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Abstract Computational modelling of music similarity is an increasingly important part

of personalisation and optimisation in music information retrieval and research in music

perception and cognition. The use of relative similarity ratings is a new and promising

approach to modelling similarity that avoids well known problems with absolute ratings. In

this article, we use relative ratings from the MagnaTagATune dataset with new and

existing variants of state-of-the-art algorithms and provide the first comprehensive and

rigorous evaluation of this approach. We compare metric learning based on support vector

machines (SVMs) and metric-learning-to-rank (MLR), including a diagonal and a novel

weighted variant, and relative distance learning with neural networks (RDNN). We further

evaluate the effectiveness of different high and low level audio features and genre data, as

well as dimensionality reduction methods, weighting of similarity ratings, and different

sampling methods. Our results show that music similarity measures learnt on relative

ratings can be significantly better than a standard Euclidian metric, depending on the

choice of learning algorithm, feature sets and application scenario. MLR and SVM out-

perform DMLR and RDNN, while MLR with weighted ratings leads to no further per-

formance gain. Timbral and music-structural features are most effective, and all features

jointly are significantly better than any other combination of feature sets. Sharing audio

clips (but not the similarity ratings) between test and training sets improves performance,

in particular for the SVM-based methods, which is useful for some applications scenarios.

A testing framework has been implemented in Matlab and made publicly available

http://mi.soi.city.ac.uk/datasets/ir2012framework so that these results are reproducible.
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1 Introduction

Similarity plays a central role in music information retrieval as well as in music recom-

mendation and in musicology. Storing music digitally has become less expensive, so that

increasing amounts of data are available for algorithmic music analysis and comparison

today. Increasing numbers applications and multimedia devices require the development of

more elaborate techniques to automatically analyse, classify, index, and retrieve music.

One requirement is the modelling of relationships between music clips, especially simi-

larity as addressed in this paper.

Most commercial systems successfully use collaborative filtering for finding these

relationships in music search and recommendation, The main drawback of collaborative

filtering is that it relies on user behavioural data for every item to retrieve. But often there

are little or no user behavioural data available, e.g. for new or less popular music, as has

been pointed out by Celma (2008).

On the other hand, content-based approaches for music similarity and recommendation

avoid these issues by modelling similarity based on the audio data. They have been shown

to work well in some scenarios, and are now being used on a wider scale in web services

like The Echo Nest (Jehan 2005) or The Freesound Project (Akkermans et al. 2011).

Content based music similarity models need to incorporate the extraction of acoustic,

psychoacoustic and music theoretic information derived from audio. The applicability of

such extraction and the models is highly dependent on the context of the music, the

application, and the user. Learning models that generalise from limited amounts of user

data can help adapt the system to the users’ needs and the designers’ intentions for music

where user data is not available.

Context-based and user-adapted retrieval have become popular research topics in music

information retrieval (MIR) and computational musicology (e.g. see Ricci 2012; Serra

2012), following and fostering developments in machine learning that provide suitable

algorithms. This work is part of a project on culture-aware music information retrieval,

where the long-term aim is to use adaptable models to accommodate different cultural

contexts and provide personalised search and recommendation.

So far, mostly tags or class information, such as genre labels, have been used to

optimise distance measures. In this work we use relative similarity ratings collected during

the collaborative game with a purpose (GWAP) MagnaTagATune . These ratings carry

similarity information of the form: clip Ci is more similar to Cj than to Ck. The relative

nature of the ratings avoids known problems with classes or absolute ratings. However, the

relative ratings complicate the learning of the similarity measure. We apply in this study

two types of models for learning similarity measures: Mahalanobis metrics optimised with

a support vector machine (SVM) and metric learning to rank, including a novel weighted

variant (WMLR), and a non-metric distance measure based on neural networks (RDNN).

We evaluate these methods with cross-validation, assessing the training and generalisation

error, and significance-tests. We further study the influence of the feature sets and feature

dimensionality as well as the preparation of sampling methods in correspondence to dif-

ferent application scenarios.

The remainder of this article is organised as follows: Sect. 2 reports on related work and

Sect. 3 introduces our methods for this study. Section 4 provides an analysis of the

MagnaTagATune similarity data and the methods used for deriving audio and genre fea-

tures for the clips. We present our experiments in Sect. 5 and discuss the results in Sect. 6.

Section 7 closes this article with conclusions and perspectives for future work.
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1.1 Our contribution

Our original contribution in this paper can be summarised as follows:

We introduce novel variants of methods for learning similarity measures from relative

data:

• building and pruning of similarity relation graphs from odd-one-out experiments (Sect.

3.2.1)

• the WMLR/WDMLR method for learning from weighted relative similarity data (Sect.

3.4.3)

• a new approach of using RDNN for similarity learning (Sect. 3.5)

• the inductive sampling method for unbiased sampling of relative similarity data for

cross-validation (Sect. 4.1.3)

We present the first comprehensive experimental comparison of the learning methods

and an analysis of the dataset, in particular:

• a comparison and statistical analysis of the learning methods

• a comparison of different types of audio and genre features (Sect. 5.2)

• a novel analysis of the MagnaTagATune dataset (Sect. 4)

Some of the methods presented here include revisions of approaches presented in Wolff

and Weyde (2011a, b, c, 2012), which are indicated in the text. The experimental results

presented here are new, and new analyses of the dataset, novel algorithms and an extended

evaluation with statistical analysis are provided.

2 Related work

The context of this study is music information retrieval, where a standard architecture for

adaptive systems as sketched in Fig. 1 has become prevalent for information retrieval

involving audio data (Bosma et al. 2006; Casey et al. 2008; Page et al. 2012). In this

architecture, an audio clip is analysed with regards to a number of features using a diverse

range of signal processing methods. The features are presented as a single vector per audio

clip, representing a range from low-level features like zero-crossings to higher level prop-

erties, for instance dancability. The audio features can be complemented with professionally

produced metadata and user annotations. When a query is processed, a matching process takes

place, that typically involves classification or similarity. In adaptive systems the matching

process is optimised, typically using supervised machine learning techniques. In most cases,

similarity models optimise the dual problem of a distance measure. Ground truth consists of

information on actual class membership or similarity values, against which the the adapted

system is evaluated, typically with cross-validation. From this perspective we discuss in this

section general and music specific work on similarity models, methods for collecting simi-

larity data, and computational methods to learn from the data.

2.1 Learning similarity models from data

There is a considerable variety of computational approaches for learning similarity mea-

sures. Most similarity models are based on features, as proposed by Tversky (1977).

Distance measures normally treat the feature dimensions uniformly, which ignores the

different natures of features and their relations, e.g. the aspect of systematicity as pointed
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out by Gentner and Markman (1997). This can be addressed to some degree by using a

Mahalanobis distance (Mahalanobis 1936) (see Sect. 3.3), which models weights and

correlations between features.

2.1.1 Learning from absolute similarity ground truth

The following sections discuss the use of survey data for similarity learning. Many surveys

collect absolute similarity data by asking for similarity ratings of two clips on a fixed scale,

e.g. in the MIREX similarity evaluation1 or in Ferrer and Eerola (2010). This approach

expects the subject to make consistent similarity statements over time, which seems rather

optimistic given the subjective nature of music similarity.

