0.320 0.321

LDA?SVM 0.319 0.318 0.317 0.318 0.319 0.320 0.320 0.321 0.321 0.321

BTM 0.312 0.311 0.312 0.315 0.315 0.318 0.318 0.317 0.320 0.319

BTM?SVM 0.319 0.321 0.320 0.320 0.320 0.320 0.320 0.319 0.320 0.319

LDACOL 0.316 0.315 0.317 0.318 0.319 0.319 0.318 0.311 0.299 0.301

LDACOL?SVM 0.305 0.304 0.304 0.302 0.305 0.308 0.309 0.309 0.308 0.308

TNG 0.311 0.311 0.310 0.310 0.309 0.302 0.304 0.309 0.309 0.309

TNG?SVM 0.311 0.312 0.312 0.311 0.312 0.311 0.312 0.309 0.305 0.306

NTSeg 0.309 0.311 0.306 0.305 0.312 0.305 0.306 0.311 0.310 0.311

NTSeg?SVM 0.311 0.310 0.310 0.311 0.310 0.311 0.310 0.309 0.301 0.304

Table 11 Top five probable words from a topic from comp.graphics class of 20 Newsgroups dataset

BTM LDACOL TNG PDLDA

compgraph path xref vga mode excel digit

xref compgraph compgraph routine remove

system distribution compgraph path pixmap public domain

problem solving mark public domain draw line

fast purpose compgraph subject credit message id
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6 Topic model for document retrieval learning

6.1 Model description

We also investigate a supervised low-dimensional latent topic model for document

retrieval learning. Suppose that some relevance assessments of documents for some queries

are available for training. Our goal is to learn a model that can predict the relevance of an

unseen test query-document pair, and rank the documents based on the predicted relevance

score. This problem setting is similar to the pointwise learning-to-rank problem. Manual

relevance assessments can be modeled as a response variable in our topic model. In

addition, the word order structure of the text content is also considered. The main moti-

vation for considering the word order is to capture the semantic story inherent in the

document which is supposedly lost when the order of words in the document is broken.

Similar to our proposed document classification model, there are two main components in

our document retrieval learning model. One component is a topic model which measures

the goodness of fit of the text content of documents and queries. Queries are modeled as

short documents in a similar manner as in Wu and Zhong (2013) and Salton et al. (1975).

Our topic model considers the word order structure in documents and queries. The second

component deals with the relevance prediction within a maximum margin framework.

Labels are mainly predicted using the maximum margin framework in our pointwise

retrieval learning model. The dataset can be represented as (ðd; qÞ; yðd;qÞ) composed of

query-document pairs ðd; qÞ along with the relevance assessment label denoted by yðd;qÞ
which signifies the relevance of the document d to the query q. Let cðd; qÞ be the total

number of query-document pairs in the training set. Let the number of documents in the

training set be D; the number of queries in the training set be Q. As adopted in Nallapati

(2004), the confidence scores obtained from the discriminant function is used to rank

documents in our proposed model. Let the words in the document d be represented by wd

and the words in the query q be represented by wq. Let the set of topics used in the

document d be represented as zd , and the set of topics in the query q be represented by zq.

There are several fundamental differences between our document retrieval learning

framework with those of the previously proposed supervised topic models. In our model,

each input data instance consists of a pair of document and query instead of a single

document. In contrast to other supervised topic models such as Jiang et al. (2012), Zhu

et al. (2009, (2012a), the property of the feature vector is different. In our retrieval learning

model, feature vector includes different query-dependent and query-independent features

which are useful for conducting the learning-to-rank task.

We first describe a new discriminant function which is suited for handling document

retrieval learning problem. Therefore, the discriminant function of our model is designed

as follows:

Table 12 Top five probable
words from a topic from comp.-
graphics class of 20 Newsgroups
dataset

NTSeg MedLDA Our Model

surface normal path bitmap draw

orient message id routing video memory

corporate college simple routing

copyright date color gif

make group sender package zip
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Fðy; g; ðd; qÞÞ ¼ g|fðy; ðd; qÞÞ ð20Þ

where g represents the model parameters which are essentially feature weights. fðy; ðd; qÞÞ
is a vector of features which are designed to be useful for retrieval. The new definitions of

g and fðy; ðd; qÞÞ make it suitable to handle document retrieval task. Some examples of

features are depicted in Table 13. Note that just as in LETOR learning-to-rank datasets

(Qin et al. 2010), these features are computed for the entire dataset D before generating the

training, test and the validation sets. cðwd
n; dÞ is the number of times the word wd

n appears in

the document d. Nq is the number of words in the query q. j:j denotes the size function. idf
is the inverse document frequency. The first six features have also been used in Nallapati

(2004) where readers can find the motivation behind the design of these features. Some

minor refinements to some of these six features were made in Xu and Li (2007) and Qin

et al. (2010), and we use these refined features in our experimental setup. The last feature,

called topic similarity feature, is a similarity measure between the topics of the query and

the document in the low-dimensional topic space generated by our model. Let Zd ¼
zd
� �D

d¼1
be topic assignments to all the words of the training documents; Zq ¼ zqf gQ

q¼1 be

topic assignments to all the words in the training queries; Hd ¼ hd
� �D

d¼1
be topic distri-

butions for all training documents; Hq ¼ hqf gQ
q¼1 be topic distributions for all training

queries; U ¼ /kvf gV;K
v;k¼1 be the word-topic distribution. In order to compute the topic

similarity in the low-dimensional topic space between the document and the query, we

make use of the topic-document and topic-query distributions Hd and Hq. In each of these

distributions, we consider each document or query represented as a K � 1, which mainly is

Pðz 2 KjdÞ or Pðz 2 KjqÞ where d is a document and q is a query, low-dimensional vector

in the latent topic space. Each of the values in this vector can be considered as a weight for

the corresponding latent topic (Hazen 2010) or simply the contribution of a topic to a

document. Consider a document d associated with a query q, and thus is also represented

by its own low-dimensional latent topic vectors. Let the latent topic vector for the docu-

ment d be denoted as vd ¼ Kd � 1 and let the latent topic vector of the query q be

represented as vq ¼ Kq � 1. We compute the cosine similarity10 between these two vectors.

