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Abstract The images found within biomedical articles are sources of essential infor-

mation useful for a variety of tasks. Due to the rapid growth of biomedical knowledge,

image retrieval systems are increasingly becoming necessary tools for quickly accessing

the most relevant images from the literature for a given information need. Unfortunately,

article text can be a poor substitute for image content, limiting the effectiveness of existing

text-based retrieval methods. Additionally, the use of visual similarity by content-based

retrieval methods as the sole indicator of image relevance is problematic since the

importance of an image can depend on its context rather than its appearance. For bio-

medical image retrieval, multimodal approaches are often desirable. We describe in this

work a practical multimodal solution for indexing and retrieving the images contained in

biomedical articles. Recognizing the importance of text in determining image relevance,

our method combines a predominately text-based image representation with a limited

amount of visual information, in the form of quantized content-based visual features,

through a process called global feature mapping. The resulting multimodal image surro-

gates are easily indexed and searched using existing text-based retrieval systems. Our

experimental results demonstrate that our multimodal strategy significantly improves upon

the retrieval accuracy of existing approaches. In addition, unlike many retrieval methods

that utilize content-based visual features, the response time of our approach is negligible,

making it suitable for use with large collections.
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1 Introduction

Images and illustrations are sources of essential information within the biomedical domain.

For example, images can be found in the articles appearing in biomedical publications and

in the case reports contained in electronic health records. Within these resources, images

are informative for a variety of tasks, and they often convey information not otherwise

mentioned in surrounding text. Following the rapid progress in science and medicine, the

volume of biomedical knowledge that is represented visually is constantly growing, and it

is increasingly important that we provide a means for quickly accessing the most relevant

images for a given information need. Not surprisingly, biomedical image retrieval systems

have been developed to address this challenge.

Generally, image retrieval systems enable users to access images using one of several

strategies. First, text-based image retrieval methods represent images with their associated

descriptions or annotations. Using traditional text-based retrieval techniques, users search

for images by providing a system with a description of the image content they desire to

retrieve. Second, content-based image retrieval (CBIR) methods represent images with

numeric feature vectors describing their appearance. Following a ‘‘query-by-example’’

paradigm, users query a CBIR system with some example image, and the system ranks

retrieved images according to their visual similarity with the example. Finally, in an

attempt to combine the strengths of these two approaches, multimodal image retrieval

systems represent images with both descriptive text and content-based features.1 This

approach allows users to construct multimodal information requests consisting of a textual

description of the image content they desire to retrieve that is augmented by visual features

extracted from one or more representative images.

Figure 1 shows an example multimodal information request taken from the 2010 Im-

ageCLEF2 medical retrieval track data set (Müller et al. 2010). The textual description of

this retrieval topic asks for ‘‘CT images containing a fatty liver,’’ and the example images

are visual depictions of this request: the large gray mass in each of the abdominal CT scans

is a liver and the white arrows indicate areas of fat accumulation (Hamer et al. 2006). A

multimodal image retrieval system must process the textual description of the topic and

extract content-based features from the example images in order to generate a multimodal

query.

As evidence of the significant contribution the combination of text-based and content-

based features can provide, a variety of multimodal image retrieval strategies have been

proposed. Unfortunately, developing a multimodal retrieval system becomes challenging

when the usability of the system and the quality of the results are primary and equal

concerns. The limitations of existing methods can be attributed to deficiencies in the

following areas:

1 In this work, we use the term ‘‘multimodal’’ to specifically refer to retrieval techniques that combine both
textual and visual information. We use the term ‘‘content-based features’’ to denote only the visual content
of images, as it is also possible to extract content-based textual features from images that have overlain text.
2 ImageCLEF is a community-wide forum for evaluating image retrieval methods, and we discuss the 2010
and 2012 collections in more detail in Sect. 5.
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– Practicality Comparing content-based features across images generally requires

significantly more computation time than comparing text-based features across

documents. Because of this expense, some multimodal systems are unable to retrieve

relevant images from large collections in an amount of time consistent with traditional

text-based retrieval, the efficiency of which many users have come to expect.

– Precision Effectively combining content-based and text-based features in a way that

actually improves retrieval precision has proven to be challenging. In particular, for the

task of retrieving images from biomedical articles, many multimodal systems are

unable to significantly improve upon the precision of simple text-based methods.

The above drawbacks were recognized by Datta et al. (2008) in their survey of image

retrieval trends when they remarked that ‘‘the future lies in harnessing as many channels of

information as possible, and fusing them in smart, practical ways to solve real problems.’’

We describe in this work global feature mapping (GFM), a practical solution for per-

forming multimodal biomedical image retrieval. GFM advances the state of the art by

enabling efficient access to the images in biomedical articles while simultaneously

improving upon the average retrieval precision of existing methods. Recognizing the

importance of text in determining image relevance, GFM combines a predominantly text-

based image representation with a limited amount of visual information through the fol-

lowing process:

1. Our system extracts a set of global content-based features from a collection of images

and groups them into clusters.

2. Our system maps each cluster to a unique alphanumeric code word that it then assigns

to all images whose features are members of the cluster.

3. Our system combines the code words assigned to an image with other text related to

the image in a multimodal surrogate document that is indexable with a traditional text-

based information retrieval system.

4. Our system searches the index using a textual query generated from a multimodal topic

by first assigning code words to the topic’s example images and then by combining

these words with the topic’s textual description.

Example Images

Textual Description

Topic 6: CT images containing a fatty liver

Fig. 1 Example multimodal topic taken from the 2010 ImageCLEF medical retrieval track data set
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We experimentally validated the success of GFM using the 2010 and 2012 (Müller et al.

2012) ImageCLEF medical retrieval track data sets. Our results show that on both collections,

GFM achieves statistically significant improvements in mean average precision (averaging

6.31 %, p \ 0.05) over a competitive text-based retrieval approach. When configured for

performing content-based retrieval, GFM also demonstrates a significant improvement in

precision compared with standard methods. As evidence of its practicality, our results show

that GFM requires a response time comparable to that of text-based retrieval, suggesting that

it is an appropriate technique for indexing large image collections.

To further demonstrate its practicality, we implemented GFM in two information

retrieval systems: a general purpose system based on the vector space retrieval model and a

biomedical system that utilizes a probabilistic retrieval model. We obtained statistically

significant improvements using both systems. Finally, we have incorporated GFM into the

OpenI system (Demner-Fushman et al. 2012). OpenI is a multimodal biomedical image

retrieval platform that currently indexes over one million images taken from the articles

included in the open access subset of PubMed Central.r OpenI is a publicly accessible

service3 developed by the U.S. National Library of Medicine.

The remainder of this article is organized as follows. We review in Sect. 2 existing

image retrieval strategies. We present the details of GFM in Sect. 3, and we discuss the

reuse of text-based systems for performing multimodal retrieval in Sect. 4. We describe our

evaluation of GFM on the ImageCLEF data sets in Sect. 5, our two prototype imple-

mentations of GFM in Sect. 6, and our experimental results in Sect. 7. Finally, we discuss

the significance of our results in Sect. 8.

2 Background and related work

Image retrieval is a broad and well-researched topic whose scope is far greater than our

immediate task of efficiently retrieving biomedical images. In this section, we first briefly

review the general strengths and weaknesses of well-known text-based and content-based

image retrieval strategies. We then discuss current work related to multimodal retrieval.

2.1 Text-based image retrieval

Text-based image retrieval systems represent images using descriptive text. For example,

the images contained in biomedical articles can be represented by their associated captions.

Using this text, a collection of surrogate documents is created to represent a given set of

images. These documents are indexed with a traditional text-based information retrieval

system, and they are searched using text-based queries.

There are several advantages to indexing and retrieving images using text. First, text-

based retrieval is a well-understood topic, and the knowledge gained in this area is easily

applied to the retrieval of images when they are represented by related text. Second, text-

based retrieval is efficient. Because words are discrete data, image surrogates can be

indexed in data structures that allow for low latency retrieval, such as inverted file indices.

Additionally, because text-based image queries are typically sparse, only a fraction of the

surrogates in an index must be scored and ranked for a given query. Finally, a text-based

representation allows for semantic image retrieval, enabling us to search for images by

providing a system with a description of the content we desire. By ‘‘semantic image

3 http://openi.nlm.nih.gov/.
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retrieval’’ we are referring to the ability of a system to reason beyond the surface form of an

information request. For example, it is common for text-based biomedical retrieval systems

to perform query expansion using ontological resources such as the Unified Medical Lan-

guage Systemr(UMLSr) (Lindberg et al. 1993).4 A query for the term ‘‘heart attack’’

could then be used to retrieve documents mentioning the term ‘‘myocardial infarction’’

since these terms, although having different surface representations, refer the same concept.

Unfortunately, text can often be a poor substitute for image content. For example,

authors sometimes do not write meaningful captions for the images they include in their

articles. For a text-based image retrieval system to be effective, the surrogate documents

with which it represents images must adequately reflect the content that is requested of it.

2.2 Content-based image retrieval

CBIR systems represent images as numeric vectors. These multidimensional visual

descriptors characterize features of the images’ content, such as their color or texture

patterns. A CBIR system queries a collection of images using an example image, and it

ranks the images according to their visual similarity with the example.

The advantage of CBIR systems compared to text-based image retrieval systems is their

ability to perform searches based on visual similarity. Such an ability is useful, for

example, for finding within a collection of images all images that are nearly identical to

one another, regardless of the context in which they appear. Müller et al. (2004) survey the

use of CBIR systems in medical applications.

However, there are several disadvantages to retrieving images using their content. First,

the visual similarity of a retrieved image with some example image is not always indicative

of its relevance to a query. Whereas text-based image retrieval systems provide a means to

access relevant images using descriptive text, semantic retrieval is difficult to achieve

using visual similarity alone.5 Second, CBIR systems are usually not as efficient as text-

based image retrieval systems. Because visual descriptors can be highly dimensional,

dense, and continuous-valued, computing the similarity between any two images can often

be a computationally intensive task.6

CBIR systems judge the similarity of images using a distance measure computed between

their extracted visual descriptors. Although many distance measures have been proposed

(e.g., Rubner et al. 2000), below we illustrate visual similarity using Euclidean distance.

Assume the vectors fq
x and fj

x represent the visual descriptors of some feature x extracted for

images Iq and Ij. The similarity of these two images for feature x is defined as:

simðIq; IjÞ ¼ 1�
kfx

q � fx
j k

max
m;n
kfx

m � fx
nk

ð1Þ

Thus, their similarity is equal to one minus the normalized Euclidean distance between

their visual descriptors. The denominator of the above function computes the maximum

4 The UMLS is a collection of controlled vocabularies in the biomedical domain, and its Metathesaurusr

represents synonymy relationships among the terms in the various vocabularies.
5 Although it is distinct from image retrieval, content-based image annotation can provide an efficient
means of accessing images by high-level concepts, and we discuss work related to image annotation in Sect.
3.5.
6 This computation can be lessened through the use of spatial data structures, approximate similarity
models, or ‘‘visual words,’’ and we discuss the advantages of these methods in Sects. 2.2.1–2.2.3.
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distance between the descriptors extracted for all images Im and In within some collection.