2.1.2 Learning similarity from classes

Consistency is less problematic in class information, which is a standard part of many

datasets, e.g. genre labels. Therefore, it is interesting to use class information to adapt

similarity ratings. A considerable range of distance learning methods has been used for

learning from class information, including linear discriminant analysis, nearest-neighbour-

based optimisation, and kernelised approaches such as SVM (Davis et al. 2007; McFee

et al. 2010; Weinberger and Saul 2009; Yang 2006). The assumption is here that distances

within classes should generally be smaller than distances between classes.

E.g. Novello et al. (2006) apply this in a ‘‘perceptual evaluation of music similarity’’.

They collected relative similarity judgements from 36 participants on triplets of songs, and

found a positive correlation of users’ similarity ratings with musical genres. However, this

is not by design, as class data are normally not designed to model similarity, but to

represent other, often cultural, criteria.

An alternative approach is to gather class-based similarity data by asking subjects to

classify clips by assigning them to one of a fixed number of unlabelled classes (e.g. Musil et al.

2012). This type of experiment typically requires choosing an appropriate number of classes

beforehand, and does not solve the problem of inter and intra class similarities. Also, depending

on the number of classes, class-based data often contains relatively little information.

2.1.3 Learning similarity to relative constraints

The problems of consistency in absolute ratings and the limitations of using classes could

be avoided by learning from relative similarity ratings. This has been occasionally been

adressed in MIR in the last decade.

Fig. 1 Schematic architecture of an adaptive music information retrieval system

1 http://www.music-ir.org/mirex/wiki/2011:Evalutron6000_Walkthrough
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Ellis and Whitman (2002) use relative similarity data from a comparative survey on

artist similarity to evaluate similarity metrics based on similar artist lists from the All

Music Guide2 to define their ERDÖS distance. Their artist similarity data covers 412

popular musicians, for whom they gathered 16,385 relative comparisons. Moreover, they

compare crowd-sourced similarity measures based on listening patterns and text analysis of

web pages. The distance measures are regularised using multidimensional scaling (MDS)

to fit metric requirements of symmetry and transitivity. They find that the unregularised

ERDÖS distance outperforms the cultural crowd-sourced similarity measures.

Allan et al. (2007) discuss the challenges of gathering consistent relative similarity data

via surveys. Besides introducing an interface for the interactive collection of song simi-

larity data, they tackle the problem of subjects’ coverage of survey examples. As already

pointed out by Novello et al. (2006), it is usually not feasible to present all triplet per-

mutations for even a medium-sized dataset to a single subject. Their approach of a bal-

anced complete block design guarantees a balanced number of occurrences for individual

clips and also accomplishes a balancing of the positioning of the clips within the triplets

presented to a particular subject.

In Wolff and Weyde (2011a, b), we used the MagnaTagATune dataset (Ellis and

Whitman 2002) to adapt similarity measures based on the relative similarity data in this set.

This included SVM-Light to train a weighted Euclidean distance by Schultz and Joachims

(2003) (see Sect. 3.4.4) and Metric learning to rank (MLR), adapting a full Mahalanobis

distance (see Sect. 3.4.1) to relative similarity data. For a reduced version of the similarity

data, our experiments showed some learning success. Stober and Nürnberger (2010) have

also worked on the MagnaTagATune dataset, comparing algorithms for linear and qua-

dratic optimisation of a similarity measure based on feature weighting. They apply early

fusion of the feature data followed by adapting a linear model. They analyse the training

methods on two different subsets of the similarity constraints (see Sect. 4.1). The smaller of

which is designed to be solvable by all of the optimisation approaches, showing the

learnability of a large subset of the data. For the larger set, where not all constraints can be

learned, their SVM-based method achieves the best results. The early fusion approach can

support better user understanding and interaction, and the results are similar to a late fusion

approach(Wolff and Weyde 2012).

2.1.4 Infering music similarity from other user data

Instead of directly learning from similarity ratings, other data can be used to learn music

similarity measures. Crowd-sourcing, as such a data source, makes use of the large

numbers of people that can be reached through the Internet. Based on users’ playlists, ‘like’

data, music purchase history and tag annotations, substantial datasets can be collected

(Bogdanov et al. 2009; McFee and Lanckriet 2012). Models learnt from such data have

been introduced in the recent years, but their applicability depends on the relationship of

the data source to the application scenario. The approaches discussed below use data from

crowd-sourcing to derive music similarity or relevance models structurally similar to those

presented in this paper.

McFee et al. (2010) parametrise a music similarity metric using collaborative filtering

data. They use Mahalanobis metrics to describe a parametrised linear combination of

content-based features, using MLR for training. Post-training analysis of feature weights

revealed that tags relating to genre or radio stations were assigned greater weights than

2 http://www.allmusic.com/
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those related to music theoretical terms. In our experiments in Sect. 5, we use MLR to

adapt a music similarity metric to user ratings.

Slaney and White (2007) also presented a general method for learning a Mahalanobis

distance metric. They adapt similarity on user ‘‘like’’ data. Their experiments evaluate

the similarity metrics based on artist name identity of k nearest neighbours (kNN). They

find that the collaborative-filtering based measure outperforms a content-based metric.

The unknown variety of style given an artist is an instance of a general problem asso-

ciated to using vaguely defined labels as classes. Secondly the imbalanced distribution of

collaborative-filtering information in their data is discussed, as the pre-selection of the

users’ playlists influences the items they can ‘‘like’’. The variety of similarity models is

later extended by Slaney et al. (2008), comparing six approaches of adapting content-

based similarity on the same ground truth (unmodified, whitening, LDA, NCA, LMNN

and RCA), showing significant improvement through training for all models.

The results for learning distance metrics from collaborative filtering and the availability

of data from GWAPs motivate a systematic evaluation of such methods for similarity

learning. The psychological view of similarity perception including asymmetry made clear

that care is necessary when interpreting the results of learning similarity from data, as they

depend on the information in the data, the context it has been collected in and the limi-

tations of the preprocessing and the learning method. In the following, we introduce and

develop the analysis and learning methods for ground truth similarity data as given in the

MagnaTagATune dataset.

3 Modelling music similarity from relative user ratings

In this section we consider data mentioned from an odd-one-out game, like the Mag-

naTagATune dataset which we use in this study. In the game, three clips are presented to

the players, who are asked to choose the one which least fits with the others. This selection

indicates a relatively higher similarity between the two remaining clips than to the selected

one. In the following we describe data structures and algorithms for using this data to

optimise similarity measures.