The intuitive idea is that if the two vectors are close to each other in the latent topic space

Table 13 Features used in our
discriminant function in our
document retrieval learning
model

Feature

1.
P

w
q
n2q\d log cðwq

n; dÞ þ 1
� �

2.
P

w
q
n2q\d log 1þ cðwq

n ;dÞ
jdj

� 	

3.
P

w
q
n2q\d logðidfðwq

nÞÞ

4.
P

w
q
n2q\d log

jDj
cðwq

n ;dÞ þ 1
� 	

5.
P

w
q
n2q\d log 1þ cðwq

n ;dÞ
jdj idfðwq

nÞ
� 	

6.
P

w
q
n2q\d log 1þ cðwq

n ;dÞ
jdj

jDj
cðwq

n ;DÞ

� 	

7. Topic Similarity Feature—cosineðvd ; vqÞ

10 This feature is formulated as a cosine similarity of vd and vq denoted by cosineðvd ; vqÞ.
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i.e. if they are semantically related to each other even though they do not share the same

words, they tend to have a high cosine similarity value in the latent topic space. In fact,

works such as Liu et al. (2009) and Maas et al. (2011) have also used cosine similarity

between words and documents in the latent topic space. Other similarity metrics such as

KL-Divergence could also be used.

Unlike the classification model where we took the expectation, the effective discrimi-

nant function which is obtained from Eq. (20) as follows:

Fðy; ðd; qÞÞ ¼ ½Fðy; g; ðd; qÞÞ� ð21Þ

The prediction rule is given in Eq. (22), where our objective is to find a label is as follows:

ŷ ¼ argmax
y

Fðy; ðd; qÞÞ ð22Þ

The following maximum margin constraints are imposed:

Fðyðd;qÞ; ðd; qÞÞ � Fðy; ðd; qÞÞ� lðd;qÞðyÞ � nðd;qÞ; 8y 2 Y ; 8ðd; qÞ ð23Þ

where lðd;qÞðyÞ is a non-negative loss function. nðd;qÞ are non-negative slack variables which

are meant for inseparable data instances. C is a positive regularization constant. The soft-

margin framework for our model is described below:

minimize
P Hd ;Hq;Zd ;Zq;Uð Þ2P;n;g

KL P Hd;Hq;Zd;Zq;U
� �

jjP0 Hd;Hq;Zd;Zq;U
� �� �

� EP logP Wd;WqjHd;Hq;Zd;Zq;U
� �� �

þ C

cðd; qÞ
X

ðd;qÞ
nðd;qÞ

subject to g| f ðyðd;qÞ; d; qÞ � fðy; d; q; Þ
� �� �

� lðd;qÞðyÞ � nðd;qÞ; nðd;qÞ � 0; 8ðd; qÞ; 8y

ð24Þ

6.2 Posterior inference

In order to proceed with the derivation of the collapsed Gibbs sampling, we need to define

a joint distribution for words and the topics along with the regularization effects due to the

maximum margin posterior constraints. In this model too we need to alternatively find the

optimal solution using maximum margin classifier and solve the topic model component.

But unlike the posterior inference of the classification model, we can directly adopt

implementation from existing SVM algorithm to find the optimum solution of the classifier.

Let gð�Þ denote the optimum parameter weights. This joint distribution is written as:

P Zd;Wd;Zq;Wqja; b
� �

¼P WdjZd; b
� �

� P WqjZq; bð Þ � P Zdja
� �

� P Zqjað Þ

� e
gð�Þ

|
P

ðd;qÞ

PM

y¼1
ky

ðd;qÞ

� 	�

fðyðd;qÞ;ðd;qÞÞ�fðy;ðd;qÞÞð Þ
ð25Þ

After some manipulations, we can come up with the following update equation:
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P zd
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njWd;Wq;Zd

:n;Z
q
:n; a; b

� �
¼

azd
n
þ mzd

nwd
n
� 1

PK
z¼1 az þ mzð Þ � 1

�
az

q
n
þ mz

q
nw

q
n
� 1

PK
z¼1 az þ mzð Þ � 1

 

� e
1

NdþNqð Þ
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� 	�

f yðd;qÞ;ðd;qÞð Þ�fðy;ðd;qÞÞð Þ�
!

�
bwd

n
þ mzd

nwd
nwd
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� 1
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� 1

�
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q
n
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q
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q
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q

n�1
� 1

PV
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q
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q
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� �
� 1

ð26Þ

where mzwv is the number of times the word w is generated by the topic z when preceded by

the word v and is applicable to a document and a query when super-scripted by d or q

respectively. mzw is the number of times a word w in the document has been sampled in the

topic z, and is applicable to a document and query when super-scripted by d or q respectively.

One can argue that asymmetric priors may work better especially on short documents

such as queries. Many previous works for short documents have assumed asymmetric

priors in their topic models such as Yan et al. (2013) and Hasler et al. (2014). Our model is

flexible enough to accommodate asymmetric priors, but in this paper we only test our

model using symmetric priors for simplicity. In (Nallapati 2004) the author discussed some

shortcomings in discriminative models for IR, in particular, the out-of-vocabulary words.

The author has also suggested a few ways of dealing with those shortcomings. We also

follow those strategies in this paper.

6.3 Ranking unseen query-document pairs

The prediction task on test data using the prediction rule given in Eq. (22) can be realized

as follows. Let (qnew; dnew) be an unseen test query-document pair for which we need to

predict the relevance label. The task is to compute the latent topic representations of qnew

and dnew using the topic space that has been learned from the training data. These latent

components for the unseen query and the document can be obtained from Û which is the

maximum aposteriori estimate of PðUÞ computed during the training process. Suppose

there are J samples from a proposal distribution, Û is obtained using the samples from the

following equation:

/̂zwv /
1

J

XJ

j¼1

bwd
n
þ m

ðjÞ
zd

nwd
nwd

n�1

� 	
� bw

q
n
þ m

ðjÞ
zd

nwd
nwd

n�1

� 	
ð27Þ

where the counts are assigned in the jth sample. The latent components for the unseen

document and the query can be computed as follows.

P zdnew

n ; zqnew

n jWdnew

;Wqnew ;Zdnew

:n ;Zqnew

:n ; a; b
� �

/ /̂zdnew
n wdnew

n wdnew

n�1
azdnew

n
þ mzdnew

n

� 	

� /̂
z

qnew

n w
qnew

n wdnew

n�1

a
z

qnew

n
þ m

z
qnew

n

� 	 ð28Þ

where the count for the word being sampled is excluded. We compute the similarity

between the query and the document in the latent topic space. Note that yðd;qÞ can be

dropped during the prediction step. The maximum margin prediction of labels for unseen

vectors follows the standard maximum margin formulation (Yu and Kim 2012). Note that
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this formalism is different from the expectation based maximum margin classifier dis-

cussed previously for document classification. When the task of computing the similarity

score is accomplished, it can be used in Eq. (20) to compute the prediction score. Docu-

ments can be ranked based on this confidence score.