This min–max normalization ensures the computed value is always defined on the interval

[0,1].

A naı̈ve content-based retrieval approach involves using the above equation to compute

the visual similarity between an example image and every image within some collection.

The images are then ranked by sorting them in decreasing order of their similarity with the

example. We refer to this approach as the brute-force retrieval strategy. Although the

brute-force strategy is adequate for small image collections, it does not scale to large

collections, and its use is impractical for many retrieval tasks. A variety of techniques exist

for reducing the cost associated with the brute-force retrieval approach. Below, we briefly

review some of these general approaches before discussing in Sect. 2.3 work specifically

related to GFM’s multimodal retrieval strategy.

2.2.1 Exact representations

Spatial data structures provide an efficient means of storing and retrieving visual

descriptors, and they are well-understood within the metric space approach to similarity

search (Zezula et al. 2006). These data structures are commonly organized as search trees

created by first recursively partitioning a space into regions and then assigning objects to

these regions. While many spatial data structures share similar organizations, they often

differ in the way in which they partition a space. Examples of spatial data structures

include vantage-point trees (Yianilos 1993), generalized hyperplane trees (Uhlmann 1991),

geometric nearest-neighbor access trees (Brin 1995), and M-trees (Ciaccia et al. 1997).

Within Euclidean spaces, k-d trees (Bentley 1975) and R-trees (Guttman 1984) are

common.

Unfortunately, the use of such data structures for indexing image content is not always

appropriate. We frequently represent the content of an image collection using more than

one feature. Because the descriptors of these features are often highly dimensional, the

improvement in response time realized through the use of spatial data structures does not

always justify their use. Spatial data structures generally perform no better than brute-force

algorithms for finding nearest neighbors in highly dimensional spaces (Indyk 2004).

2.2.2 Inexact representations

Dimensionality reduction techniques, especially when they are used in combination with

spatial data structures, can effectively reduce the cost associated with maintaining multi-

dimensional data. By representing visual descriptors with fewer attributes, the response

time incurred by spatial data structures can be significantly improved. Examples of

dimensionality reduction techniques include principal component analysis (Ng and Se-

dighian 1996), singular value decomposition (Pham et al. 2007), self-organizing maps

(Kohonen 2001), multidimensional scaling (Beatty and Manjunath, 1997), and locality-

sensitive hashing (Indyk and Motwani 1998).

However, inexactly representing the visual descriptors of a collection of images forces a

trade-off between retrieval precision and efficiency. Because descriptors must be trans-

formed to enable their efficient storage and retrieval, we can no longer rank images

according to their exact similarity with a query. Instead, we must rely on an approximate

similarity, which may result in a significant reduction in retrieval precision. Moreover, as

we increase the number of descriptors with which we represent images, or the dimen-

sionality of these descriptors, we can expect the precision of an approximate similarity
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search to worsen. The lower-dimensional approximation becomes increasingly inexact as

we increase the descriptiveness of the original representation.

2.2.3 Bag of visual words representations

Of the existing techniques for reducing the response time of brute-force CBIR, the use of

‘‘visual words’’ (e.g., Yang et al. 2007) is most similar to GFM’s processing of content-

based image features. Using the bag of visual words (BVW) approach, an image is first

segmented into a set of regions, commonly by overlaying a regular grid onto the image.

Alternatively, an interest point detector can be used to detect salient local patches within an

image (Nowak et al. 2006). Widely used interest point detectors include the Harris affine

region detector (Harris and Stephens 1988), Lowe’s difference of Gaussians detector

(Lowe 2004), and the Kadir–Brady saliency detector (Kadir and Brady 2001). Once an

image has been segmented into regions, local features, especially SIFT (Lowe 1999)

features, are extracted from each region, and these features are mapped to visual words. An

image is represented as a collection of the words assigned to its constituent regions, which

is a description of the image that can be efficiently maintained in an inverted file index.

Having been inspired by the success of text-based retrieval, numerous content-based

retrieval strategies have been proposed that implement the BVW approach. A well-known

example is the Video Google system (Sivic and Zisserman 2003), which utilizes the BVW

strategy and inverted file indices to efficiently retrieve all occurrences of user-outlined

objects in videos. Another example demonstrating the use of text retrieval models for

performing content-based retrieval is the Mirror DBMS (de Vries 1999), which generates

visual words for independent local feature spaces and then applies a retrieval model based

on the INQUERY system (Callan et al. 1992). de Vries and Westerveld (2004) describe a

similar content-based retrieval system based on the language modeling approach of

information retrieval. Finally, the Viper project (Squire et al. 2000) demonstrated that

inverted file indices permit the use of extremely high-dimensional feature spaces for

performing content-based image retrieval. The MedGIFT (Müler et al. 2003) system is a

more recent incarnation of this work that has been adapted to the biomedical domain.

The difference between BVW representations and the content-based feature processing

of GFM can be summarized as follows. BVW representations decompose images spatially

into patches, representing the local features extracted from each patch with a word.

Conversely, GFM decomposes images conceptually into complimentary ‘‘views’’ of the

images’ content according to various global features. Each view is then represented as a set

of words. The two models are orthogonal, with the former mapping local patches within an

image to words and the latter mapping global views of an image to words.

BVW approaches provide a convenient representation for region-based computer vision

tasks where the spatial orientation of an image’s local features is not an essential con-

sideration. For example, BVW models are commonly used for categorizing the objects

within images. However, for retrieval tasks in which the overall appearance of images is

important, BVW models often do not perform well in isolation, and the use of global

features can improve performance. Within the biomedical domain, images of a particular

medical imaging modality commonly exhibit a similar global appearance. For example,

physicians usually perform chest X-ray using standard medical imaging equipment on

patients oriented in the same direction. A result of this uniform examination procedure is

that chest X-ray images can be distinguished from other medical imaging modalities using

global features, such as color and texture. For multimodal retrieval tasks within the bio-

medical domain, it is often not necessary to consider the local features of images within a
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particular modality. Detecting nodules within a chest X-ray query, for example, is not

needed if the query text already mentions the concept ‘‘tuberculoma,’’ a pulmonary nodule

found in patients having tuberculosis. For such retrieval tasks, GFM is an appropriate

technique for efficiently combining the exact representation of an image’s global content-

based features with descriptive text so as to improve average retrieval precision.

2.3 Multimodal image retrieval

Multimodal image retrieval systems, the last of the three image retrieval methods we will

discuss, represent images as a ‘‘fusion’’ of descriptive text and numeric feature vectors.

Fusion can either be performed early in the analysis process by creating a unified data

representation or late in the process, after each data type has been analyzed independently.

GFM is an instance of early fusion because it combines an image’s text-based and content-

based features into a single indexable representation. Retrieval strategies that filter or re-

rank images retrieved using a text-based query based on their visual similarity with some

example image are instances of late fusion. These methods perform retrieval separately for

each modality and later merge the results into a single ranked list of images. Atrey et al.

(2010) survey fusion methods that have been proposed for a variety of different data types.

Because multimodal image retrieval systems combine the aforementioned text-based

and content-based image retrieval approaches, these systems inherit the strengths and

weaknesses of each method. Advantages of multimodal retrieval include the ability to

search for images both semantically and by visual similarity. A disadvantage is the

inherent difficulty in determining an effective fusion strategy that simultaneously improves

retrieval precision while remaining practical for use in real systems.

One of the most active areas of multimodal image retrieval research has been the

biomedical domain. Although an exhaustive account of the multimodal biomedical image

retrieval strategies is not feasible, a popular topic has been the retrieval of images from

biomedical articles. An appropriate starting point for surveying this work is Müller et al.’s

(2010a) retrospective of the ImageCLEF evaluations. This volume describes the various

ImageCLEF tracks and the evolution of strategies used by the ImageCLEF participants. A

recurring theme—not only of the medical retrieval track, but of the other tracks as well—is

the difficulty encountered by the participants in meaningfully combining text-based and

content-based image features. The prototype implementation of GFM is based on our own

past experiences, documented by Simpson et al. (2009, 2010, 2011, 2012a), at developing

multimodal retrieval strategies for these evaluations.

While many multimodal fusion-based retrieval strategies have been proposed within the

biomedical domain, we review the following as being representative methods that have

also been evaluated on the ImageCLEF data sets. Kalpathy-Cramer and Hersh (2010)

demonstrate an effective late fusion approach for improving the early precision of a

medical image retrieval system. The method first assigns image modality labels (e.g.,

X-ray) to a collection of images based on their content-based features, and it then uses

these labels to re-rank images retrieved using text-based queries. Clinchant et al. (2010)

and Alpkocak et al. (2012) also describe techniques that use image modality to re-rank

results obtained by a text-based image search. Whereas the above approaches perform late

fusion using image modality, Demner-Fushman et al. (2009) describe a medical image

retrieval system that first performs a text-based query to retrieve an initial set of images

and then re-ranks the retrieved images according to their visual similarity with an example

query image. Similarly, Gkoufas et al. (2011) perform brute-force CBIR to re-rank the one

thousand highest ranked images retrieved using a text-based retrieval approach. Caicedo
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et al. (2010) utilize latent semantic kernels to construct combined text-based and content-

based feature vectors, which they then use for performing a brute-force retrieval strategy.

Finally, Rahman et al. (2010) describe a fusion-based query expansion method, and Zhou

et al. (2010) evaluate the effectiveness of classical information fusion techniques for

biomedical image retrieval.

GFM is distinct from the above multimodal approaches in several ways. First, whereas

the above methods primarily rely on late fusion techniques to filter or re-rank the results of

text-based retrieval, GFM is an early fusion approach. GFM’s combination of image code

words with image-related text enables the creation of multimodal surrogate documents that

are indexable by traditional text-based retrieval systems. The reuse of text-based systems

for performing multimodal retrieval contributes to GFM’s low search latency and suggests

that it is an appropriate technique for indexing large image collections. Second, our results

demonstrate that GFM consistently achieves statistically significant improvements in

retrieval precision over text-based approaches whereas existing methods show mixed

results.

3 Global feature mapping

GFM is a practical solution for enabling the retrieval of biomedical images using both

descriptive text and visual similarity. By mapping the exact representation of an image’s

global content to code words, and then by combing these words with other image-related

text, GFM creates a multimodal image representation that is efficiently indexed and

retrieved using a traditional text-based information retrieval system. Reusing a text-based

system for performing multimodal image retrieval ensures the efficiency of GFM and

improves upon the average retrieval precision of existing methods.

Below, we detail GFM’s image indexing and retrieval process. The primary components

of this process include (1) a method for generating a ‘‘codebook’’ of words with which to

represent the global features extracted from a collection of images, (2) a method for

assigning these code words to images, (3) a method for indexing the images’ assigned code

words with their related descriptive text, and (4) a method for querying the resulting

multimodal index. We follow this section with a discussion of the treatment of image code

words in a traditional text-based information retrieval system.