3.1 Relative ratings from odd-one-out games

In an odd-one-out game, we gather relative similarity data in the form of relations between

two pairs of clips. For example, given the clips Ci, Cj, Ck and Cl, we can express a

similarity relation using the following:

ðCi;CjÞ [
sim
ðCk;ClÞ; ð1Þ

where the relation [
sim

denotes ‘‘more similar than‘‘. This can easily be applied to an odd-

one-out survey: Given three clips Ci, Cj and Ck, a vote for Ck as the odd-one-out can be

interpreted using the following two relations:

ðCi;CjÞ [
sim
ðCi;CkÞ

^ ðCi;CjÞ [
sim
ðCj;CkÞ:

ð2Þ
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3.2 Similarity graphs

Relative similarity relations can be represented as edges in a directed weighted graph of

pairs of clips (McFee and Lanckriet 2009; Stober and Nürnberger 2011): Given the clip

index I for all clips Ci, i [ I and similarity information Q̂ containing constraints in form

(1), our Graph G = (V, E) consists of vertices representing clip pairs

V ¼ fðCi;CjÞ j i; j 2 Ig

and edges

E ¼
�
ðCi;CjÞ; ðCi;CkÞ; ai;j;k

�
j ði; j; kÞ 2 Q̂; ai;j;k 2 N n 0

� �

representing the pairs’ similarity relations. The weights ai,j,k assigned to the edges repre-

sent the number of occurrences of a particular constraint (i, j, k). Such a graph as corre-

sponding to Eq. 2 is shown in Fig. 2.

The induced graph can include inconsistent similarity information, for instance from

users directly disagreeing on the outlying clip in a triplet, or multiple votes leading to an

inconsistency when considering the transitivity of the induced similarity metric. Incon-

sistencies appear as cycles in the graph as shown in Figs. 3 and 4. Such cycles can be found

and analysed using standard methods for extracting strongly connected components in

directed graphs.

3.2.1 Removing cycles

The SVM and MLR training algorithms we use here require the similarity data to be

consistent.

In order to apply these methods, we use an approach presented by Stober and Nürn-

berger (2011) for filtering inconsistent data. The information to be discarded is selected

based on a minimal number of associated user votes: For removing direct inconsistencies

we remove cycles of length 2 by removing the edge (i, j, k) with the smaller weight ai,j,k

and subtracting its weight from the weight ai,k,j of the edge in the opposite direction. If two

inconsistent edges have equal weight, both are deleted, possibly leaving a vertex discon-

nected from the graph.

Fig. 2 Graph induced by a
single ‘‘odd-one-out’’ statement,
Ck is the odd-one-out as in Eq. 2.
Nodes represent pairs of clips and
edges represent the relation
more-similar-than

Fig. 3 Graph containing a
length-2 cycle
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Removing cycles of greater length and finding the maximal acyclic subgraph of G is an

NP-hard problem (Karp 1972). McFee and Lanckriet (2009) use a randomised algorithm

by Aho et al. (1972) to extract an acyclic subgraph for this application. The graph is

created by iteratively adding edges to a new graph and testing for cycles. Edges that

complete a cycle are omitted. Depending on the similarity data, different means of finding

an acyclic subgraph may give better or even optimal results. See Sect. 4.1 for the structure

of the MagnaTagATune similarity data.

The resulting acyclic weighted graph provides the similarity constraints

(i, j, k) [ Q that we use to train the similarity measures. The analysis of the adjacent

components in this graph gives information on transitive similarity relations expressed by

the constraints (see Sect. 4.1).

3.3 Mahalanobis distance

The MLR algorithm, which we introduce in the next section, adapts a metric that was

introduced by Mahalanobis (1936). The Mahalanobis metric dW, which can be seen as a

generalisation of the Euclidian metric, is defined as

dWðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞT Wðxi � xjÞ

q
; ð3Þ

where xi; xj 2 R
N represent our feature vectors and W 2 R

N�N is a Mahalanobis matrix,

parametrising the similarity space. If W is the identity matrix, dW is the Euclidean metric. If

W is diagonal the feature dimensions are separately weighted within the distance function,

as it is used with the SVM-Light and the DMLR algorithms introduced in the next section.

If the full matrix W is positive definite, dW satisfies all conditions of a metric (symmetry,

non-negativity and the triangle inequality). We require W only to be positive semidefinite,

so that dW(xi,xj) = 0 for xi = xj is possible, which makes the distance function a

pseudometric (Weinberger and Saul 2009).

As described by Davis et al. (2007), each Mahalanobis matrix W induces a multivariate

Gaussian distribution

Pðxi; WÞ ¼ 1

b
exp � 1

2
dWðxi; lÞ

� �
: ð4Þ

Here, as in the standard definition (Mahalanobis 1936) of the Mahalanobis distance,

W-1 represents the covariance of the distribution, b represents a normalising factor and l
the mean of the feature data.

Fig. 4 Graph containing a length-3 cycle. Edge weights have been hidden
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With W derived from data covariances, the Mahalanobis distance can be used to cal-

culate the distance from the data average or any another point in relation to the distribution

of the data.

3.4 Metric learning

In this study we evaluate two state-of-the-art methods and a new variant for learning a

Mahalanobis distance from relative similarity data: (D)MLR, the new W(D)MLR variant

and SVM-Light are applicable to a multitude of data sources, with relatively little pre-

processing and conversion required. They are based on Support Vector Machines, and thus

work effectively with high-dimensional feature vectors that are commonly used for

describing the music clips (see Sect. 4.2). Implementations of (D)MLR and SVM-Light

algorithms are available as open source. Thus, modifications can be applied to the code as

described in the following sections and comparisons of experiment results can be made

easily by other researchers.

These algorithms parametrise a Mahalanobis distance from similarity constraints.

Instead of using the covariance of the feature data data, the Mahalanobis matrix W is

adapted to satisfy similarity constraints as derived in Sect. 4.1. Thus, not the feature data of

the clip but the human similarity votes determine the similarity space. The resulting

Mahalanobis matrix transforms the feature space when calculating similarity, allowing for

dilations, rotations and translations to match the given similarity constraints. The rest of

this section introduces the different algorithms used for optimising W.

3.4.1 Metric learning to rank (MLR)

McFee and Lanckriet (2010) describe the MLR algorithm for learning a fully parametrised

Mahalanobis distance based on the SVMstruct framework of Tsochantaridis et al. (2004).

Specifically well-suited for use in retrieval environments, this method utilises rankings for

the specification of training data as well as for the in-training evaluation of candidates for

distance metrics. Such rankings assign a ranking position to each of the clips in our dataset

given one of these as query item. For all constraints (i, j, k) [ Q, referring to

ðCi;CjÞ [
sim
ðCi;CkÞ, the final metric should rank Cj before Ck, when the query is Ci.

During the optimisation, ranking losses resulting from suboptimal metrics are deter-

mined using standard information retrieval performance measures. We use the area under

the ROC curve as the measure for ranking loss. Violations of constraints are allowed for,

but penalised using a single slack variable. Apart from the minimisation of the shared slack

penalty, a regularisation term based on the trace tr(W) of the Mahalanobis matrix is used in

the optimisation.

In this study, we use a Matlab� implementation of the MLR algorithm, which McFee

has published online3.