7 Retrieval learning experiments

7.1 Experimental setup

We conduct document retrieval learning experiments using benchmark text collections. We

will show the performance of our model by conducting extensive quantitative analysis. In

addition, we will also present some high probability topical words from topics, and show

how our model is able to generate better topical words leading to more interpretable topics.

In all our experiments, we run the Gibbs sampler of our model for 1000 iterations. We

removed stopwords, and performed stemming using Porter’s stemmer.

We use four test collections for our experiments. We used a benchmark OHSUMED test

collection (latest version11) from the LETOR (Qin et al. 2010) dataset. This dataset con-

sists of 45 comprehensive features along with query-document pairs with their relevance

judgments. It has been used extensively in evaluating several learning-to-rank algorithms.

We obtained raw documents and queries of this dataset from the web12 in order to get the

word order. This dataset contains the document-id along with the list of features, which

will help us relate which set of features in LETOR OHSUMED is associated with which

document. Our proposed feature i.e. the topic similarity feature is treated as one feature, in

addition to the existing 45 features. It has approximately 60 % query-document pairs in the

training set, 20 % in the validation set, and the rest in the test set in each of the fivefolds.

For a particular fold, the queries involved in the training, the validation, and the test set are

different. Validation set is used by the comparative learning-to-rank models for parameter

tuning and determining the number of iterations. Our second collection is AQUAINT used

in TREC HARD.13 Basic details about this dataset can be found in Allan (2005). Note that

we only consider document-level relevance assessments in AQUAINT, and leave out the

passage-level judgments. The third dataset is WT2G,14 along with the standard relevance

judgments and topics (401 - 450) obtained from the TREC site. The fourth dataset is the

Category B English documents from ClueWeb09 collection. This dataset has been obtained

from the authors of Asadi and Lin (2013). In order to create the training, test and validation

datasets for AQUAINT and WT2G, we adopted the strategies popularly used in the

learning-to-rank problems. We chose the same percentage of query-document pairs in the

training, test and validation set in each fold as in LETOR OHSUMED dataset. The features

used for AQUAINT and WT2G datasets are given in Table 13. Note that only the number

of features differ in the datasets that we generated (WT2G and AQUAINT) when com-

pared to LETOR OHSUMED. We present the number of features used in the document

retrieval learning experiments in Table 14. Based on our proposed model, we also

investigate another variant, called Variant 1, which we will test empirically and show

11 Minka and Robertson (2008) and some other researchers had pointed out few shortcomings in the earlier
LETOR releases.
12 http://ir.ohsu.edu/ohsumed/.
13 http://ciir.cs.umass.edu/research/hard/guidelines2003.html.
14 http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html.
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its performance. In this model we ignore the word order structure in queries, but maintain

the word order structure in documents. The reason is that queries are mostly short, and the

role of word order might not be very significant. In addition, we also compare with another

variant of our model and name it Variant 2 where word order is not maintained in both

queries and the documents. We use NDCG@5 and NDCG@10 as our metrics, similar to

the metrics used in Cai et al. (2011). NDCG is well suited for our task because it is defined

by an explicit position discount factor and it can leverage the judgments in terms of

multiple ordered categories (Järvelin and Kekäläinen 2002).

In order to determine the number of topics K, the parameter C, and the constant loss

function lðd;qÞðyÞ in our model, we use the validation set. We first train our model on the

training set, and measure NDCG@5 and NDCG@10 performance on the validation set.

The number of topics and the model parameters can be automatically determined from the

validation process. We then test our model using the test set. We varied the number of

topics from 50 to 300 in steps of 10. We varied the values of C in multiples of 10. We vary

lðd;qÞðyÞ from 1 to 20 in steps of 1. We have again set a weak b prior which is 0.01. We have

use symmetric Dirichlet priors for our model. We also found that varying the value of the

hyperparameter does not drastically affect the results and this finding is consistent with

Wang and McCallum (2006). We also found out experimentally that different values of C

does not significantly change the performance of the model. The experimental results are

averaged over fivefolds for all the models. Each model is run only one time in each fold.

We compare the performance of our model with a range of comparative methods

including popular learning-to-rank models in RankLib15 such as MART (Friedman 2001),

RankNet (Burges et al. 2005), AdaRank (Xu and Li 2007), Coordinate Ascent
(Metzler and Croft 2007), LambdaRank (Quoc and Le 2007), LambdaMART (Wu et al.

2010), ListNet (Cao et al. 2007b), Random Forests (Breiman 2001) which is a

popular pointwise learning-to-rank model. In addition, we used Ranking SVM (Joachims

2002)16 and SVMMAP (Yue et al. 2007).17 The list of first six features in Table 13 are also

used in these comparative methods as in Nallapati (2004) for learning (first 45 features in

case of LETOR OHSUMED). Note that the seventh feature (or 46th in case of LETOR

OHSUMED) involves latent topic information which cannot be used in the comparative

methods. In order to conduct the experiments for the comparative learning-to-rank models,

we followed standard learning-to-rank experimental procedures for each comparative

method. Some models have standard published parameter values, for example, for LETOR

OHSUMED, the values for Ranking SVM18 and SVMMAP19 are online.

Table 14 Number of features in
each dataset used in document
retrieval learning experiments

Dataset Number of features

LETOR OHSUMED 45

AQUAINT 6

WT2G 6

ClueWeb09-English 91

15 http://people.cs.umass.edu/*vdang/ranklib.html.
16 http://olivier.chapelle.cc/primal/ranksvm.m.
17 http://projects.yisongyue.com/svmmap/.
18 http://research.microsoft.com/en-us/um/beijing/projects/letor/baselines/ranksvm-primal.html.
19 http://www.yisongyue.com/results/svmmap_letor3/details.html.
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We present detailed parameter settings obtained from the validation dataset in each fold

for our model in Tables 15, 16, 17, 18 and 19. In addition, we also present parameter

settings for our Variant 1 and Variant 2 models in Tables 20, 21, 22, 23, 24, and

Tables 25, 26, 27, 28, and 29, respectively.