3.1 Codebook generation

GFM’s codebook generation process defines a mapping of the global content of a col-

lection of images to a set of indexable code words. Assume a collection of images

fI1; I2; . . .; Img and a set F of global content-based features, such as color and texture.7 We

represent each image in the collection as a set of numeric vectors extracted for each of the

features:

Ij ¼ fx
j : x 2 F

n o
ð2Þ

7 GFM is generally applicable and does not require the use of specific content-based features. However, the
features used with GFM must be representable as numeric vectors. Refer to Sect. 6.1 for a description of the
features we use with our prototype implementation.
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The vector fj
x is a visual descriptor of feature x of image Ij, 1 B j B m. For each of the

global features, the codebook generation process clusters the corresponding vectors

extracted from the images in the collection and then maps the resulting cluster centroids to

unique code words. The complete mapping of cluster centroids to code words defines

GFM’s codebook.

The codebook generation process proceeds as follows. First, GFM optionally partitions

each vector fj
x into p lower-dimensional vectors of equal dimensionality. fj

x is written in

terms of its constituent partitions as:

fx
j ¼ fx

1;j fx
2;j � � � fx

p;j

� �
ð3Þ

where the row vector fl,j
x is partition l of fj

x, 1 B l B p. The dimensionality of each of these

lower-dimensional vectors is equal to 1/p times the dimensionality of the original

descriptor. Thus, the lower-dimensional vector fl,j
x contains dimensions of the original

vector that are within the range [lp - p ? 1, lp]. GFM partitions descriptors when their

dimensionality and the number of images in the collection combine to make clustering the

vectors prohibitively expensive with available resources. Also, because partitioning

increases the number of vectors representing each image, it increases the number of ways

in which these images can differ, thereby improving the intracluster ranking of the

retrieved images (Sect. 7.2.4).

GFM’s use of lower-dimensional feature vectors is related to the notion of product

quantization (Jégou et al. 2011) and the dimensionality reduction technique proposed by

Ferhatosmanoglu et al. (2001) that partitions vectors after having transformed them using

the Karhunen–Loeve transformation (KLT). However, unlike these methods, GFM does

not partition visual descriptors so as to improve the performance of approximate nearest

neighbor search. Instead, GFM partitions the vectors and maps them to code words as a

practical means of combining visual and textual information in a form indexable by a

traditional text-based retrieval system. We retrieve images not by approximating the

Euclidean distance between their descriptors, but by relying upon the underlying text-based

retrieval model. For example, the well-known vector space model computes the cosine

distance between tf and idf term vectors. Using GFM, each of these vectors is constructed

from the combined term statistics of an image’s code words as well as its related text.

After GFM partitions the extracted visual descriptors, the clustering process begins.

GFM requires a centroid-based algorithm, such as k-means (Lloyd 1982), to cluster each

set of lower-dimensional vectors corresponding to a given partition and feature. Assume

ff1; f2; . . .; fmgx
l is the set of lower-dimensional vectors representing partition l of the visual

descriptors extracted from the collection of images for feature x. We denote the clustering

of these vectors as fC1;C2; . . .;Ckgx
l , where Ci,l

x is the set of vectors belonging to cluster i,

1 B i B k. We denote the centroid of cluster Ci,l
x as the vector ci,l

x .

Once the clustering process is complete, GFM generates the codebook. GFM stores in

the codebook a mapping from each cluster centroid to a unique code word. Because each

centroid ci,l
x is uniquely identified by the feature x and the tuple (i, l), GFM combines these

values to construct textual code words of the form ‘‘x:kipl. ’’ For example, having extracted

the color layout descriptor (CLD) (Chang et al., 2001) for all images in the collection,

GFM maps the centroid c1,2
cld to the text string ‘‘cld:k1p2.’’ In this way, each code word in

GFM’s codebook is uniquely associated with a given feature, partition, and cluster.

Although various other techniques can be envisioned for generating unique code words,

GFM follows the aforementioned strategy to map images to sets of words.
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The diagram shown in Fig. 2 summarizes GFM’s codebook generation process. Assume

fa; b; cg � F; 1� l� p, and 1 B i B k. A collection of images fI1; I2; . . .; Img first

undergoes feature extraction (FE) to produce a set of visual descriptors ff1; f2; . . .; fmgx
for

a feature x. This set of descriptors then undergoes feature partitioning (FP) to produce

p sets of lower-dimensional vectors. For a partition l, the set of lower-dimensional vectors

ff1; f2; . . .; fmgx
l is grouped into k clusters, resulting in a set of centroids fc1; c2; . . .; ckgx

l .

GFM stores in the codebook a mapping from each centroid ci,l
x to a unique code word of the

form ‘‘x:kipl. ’’ In Fig. 2, the clustering process is represented with the k-means algorithm

(KM), but any centroid-based clustering algorithm is sufficient for generating the

codebook.

3.2 Code word assignment

After generating and storing in the codebook unique words representative of the cluster

centroids, GFM then assigns the words to each image in the collection. GFM assigns the

code word ‘‘x:kipl’’ to all images whose partition l of the descriptor for feature x lies within

the cluster whose centroid is ci,l
x . Specifically, the set of images to which GFM assigns this

word is given by fIj: fx
l;j 2 Cx

i;lg.
While it is useful to know the set of images to which GFM assigns a given code word,

we often must consider the set of all code words assigned to a given image. Recall that the

code word representing centroid ci, l
x is defined by the feature x and the tuple (i, l). The set

of defining tuples for all code words assigned to an image Ij for feature x is given by:

Wx
j ¼ argmin

i

kfx
l;j � cx

i;lk; l
� �

: 1� l� p

� �
ð4Þ

Fig. 2 Codebook generation. Visual descriptors representative of a set of global features are first extracted
from a set of images via some feature extractor (FE). Then, the descriptors of each feature are partitioned via
some feature partitioner (FP) to form several sets of lower-dimensional vectors. Finally, the sets of lower-
dimensional vectors are clustered via the k-means algorithm (KM), and the resulting cluster centroids are
mapped to unique textual code words in the codebook
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Wq
x identifies the centroids that are nearest to each of the p lower-dimensional vectors

representing feature x of image Ij. The set of all code words representing Ij is then given by:

Dc
j ¼ ‘‘x: kipl’’: x 2 F ^ ði; lÞ 2 Wx

j

n o
ð5Þ

Intuitively, Dj
c can be thought of as a text document containing the code words for the

content-based features extracted for image Ij.

The diagram shown in Fig. 3 summarizes the code word assignment process of GFM for

an image Ij and a single global feature x. Assume x 2 F; 1� l� p, and 1 B i B k. The

image first undergoes feature extraction to produce a visual descriptor for feature x. The

extracted descriptor then undergoes feature partitioning (FP) to produce p lower-dimen-

sional vectors ff1; f2; . . .; fpgx
j . Feature extraction and partitioning are performed during the

codebook generation process. The codebook entries for partition l of feature x are given by

fc1; c2; . . .; ckgx
l . For each lower-dimensional vector fl,j

x , the code word assignment process

performs a nearest-neighbor search (NN) to select among these entries the cluster centroid

to which the vector is nearest. Each selected centroid ci,l
x is represented in the set Wj

x as a

tuple (i, l). The textual representation of the tuples for all the content-based features

extracted for an image Ij is then given by Dj
c.

3.3 Multimodal image representation

Because images are seldom self-evident, they are frequently accompanied by text. In

general, this text can provide meaning to the visual characteristics of the images and can

place the images within a broader context. For example, the images found in biomedical

Fig. 3 Code word assignment. The visual descriptor representative of a global feature is extracted from a
query image and partitioned via some feature partitioner (FP), forming several lower dimensional vectors.
For each lower-dimensional vector, a nearest-neighbor search (NN) is performed to select among the
codebook entries the cluster centroid to which the vector is nearest. The query image is then represented by a
set of tuples that uniquely define the selected centroids. Note that this diagram only depicts the code word
assignment process for one of the features used for codebook generation
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articles are usually accompanied by descriptive captions, and their relevance is commonly

discussed in passages within the articles’ full text that mention the images.

GFM provides efficient access to both the meaning of images as well as their visual

characteristics by representing images as a combination of their text-based and content-

based features. Assume GFM has completed the codebook generation process for a col-

lection of images and a set of global content-based features. Furthermore, assume GFM has

assigned each image in the collection one or more code words corresponding to each of the

global features. To prepare the collection of images for indexing, GFM combines the code

words assigned to the images with natural words taken from their related text.8 Let Dj
t

represent a document containing descriptive text related to an image Ij. We define a

multimodal surrogate document Dj for image Ij as the following:

Dj ¼ Dt
j [ Dc

j ð6Þ

After constructing multimodal surrogates for each image in the collection, we index the

resulting documents with a traditional text-based information retrieval system.

The image representation used by GFM is best understood with an example. Figure 4

shows a multimodal surrogate document created for an image in the 2010 ImageCLEF

medical retrieval track data set. The image, taken from an article by Helbich et al. (1999),

is a CT scan depicting morphologic abnormalities in a 9-year-old boy with cystic fibrosis.

The image is represented by both its text-based and content-based features in a document

that is indexable with a traditional text-based information retrieval system. The image’s

text-based features include its caption, passages from the full text of the article that

mention the image (i.e., Fig. 2 in this example), the title of the article, the article’s abstract,

and the article’s assigned medical subject headings (MeSHr terms).9 The image’s global

content-based features are represented as code words derived from five visual descriptors,

each of which are described in Sect. 6.1. Note that in this particular example, the

descriptors have not been partitioned into lower-dimensional vectors (i.e., p = 1). Thus,

the image is only assigned one code word for each of the five features.

3.4 Multimodal image retrieval

Having utilized a traditional text-based information retrieval system to index the collection

of multimodal surrogate documents produced by GFM, we can efficiently retrieve images

from the collection. Assume we would like to retrieve the most relevant images for a

multimodal topic, such as the one shown in Fig. 1. In order to formulate a query for this

retrieval task, we must first assign code words to the topic’s example images and process

the textual description of the topic. Then, we can combine the images’ code words with

natural words taken from the topic description and use this text to search the collection of

multimodal image surrogates. We describe GFM’s query formulation process below.

Like it does for images in the collection, GFM represents queries as multimodal sur-

rogate documents containing both text-based and content-based features. For a given topic

or information request, GFM processes the topic’s example images in the same way as it

does images in the indexed collection, extracting visual descriptors for an identical set of

global content-based features and partitioning these descriptors into the same number of

8 GFM does not require the use of specific text-based features, and we define image-related text broadly.
Refer to Sect. 6.1 for a description of the features we use with our prototype implementation.
9 MeSH is a controlled vocabulary used by the U.S. National Library of Medicine for indexing articles in

the MEDLINEr database.
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lower-dimensional vectors. GFM assigns words to a query image Iq following the code

word assignment process, which produces a set of code words Dq
c. GFM combines Dq

c with

a set of natural words Dq
t taken from the topic’s textual description10 in order to form a

multimodal query Dq. Finally, we submit Dq as a query to the text-based information

retrieval system we used to index the collection of multimodal surrogates and retrieve a set

of images.