3.4.2 DMLR

A variant of the MLR algorithm (DMLR) restrains W to a diagonal matrix with Wij = 0 for

i = j. Whilst still allowing for the weighting of different feature dimensions, rotations and

3 http://cseweb.ucsd.edu/*bmcfee/code/mlr/
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translations in features space are ruled out by this restriction. For feature vectors xi 2 R
n,

this reduces the number of training parameters from n2 to n.

3.4.3 Weighted learning with W(D)MLR

To our knowledge, no methods for weighted training with MLR have been published. MLR

uses a 1-slack approach, prohibiting the weighting of individual constraints via their slack

penalty. Instead we implemented the weighting by repeating individual constraints

according to their weight. The repeated constraints gain their respective weight during

slack aggregation, as the error is averaged along the training constraints. We call this

method W(D)MLR. This approach is obviously not efficient, but for the MagnaTagATune

similarity dataset it is feasible and the efficiency is improved by quantising the constraint

weights. Experiments showed similar performance with using only fractions (10 %) of data

overhead, which improves the scalability to larger datasets. The performance of weighted

learning with WMLR and WDMLR is presented in Sect. 5.4.

3.4.4 Metric learning with SVM-Light

In Schultz and Joachims (2003), Schultz and Joachims present a metric learning strategy

based on their SVM-Light framework4. Here, the matrix W, as introduced in Eq. 3 is

factorised into a linear kernel transformation A and a diagonal matrix W. We use the

identity transform as kernel A = I. Thus, dW describes the Euclidean metric based on

weighted features.

The proposed algorithm optimises the distance measure by representing it as the

hyperplane dividing triplets (i, j, k), referring to ðCi;CjÞ [
sim
ðCi;CkÞ, from triplets repre-

senting the contrary information (i, k, j). Clip pairs (Ci, Cj) are represented by the clips’

feature difference: for each constraint triplet (i, j, k), we consider the component-wise

squared difference of the involved clip pairs’ features: Dxi;xj ¼ ðxi1 � xj1Þ
2; . . .;

	

ðxiN � xjN Þ
2Þ. The differences of the pairs

DD
ði;j;kÞ ¼ ðD

xi;xk � Dxi;xjÞ ð5Þ

are then used as constraints for the following optimisation problem:

min
w;n

1

2
jjW jj2F þ cSC03 �

X

ði;j;kÞ2Qtrain

nði;j;kÞ

s.t. 8ði; j; kÞ 2 Qtrain : \diagðWÞ;DD
ði;j;kÞ[ � 1� nabc

wi;j� 0; nabc� 0

ð6Þ

This minimises the loss defined by the sum of the per-constraint slack variables nði;j;kÞ
and regularises W using the squared Frobenius norm kWk2

F ¼ ½3�trðWT �WÞ. Here,

cSC03 [ 0 determines the tradeoff between regularisation and slack loss. The implemen-

tation calculates the diagonal in W in its dual form on the basis of the support vectors.

Given the support vectors DD
ði;j;kÞ and their weights ai yi, W can be easily retrieved using

4 http://svmlight.joachims.org/

118 Inf Retrieval (2014) 17:109–136

123

http://svmlight.joachims.org/


diagðWÞ ¼
X

ði;j;kÞ
aði;j;kÞyði;j;kÞD

D
ði;j;kÞ: ð7Þ

The resulting dW normally turns out positive semidefinite, but this is not guaranteed.

Cases occur where some of the Wii \ 0 are slightly below zero. This behaviour has also

been reported for the LIBLINEAR framework by Stober and Nürnberger (2011). In these

cases, the measure does not qualify as a metric or pseudometric but may still perform well

in terms of training error and generalisation.

The SVM-Light toolbox allows for weights associated to constraints to be directly

applied during training, by effectively weighting the individual slack variables n(i,j,k) in the

penalty term of Eq. 6.

3.5 Distance learning using RDNN neural networks

Unlike the previous models, neural networks, specifically multi layer perceptrons (MLP),

are capable of approximating arbitrary functions (cf. Hornik et al. (1989)). This means that

more complex interactions of the features can be modelled than with a metric. This

includes the distances measures where the triangle inequality doesn’t hold or asymmetrical

distance functions as discussed in Sect. 2.1. We don’t do the latter in this study, as order

information is not available in our dataset.

For our experiments, we have adapted a strategy presented by Hörnel (2004), based on

earlier work by Braun et al. (1991), for making a neural network learn an absolute rating

from relative information. This strategy is based on a combined network sketched in Fig. 5

with two MLP networks, net1 and net2, that have the same structure and share their

weights. The input of each net is the vector of absolute differences a pair of feature vectors.

From a similarity constraint, net1 gets the vector of the most similar pair, and should thus

output a higher distance value than net2, getting the less similar pair. The outputs of net1

and net2 are connected to a comparator neuron c with negative fixed weight -/ ? v for

net1/net2 respectively. Thus c outputs a higher value if the correct input has not been

achieved. The activation function of c is chosen to produce non-negative values, and the

whole network can now be trained with target values of 0 for every training example.

Hörnel used a comparator neuron with sigmoid activation function, and a weight fixed

with a negative sign for the ‘left’ network and a negative sign for the ’right’ network. An

alternative suggested by Braun (1997) is the use of a semi-linear activation function fc for

the comparator neuron, which we use as indicated in Fig. 5. We also introduce a margin

between the higher and the lower ratings with a variable c.

We developed an implementation of this scheme using a single network. This is based

on the observation that the derivatives of the sum-of-squares error (SSE(P)) on a set of

inputs P with regards to the output n1
(p) and n2

(p) of net 1 and net 2 for input p are

Fig. 5 Scheme for RDNN neural network learning from relative ratings
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osseðPÞ
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ðpÞ
1

¼ v � ðnðpÞ2 � n
ðpÞ
1 þ cÞ and

osseðPÞ
on
ðpÞ
2

¼ v � ðnðpÞ1 � n
ðpÞ
2 þ cÞ: ð8Þ

This is equivalent to defining the target values of each net in terms of output of the other

net:

t1 ¼ ðn2 � n1 þ cÞ and t2 ¼ ðn1 � n2 þ cÞ: ð9Þ

We used this to implement training on a single network with c = 0.5 with resilient

backpropagation (cf. Riedmiller and Braun (1993)) with regularisation. The procedure is

described in listing 1.

The resulting MLP calculates a distance measure between two clips Ci, Cj, given the

vector dxi ;xj :¼ jxi � xjj of absolute differences of the two clips’ features:

dMLPðxi; xjÞ ¼ MLPðdxi;xjÞ: ð10Þ

4 MagnaTagATune dataset, analysis and preprocessing

The MagnaTagATune dataset is to our knowledge the only similarity dataset that is freely

available5 with the corresponding music data. Our experiments are based on this set to

make our results reproducible and comparable.

4.1 Similarity data

In the bonus mode of the TagATune game, a team of two players is asked to agree on the

odd-one-out of three audio clips. This is a typical instance of an output-agreement game

with a purpose. Regardless of the success of the team, the votes of both users are saved in

the history for this triplet. The MagnaTagATune dataset contains 7,650 such votes for a

total 346 of triplets, referring to 1,019 clips. Some of the triplets have been presented as

permutations, and the order of display is in the dataset, as well, but not the order of

5 http://mi.soi.city.ac.uk/datasets/magnatagatune
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listening. On average, each instance of a triplet permutation counts 14 votes. In our

experiments, the information of each player’s vote, e.g. Ck being the outlier in (Ci, Cj, Ck)

is used to derive two relative similarity constraints as stated in Eq. 2.