Note that we do not choose any unsupervised topic model for comparison primarily

because they cannot make use of relevance judgment information during the training

Table 15 Values for different parameters obtained using the validation set for our model in Fold 1

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 110 110 60 1

AQUAINT 250 190 70 5

WT2G 250 170 50 4

ClueWeb-2009 Category B English 170 190 90 2

Table 16 Values for different parameters obtained using the validation set for our model in Fold 2

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 120 130 60 1

AQUAINT 200 250 80 2

WT2G 70 150 50 2

ClueWeb-2009 Category B English 120 140 90 2

Table 17 Values for different parameters obtained using the validation set for our model in Fold 3

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 110 140 60 2

AQUAINT 180 300 80 1

WT2G 90 140 50 2

ClueWeb-2009 Category B English 150 190 90 3

Table 18 Values for different parameters obtained using the validation set for our model in Fold 4

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 150 160 60 1

AQUAINT 200 190 80 2

WT2G 210 190 50 2

ClueWeb-2009 Category B English 120 120 90 3
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process. Thus they are always at disadvantages when compared with the learning-to-rank

methods and our model, which explicitly uses the information of relevance labels during

the training process. Also, supervised topic models such as sLDA cannot be directly used

for comparison as one needs to make significant changes to this model to handle the

document retrieval learning problem. In addition, the learning-to-rank models have already

shown state-of-the-art results in this task, and thus they can be regarded as strong

Table 19 Values for different parameters obtained using the validation set for our model in Fold 5

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 150 200 60 2

AQUAINT 220 230 80 3

WT2G 180 250 40 1

ClueWeb-2009 Category B English 200 190 90 2

Table 20 Values for different parameters obtained using the validation set for Variant 1 in Fold 1

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 90 210 70 1

AQUAINT 210 210 90 2

WT2G 270 120 60 3

ClueWeb-2009 Category B English 200 150 40 2

Table 21 Values for different parameters obtained using the validation set for Variant 1 in Fold 2

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 160 160 50 2

AQUAINT 190 250 70 1

WT2G 120 160 30 2

ClueWeb-2009 Category B English 150 200 60 3

Table 22 Values for different parameters obtained using the validation set for Variant 1 in Fold 3

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 150 120 50 1

AQUAINT 220 120 20 1

WT2G 120 160 10 2

ClueWeb-2009 Category B English 150 200 40 2
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comparative methods. Our model does not directly use word proximity features in the

learning setup (MacDonald et al. 2013). What our model does is to use word order for

finding the best model to fit the data as it has been shown in the literature that topic models

with word order improve model selection (Jameel and Lam 2013b; Kawamae 2014). Such

proximity features have indeed helped improve the learning-to-rank performance, but in

this work our objective is to present the robustness of our model.

Table 23 Values for different parameters obtained using the validation set for Variant 1 in Fold 4

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 140 180 20 1

AQUAINT 240 190 30 4

WT2G 120 130 20 5

ClueWeb-2009 Category B English 200 150 20 3

Table 24 Values for different parameters obtained using the validation set for Variant 1 in Fold 5

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 120 210 40 3

AQUAINT 220 230 20 4

WT2G 120 240 30 5

ClueWeb-2009 Category B English 220 200 20 2

Table 25 Values for different parameters obtained using the validation set for Variant 2 in Fold 1

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 100 250 40 1

AQUAINT 240 250 60 4

WT2G 220 220 50 5

ClueWeb-2009 Category B English 210 250 30 2

Table 26 Values for different parameters obtained using the validation set for Variant 2 in Fold 2

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 180 190 30 2

AQUAINT 200 220 50 1

WT2G 180 160 20 3

ClueWeb-2009 Category B English 150 240 40 4

312 Inf Retrieval J (2015) 18:283–330

123



7.2 Quantitative results

We present results obtained from all the test collections in Tables 30, 31, 32, and 33. From

the results, we can see that our model outperforms all the comparative methods. The

improvements that we obtain are statistically significant according to Wilcoxon signed

rank test (with 95 % confidence) against each of the comparative methods in on all the

datasets except NDCG@5 in ClueWeb-2009 dataset where Variant 2 has also done

better. Our results show that the latent topic information generated by our model which is

then used to compute query-document similarity plays a significant role. Word order too

plays a role where we are able to detect better topics than unigram models.

In the OHSUMED collection, we find that our main proposed model in which word

order is maintained in both queries and documents performs better than other models.

Looking closely at NDCG@5 results, we can see that our model performs considerably

better with statistically significant results than comparative models. Variant 2 does not

perform better than Variant 1 at NDCG@5, thereby bringing out the importance of

word order in retrieval learning task. However, models such as SVM-MAP and RankNet
also do better in this collection. The reason is mainly due to the mechanism of these

Table 27 Values for different parameters obtained using the validation set for Variant 2 in Fold 3

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 250 200 40 2

AQUAINT 210 150 20 3

WT2G 220 170 20 2

ClueWeb-2009 Category B English 140 200 40 2

Table 28 Values for different parameters obtained using the validation set for Variant 2 in Fold 4

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 180 120 20 1

AQUAINT 250 180 30 2

WT2G 130 230 20 2

ClueWeb-2009 Category B English 220 210 20 1

Table 29 Values for different parameters obtained using the validation set for Variant 2 in Fold 5

Datasets Topics (K) C lðd;qÞðyÞ

NDCG@5 NDCG@10

LETOR OHSUMED 150 210 40 2

AQUAINT 210 220 20 2

WT2G 220 130 30 1

ClueWeb-2009 Category B English 180 160 20 2
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models, which optimize a different objective function. Coordinate Ascent model also

performs better, but does not outperform our main proposed model. At NDCG@10, we see

improvement in Variant 1 and Variant 2 models where we can see that the per-

formance gap has narrowed, but they still do not outperform out model. However, the

improvement of our model is still statistically significant. Other models such as Ranking
SVM, Coordinate Ascent, RankNet, and SVM-MAP also perform better in this

dataset. In AQUAINT collection, we notice consistent superior performance of our model

when compared with comparative models, with improvements that are statistically sig-

nificant. We also find that gap between the performance of our model when compared with

Table 30 NDCG@5 and
NDCG@10 values for different
models in the LETOR
OHSUMED dataset

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.483 0.461

Variant 1 0.479 0.460

Variant 2 0.478 0.460

MART 0.420 0.403

RankNet 0.471 0.455

RankBoost 0.454 0.446

AdaRank 0.469 0.445

Coordinate Ascent 0.472 0.455

LambdaRank 0.454 0.451

ListNet 0.443 0.441

Random Forests 0.434 0.431

Ranking SVM 0.461 0.454

LambdaMART 0.447 0.437

SVM-MAP 0.475 0.454

Table 31 NDCG@5 and
NDCG@10 values for different
models in the AQUAINT dataset

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.454 0.460

Variant 1 0.450 0.452

Variant 2 0.451 0.455

MART 0.400 0.405

RankNet 0.444 0.451

RankBoost 0.431 0.438

AdaRank 0.443 0.449

Coordinate Ascent 0.442 0.448

LambdaRank 0.431 0.438

ListNet 0.443 0.445

Random Forests 0.415 0.421

Ranking SVM 0.434 0.433

LambdaMART 0.428 0.425

SVM-MAP 0.448 0.451
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Variant 2 especially at NDCG@5 is also reduced. Models such as SVM-MAP and