3.5 Relation with semantic image annotation

Much recent work in the CBIR community has dealt with bridging the so-called ‘‘semantic

gap’’ between an image’s content and its meaning. The idea is that by automatically

labeling an image or the interesting regions of an image with semantically meaningful

Image Caption

Figure 2: CT scan at the level of the upper lobes in a 9-
year-old boy (group 2 [6-16 years]) demonstrates mild to
severe signs of bronchiectasis (curved arrows) and mild to
moderate signs of bronchial wall thickening. In addition,
CT scan shows mucous plugging (straight arrows) and mo-
saic perfusion (*).

Image Mentions

Bronchiectasis (80%), peribronchial wall thickening
(76%), mosaic perfusion (64%), and mucous plugging
(51%) were the most frequently observed morphologic CT
abnormalities in the 117 patients (Table 2; Figs 1–5)

Evaluation of the three age groups demonstrated signifi-
cant trends for progression of disease (P < . 05) as revealed
in the overall CT score, in frequency of specific CT signs,
and in the severity of the specific abnormalities (Table 3;
Figs 1–5).

Global Image Features

cedd:k167p1 cld:k24p1 ehd:k451p1 fcth:k1308p1 scon-
cept:k60p1

Article Title
Cystic fibrosis: CT assessment of lung involvement in chil-
dren and adults

Article Abstract
Purpose: To compare a computed tomographic (CT)-based
scoring system with nonimaging indexes of pulmonary sta-
tus in patients with cystic fibrosis.

Materials and Methods: Pulmonary CT findings were as-
sessed in 117 patients with cystic fibrosis, with cases classi-
fied according to three groups by age; 0-5 years, 6-16 years,
and 17 years and older. Images were examined for specific
abnormalities, and the severity and anatomic extent of each
sign were used to generate a score. Scores in each category
and the global score for each patient were correlated with
pulmonary function test results, clinical status, serum im-
munoglobulin levels, and genotype, all obtained within 2
weeks of CT.

Results: The most frequent individual CT abnormalities
were bronchiectasis in 94 (80.3%), peribronchial wall
thickening in 89 (76.1%), mosaic perfusion in 71 (63.9%),
and mucous plugging in 56 (51.3%) patients. The percent-
age of patients with specific CT findings and the over-
all CT scores increased significantly (P < . 05) with pro-
gressively increasing age groups. All CT findings and the
overall CT scores correlated significantly (P < . 05) with
the pulmonary function test results, serum immunoglobu-
lin levels, and clinical scores. No relationship was observed
between genotype and CT scores.

Conclusion: Scoring of CT studies in patients with cystic
fibrosis seems to offer a reliable way to monitor disease
status and progression and may provide a reasonable tool
to assess treatment interventions.

Article MeSH Terms
Adolescent; Adult; Age Factors; Child; Child, Preschool;
Cystic Fibrosis/radiography*; Female; Humans; Infant;
Male; Prospective Studies; Tomography, X-Ray Com-
puted*

Fig. 4 Multimodal image representation. The image from Fig. 2 of the article ‘‘Cystic fibrosis: CT
assessment of lung involvement in children and adults’’ by Helbich et al. (1999) is shown represented by a
combination of text-based and content-based features

10 The exact method by which we process the textual descriptions of topics is not important for under-
standing GFM. Refer to Sect. 6.2 for a discussion of the text processing we perform for our prototype
implementation.
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concepts, such concepts could then be leveraged in order to retrieve conceptually similar

images. Our assumption in this work has been that semantic descriptions of the images in

our collections are already accessible: the images found in biomedical articles are sur-

rounded by meaningful text (e.g., their captions), and we are using meaningful text (e.g.,

topic descriptions) as the primary means of retrieving them. Thus, the semantic gap

associated with our collection is narrow if it exists at all, and bridging it is not a problem

that GFM attempts to solve. Although the code words GFM assigns to images can be

thought of as annotations, they convey no obvious meaning beyond cluster membership.

Even so, our experiments have shown that, for our data sets, we can improve the retrieval

of relevant images by incorporating these image code words into a text-based retrieval

process. However, it is beneficial for us to briefly survey some representative work related

to semantic annotation.

Many approaches to image annotation attempt to create joint probabilistic models of

text-based and content-based features. Typical of these approaches, image-related text is

represented as a bag of words, and image content is represented as ‘‘blobs,’’ which are

quantized content-based feature vectors extracted from important image regions. Con-

ceptually, blobs are similar to GFM’s code words, but whereas GFM may represent the

global content of a single image with several code words, a single blob represents the local

content of one region. The goal of an annotation model is then to learn joint word-blob

probabilities from a collection of images and their associated text. Perhaps inspired by

techniques from natural language processing, Duygulu et al. (2006) formulate the mod-

eling problem as an instance of machine translation, and Lavrenko et al. (2003) apply the

language modeling framework of information retrieval to learn the semantics of images.

Barnard et al. (2003) investigate various correspondence models as well as a multimodal

extension of Latent Dirichlet allocation (LDA). Blei and Jordan (2003) also propose the

use of LDA for modeling associations between words and images. Finally, though not

directly related to annotation, Rasiwasia et al. (2010) model the correlations between

images’ content-based features and their related text in support of cross-modal retrieval.

The authors demonstrate that their cross-modal model can outperform systems when

evaluated on unimodal retrieval tasks.

Instead of modeling the associations between text-based and content-based image

features, semantic annotation can also be achieved using supervised machine learning

techniques. Datta et al. (2007) describe a structure-composition model for categorizing

image regions. The authors annotate images with tags corresponding to recognized regions

and use the annotations for retrieving semantically similar images. They use a bag of words

distance measure based on WordNet (Miller 1995) for computing semantic similarity. Li

and Wang (2008) present ALIPR (automatic linguistic indexing of pictures—real time), a

real time image annotator that uses hidden Markov models to capture the spatial depen-

dencies of content-based features associated with a given set of semantic categories. A

related approach is described by Chang et al. (2003), who use Bayes point machines

(Herbrich et al. 2001) to assign ‘‘soft’’ annotations to images based on category confidence

measures estimated from a training set of labeled images.

Within the biomedical domain, region classification has been a popular approach for

improving image retrieval. Lacoste et al. (2007) index images using a combination of

UMLS concepts extracted from image-related text and VisMed (Lim and Chevallet 2005)

terms derived from image content. VisMed terms are semantic labels generated by clas-

sifying the appearance of image regions. The authors demonstrate that a multimodal fusion

approach that utilizes VisMed terms is capable of outperforming systems evaluated on the

2005 ImageCLEF medical retrieval track data set. However, unlike GFM’s unsupervised
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method of generating code words, semantic annotation using VisMed terms is an instance

of supervised learning and requires a sufficient set of training from which to derive the

terms. Additionally, Simpson et al. (2012b) discuss the creation of a ‘‘visual ontology’’ of

biomedical imaging entities using supervised learning. The authors utilize natural language

and image processing techniques to automatically create a training set of annotated image

regions by pairing the visible arrows in images with the caption text describing their

pointed-to regions. They then use this data set to train a classifier to label regions in images

having no associated text. This approach has yet to be evaluated for its use in improving

medical image retrieval.

Finally, Wang et al. (2008) discuss a search-based approach to image annotation. To

annotate an image, the method first performs a content-based search to retrieve visually

similar images, and it then uses text related to the retrieved images to form a list of

candidate annotations for the original.

4 Images as words

When represented as code words, images become subject to the underlying models used by

traditional text-based information retrieval systems. While this may not seem immediately

desirable, the well-understood concepts of text-based retrieval are easily adapted for use

with image code words, and they prove to be beneficial for improving upon the retrieval

performance and efficiency of existing content-based and multimodal image retrieval

systems. Below, we discuss how common text-based retrieval techniques—namely, query

expansion and relevance ranking—operate when we represent images as words.

4.1 Code word expansion

Text-based retrieval systems often perform query expansion in an effort to improve

retrieval performance. A commonly used technique involves expanding a query to include

the synonyms and morphological variants of existing terms. Text-based query expansion

methods, however, are not directly applicable to image code words because, as they are not

natural words, they do not have conventional synonyms or variants. Instead, we define the

relatedness of two code words as the distance between their representative cluster cen-

troids, and we expand a query of code words to include those corresponding to nearby

centroids.

A problem with traditional centroid-based clustering algorithms is the requirement that

each element belongs to exactly one cluster. This restriction is unfortunate for GFM

because it implies that images that may be similar in appearance can be assigned different

code words. Consider a Voronoi diagram representing the clustering of the visual

descriptors extracted from a collection of images for a particular global feature.

Descriptors lying close to and on either side of the boundary between two adjacent cells are

more similar to each other than either one is to its respective cell center. Thus, because

GFM assigns different code words to images whose descriptors lie within different cells, it

may not retrieve the most visually similar set of images to a given query image if the query

image’s descriptor lies far away from a cell’s center.

The goal of code word expansion is to minimize the negative impact rigid cluster

membership has on retrieval performance. Similar to fuzzy cluster analysis (Bezdek et al.

1999), code word expansion allows GFM to assign more than one code word to a query

image for a given feature and partition. Recall that the set Wq
x contains all tuples (i, l) that
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define the code words GFM assigns to a query image Iq for feature x. For each partition l of

feature x, Wq
x identifies the single centroid ci,l

x to which fl,q
x is closest. In order to expand a

code word query, we parameterize Wq
x with a code word expansion factor e. WqðeÞx

identifies the e nearest cluster centroids to each fl,q
x and is defined by:

Wx
j ðeÞ ¼ ei; lð Þ: 1� i� e ^ 1� l� p ^ ei 2 Ex

l;j

n o
ð7Þ

El,j
x is a set of identifiers corresponding to the cluster centroids after they have be sorted

in order of increasing distance from fl,q
x :

Ex
l;j ¼ fe1; e2; . . .; ekg ordered by fx

l;j � cx
en;l
� fx

l;j � cex
nþ1

;l ð8Þ

Thus, the set Wx
qðeÞ contains all tuples (i, l) representative of the e nearest centroids to

each fl,j
x for 1 B l B p. Similarly, Dc

qðeÞ contains the actual expanded set of code words for

a query image Iq. The code words assigned to an image are subject to the term weighting

strategy of the underlying text-based retrieval model. However, because many retrieval

systems allow terms to be weighted manually, a weighting strategy that allocates less

weight to the expanded code words could potentially be realized that simulates the

probabilistic cluster membership obtainable by fuzzy clustering techniques.