The induced weighted graph, derived from 2 � 7650 ¼
P
ði;j;kÞ2Q̂ ai;j;k votes, includes

cycles of length 2, but no cycles of greater length. Thus, removing the cycles of length 2,

removing 8,402 weight points, resolves all cycles existing in the initial graph. The resulting

directed acyclic weighted graph consists of 337 connected subgraphs Gsub
i , each containing

3 vertices or clip pairs. The 6,898 weight points for 860 unique connections contain the

remaining similarity information Q. Equal vote counts for inconsistent statements lead to

the isolation of 27 vertices. Thereby, 26 songs are left without reference to any remaining

similarity constraints, reducing the number of referenced clips to 993.

When excluding the isolated vertices with no associated similarity information, the

combination of clips in the remaining subgraphs corresponds the triplets in the initial

dataset, now associated with modified weights. This is due to the similarity triplets pre-

sented to the users, as explained above, and thus no information about interrelations of the

different clip triplets can be directly extracted from the similarity data.

4.1.1 Genre distribution over triplets

In Sect. 2.1 we discussed the role of genre regarding the perceived similarity of music.

Unfortunately, with this dataset, genre-specific similarity measures cannot be studied, as the

datasets per genre are too small for similarity learning (Table 1). To give an impression of the

dataset’s structure, we divided the genre groups using the most frequently annotated genres:

4.1.2 Similarity weights

For the MagnaTagATune dataset, the numbers of votes (see Sect. 4.1) per constraint varies.

Since the weights of the edges are determined as the differences of conflicting votes, there

is a compensation between total vote number and vote proportion: constraints with a small

relatvie majority of votes but many votes in total can get the same weight as songs with a large

relative majority but fewer total votes. We view this compensation as useful, because either

factor can contribute to the confidence in the constraint. The separate use of proportion and

vote count is interesting, e.g. in a probabilistic model, but is left for future work.

4.1.3 Sampling methods

In our experiments, the performance of the learnt metrics regarding the similarity data is

evaluated using cross-validation. In k-fold cross-validation, the complete constraint set is

divided into k disjoint subsets of approximately equal size. One of the subsets is held out

during training and used for testing the performance. Our training data consist of three

Table 1 Number of triplets with n clips sharing the same genre tag

Genres n = 3 of 3 2 of 3 1 of 3

Electronica, New Age, Ambient 43 159 447

Classical, Baroque 8 65 257

Rock, Alt Rock, Hard Rock, Metal 6 59 251
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layers: the clips, the clip pairs, and the similarity constraints on the pairs. Disjoint sets of

constraints can be based on the same pairs or individual clips, and disjoint sets of pairs can

be based on the same clips.

Sampling for transduction In the odd-one-out dataset, the constraints are defined on

triplets of clip pairs, and each pair of constraints on a triplet has one referenced pair of clips

in common and references all clips in the triplet. Thus, when constraints from one triplet

are divided between the test and training set, the two sets both reference one pair of clips

and all individual clips in common. In our experiments presented in Sect. 5.3, the similarity

constraints Q are randomly sampled subsets of constraints for 10-fold cross-validation, so

that clips and clip pairs appear in several sets. One of these subsets is used as the test set

Qtest
k of 86 constraints, while the remaining 9 subsets are combined to the training set

Qtrain
k of 774 constraints. Because of the random sampling of constraints, a triplet with 2

constraints, where one of the constraints is in the test set, has a chance of 90 % of the other

constraint being in the training set. If the triplet has 3 constraints and one of them is in the

test set, the chance of one of the other 2 being in the training set is 99 %. In our tests, the

training sets referenced on average 989 clips out of the 993 total referenced clips.

We call this method transductive sampling (TD-sampling) because it enables trans-

ductive learning (cf. Gammerman et al. 1998). As our results in Sect. 5.3 show, the SVM-

based approaches achieve better results with TD-sampling. TD-sampling can be an

appropriate method for evaluation, e.g. for recommendation within a static database, but it

does not support accurate performance predictions for unseen clip data.

Sampling for induction For assessing the capacity of a model to generalise over

unknown pairs or individual items, transductive sampling is not suitable. In Wolff et al.

(2012) we introduced and tested inductive sampling (ID-sampling), which separates sim-

ilarity data the clip pair level. Rather than defining the subsets on the basis of constraints

(i, j, k) [ Q, we use the disjoint subgraphs Gsub
i of the full similarity graph G (see Sect.

3.1). Choosing disjoint sets on the basis of these 337 disjoint subgraphs guarantees the sets

to be disjoint with regards to the clip pairs (the vertices of G). In the MagnaTagATune

dataset, after removing inconsistent edges, the subgraphs are also disjoint in terms of clips.

The Gsub
i differ in their number of edges because of unanimous votes or edge cancel-

lation. Therefore the cross-validation sets vary slightly in their size. For the experiments in

Sect. 5, 337 subgraphs have been divided into 10 subsets, each corresponding to 33 or 34

subgraphs. This results in subsets containing 85 constraints on average. The maximal

training set size varies from 771 to 779 constraints referencing on average 896 clips, about

10 % less than in the TD-sampling, as expected. We use ID-sampling throughout this

study, except where we explicitly test TD-sampling.

4.2 Content-based feature data

In this paper we use three types of features for representing clips in our models: low-level

and higher level audio features, which we introduce in this section, and genre features that

will be explained in the next section.

4.2.1 Low-level audio features

For the experiments in Wolff and Weyde (2011a, b), we only used the precomputed

chroma and timbre vectors provided with the dataset. These were extracted with The Echo

Nest API, version 1.0. This information as the basis for our features allows more reliable
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reconstruction of audio features compared to the web-based and regularly updated API of

The Echo Nest.

The chroma and timbre vectors are provided on a per-segment basis, with the clips

divided into segments of relatively stable frequency distribution (details can be found in

Jehan 2005). For each of these segments, the MagnaTagATune dataset contains a single

chroma and timbre vector, each 2 R
12. We used two modes of aggregation, averaging and

clustering, which we compare in Sect. 5.2.

In most of our experiments, we aggregate this information to the 30 s time scale of a

clip. Like in Stober and Nürnberger (2010), a straightforward approach is to take the mean

and variance of the features over time and use these values for representing the clip. We

conducted experiments with the variance of chroma and timbre, but found them not to be

helpful features. Thus, in Sect. 5.2 we only evaluate features based on the means of chroma

and timbre values, i.e. for each clip Ci; i 2 f1; . . .1019g, a single timbre average ti
1 and

chroma average c1
i ; t

1
i 2 R

12 and c1
i 2 R

12
� 0; are extracted.