RankNet also perform better in this dataset. Also, we can see that the difference between

Variant 1 and Variant 2 is not much in this dataset. We see some interesting results

in WT2G dataset. Many models do better in this dataset and are quite close in performance

when compared with our model especially at NDCG@5. At NDCG@10, our model

consistently does better. But in ClueWeb-2009 dataset, we can see that Variant 2
matches the performance of our model. Even at NDCG@10, many models are close to our

model in performance. This suggests that spam and noisy pages have some impact on our

model. Also, we can conclude that maintaining word order may not be a good way to

Table 32 NDCG@5 and
NDCG@10 values for different
models in the WT2G dataset

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.311 0.311

Variant 1 0.309 0.306

Variant 2 0.310 0.307

MART 0.303 0.303

RankNet 0.305 0.308

RankBoost 0.304 0.306

AdaRank 0.308 0.307

Coordinate Ascent 0.301 0.305

LambdaRank 0.303 0.304

ListNet 0.306 0.304

Random Forests 0.303 0.301

Ranking SVM 0.304 0.305

LambdaMART 0.302 0.303

SVM-MAP 0.308 0.308

Table 33 NDCG@5 and
NDCG@10 values for different
models in the ClueWeb-2009
Category B English dataset

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.369 0.360

Variant 1 0.366 0.356

Variant 2 0.369 0.359

MART 0.334 0.341

RankNet 0.366 0.356

RankBoost 0.358 0.354

AdaRank 0.354 0.351

Coordinate Ascent 0.350 0.352

LambdaRank 0.359 0.354

ListNet 0.367 0.356

Random Forests 0.353 0.351

Ranking SVM 0.359 0.352

LambdaMART 0.350 0.352

SVM-MAP 0.367 0.358
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model those collections which have noisy documents. The bag-of-words model can also do

better in noisy collections.

We have seen from the results obtained in this experiments that considering order of

words in both queries and documents simultaneously, helps improve the performance of

document retrieval learning using topic models, and relaxing the order of words either

queries or documents does not help in improving the results. The reason for good per-

formance is primarily because our model is able to capture the semantic dependencies in

text and matches words based on word proximity. We also found that noise has an impact

on our model. Therefore, it can be concluded that in collections which are very noisy and

contain many spam pages, the bag-of-words model can also be adopted.

One interesting facet to consider is to study the effect of the number of topics in the

document retrieval learning experiment for our models. In order to study the effect on the

number of topics, we varied the number of topics in the training set in each fold. We used

the same set of parameters obtained in each fold in each dataset as we have shown earlier

except the number of topics which we specify manually in this set of experiments. After

training the model on the training set, we used the test set directly to find the effect of the

number of topics. We present results by averaging results obtained from all fivefolds. In

Table 34, we vary the number of topics from 50 to 290 in steps of 20 and present the results

therein for our model. In the OHSUMED dataset we can see that as we increase the number

of topics, the results improve until certain number of topics and begin to deteriorate again

as we keep on increasing the number of topics. This gives us an insight about the

dependence between the number of topics and the retrieval learning results for our models.

But we do not find any noticeable pattern when the number of topics is varied. What we do

observe is that the effect when the number of topics is varied is not huge. Most of the

values appear very close to each other in all datasets.

In addition, we also present results obtained from Variant 1 in Table 35 in different

datasets. We can observe that effect of topics is not very noticeable in this model also. We

have similar observation in Table 36.

Table 34 NDCG@5 (denoted as N@5), and NDCG@10 (denoted as N@10) results obtained from our
model when we vary the number of topics from 50 to 290

Topics (K) OHSUMED AQUAINT WT2G ClueWeb

N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10

50 0.480 0.460 0.450 0.454 0.310 0.309 0.365 0.359

70 0.480 0.461 0.451 0.455 0.310 0.308 0.364 0.354

90 0.482 0.461 0.451 0.455 0.311 0.310 0.365 0.358

110 0.483 0.461 0.452 0.458 0.310 0.310 0.366 0.353

130 0.483 0.461 0.451 0.457 0.311 0.309 0.368 0.358

150 0.483 0.461 0.453 0.455 0.310 0.310 0.369 0.359

170 0.482 0.461 0.453 0.456 0.311 0.311 0.369 0.360

190 0.481 0.461 0.452 0.458 0.311 0.311 0.369 0.360

210 0.481 0.460 0.454 0.459 0.311 0.311 0.369 0.360

230 0.481 0.461 0.454 0.460 0.310 0.309 0.368 0.359

270 0.480 0.461 0.453 0.460 0.310 0.310 0.369 0.359

290 0.482 0.460 0.451 0.459 0.311 0.311 0.368 0.360

316 Inf Retrieval J (2015) 18:283–330

123



It is quite interesting to see that our model outperforms some of the powerful learning-

to-rank models. Our model can perform consistently well with more (in LETOR

OHSUMED) and less number of features (in WT2G and AQUAINT). This shows that the

generalization ability of our proposed model is very robust. The results suggest that

incorporating topic similarity helps improve document retrieval performance. One reason

why topic models help improve document retrieval performance as we compare the sim-

ilarity between the document and the query based on latent factors rather than just the

words (Wei and Croft 2006; Sordoni et al. 2013). Hence, this feature which our model

computes is extremely important for document retrieval learning task.

Table 35 NDCG@5 (denoted as N@5), and NDCG@10 (denoted as N@10) results obtained from
Variant 1 when we vary the number of topics from 50 to 290

Topics (K) OHSUMED AQUAINT WT2G ClueWeb

N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10

50 0.479 0.460 0.444 0.451 0.306 0.304 0.360 0.352

70 0.479 0.459 0.440 0.452 0.308 0.305 0.362 0.354

90 0.478 0.459 0.445 0.450 0.309 0.304 0.363 0.353

110 0.478 0.459 0.450 0.448 0.309 0.305 0.364 0.352

130 0.479 0.460 0.448 0.451 0.309 0.306 0.365 0.354

150 0.479 0.460 0.449 0.450 0.309 0.306 0.366 0.354

170 0.479 0.460 0.448 0.451 0.308 0.306 0.366 0.356

190 0.478 0.460 0.450 0.452 0.307 0.305 0.366 0.356

210 0.478 0.459 0.450 0.452 0.308 0.306 0.366 0.356

230 0.478 0.459 0.450 0.452 0.306 0.306 0.366 0.356

270 0.479 0.460 0.446 0.451 0.309 0.304 0.365 0.355

290 0.479 0.458 0.448 0.451 0.308 0.305 0.366 0.354

Table 36 NDCG@5 (denoted as N@5), and NDCG@10 (denoted as N@10) results obtained from
Variant 2 when we vary the number of topics from 50 to 290