4.2 Image similarity

The most apparent consequence of using a traditional text-based retrieval system to index

images is that retrieved images are ranked according to some text-based similarity mea-

sure. Whereas existing content-based and multimodal image retrieval systems commonly

rank images by the Euclidean distance between their extracted visual descriptors, this

ranking is not directly possible when we instead represent images as words. Modern text-

based retrieval systems implement a variety of set-theoretic, algebraic, and probabilistic

retrieval models. Though not always the best-performing approaches, many text-based

systems, such as Apache Lucene,11 implement a combination of the Boolean and vector

space models, especially variants of these models that utilize tf–idf term weighting. Below,

we briefly discuss the treatment of image code words within these well-known models.

4.2.1 Boolean model

The Boolean model (Lancaster and Fayen 1973) was one of the first and most widely

adopted information retrieval strategies, and many modern retrieval systems provide a

mechanism for constructing queries that utilize standard Boolean operators. If we assume

query images to be the disjunction of their code words, then the set of images retrieved by

the model for a query image Iq is given by fIj: Dc
j \ Dc

qðeÞ 6¼ ;g. Thus, the model retrieves

all images from the collection that are represented by a code word contained in the set of

expanded code words GFM assigns to the query image. Alternatively, if we assume query

images to be the conjunction of their code words, the set of images retrieved by the model

is given by fIj: Dc
j � Dc

qðeÞg.
The use of Boolean operators is especially useful for creating queries for topics con-

taining more than one example image, such as the one shown in Fig. 1. For such topics, we

might like to retrieve all images that are visually similar to at least one of the example

11 http://lucene.apache.org/.
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images, or we might, instead, prefer to retrieve images that are similar to all of the

examples. We can construct result sets for complex image queries by first retrieving a set

of images for each example image according to either the disjunctive or conjunctive query

formulation strategy and then applying the Boolean operators to the retrieved sets of

images.

4.2.2 Vector space model

The vector space model (Salton et al. 1975) is a well-known algebraic model of infor-

mation retrieval where documents and queries are represented as term vectors. We can

construct code word vectors for images following the classical formulation. Dj
c, the code

words GFM assigns to an image Ij, is represented as a set of term vectors fvx
j : x 2 Fg,

where each vj
x corresponds to the codebook entries for feature x. Furthermore, each vj

x is

partitioned into p lower-dimensional term vectors:

vx
j ¼ vx

1;j vx
2;j . . . vx

p;j

� �
ð9Þ

Each vl,j
x corresponds only to those codebook entries of feature x that are defined for

partition l. The attributes of these lower-dimensional vectors are weights corresponding to

the codebook entries they represent:

vx
l;j ¼ wx

1;l;j wx
2;l;j � � � wx

k;l;j

� �
ð10Þ

Vector space retrieval systems commonly implement the tf–idf term weighting strategy.

Because GFM only assigns images one word per feature and partition combination, the

term frequency of each codebook entry contained in document Dj
c is equal to one. Thus,

code words are weighted by their inverse document frequency, which is defined by:

wx
i;l;j ¼

log m
Cx

i;l
ifði; lÞ 2 Wx

j ðeÞ
0 otherwise

(
ð11Þ

The inverse document frequency of a given code word is related to the number of

images whose visual descriptors are members of the cluster the code word represents.

Because code words are uniquely defined by feature x and tuple (i, l), this number is equal

to |Ci,l
x |. The tf–idf weighting strategy implies that code words representing clusters having

few members are weighted more heavily than those representing clusters with many

members. Thus, the retrieval system favors images that are more unique within the

collection.

Code word expansion can either be performed when indexing images or when mapping

query images to their associated code words; it is not necessary to perform code word

expansion during both the indexing and retrieval steps. By convention, we perform code

word expansion during the retrieval process. Thus, we let e ¼ 1 for the m images in the

collection and e� 1 for query images.

Having defined the term vectors used by the vector space model and the weights

assigned to each code word, we can compute the similarity between two images. The

similarity between a query image Iq and an image Ij from the collection is given by the

average cosine similarity between the code word vectors representing Iq and Ij for all

features. For a given query image, the retrieval system computes its similarity with

each image in the collection and then ranks the collection of images accordingly.
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5 Data and evaluation

The medical retrieval track of ImageCLEF has been an important catalyst for advancing

the science of image retrieval within the biomedical domain (Hersh et al. 2009). For the ad

hoc retrieval task, participants are provided with a set of topics, and they are challenged

with retrieving for each topic the most relevant images from a collection of biomedical

articles. As was shown in Fig. 1, each topic is multimodal, consisting of a textual

description of some information need as well as one or more example images. Although

the best-performing systems at ImageCLEF evaluations have historically relied upon text-

based retrieval methods, recent systems have shown encouraging progress towards

combing these methods with content-based approaches, especially since the introduction of

an image modality classification task (Müller et al. 2010b). For the classification task, the

goal is to classify images according to medical imaging modalities such as ‘‘Computerized

Tomography’’ or ‘‘X-ray.’’

We chose the 2010 and 2012 ImageCLEF medical retrieval track data sets for the

evaluation of GFM. The 2010 collection contains 77,479 images taken from a subset of

the articles appearing in the Radiology and Radiographics journals, and the 2012

collection contains 306,539 images taken from a portion of the articles in the open

access subset of PubMed Central. Each image is associated with its caption and the

title, identifier, and URL of the article in which it appears. The 2010 collection

identifies each article by its PubMed identifier (PMID) whereas the 2012 collection uses

its PubMed Central identifier (PMCID). There are sixteen multimodal ad hoc topics in

the 2010 collection and twenty-two topics in the 2012 data set. The organizers of the

ImageCLEF evaluations categorize the topics in roughly equal proportions as being

‘‘Visual,’’ ‘‘Mixed,’’ or ‘‘Semantic’’ according to their expected benefit from content-

based or text-based retrieval techniques.

Following the TREC evaluation methodology (Voorhees and Harman 2005), the

highest ranked images retrieved by each ImageCLEF participant for a given topic were

pooled and manually judged as either being relevant to the topic or not relevant. Using

these judgements, we report a system’s performance for a topic as binary preference

(bpref), judged mean average precision (MAP0), and judged precision-at-ten (P0@10)

over the one thousand highest-ranked images. Although they are highly correlated,

because bpref and MAP0 do not always agree, we assume these metrics to be com-

plimentary and use them both as an indicator of average system performance. However,

Sakai (2007) has determined that average precision, when computed on only the images

having relevance judgements, is at least as robust to incomplete judgements as bpref

but more discriminative. To measure the statistical significance between the average

performance of two or more systems, we applied Fisher’s two-sided, paired randomi-

zation test (Smucker et al. 2007), which is a recommended statistical test for evaluating

information retrieval systems.

We evaluate the efficiency of each retrieval system having measured the time in mil-

liseconds needed to produce a ranked list of results for each topic. To conduct the

experiments, we organized the retrieval systems in a client/server architecture networked

via a Gigabit Ethernet connection. The GNU/Linux server had 2 Intel Xeon 5160 pro-

cessors (2 cores, 3 GHz, 4 MB L2 cache) and 10 GB of memory. The Microsoft Windows

XP client had a single Intel Xeon W3520 processor (4 cores, 2.66 GHz, 8 MB L3 cache)

and 3 GB of memory.
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6 Implementation

Owing to its practicality, we have implemented GFM within two text-based information

retrieval frameworks. The first, Apache Lucene, is a general purpose vector space system

widely recognized for its ease of use and reasonable performance. The second, Essie (Ide

et al. 2007), is a biomedical retrieval system developed by the U.S. National Library of

Medicine. Essie scores documents using a probabilistic retrieval model, and automatically

expands query terms along the synonymy relationships in the UMLS. The retrieval models

of both Lucene and Essie support queries that utilize standard Boolean operators. We

evaluate our Lucene implementation of GFM on the 2010 ImageCLEF collection and our

Essie implementation on the 2012 data set. Because the medical retrieval track of Im-

ageCLEF is a domain-specific retrieval task, we have also implemented UMLS synonymy

expansion for Lucene. Both of the above retrieval systems allow documents to be com-

posed of multiple fields and provide low latency access to documents using inverted file

indices. Below we describe how we represent images as multi-field documents indexable

by these two systems.

6.1 Image representation

We represent the images in the ImageCLEF collections using a combination of text-based

and content-based features. Our text-based features include an image’s caption and men-

tions as well as the title, abstract, and MeSH terms of the article in which it is contained.

The ImageCLEF data sets provide image captions and article titles. To obtain each article’s

abstract and MeSH terms, we utilize its associated PMID/PMCID with the Entrez pro-

gramming utilities (NCBI 2010) to retrieve MEDLINE citations containing the required

elements. To obtain image mentions, we extract passages that refer to the images from the

full text articles retrieved using the provided URLs. We identify image mentions using

regular expression patterns that match image labels. For example, if an image’s caption

identifies it as ‘‘Fig. 2a,’’ we extract sentences that contain variants of this label.

Our content-based features primarily describe color and texture information, and they

include the descriptors listed in Table 1. We used the ‘‘Core’’ features with our Lucene

implementation and both the ‘‘Core’’ and ‘‘Additional’’ features with our Essie imple-

mentation. Although we recognize that no single combination of features is adequate for

describing the content of all images, a detailed analysis of the strengths and weaknesses of

these particular sets is beyond the scope of our current evaluation. However, note that the

dimensionality of many of the features is prohibitively large for maintaining them in spatial

data structures. To efficiently extract these features, we utilized the MapReduce framework

on an eight-node Apache Hadoop12 cluster. For convenience, we extracted the features for

both collection and topic images offline, prior to performing our indexing and retrieval

experiments. However, given the extracted features for a topic image, our GFM imple-

mentations compute the associated code words online, and this computation time is

accounted for in our results.

Once the content-based features have been extracted, our GFM implementations cluster

them using the k-means?? algorithm (Arthur and Vassilvitskii 2007), which we chose for

its simplicity, efficiency, and accuracy. Additionally, because k-means?? uses Euclidean

distance as its clustering metric, GFM’s retrieval results can be compared with those

obtained by other retrieval systems using Euclidean distance without the need for

12 http://hadoop.apache.org/.
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considering potential differences in similarity metrics. However, GFM’s indexing and

retrieval method is compatible with other centroid-based clustering techniques, and we

have experimented with some of these algorithms, such as hierarchical k-means. In

addition to k-means and its variants, many other clustering techniques have been proposed

for image retrieval tasks. Datta et al. (2008) survey the strengths and weaknesses of several

popular algorithms.

We experimentally determined reasonable values for the number of partitions and

clusters for each feature based on preliminary observations. Due to the computational

complexity associated with clustering the higher-dimensional features vectors we used for

the 2012 ImageCLEF collection, we let the maximum number of feature partitions equal

six (p = 6) for this data set, whereas we let the number of partitions equal two (p = 2) for

the 2010 ImageCLEF collection. To ensure the scalability of our method, we let the

number of clusters for each partition be logarithmic in the total number of images. Thus,

the number of clusters for a partition p is given by:

k ¼ d

p
� log m

� 	
ð12Þ

where d is the dimensionality of a content-based feature shown in Table 1, and m is the

total number of images in the collection.