Aggregation by Clustering Previous experiments (Wolff and Weyde 2011a, b, 2012)

did not use a single average but 4 cluster centroids t
j
i 2 R

12; cj
i 2 R

12
� 0; j 2 f1; � � � 4g for

each feature and clip Ci; i 2 f1; . . .1019g. The idea of this approach is to preserve some

of the variety of harmony and timbre in the clips. The centroids are extracted with a

weighted k-means variant, which accounts for the differing durations of the individual

segments: centroids are influenced more strongly by feature data from longer segments.

The final relative temporal weights of the cluster centroids are saved in scalars

kðcj
iÞ; kðt

j
iÞ 2 ½0; 1�.

Normalisation and clipping Following aggregation, the centroids or averages of the

chroma features are normalised to fit the interval [0, 1] using

~cj
i ¼

c
j
i

maxkðcj
iðkÞÞ

: ð11Þ

The timbre data is provided in an open numerical range [-?, ?] by The Echo Nest .

This also applies to the extracted centroids and averages. In order to adapt the timbre

feature data’s range to those of the chroma and other features, the values are clipped to a

maximum threshold. The clipping threshold was chosen such that 85 % of the timbre data

values for the similarity dataset are preserved. Afterwards, the timbre data is shifted and

scaled to fit ti
j [ [0, 1].

4.2.2 Higher-level audio features

In Wolff and Weyde (2011a, b) we restricted the set of features to the easily extractable low-

level features mentioned above. Slaney et al. (2008) introduced a complementary feature set

to facilitate the adaptation of music similarity measures to ground truth based on annotations.

In their experiments, the segment-based chroma and timbre features were not used. Instead,

they use those features from the The Echo Nest API which are already given on the clip level,

as well as statistics for segment and beat locations and their frequencies. These features are

the result of different classification, structure analysis and optimisation algorithms for music,

which have been described in detail in Tristan Jehan’s (2005) PhD thesis.

In the experiments presented in this paper, we complement the low-level features with

higher-level features by reproducing the features by Slaney et al. (2008), as far as the

required information is available in the MagnaTagATune dataset. Features where this was
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not the case have been omitted to ensure reproducibility of the experiments. Table 2 shows

a list of the features used in this study.

Most of the features in Table 2 are directly based on the dataset. The ‘‘-Mean’’ and

‘‘-Variance’’ features represent the respective statistical operation on the provided feature

data, with no further processing apart from a final normalisation, as explained in the

following paragraph. The beatVariance feature represents the variance of the time between

detected beats. If no beats are detected, the variance is set to zero. The tatum feature

contains the median length of the inter-tatum intervals. Analogously, the numTatums-

PerBeat feature results from the division of the median inter-beat interval by the tatum

length as described above. If no tatum positions are detected, the tatum and tatumConfi-

dence features are set to zero, while the numTatumsPerBeat feature is set to a default of 2.

Finally, each of these features is separately normalised over the values for the clips in

the whole similarity dataset: The values are scaled and their minimal value subtracted to

result in a one-dimensional si
j [ [0, 1], for clips Ci. The features are not whitened as

described by Slaney et al (2008), as we are interested in keeping the features’ original

associations to properties in music theory. For a comparison of PCA-transformed features’

performance see Sect. 5.2.1. Note that some of the features allocate only a small number of

actual values. For example, the timeSignature feature uses only the values f0
7
; 1

7
; . . .; 7

7
g.

4.3 Genre features

In addition to the audio features explained above, we use contextual information on the

clips via tag-based features. We employ genre tags from the Magnatune label’s catalogue,

which is available online6. It contains descriptions of the songs containing the MagnaT-

agATune dataset’s clips: Each song is annotated with 2–4 genre descriptions, which are

also ordered from the most general to the most specific associated genre. We assign these

genres as one binary vector ci [ {0, 1}44 per clip, setting positions j to 1 for each genre ci
j

and 0 otherwise.

5 Experiments

In the following, we present results from experiments we conducted to study the feasibility

of similarity learning from relative ratings and to compare the effect of different algo-

rithms, training parameters, features, and evaluation approaches on the training and gen-

eralisation results. All performances are evaluated with cross-validation based on the

Table 2 Features from (Slaney
et al. 2008) used in our
experiments

segmentDurationMean tempo

segmentDurationVariance tempoConfidence

timeLoudnessMaxMean beatVariance

loudness tatum

loudnessMaxMean tatumConfidence

loudnessMaxVariance numTatumsPerBeat

loudnessBeginMean timeSignature

loudnessBeginVariance timeSignatureStability

6 http://magnatune.com/info/api.html
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percentage of unique distance constraints being satisfied by the learnt distance function.

The distance constraints used below are extracted as described in Sect. 4.1.3. Following the

strategy from Wolff et al. (2012), we start from a set of 13 constraints on average and

increase the training set size |Qtest
k (p)| for each cross-validation by extending the subsets.

Because the sampling and the choice of starting set have an influence on the result we

extend the strategy here by repeating the procedure 4 times and averaging the results. We

also use the 4�10 cross validation test sets for significance testing, applying a non-para-

metric approach. We use a Wilcoxon two-tailed signed rank test to compare the model

trained on the full training set with the standard Euclidian metric—or another model as

indicated—on each test set.

The following section compares the algorithms described above using the full feature set.

The different feature types will be compared individually and in combined form in Sect. 5.2.

Section 5.3 compares the ID-sampling, which was used in all other experiments, to TD-

sampling. Finally, Sect. 5.4 explores the use of weight information in the similarity graph.

5.1 Comparison of learning methods

We compare MLR, DMLR, SVM-Light and RDNN . DMLR and SVM-Light learn a

weighted Euclidean distance, while MLR is adapting a Mahalanobis distance with a full

matrix W.

We use regularisation trade-off factors that have been determined using a grid-based

search for the optimal configuration evaluated by cross-validation. The trade-off factors

c were set to cmlr = 1012 for MLR, cdmlr = 102 for the diagonally restricted DMLR (Sect.

3.4.1), and cSC03 = 3 for the SVM-Light algorithm (Sect. 3.4.4). The RDNN MLP network

is set up with two hidden layers, containing 20 and 5 neurons, respectively. The MLP is

trained in up to 38 training cycles or until all constraints are satisfied, which was not

achieved. We tried longer training, but achieved no improvement of results.

Figure 6 shows the different algorithms using the combined features containing aver-

aged audio and timbre features, Slaney08 features and genre features. This combination

was chosen for showing relatively good results for all of the algorithms. Considering the

training with the maximum size training sets, both MLR and SVM achieve similar per-

formance on the unknown test set. DMLR and RDNN do not generalise well from the

training set onto the test set (see Fig. 7).
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Fig. 6 Overall test set performance for combined features with averaged low-level information: SVM,
MLR, DMLR and RDNN performance for full features, with increasing training set size. The dotted line
shows the baseline performance of an unweighted Euclidean distance
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In this experiment the test for the largest subsets results by MLR and SVM-Light are

approximately 2 and 1.5 % above the baseline of 66.86 %. At 5 % significance level only

the MLR results are significantly better than the Euclidian metric (p = 0.0007). Both

DMLR and RDNN remain below the baseline performance by 1 % on the test sets.