Topics (K) OHSUMED AQUAINT WT2G ClueWeb

N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10

50 0.475 0.455 0.446 0.451 0.309 0.306 0.365 0.358

70 0.476 0.456 0.451 0.451 0.310 0.305 0.364 0.359

90 0.470 0.458 0.450 0.453 0.308 0.306 0.365 0.356

110 0.471 0.456 0.451 0.454 0.310 0.306 0.366 0.358

130 0.473 0.455 0.450 0.455 0.309 0.306 0.368 0.359

150 0.475 0.458 0.449 0.455 0.310 0.305 0.369 0.359

170 0.478 0.460 0.451 0.453 0.309 0.304 0.369 0.356

190 0.478 0.460 0.450 0.454 0.310 0.306 0.368 0.358

210 0.478 0.460 0.451 0.455 0.310 0.304 0.368 0.355

230 0.473 0.458 0.449 0.455 0.309 0.305 0.369 0.359

270 0.475 0.460 0.449 0.454 0.309 0.306 0.369 0.354

290 0.470 0.460 0.450 0.455 0.308 0.304 0.368 0.356
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7.3 Investigation on topic enhancements for comparative models

In this section, we present results where we add the latent topic feature as one of the

features in addition to the existing list of features in a two stage approach. Our motivation

is to study where latent topic feature obtained either from LDA or BTM can help improve

the performance of the comparative models. Results of our model and its variants will

remain the same as shown the previous experiment described in Sect. 7.2.

7.3.1 Employing LDA

In this set of experiments, for all the comparative methods, we manually append a latent

topic similarity feature. The procedure is to first conduct latent topic modeling using the

LDA model on the set of documents used in the learning-to-rank experiments. Then we use

an existing method described in Wei and Croft (2006) to compute the query-document

topic similarity. We obtain a score for each number of latent topic (K) which we vary from

10 to 100. Then we create the training, test and validation datasets based on the same split

as used in the previous experiment. We use the validation set to train the parameters of the

comparative models. We obtain the best topic K from the validation set which gives the

best NDCG@5 and NDCG@10 across all topics in the validation set.

We present results for this set of experiments on different datasets in Tables 37, 38, 39

and 40. This topic enhanced setting is used in the comparative methods only.

Our results show that even by manually adding the latent topic feature computed

externally, the comparative methods cannot outperform our proposed model. From the

results in all datasets, we can make a conclusion that in majority of the cases the results of

the comparative methods have improved by adding the latent topic similarity feature. But

the results could not outperform our proposed document retrieval learning model. The

reason lies in the inherent design of the model where it is embedded with the latent topic

model and maximum margin prediction. Even the closest learning-to-rank model

Ranking SVM could not outperform our model.

Table 37 NDCG@5 and
NDCG@10 values for different
models in the LETOR
OHSUMED dataset when the
comparative models are
enhanced with latent topic feature
obtained from the LDA model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.483 0.461

Variant 1 0.479 0.460

Variant 2 0.478 0.460

MART 0.423 0.406

RankNet 0.476 0.458

RankBoost 0.459 0.451

AdaRank 0.471 0.453

Coordinate Ascent 0.472 0.459

LambdaRank 0.458 0.455

ListNet 0.462 0.455

Random Forests 0.442 0.439

Ranking SVM 0.462 0.456

LambdaMART 0.458 0.446

SVM-MAP 0.478 0.456
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The improvements that we obtain are statistically significant according to Wilcoxon

signed rank test (with 95 % confidence) against each of the comparative methods in all the

datasets except NDCG@5 in ClueWeb-2009 dataset. We can notice from that the com-

parative methods have improved when the latent topic feature is added. In terms of per-

formance, the gap between the comparative methods and our model has also reduced. In

LETOR OHSUMED dataset, SVM-MAP and Coordinate Ascent models perform

better. In ClueWeb-2009 dataset, most of the models are able to narrow the performance

gap, but our model still remains competitive.

Table 38 NDCG@5 and
NDCG@10 values for different
models in the AQUAINT dataset
when the comparative models are
enhanced with latent topic feature
obtained from the LDA model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.454 0.460

Variant 1 0.450 0.452

Variant 2 0.451 0.455

MART 0.421 0.418

RankNet 0.448 0.451

RankBoost 0.439 0.443

AdaRank 0.445 0.449

Coordinate Ascent 0.449 0.448

LambdaRank 0.439 0.441

ListNet 0.446 0.448

Random Forests 0.434 0.429

Ranking SVM 0.435 0.433

LambdaMART 0.428 0.424

SVM-MAP 0.450 0.452

Table 39 NDCG@5 and
NDCG@10 values for different
models in the WT2G dataset
when the comparative models are
enhanced with latent topic feature
obtained from the LDA model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.311 0.311

Variant 1 0.309 0.306

Variant 2 0.310 0.307

MART 0.303 0.304

RankNet 0.307 0.309

RankBoost 0.305 0.306

AdaRank 0.309 0.307

Coordinate Ascent 0.303 0.305

LambdaRank 0.306 0.303

ListNet 0.305 0.305

Random Forests 0.305 0.305

Ranking SVM 0.305 0.306

LambdaMART 0.302 0.304

SVM-MAP 0.309 0.309
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Another interesting note is the length of the query and the performance of our model.

We have noticed that for longer queries our model performs relatively better as compared

to shorter queries. The reason may be due to the fact that the word order can convey more

information to our model for longer queries as compared to shorter queries.

7.3.2 Employing BTM

In this set of experiments, instead of using the LDA model, we use the BTM model which

considers word order. The procedure for adding latent topic information is similar to that

described in Sect. 7.3.1, except that the retrieval formulation using language modeling

technique needs to be changed a bit in order to incorporate word order. We present the

retrieval formulations below.

The query likelihood model scoring for each document d is done by calculating the

likelihood of its model in generating a query q. This can be written as PLMðqjdÞ. Under the
bag-of-words assumption, we can write the following likelihood function:

PLMðqjdÞ ¼
YNq

i¼1

PðqijdÞ ð29Þ

The above Eq. (29) is specified by a document model where we can consider Dirichlet

smoothing (Zhai and Lafferty 2004). Therefore, Eq. (29) can be expressed as:

PLMðqjdÞ ¼
Nd

Nd þ l
PMLðqjdÞ þ 1� Nd

Nd þ l


 �
PMLðqjDÞ ð30Þ

where PLMðqjdÞ is the maximum likelihood estimate for the query q generated in the

document d. PMLðqjDÞ is the maximum likelihood estimate for the query q generated in the

entire collection D. l ¼ 1000 is the smoothing prior. This prior value has been adopted

from the work of Zhai and Lafferty (2004).