We include the images’ text-based features and the code words corresponding to their

content-based features as unique fields in multi-field text documents. In this way, each

image in the ImageCLEF collections is represented as a surrogate document indexable by a

typical text-based retrieval system. Figure 4 shows an example multimodal image

document.

Table 1 Content-based features used for our global feature mapping implementations

Type Name Dims.

Core Color layout descriptor* (Chang et al. 2001) 16

Semantic concept (Rahman et al. 2009) 30

Edge histogram descriptor* (Chang et al. 2001) 80

Color and edge directivity descriptor* (Chatzichristofis and Boutalis 2008a) 144

Fuzzy color and texture histogram* (Chatzichristofis and Boutalis 2008b) 192

Additional Color moment 3

Primitive length 5

Shape moment 5

Tamura moment* (Tamura et al. 1978) 18

Gray-level co-occurrence matrix moment (Srinivasan and Shobha 2008) 20

Autocorrelation 25

Edge frequency 25

Gabor moment* 60

Scale-invariant feature transformation* (Lowe 1999) 256

Local binary pattern (Mäenpää 2003) 512

Local color histogram 1,024

* Feature computed using the Lucene Image Retrieval Library (Lux and Chatzichristofis 2008)

Inf Retrieval (2014) 17:229–264 249

123



6.2 Image retrieval

Because GFM is a multimodal image retrieval method, our Lucene and Essie implemen-

tations support three distinct retrieval paradigms. In addition to multimodal retrieval, these

search strategies also include text-based and content-based approaches. We present

implementation details related to each of these uses of GFM in the remainder of this

section.

Because one of the primary objectives of our current work is to demonstrate that visual

information can be used to improve upon a competitive text-based approach, it is important

that our textual baseline be a state-of-the art retrieval method. For automatically generating

queries, our textual baseline first organizes the textual description of a topic into the well-

formed clinical question (i.e., PICO13) framework (Richardson et al. 1995) following the

method described by Demner-Fushman and Lin (2007). Accordingly, it extracts from the

topic UMLS concepts related to problems, interventions, age, anatomy, drugs, and image

modality. In addition to automatically expanding these extracted concepts using the UMLS

synonymy, it also expands identified modalities using a thesaurus manually constructed by

Demner-Fushman et al. (2008) based on the RadLex (Langlotz 2006) ontology.14 Our

textual baseline then constructs a disjunctive query consisting of all the expanded terms.

To ensure the early precision of our retrieval results, the textual baseline weights term

occurrences in image captions and article titles more than occurrences in other text-based

fields. It also requires that any modality terms identified in the query occur in a retrieved

image’s caption or mentions. Finally, in order to improve recall, our textual baseline pads

the initially retrieved results with images retrieved using the verbatim topic description as

query.

We refer to the use of our GFM implementations for content-based image retrieval as

content-based GFM. Content-based GFM is an approximation of a typical CBIR system

that represents images using the content-based features shown in Table 1 and compares

them using Euclidean distance. In contrast with our textual baseline, content-based GFM

only searches the fields of our indices that correspond to content-based features and only

processes the example images of a multimodal topic to construct a query. For automati-

cally generating queries, content-based GFM first concurrently extracts the content-based

features for all the example images in a topic. It then maps the extracted features to code

words using a default code word expansion factor of one (e ¼ 1). Finally, content-based

GFM constructs a disjunctive query consisting of the mapped code words for all example

images, enabling it to retrieve images visually similar to any of the examples.

The last search paradigm our GFM implementations support is multimodal image

retrieval, and we refer to this use as multimodal GFM. Multimodal GFM is the combi-

nation of our textual baseline with content-based GFM. It searches all the fields of our

indices, and it processes both a topic’s textual description as well as its example images to

construct a multimodal query. Based on our preliminary experiments, multimodal GFM

weights the images’ text-based features significantly more than their content-based features

and uses a default code word expansion factor of two ðe ¼ 2Þ.

13 PICO is a mnemonic for structuring clinical questions in evidence-based practice and represents Patient/
Population/Problem, Intervention, Comparison, and Outcome.
14 RadLex is a unified ontology of radiology terms, many of which are not included in the vocabularies
contained in the current release of the UMLS.
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7 Results

In this section we present experimental results for the evaluation of our GFM imple-

mentations. Because GFM seeks to improve retrieval precision by providing a practical

means of efficiently incorporating visual information into a predominately text-based

image retrieval strategy, we discuss here results for both retrieval time and performance. In

our evaluation, we demonstrate that, although GFM makes use of content-based image

features, it requires a retrieval time that is roughly equal to that of a traditional text-based

retrieval system, providing evidence that GFM is capable of indexing large-scale image

collections. We also show that our multimodal and content-based GFM implementations

achieve statistically significant improvements in retrieval precision on both the 2010 and

2012 ImageCLEF collections.

Before presenting our complete set of results, we show in Fig. 5 example retrieval results

obtained with our Lucene GFM implementation for a topic taken from the 2010 ImageCLEF

medical retrieval track data set. Depicted are (1) the textual description of the topic and its

example images, (2) relevance scores and retrieval times obtained with our three retrieval

approaches, and (3) the top five ranked images retrieved using each method. The compared

retrieval methods include the textual baseline (TB) as well as content-based and multimodal

GFM (CB-GFM and M-GFM, respectively). The results in Fig. 5 show that for this topic

and among our methods, multimodal GFM achieves the best performance by successfully

combining and improving upon our text-based and content-based approaches. Since GFM

utilizes traditional inverted file indices for indexing and retrieval, the search latency

achieved by content-based and multimodal GFM is comparable to that of the textual

baseline. Note that we first introduced this particular multimodal topic when describing

Fig. 1. We explore these and additional results in more detail in Sects. 7.1 and 7.2.

Fig. 5 Example retrieval results for topic six of the 2010 ImageCLEF medical retrieval track data set.
Relevance scores are given for the 1,000 highest ranked images with metrics including binary preference
(bpref), judged mean average precision (MAP0), and judged precision-at-ten (P0@10). Results are shown for
content-based global feature mapping (CB-GFM), multimodal global feature mapping (M-GFM), and the
textual baseline. All reported times are the lowest of ten retrieval runs and are given in milliseconds
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7.1 Retrieval time

Table 2 shows the retrieval time required by our Lucene GFM implementation for each

topic taken from the 2010 ImageCLEF medical retrieval track data set. Retrieval times are

reported in milliseconds and reflect the lowest search latency obtained from ten retrieval

runs. We report the lowest retrieval time for each method—as opposed to the average—to

avoid including the cost of any other processes running on our evaluation system that may

have preempted the retrieval process. In addition to content-based and multimodal GFM,

we provide for comparison the retrieval times for the textual baseline as well as the brute-

force CBIR approach (BF-CBIR). For brute-force CBIR, all visual descriptors were loaded

to memory prior to timing; therefore, the search latencies reported for this method only

reflect the time needed for first computing Euclidean distances between the query and

collection descriptors and then sorting these distances. For all other methods, the reported

latencies include the time required for generating code words and parsing the queries in

addition to retrieving the images. The time needed for extracting content-based features

from the example query images is not included our reported search latencies.

The results depicted in Table 2 show that content-based and multimodal GFM require a

retrieval time that is roughly comparable to that of a traditional text-based information

retrieval system. In addition, it shows that for the 2010 ImageCLEF collection, brute-force

CBIR takes approximately two orders of magnitude longer to retrieve the highest-ranked

images than the comparable content-based GFM. The fact that brute-force CBIR requires

so much more time compared to the others is not surprising—this is a naı̈ve retrieval

Table 2 Retrieval time

Topic BF-CBIR CB-GFM TB M-GFM

1 2,155 31 188 234

2 2,171 0 15 31

3 2,172 31 0 62

4 2,140 46 62 125

5 1,093 0 78 93

6 2,140 31 93 156

7 2,140 46 62 140

8 2,124 15 0 47

9 2,140 31 62 109

10 2,155 31 63 109

11 2,156 15 31 78

12 2,156 47 0 78

13 2,171 47 0 78

14 2,155 31 15 78

15 2,156 46 15 78

16 2,156 15 0 46

All 2,086 29 43 96

Topics are taken from the ImageCLEF 2010 medical retrieval track data set. Results for brute-force CBIR
are given as a comparison. For content-based GFM, e ¼ 1 and p = 2, whereas for multimodal GFM, e ¼ 2
and p = 2. All reported times are the lowest of ten retrieval runs and are given in milliseconds

BF-CBIR Brute-force content-based image retrieval, CB-GFM content-based global feature mapping, TB
textual baseline, M-GFM multimodal global feature mapping
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strategy. However, brute-force CBIR remains a remarkably common approach used for

searching small-to-medium sized collections. Table 2 demonstrates that the efficiency of

inverted file indices is easily obtainable for the content-based and multimodal image

retrieval paradigms, which is especially significant for managing large image collections.

The retrieval times presented in Table 2 vary slightly for each topic. For the GFM-based

results, the variation in retrieval time generally reflects differences in the length of the

queries and the number of images the queries retrieve. Longer queries require additional

time to parse, and queries that retrieve many images require more time to score the results.

The length of a query depends on the length of the topic’s textual description as well as the

number of example images it has. The number of images retrieved for each topic depends

on the queries. For image-based queries, this is related to the number of feature vectors in

each cluster. For example, a query containing a cluster word representing many images

will result in more images being scored because the cluster word is more common within

the collection. For the brute-force approach, the number of scored images and the length of

the feature vectors remains constant across the topics.

7.2 Retrieval performance

Having demonstrated that content-based and multimodal GFM achieve response times

comparable to what is obtained by our textual baseline, we now show that GFM is capable

of improving upon the average retrieval precision of existing methods. In doing so, we also

demonstrate the effectiveness of code word expansion and show that intracluster image

ranking—the relative ranking of images mapped to identical sets of code words—is

improved when indexing a sufficient number of features or feature partitions.

7.2.1 Multimodal retrieval

Tables 3 and 4 show the retrieval results obtained by our multimodal Lucene and Essie

GFM implementations for each topic taken from the 2010 and 2012 ImageCLEF medical

retrieval track data sets. For comparison, we also include in the tables the results obtained

by our textual baseline and the multimodal systems that achieved the highest average bpref

at the ImageCLEF evaluations. Taken together, these results show that (1) our textual

baseline is statistically indistinguishable from the best performing systems evaluated at

ImageCLEF and that (2) the performance of multimodal GFM is significantly better than

that of our textual baseline. The observed improvement in retrieval precision is especially

encouraging because it is consistent across two different data sets and GFM implemen-

tations and, as we saw in Table 2, requires a negligible increase in retrieval latency over

our textual baseline.

For the 2010 ImageCLEF results shown in Table 3, we see that our Lucene imple-

mentation of multimodal GFM achieved a statistically significant increase in both MAP0

(10.03 %, p = 0.02) and bpref (7.46 %, p = 0.02) compared to our textual baseline.