The generalisation results for small training sets Qtest
k (p) depend highly on the algorithm

used, and for SVM-Light , DMLR and RDNN lie considerably below the baseline. For

SVM-Light , this is an effect of overfitting on small datasets, as we optimised the parameters

for larger training sets. In Wolff et al. (2012), we suggest adaptive regularisation which

could improve generalisation on small trainings sets if that is desired. MLR and SVM-Light

exhibit different performance over different training set sizes: MLR starts around the

baseline and reaches almost maximal performance within the first 100 training examples,

while reaching almost 100 % on any training set, which may well be a sign of overfitting.

SVM-Light starts with very low generalisation for small training sets and reaches the

baseline performance at 500 training constraints. However, the results of SVM-Light

continue to improve with the size of the dataset until the full number of training constraints

is reached and are still clearly below the test results. This could also indicate overfitting, but

again increased regularisation yielded no improvement and more data was not available.

The training set performance curves in Fig. 7 exhibit several particular types of learning

behaviour. Note that the baseline (dotted line) slightly varies as the training sets grows. In

each of the four samplings, the baseline can vary up to 10 % depending on the training

subset. Like in earlier studies (Wolff and Weyde 2011b, 2012), MLR learns to fulfil all of

the training constraints. The training performance of SVM-Light shows a continuous

regularisation tradeoff, allowing for additional constraints to be learnt, whilst preserving

good generalisation at the final full training set size. DMLR and the MLP show overfitting

to the training examples for small training sets with a consistently inferior performance

when compared to SVM-Light and MLR. With these algorithms, no gain is achieved on

unknown test sets.

5.1.1 Training speed

We measured running times of the different algorithms as showing in Table 3. Comparison

of these absolute runtimes does not necessarily reflect algorithmic efficiency, as SVM-

Light is used in a compiled windows executable, while MLR, DMLR and RDNN run
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Fig. 7 Overall training performance: SVM, MLR, DMLR and RDNN performance for full features, with
increasing training set size. The dotted line shows the baseline performance of an unweighted Euclidean
distance on the training set
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within the MATLAB interpreter. Especially for the large feature spaces used with MLR

and SVM-Light, RDNN (see Sect. 3.5) is still by far the slowest of the approaches

described in this paper, using large amounts of time even for the small training sets.

5.2 Influence of feature type

As has been shown in Wolff and Weyde (2011b) both feature type and feature dimen-

sionality have an influence on the algorithms’ adaptation performances. We now present an

evaluation of these parameters on the complete similarity data as described above. To this

end, we compare the performances of SVM-Light using

• acoustic-only features

– single chroma via average or 4 cluster centroids (chroma 1 / 4)

– single timbre via average or 4 cluster centroids (timbre 1 / 4)

• genre-only features,

• slaney-only features,

• combined acoustic features and

• complete combined features.

The results for the different feature sets should be comparable without changing the

algorithm’s parametrisation. As we wanted to avoid an additional validation step for

selecting cmlr (see discussion in Sect. 7, we use SVM-Light as the most robust method for

the examination of feature influence. For MLR the optimal regularisation tradeoff

parameter cmlr can vary by several orders of magnitude. We use again the unweighted

Euclidean distance metric as baseline for all of the feature configurations.

Table 4 shows the performance of SVM-Light using different parts of the complete

feature set available. The combined features achieve the greatest performance, followed by

the Slaney08, timbre and genre features. The Slaney08 features (relatively high-level

summary information), support particularly good generalisation (difference test vs. training

Table 3 Average training time
per dataset in minutes, accumu-
lated over all 20 subset sizes

SVM-Light MLR DMLR RDNN

5 40 30 60

Table 4 SVM Single features test set performance

Features Chroma(1/4) Timbre(1/4) Slaney08 Genre

Test 56.44 / 52.08 64.70 / 65.80 65.80 63.32

Training 61.60 / 59.48 68.97 / 66.27 68.06 68.91

Baseline 56.86 / 56.87 60.84 / 59.33 60.52 47.79

Features Combined Acoustic(1/4) Combined All(1/4)

Test 66.03 / 61.50 68.41 / 66.26

Training 71.53 / 76.08 77.74 / 83.92

Baseline 61.07 / 59.44 66.86 / 64.68

Values for single average audio features and 4-cluster audio features are separated by slashes (average/4-
cluster)
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set only 2.06 %). On the other hand, the chroma features are least effective on test set

(difference to training set above 5 %).

Table 5 shows that the differences between the chroma features the others are statis-

tically significant at the 5 % level. Most of the differences between the Slaney08, genre

and timbre are not significant. However, the combined feature sets are significantly better

than any individual feature set. Clustering vs. averaging makes a significant difference only

for chroma but not for timbre or combined features.

Specifically notable is the low baseline of the genre features, which is probably due to

the sparsely populated feature space. As each song is assigned 2–3 genres, only a few

different distance values actually occur on the binary vectors. Therefore many constraints

are not satisfied because of equal distance (dW(Ci, Cj) = d(Ci, Ck)). A number of songs are

annotated with exactly the same genres, so training on these constraints is not possible and

degrades performance significantly (see Wolff and Weyde 2012).

5.2.1 PCA and impact of dimensionality

A common approach in MIR is to reduce the feature space dimensionality, which can help

to make the learning quicker and more effective. For this experiment we use Principal

Component Analysis (PCA) to reduce feature vectors to the same dimensionality. This

serves also to explore whether the performance differences of the feature types are

dependent on the dimensionality of the features. E.g. the combined features might give best

performance, because the input feature vector has more dimensions.

We compare two sets of dimension-reduced features to explore the effect of dimen-

sionality on learning: PCA12 and PCA52. PCA12 reduces the PCA-transformed infor-

mation to the 12 dimensions carrying most of the variance. In PCA12 we used for single

chroma mean features, timbre mean features, Slaney08 features, audio features combined,

and all features combined. The chroma and timbre mean features already have 12

dimensions, the others are reduced. In the same manner, PCA52 features are built from

4-cluster chroma and timbre features, genre features, audio features combined, and all

features combined. The 4-cluster chroma and timbre already have 52 dimensions (4

Table 5 Significance of performance differences between feature types (Wilcoxon signed rank p values)

Features Chroma(1/4) Timbre(1/4) Slaney08 Genre Acoustic (1/4)

Comb. All(4) 0.000/0.000 0.001/0.000 0.000 0.000 0.000/0.002

Comb. All(1) 0.000/0.000 0.015/0.002 0.008 0.000 0.000/0.013

Acoustic(4) 0.000/0.008 0.002/0.006 0.000 0.145 0.000/–

Acoustic(1) 0.000/0.000 0.753/0.179 0.823 0.116 –/0.000

Genre 0.000/0.000 0.076/0.244 0.037 –

Slaney08 0.000/0.000 0.751/0.505 0.000 / 0.000 –

Timbre(4) 0.000/0.000 0.251/–

Timbre(1) 0.000/0.000

Chroma(4) 0.000/–

Features Comb. All (1/4)

Comb. All(4) 0.086/–

Significant values at the 5 % level are set in bold type

128 Inf Retrieval (2014) 17:109–136

123



12-dimensional chroma or timbre vectors with 1 weight value each). The Slaney08 features

do not have enough dimensions to build a single high-dimensional PCA feature, but they

are still included in the combined audio and combined all features. As above, SVM-Light

is used for comparing the effectiveness of the different feature types and the results are

shown in Table 6.