Table 40 NDCG@5 and
NDCG@10 values for different
models in the ClueWeb-2009
Category B English dataset when
the comparative models are
enhanced with latent topic feature
obtained from the LDA model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.369 0.360

Variant 1 0.366 0.356

Variant 2 0.369 0.359

MART 0.336 0.345

RankNet 0.368 0.358

RankBoost 0.360 0.356

AdaRank 0.356 0.351

Coordinate Ascent 0.354 0.354

LambdaRank 0.360 0.355

ListNet 0.368 0.359

Random Forests 0.354 0.353

Ranking SVM 0.360 0.355

LambdaMART 0.351 0.353

SVM-MAP 0.368 0.359
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In order to calculate the query likelihood for the BTM model using the language

modeling framework, we need to sum over all the topic variables for each word. The

posterior estimates can be used in the likelihood model. The query likelihood for the query

q given the document d from BTM is written as PBTMðqjdÞ. Therefore, the likelihood

function can be written as:

PBTMðqjdÞ ¼
YNq

i¼1

PBTMðqijqi�1; dÞ ð31Þ

where PBTMðqijqi�1; dÞ can be expressed as:

PBTMðqijqi�1; dÞ ¼
XK

ki¼1

PðqijUki
; qi�1ÞP kijhd

� �
ð32Þ

Similar to the framework described in Wei and Croft (2006), we can adopt the following:

PðqjdÞ ¼ kPLMðqjdÞ þ ð1� kÞPBTMðqjdÞ ð33Þ

where k is a weighting parameter. For consistency in the experiments performed using the

LDA model in Sect. 7.3.1, we set the value of k ¼ 0:7.
We present the results obtained by adding the topic information using BTM in Tables 41,

42, 43, and 44. In all our experiments, the improvement shown by our model is statistically

significant according to Wilcoxon signed rank test (with 95 % confidence) against each of

the comparative methods in all the datasets except NDCG@5 in ClueWeb-2009 dataset.

In the OHSUMED dataset as depicted in Table 41, we can notice that our model still

remains competitive compared with other models. We achieve very good performance at

NDCG@5, but the other models also do very well at NDCG@10. When compared to the

results obtained using the LDA model as depicted in Table 37 i.e. when latent topic

information obtained from the LDA model is used, we can see that indeed performance

(when compared to the results in Table 37) of comparative models has improved when

Table 41 NDCG@5 and
NDCG@10 values for different
models in the LETOR
OHSUMED dataset when the
comparative models are
enhanced with latent topic feature
obtained from the BTM model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.483 0.461

Variant 1 0.479 0.460

Variant 2 0.478 0.460

MART 0.431 0.409

RankNet 0.478 0.459

RankBoost 0.462 0.458

AdaRank 0.474 0.455

Coordinate Ascent 0.476 0.460

LambdaRank 0.466 0.456

ListNet 0.460 0.455

Random Forests 0.451 0.445

Ranking SVM 0.469 0.459

LambdaMART 0.458 0.447

SVM-MAP 0.478 0.459
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word order is maintained in the topic model, and that topic feature is used in the learning-

to-rank models. Looking more closely, we notice that at NDCG@5, most of the com-

parative models have shown improved performance except LambdaMART, ListNet, and
SVM-MAP. In fact, the performance of ListNet and LambdaMART have actually

deteriorated to some extent suggesting that latent topic information with word order did not

give much help to the model. Even at NDCG@10, ListNet could recover from its poor

performance, but not SVM-MAP and LambdaMART. We also notice that at NDCG@10, in

Table 41, gap between our model and comparative models has lessened. In AQUAINT as

depicted in Table 42, we notice that our model has performed better than comparative

Table 42 NDCG@5 and
NDCG@10 values for different
models in the AQUAINT dataset
when the comparative models are
enhanced with latent topic feature
obtained from the BTM model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.454 0.460

Variant 1 0.450 0.452

Variant 2 0.451 0.455

MART 0.418 0.423

RankNet 0.449 0.452

RankBoost 0.442 0.449

AdaRank 0.448 0.451

Coordinate Ascent 0.448 0.446

LambdaRank 0.440 0.441

ListNet 0.446 0.449

Random Forests 0.441 0.433

Ranking SVM 0.436 0.448

LambdaMART 0.430 0.433

SVM-MAP 0.450 0.453

Table 43 NDCG@5 and
NDCG@10 values for different
models in the WT2G dataset
when the comparative models are
enhanced with latent topic feature
obtained from the BTM model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.311 0.311

Variant 1 0.309 0.306

Variant 2 0.310 0.307

MART 0.305 0.305

RankNet 0.308 0.309

RankBoost 0.308 0.308

AdaRank 0.309 0.307

Coordinate Ascent 0.306 0.308

LambdaRank 0.305 0.304

ListNet 0.308 0.307

Random Forests 0.306 0.306

Ranking SVM 0.309 0.308

LambdaMART 0.305 0.306

SVM-MAP 0.310 0.308
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models. At NDCG@5, we notice that performance of three models has deteriorated as

compared to that in LDA as depicted in Table 38. These models are MART, Coordinate
Ascent, and SVM-MAP. But the change in results is not very significant. At NDCG@10,

for AQUAINT as depicted in Table 42, we notice that MART and SVM-MAP show an

improvement when compared to LDA as depicted in Table 38. In addition, the performance

of LambdaRank has deteriorated when latent topic information with word order is added

to the model at NDCG@10. In WT2G as depicted in Table 43, we notice good

improvement in the comparative models when compared to that in LDA as depicted in

Table 39 at both NDCG@5 and NDCG@10. But the performance of these models is not

good when compared with our model. LambdaRank, at NDCG@5, does not show an

improvement when latent topic from BTM is added to the list of features. Similarly,

RankNet shows no such improvement. In ClueWeb09 collection as depicted in Table 44,

at NDCG@5, many models have in fact shown lowering of NDCG@5 results, suggesting

that spam and noisy text is having some impact on the results. Models such as RankNet,
AdaRank, Coordinate Ascent have in fact deteriorated when compared with results

listed in Table 40. Models such as ListNet and SVM-MAP show no change in perfor-

mance. At NDCG@10, RankBoost, Coordinate Ascent, and SVM-MAP show no

performance improvement. AdaRank performance has in fact deteriorated.

From the above results, in general, they reveal that by incorporating latent topic

information using word order in the comparative learning-to-rank methods does help

improve performance. But since the approach is two stage, the comparative models are not

able to do better than our proposed model. We can conclude that word order has helped

improve the performance to some extent, but it is not consistent in all our results.