Although the average P0@10 obtained by multimodal GFM is also greater than that of our

textual baseline, this improvement did not reach the level of statistical significance

(p \ 0.05). These results show that incorporating a limited amount of visual information

into the retrieval process can provide a slight but consistent performance improvement

over text-based retrieval.

The potential for multimodal GFM to create synergistic combinations of text-based and

content-based features is perhaps best demonstrated by topic 9. Topic 9 is about MR

images of papilledema (swelling of the optic disc) and both of the provided MR images are
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of the head. For this topic, our textual baseline achieved a bpref of 0.3819, which is

consistent with its average bpref over all sixteen topics (0.3834). However, multimodal

GFM dramatically improved upon this result by obtaining a bpref of 0.7778. We will see in

Sect. 7.2.2 that when configured for performing content-based retrieval, GFM is unable to

retrieve a single relevant image for topic 9, demonstrating that it is through the combi-

nation of features that multimodal GFM improves performance. The inability of content-

based GFM to retrieve relevant images for this topic may be due to the dissimilarity of the

two example images: one image depicts a sagittal view of the head whereas the other

shows a coronal view. Although both topic images are used for constructing a query, the

lack of a singular way in which to visually describe the concept likely contributes to

content-based GFM’s retrieval of many irrelevant images. For topics such as this one, the

use of semantic information provided by text-based features significantly improves the

performance of GFM.

The 2012 ImageCLEF results depicted in Table 4 show that, like our Lucene imple-

mentation, our Essie implementation of multimodal GFM also achieved a statistically

significant increase in MAP0 (2.61 %, p = 0.02) compared to our textual baseline. How-

ever, we did not find its improvement in bpref or P0@10 to be statistically significant. The

Table 3 Multimodal retrieval results for ImageCLEF 2010

Topic Textual baseline Multimodal GFM Best ImageCLEF 2010

bpref MAP0 P0@10 bpref MAP0 P0@10 bpref MAP0 P0@10

1 0.4560 0.4237 0.2000 0.4731 0.4489 0.3000 0.4112 0.3658 0.6000

2 1.0000 1.0000 0.1000 1.0000 1.0000 0.1000 0.0000 0.0000 0.0000

3 0.1774 0.1930 0.1000 0.1943 0.1969 0.2000 0.5848 0.5226 0.4000

4 0.1285 0.1301 0.3000 0.1380 0.1405 0.3000 0.1701 0.1608 0.4000

5 0.1855 0.0994 0.5000 0.1924 0.2201 0.5000 0.0918 0.1334 0.3000

6 0.4116 0.3176 0.6000 0.4229 0.3905 0.4000 0.2398 0.2272 0.7000

7 0.5000 0.5026 0.2000 0.5000 0.5026 0.2000 0.2500 0.2643 0.1000

8 0.0000 0.0055 0.0000 0.0000 0.0048 0.0000 1.0000 1.0000 0.1000

9 0.3819 0.4049 0.5000 0.7778 0.7674 0.8000 0.8889 0.8846 0.9000

10 0.6599 0.6587 0.8000 0.6599 0.6587 0.8000 0.6485 0.6367 0.7000

11 0.1744 0.1652 0.6000 0.1744 0.1652 0.6000 0.1872 0.1293 0.7000

12 0.3569 0.3860 0.7000 0.3569 0.3860 0.7000 0.2081 0.2241 0.6000

13 0.1494 0.1140 0.5000 0.1494 0.1140 0.5000 0.0547 0.0167 0.2000

14 0.7857 0.8010 1.0000 0.7857 0.8010 1.0000 0.6110 0.5875 0.7000

15 0.7678 0.7320 1.0000 0.7679 0.7321 1.0000 0.7995 0.5623 0.6000

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000

All 0.3834 0.3708 0.4437 0.4120* 0.4080* 0.4625 0.3841 0.3572 0.4375

Bold entries signify the best scores obtained for each topic and metric

Topics are taken from the ImageCLEF 2010 medical retrieval track data set, and relevance scores are given
for the 1,000 highest ranked images per topic. Results for the single best performing multimodal system at
ImageCLEF 2010 are given as a comparison. Results for the text-based component of the multimodal global
feature mapping approach are given as a baseline. For multimodal GFM, e ¼ 2 and p = 2

GFM Global feature mapping, bpref binary preference, MAP0 judged mean average precision, P0@10 judged
precision-at-ten

* Statistically significant (p \ 0.05) with respect to Textual Baseline
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overall trend for our Essie implementation on the 2012 ImageCLEF collection is similar to

that of our Lucene implementation on the 2010 data set, with multimodal GFM providing a

slight but consistent improvement in performance for many of the topics. We did observe a

decrease in bpref and P0@10 on topic 6, though. Although the average performance of the

three systems shown in Table 4 differ somewhat, their similarity is not a coincidence: the

best performing system at the 2012 ImageCLEF evaluation was an earlier implementation

of multimodal GFM . In addition to reducing the overall weight Essie allocates to the

content-based fields of our indices when scoring documents, our current implementation of

multimodal GFM also dynamically reduces the weight given to image code words for

topics the ImageCLEF organizers categorized as ‘‘Semantic’’ topics.

Table 4 Multimodal retrieval results for ImageCLEF 2012

Topic Textual baseline Multimodal GFM Best ImageCLEF 2012

bpref MAP0 P0@10 bpref MAP0 P0@10 bpref MAP0 P0@10

1 0.3469 0.3282 0.4000 0.3696 0.3437 0.6000 0.3469 0.3282 0.4000

2 0.3719 0.3578 0.5000 0.3719 0.3578 0.5000 0.3719 0.3578 0.5000

3 0.1390 0.0890 0.2000 0.1575 0.1003 0.2000 0.1390 0.0890 0.2000

4 0.4401 0.5234 0.8000 0.4401 0.5234 0.8000 0.4401 0.5234 0.8000

5 0.0797 0.0685 0.2000 0.0797 0.0685 0.2000 0.0797 0.0685 0.2000

6 0.3787 0.3529 0.6000 0.3491 0.3654 0.4000 0.3787 0.3529 0.6000

7 0.1653 0.2791 0.2000 0.1653 0.2791 0.2000 0.1653 0.2791 0.2000

8 0.0000 0.0276 0.0000 0.0000 0.0688 0.1000 0.0000 0.0276 0.0000

9 0.2500 0.4500 0.2000 0.2500 0.4500 0.2000 0.2500 0.4500 0.2000

10 0.1626 0.1425 0.3000 0.1626 0.1720 0.3000 0.1626 0.1425 0.3000

11 0.6491 0.6834 1.0000 0.7047 0.7178 1.0000 0.6491 0.6834 1.0000

12 0.6626 0.6594 0.8000 0.6626 0.6594 0.8000 0.6626 0.6594 0.8000

13 0.8067 0.7808 0.9000 0.8067 0.7808 0.9000 0.8067 0.7808 0.9000

14 0.0114 0.0073 0.5000 0.0260 0.0118 0.5000 0.0260 0.0118 0.5000

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16 0.2222 0.1667 0.1000 0.2222 0.1667 0.1000 0.2222 0.1667 0.1000

17 0.0000 0.0400 0.0000 0.0000 0.0376 0.0000 0.0000 0.0400 0.0000

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0.1667 0.1719 0.1000 0.1667 0.1780 0.1000 0.1667 0.1719 0.1000

20 0.2000 0.2407 0.1000 0.2000 0.2407 0.1000 0.2000 0.2407 0.1000

21 0.4207 0.4180 1.0000 0.4207 0.4180 1.0000 0.4207 0.4180 1.0000

22 0.1053 0.1227 0.2000 0.1053 0.1227 0.2000 0.1053 0.1227 0.2000

All 0.2536 0.2686 0.3682 0.2573 0.2756* 0.3727 0.2542 0.2688 0.3682

Bold entries signify the best scores obtained for each topic and metric

Topics are taken from the ImageCLEF 2012 medical retrieval track data set, and relevance scores are given
for the 1,000 highest ranked images per topic. Results for the single best performing multimodal system at
ImageCLEF 2012 are given as a comparison. Results for the text-based component of the multimodal global
feature mapping approach are given as a baseline. For multimodal GFM, e ¼ 2 and p = 6

GFM Global feature mapping, bpref binary preference, MAP0 judged mean average precision, P0@10 judged
precision-at-ten

* Statistically significant (p \ 0.05) with respect to both Textual Baseline and Best ImageCLEF 2012
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7.2.2 Content-based retrieval

Although GFM is primarily intended to be a practical means of performing multimodal

image retrieval, we can also evaluate its use for content-based retrieval. Table 5 shows

retrieval results obtained by our Lucene implementation of content-based GFM for each

topic taken from the 2010 ImageCLEF medical retrieval track data set. For comparison, we

also include in the table results obtained by brute-force CBIR and the content-based system

that achieved the highest average bpref at the 2010 ImageCLEF evaluation.

The results depicted in Table 5 show that content-based GFM achieved a statistically

significant increase in bpref (195.65 %, p \ 0.01) over brute-force CBIR, but it did not

perform significantly better than the brute-force method in terms of MAP0 or P0@10. Thus,

the performance of content-based GFM is comparable with that of the best system at the

2010 ImageCLEF evaluation. This result is especially interesting because these methods

are conceptually similar: they both utilize the same set of content-based visual descriptors

and compare these descriptors with Euclidean distance. However, our Lucene imple-

mentation of content-based GFM additionally applies tf-idf term weighting to the image

code words. As we described in Sect. 4.2.2, because tf = 1 for all code words in an image’s

surrogate document, code words with a greater idf are weighted more heavily. Thus, code

Table 5 Content-based retrieval results for ImageCLEF 2010

Topic Brute-force CBIR Content-based GFM Best ImageCLEF 2010

bpref MAP0 P0@10 bpref MAP0 P0@10 bpref MAP0 P0@10

1 0.0107 0.0015 0.0000 0.0219 0.0026 0.1000 0.0000 0.0003 0.0000

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0017 0.0000 0.0008 0.0000 0.0000 0.0000 0.0002 0.0000

4 0.0000 0.0163 0.0000 0.1096 0.0730 0.2000 0.0000 0.0099 0.0000

5 0.0003 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000

6 0.0105 0.0031 0.0000 0.0229 0.0024 0.0000 0.0145 0.0019 0.1000

7 0.0000 0.0421 0.0000 0.0000 0.0000 0.0000 0.1875 0.1258 0.1000

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11 0.0182 0.0048 0.1000 0.0343 0.0042 0.0000 0.0174 0.0008 0.0000

12 0.0000 0.0003 0.0000 0.0056 0.0008 0.0000 0.0000 0.0000 0.0000

13 0.0000 0.0028 0.0000 0.0469 0.0097 0.2000 0.0137 0.0021 0.0000

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.0563 0.0127 0.1000 0.0633 0.0281 0.3000 0.0526 0.0025 0.0000

16 0.0143 0.0035 0.0000 0.0226 0.0045 0.0000 0.0012 0.0019 0.0000

All 0.0069 0.0055 0.0125 0.0204* 0.0079 0.0500 0.0179 0.0091 0.0125

Bold entries signify the best scores obtained for each topic and metric

Topics are taken from the ImageCLEF 2010 medical retrieval track data set, and relevance scores are given
for the 1,000 highest ranked images per topic. Results for the single best performing content-based system at
ImageCLEF 2010 are given as a comparison. For content-based GFM, e ¼ 1 and p = 2

CBIR Content-based image retrieval, GFM global feature mapping, bpref binary preference, MAP0 judged
mean average precision, P0@10 judged precision-at-ten

* Statistically significant (p \ 0.01) with respect to brute-force CBIR
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words corresponding to clusters containing a smaller number of visual descriptors are

given more weight than code words mapped to clusters of larger sizes. This difference

favors images that are more unique within the collection, and it contributes to the average

increase in retrieval performance obtained by content-based GFM. Finally, the increase in

bpref is also significant because, as was shown in Table 2, the response time of content-

based GFM is a fraction of that required by brute-force CBIR.

Immediately apparent from the results depicted in Table 5 is the poor performance of

content-based retrieval in relation to the text-based and multimodal strategies shown in

Tables 3 and 4. However, it is well-known that CBIR generally does not perform as well as

textual methods for literature-based image retrieval tasks such as those encountered

through participation in the ImageCLEF evaluations (Müller et al. 2010a). Because the

performance of CBIR systems can be so poor, it is not surprising that the community has

had difficulty developing multimodal retrieval strategies that improve upon the perfor-

mance of text-based approaches. In this regard, multimodal GFM is significant for its

ability to consistently demonstrate an increase in performance over our textual baseline.

7.2.3 Code word expansion

Table 6 shows retrieval results obtained by our Lucene implementation of content-based

GFM with varying code word expansion factors for each topic taken from the 2010

Table 6 Usefulness of query expansion for content-based global feature mapping

Topic e ¼ 1 e ¼ 2 e ¼ 3

bpref ret rel_ret Time bpref ret rel_ret Time bpref ret rel_ret Time

1 0.0219 0.27 96 31 0.0195 0.27 98 31 0.0100 0.27 99 32

2 0.0000 0.15 100 0 0.0000 0.17 100 0 0.0000 0.18 100 15

3 0.0000 0.25 95 31 0.0065 0.26 97 31 0.0000 0.26 97 46

4 0.1096 0.31 100 46 0.1040 0.32 100 47 0.0983 0.32 100 47

5 0.0000 0.25 100 0 0.0000 0.25 100 0 0.0000 0.25 100 0

6 0.0248 0.29 100 31 0.0232 0.30 100 31 0.0225 0.30 100 46

7 0.0000 0.34 100 46 0.0000 0.34 100 47 0.0000 0.34 100 47

8 0.0000 0.26 100 15 0.0000 0.27 100 15 0.0000 0.29 100 31

9 0.0000 0.35 100 31 0.0000 0.35 100 31 0.0000 0.35 100 46

10 0.0000 0.27 100 31 0.0000 0.27 100 31 0.0000 0.27 100 31

11 0.0657 0.36 100 15 0.0786 0.37 100 32 0.0668 0.37 100 46

12 0.0056 0.27 95 47 0.0175 0.27 95 46 0.0031 0.27 100 47

13 0.0469 0.28 100 47 0.0332 0.28 100 46 0.0215 0.28 100 46

14 0.0000 0.24 100 31 0.0000 0.24 100 47 0.0000 0.24 100 47

15 0.4045 0.27 99 46 0.4521 0.27 100 47 0.4906 0.27 100 47

16 0.0226 0.35 100 15 0.0285 0.37 100 16 0.0488 0.37 100 31

All 0.0439 0.28 99 29 0.0477 0.29 99 31 0.0476 0.29 100 38

Bold entries signify the best scores obtained for each topic and metric

Topics are taken from the ImageCLEF 2010 medical retrieval track data set. For each content-based GFM
approach, p = 2. All reported times are the lowest of ten retrieval runs and are given in milliseconds

bpref Binary preference, ret percentage of total images retrieved, rel_ret percentage of relevant images
retrieved
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ImageCLEF medical retrieval track data set. We include in the table results obtained

without code word expansion ðe ¼ 1Þ, with an expansion factor of two ðe ¼ 2Þ, and with an

expansion factor of three ðe ¼ 3Þ. For each topic and expansion factor, we report the bpref

obtained by content-based GFM, the number of images retrieved as a percentage of the

total number of images in the collection (ret), the number of relevant images retrieved as a

percentage of the total number of images relevant to the topic (rel_ret), and the time taken

in milliseconds to obtain the results. Unlike the relevance scores presented in Tables 3, 4

and 5, here we report results for all retrieved images—instead of only the one thousand

highest ranked images—to clearly demonstrate the impact of code word expansion on

image ranking.

Table 6 demonstrates that, although the performance of content-based GFM is low, a

code word expansion factor of one obtains nearly all relevant images by retrieving less than

one percent of the total number of images in the collection. While increasing the expansion

factor results in the retrieval of additional relevant images for some topics, it does not

significantly improve retrieval precision, and in some cases it actually worsens perfor-

mance. For example, an expansion factor of three allows content-based GFM to retrieve

several additional relevant images for topic 1 compared with no code word expansion, but

it decreases the bpref of topic 1 from 0.0219 to 0.0100. The limited effectiveness of code

word expansion provides evidence that the k-means?? algorithm, despite its policy of

rigid cluster membership, is already successful at producing a clustering of content-based

features adequate for our retrieval experiments. Because the number of images in each

cluster is small, increasing the expansion factor does not significantly affect the number of

images retrieved as a percentage of the total number of images in the collection. However,

code word expansion causes a modest increase in response time because a larger number of

images must be scored, and longer queries require additional time to parse.

7.2.4 Intracluster ranking

Figure 6 shows the average number of images retrieved by our Lucene implementation of

content-based GFM at each retrieval rank under various configurations. Because GFM

represents with a single code word all images whose visual descriptors for a given feature

lie within the same cluster, it lacks the ability to discriminate among images mapped to the
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Fig. 6 Average number of images at each retrieval rank as the number of indexed features (a) is increased
and, for a single feature, as the number of indexed subspace partitions (b) is increased
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same code word. For example, with a query consisting of a single code word, content-

based GFM will retrieve all images whose visual descriptors are in the cluster the code

word represents. However, because each of the retrieved images is given the same score,

their relative similarity to the example query image is lost, and any ranking of the images is

meaningless. We seek to explain this behaviour by presenting in Fig. 6 the number of

images given the same score by content-based GFM averaged over all retrieval ranks for

all sixteen topics taken from the 2010 ImageCLEF medical retrieval track data set.

In Fig. 6a, we show the average number of images retrieved by content-based GFM per

rank as the number of indexed features is increased from one to five. The results show that

as we increase the number of features describing the images, we drastically decrease the

average number of images retrieved per rank. Thus, increasing the number of indexed

features improves the ability of content-based GFM to discriminate among visually similar

images. In Fig. 6a, the number of feature partitions is one (p = 1), and the number of

images per rank is averaged over all possible combinations of the given number of fea-

tures. For example, the average number of images retrieved per rank with three features

(1.20) is averaged over all sixteen ImageCLEF 2010 topics, over all retrieval ranks, and

over all possible combinations of three features. Among five total features there are ten

possible combinations of three features.

In Fig. 6b, we show the average number of images retrieved by content-based GFM per

rank as the number of feature partitions is increased from one to five. Similar to Fig. 6a,

this figure demonstrates that as we partition the visual descriptors of the images’ content-

based features into an increasing number of lower-dimensional vectors, we quickly

decrease the average number of images retrieved per rank. Thus, increasing the number of

feature partitions also improves the ability of content-based GFM to discriminate among

visually similar images. Because increasing the number of feature partitions only impacts

intracluster rankings, recall-based measures that are computed over all retrieved images,

such as MAP, are generally not sensitive to feature partitioning. However, metrics com-

puted on partial ranked lists, such as P@10, may be affected by the number of feature

partitions. In Fig. 6b, the number of features representing each images is one, and the

number of images retrieved per rank for a given number of partitions is averaged over all

sixteen ImageCLEF 2010 topics, over all retrieval ranks, and over all five image repre-

sentations consisting of a single content-based feature.

8 Conclusion

The images found within biomedical articles are sources of essential information to which

we must provide efficient access. Not surprisingly, various image retrieval strategies have

been proposed for use in the biomedical domain. Unfortunately, although they demonstrate

considerable empirical success, traditional text-based image retrieval methods are often

unable to retrieve images whose relevance is not explicitly mentioned in the article text.

Additionally, content-based retrieval methods are unable to produce meaningful results for

many literature-based information needs because visual similarity can be a poor indicator

of image relevance. Due to the limitations of these unimodal strategies, practical retrieval

techniques capable of fusing information from multiple modalities is desirable.

Global feature mapping (GFM) is a multimodal strategy for retrieving images from

biomedical articles. The approach seeks to improve upon the precision of text-based image

retrieval methods by providing a practical and efficient means of incorporating a limited

amount of visual information into the retrieval process. GFM operates by (1) grouping the
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global content-based features extracted from an image collection into clusters, (2)

assigning images alphanumeric code words indicative of the clusters in which their fea-

tures reside, (3) indexing a combination of image code words and descriptive text using a

text-based information retrieval system, and (4) searching the image index using textual

queries derived from multimodal topics.

We evaluated the performance of GFM on the 2010 and 2012 ImageCLEF medical

retrieval track data sets. Our multimodal retrieval approach utilizing GFM demonstrated a

statistically significant improvement in mean average precision over our text-based strat-

egy, a baseline retrieval method competitive with the best performing systems evaluated at

the ImageCLEF forums. Additionally, when configured for performing content-based

retrieval, our approach outperformed the highest ranked content-based systems.

Although GFM’s improvements in retrieval precision were small, its performance

validates our intuition that visual similarity can play a small yet significant role in mul-

timodal literature-based image retrieval tasks. Key to its success were GFM’s use of an

inexact representation of content-based features and its weighting of these features, in

conjunction with image-related text, according to an underlying text-based retrieval model.

The advantages of these two qualities are perhaps best demonstrated by the comparison of

content-based GFM to brute-force CBIR, where GFM outperformed the brute-force

method using the same set of features and the same similarity metric for clustering.

Because we did not evaluate our particular choice of content-based features, it remains to

be seen if the use of a more sophisticated image representation would result in similar

improvements in retrieval precision.

To demonstrate GFM’s practicality, we implemented it in two information retrieval

systems: a general purpose system based on the vector space retrieval model and a bio-

medical system that utilizes a probabilistic retrieval model. We obtained statistically

significant improvements using both systems. As further evidence of its practicality, we

demonstrated that the response time of our multimodal approach is comparable to that of

our text-based strategy. Owing to its empirical success, we have incorporated GFM into

OpenI, a biomedical image retrieval system currently indexing over one million images

from the articles included in the open access subset of PubMed Central.
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