7.4 Topical words examples

We can see from Tables 45 and 46 that our model has generated words which appear more

meaningful than the other models. From the list of top five words, it can be noted that our

model is describing about ‘‘Egypt’’ and the news related to the revolution during that time.

Table 44 NDCG@5 and
NDCG@10 values for different
models in the ClueWeb-2009
Category B English dataset when
the comparative models are
enhanced with latent topic feature
obtained from the BTM model

Best results are shown in bold

Models Performance comparison

NDCG@5 NDCG@10

Our Model 0.369 0.360

Variant 1 0.366 0.356

Variant 2 0.369 0.359

MART 0.336 0.346

RankNet 0.367 0.358

RankBoost 0.361 0.356

AdaRank 0.355 0.350

Coordinate Ascent 0.351 0.354

LambdaRank 0.363 0.358

ListNet 0.368 0.359

Random Forests 0.356 0.359

Ranking SVM 0.363 0.356

LambdaMART 0.353 0.355

SVM-MAP 0.368 0.359

Inf Retrieval J (2015) 18:283–330 323

123



We have only considered words from documents in order to present results in this table.

AQUAINT collection does not have documents indexed in different classes just like those

we have used in classification experiments, therefore supervised topic models such as

MedLDA, etc. might not generate interpretable words in topics as they cannot use an extra

side-information while learning. Therefore, for this comparison, we have only considered

unsupervised n-gram topic models. Our model uses query-document relevance label

(during learning) for generating words. We can see that words such as ‘‘president nasser’’

and ‘‘foreign minister’’ are more insightful in comparison to the words such as ‘‘hk salem’’

and ‘‘today’’ generated by the NTSeg model. Much research has already been done in

topic models with word order where it has been shown empirically that n-gram models

generate more interpretable latent topics than unigram models (Lindsey et al. 2012; Jameel

and Lam 2013b, c; Wang et al. 2007; Griffiths et al. 2007). But what those n-gram models

fail to consider side-information which can help generate even better latent topical rep-

resentations. We have shown empirically that our model has generated more meaningful

latent topic models than comparative models.

8 Conclusions

We have presented supervised topic models which maintain word order in the document.

We first propose a bigram supervised topic model with maximum margin framework, and

compare the performance of the model with comparative methods. From the empirical

analysis, we demonstrate that our model outperforms many comparative methods. We then

extend the supervised bigram topic model to handle document retrieval learning task. This

model takes as input the query-document pairs. Relevance assessments given manually by

annotators are the response variables. The experimental analysis shows that our model

outperforms many popular learning-to-rank models. By presenting a list of topical words in

topics we showed how our model generates better topical words than the comparative

methods. Results clearly show that learning with side-information helps the model generate

more interpretable topics with words that are insightful to a reader.

Table 45 Top five probable
words from a topic from
AQUAINT collection

BTM LDACOL TNG

foreign beggars today news corp

bt anton hebron www

hk salem bosnian web

fundamental prerequisites foreign beggars news event

great stash atlanta york steaks

Table 46 Top five probable words from a topic from AQUAINT collection

PDLDA NTSeg Our Model

foreign minister stevo today news viewership

fundamental prerequisites atlanta foreign minister

jewish state restarts hk salem president nasser

reported exceptionally york times news service general news

york times news service bosnia resistance occurred

324 Inf Retrieval J (2015) 18:283–330

123



Acknowledgments The work described in this paper is substantially supported by Grants from the Research
Grant Council of the Hong Kong Special Administrative Region, China (Project Codes: 413510 and
14203414) and the Direct Grant of the Faculty of Engineering, CUHK (Project Code: 4055034). This work is
also affiliated with the CUHK MoE-Microsoft Key Laboratory of Human-centric Computing and Interface
Technologies. The authors would like to thank anonymous reviewers for their comments and suggestions.

Appendix: Proof

From Eq. (2), based on the formula of Bayes’ Theorem, we can deduce that

PðH;Z;UjW; a; bÞ is the posterior distribution that needs to be found out. P0ðH;Z;Uja; bÞ
is the prior distribution. PðWjH;Z;UÞ is the likelihood, and the denominator PðWja; bÞ is
the marginal distribution over data.

The Kullback–Leibler Divergence (KL) from a distribution p to a distribution q can be

written as KLðqjjpÞ. Suppose we consider an arbitrary distribution QðH;Z;UjW; a; bÞ. Our
goal is to ensure that this distribution is equal to the posterior distribution

PðH;Z;UjW; a; bÞ. As in the Bayes’ rule, this posterior is obtained by iteratively updating

the prior P0ðH;Z;Uja; bÞ.
Suppose we want to minimize the divergence between the arbitrary distribution and the

posterior distribution, and this is what we want to achieve so that the two distributions are

as close as possible or equal to each other i.e. they overlap. We can write the statement

mathematically as:

minimize
QðH;Z;UÞ2P

KL½QðH;Z;Uja; bÞjjPðH;Z;Uja; bÞ� ð34Þ

We know from Eq. (2) that:

PðH;Z;UjW; a; bÞ ¼ P0ðH;Z;Uja; bÞPðWjH;Z;UÞ
PðWja; bÞ ð35Þ

For Eq. (34), we substitute PðH;Z;UjW; a; bÞ by replacing Eq. (35):

minimize
QðH;Z;UÞ2P

KL QðH;Z;Uja; bÞjjP0ðH;Z;Uja; bÞPðWjH;Z;UÞ
PðWja; bÞ

� 

ð36Þ

We know that the Kullback–Leibler distance is the expectation of the difference in log-

arithms of their probability density functions. In terms of expectation, Eq. (36) can be

equivalently can be written as:

EQ log
QðH;Z;Uja; bÞ

P0ðH;Z;Uja;bÞPðWjH;Z;UÞ
PðWja;bÞ

2

4

3

5 ð37Þ

Equation 37 can be further written as:

EQ log
QðH;Z;Uja; bÞ
P0ðH;Z;Uja; bÞ � logPðWjH;Z;UÞ þ logPðWja; bÞ

� 

ð38Þ

This now simplifies to:

minimize
QðH;Z;UÞ2P

KL½QðH;Z;Uja; bÞjjP0ðH;Z;Uja; bÞ� � EQ½logPðWjH;Z;UÞ� þ logPðWja; bÞ

ð39Þ
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The last term in Eq. (39) can be removed because it does not depend on H;Z;U. As a

result, we get:

minimize
QðH;Z;UÞ2P

KL½QðH;Z;Uja; bÞjjP0ðH;Z;Uja; bÞ� � EQ½logPðWjH;Z;UÞ� ð40Þ
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