Table 6 shows that learning on the PCA12 chroma features did not improve general-

isation results. The Slaney08 and timbre features both provide significant performance

increase over chroma data. The combined features further improve the performance, with

PCA12 all-features-combined reaching better result than the original features (see Fig. 6).

All pairwise differences in test performance between feature types are significant at p%,

except timbre versus Slaney08 and Slaney08 vs. genre. indicating that the reduced

dimensionality makes learning more effective, at least with SVM-Light . It also provides

evidence that the combination of different feature types is still effective, even when the

dimensionality is reduced. As above, most of the training success is achieved with small

training set sizes, up to 100 constraints.

The test set results of PCA52 features are mostly similar to PCA12, but the performance

is generally lower for the single features. Interestingly the performance of timbre features

drops by 7 % in comparison to both the raw and the PCA12 features. Similar to the

12-dimensional case, all pairwise differences are significant except timbre vs. genre.

The training performance, as in Table 6, indicates that the bad generalisation of

52-dimensional features is a result of overfitting: The training performance of 52-dimen-

sional PCA features is considerably (3–5 %) higher than the performance of 12-dimen-

sional PCA feature, while the baseline of the 52-dimensional features is much lower

(-5 % for all except genre features). Thus, the performance gained for training data is far

greater than for the 12-dimensional features. This indicates increased learning capacity of

the model based on the 52-dimensional data. With increasing dimensionality, maximal

performance needs more data. The generalisation does not improve, indicating that

quantity or quality of the MagnaTagATune similarity data is not sufficient: The increased

number of parameters allows for more specific optimisation whilst delaying the general-

isation resulting from larger training sets. So the higher dimensional data might lead to

better results if more data were available. However, the generalisation performance

between PCA12, PCA52 and unreduced all-combined features on the maximal training set

is not significantly different. The combined features achieve a very similar performance to

the raw features in Table 4.

Table 6 SVM Single features test and training performance

Features Chroma Timbre Slaney08 Genre Audio Comb. Combined

Test12 55.54 64.22 62.00 60.20 66.65 69.73

Training12 59.43 66.74 63.03 62.77 69.324 71.18

Baseline12 55.81 61.40 59.42 60.12 58.37 66.86

Gain12 -0.27 2.82 2.58 0.08 8.28 2.87

Test52 51.71 57.41 / 61.46 63.73 69.50

Training52 64.41 68.03 / 65.43 71.50 75.78

Baseline52 50.70 51.28 / 58.26 53.02 55.93

Gain52 1.01 6.13 / 3.20 10.71 13.57

The Slaney08 features are not available to 52-dimensional PCA features
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Finally, the differences between the different feature types are all significant, indicating

that the choice of features is important. In particular combining information sources can

lead to improved performance.

5.3 Sampling: effects of transductive learning

We have compared TD-sampling, as introduced in Sect. 4.1.3), with ID-sampling that was

used in the experiments so far, In TD-sampling pairs and individual clips (but not con-

straints) can appear in both training and test set. Figure 8 shows the results for the SVM-

Light, MLR and DMLR algorithms. The performance of an unweighted Euclidean distance

measure for the test sets is again our baseline. During cross-validation, baseline results are

averaged over all test sets and the average performance is calculated for the whole dataset.

With TD-sampling, both MLR and SVM-Light performance are significantly better than

the baseline (both p \ 0.001).

The training performance of all algorithms displayed is similar to the performance with

ID-sampling as plotted in Figure 7. In contrast, the performance on the test sets, as in

Figure 8, shows a considerable increase of performance (6 %) for MLR and a slight

increase for SVM-Light . This reproduces the findings of Wolff et al. (2012). The

explanation for the positive effect seems to be that involving almost all the feature vectors

of the test set in training allows for MLR to make better decisions when the separation

oracle selects the instances of the constraints to involve in the optimisation process (see

Sect.3.4.1), while for the Support Vector Machine SVM-Light , the set of possible support

vectors is increased with the number of feature vectors, increasing by 10 % (93 clips, see

Sect.4.1.3) due to the TD-sampling referencing more feature vectors during training.

5.4 Weighting constraints by vote differences

As described in Sect. 4.1, the 860 unique similarity constraints represent differences of

6,98 votes after cancellation in the similarity graph. The vote difference for each edge can

be used as an indicator for the reliability of the constraints. In the following experiment

each constraint (i, j, k) is weighted in proportion to its weight ai,j,k [ 0, using the weighted

MLR training introduced in Sect. 3.4.3 and weighted SVM-Light (see Sect. 3.4.4).

Instead of using the unweighted evaluation considering the unique constraints satisfied,

as used above, we measure the weighted performance of a metric as sum of the weights
P

0 100 200 300 400 500 600 700
50

55

60

65

70

75

71.19

75.55

65.87
66.89

avg. number of training constraints

%
 o

f t
es

t c
on

st
ra

in
ts

 fu
lfi

lle
d

SVM
MLR
DMLR
RDNN

Fig. 8 Transductive sampling: SVM, MLR, DMLR and RDNN test set performance for full features. The
training set size increases from left to right

130 Inf Retrieval (2014) 17:109–136

123



ai,j,k of ði; j; kÞ 2 Qtest or ði; j; kÞ 2 Qtrain satisfied by the metric divided by the total sum of

weights in the respective set.

Figure 9 shows the weighted performances on the training sets of weighted training

with WMLR, WDMLR, and SVM-Light . We compare these to weighted performance

(E:W) of the unweighted training with MLR, DMLR, SVM and an Euclidean metric. For

the Euclidian metric, the weighted evaluation yields about 6 % better performance than

using unweighted evaluation, indicating a correlation of the weighted constraints with the

Euclidean distance in feature space. For WMLR and MLR, noth satisfying 100 % of the

unique training constraints, the weighting makes no performance difference. The results of

the other algorithms improve by similar amounts as the baseline. This shows the weighted

learning approach described in Sect.3.4.3 succeeds in improving results towards the

weighting of the constraints supplied during training.

When considering the test results of weighted training with WMLR, WDMLR, and SVM-

Light , only WDMLR exceeds the baseline performance for weighted evaluation, which is

also the only significant result on test sets in this comparison. Given that the DMLR training

performance was lower than for the other algorithms, this seems to indicate that the lower

model complexity of WDMLR allows more effective learning on the weighted dataset.

When considering the unweighted performance of the models learnt from weighted

constraints, they perform worse than in Fig.7, but still significantly better than the baseline.

Overall, the use for weighted data from MagnaTagATune seems not to improve the

generalisation of learnt models. The weighted training is effective on the training data but

on test sets only WDMLR can reach significant improvement above the baseline. However,

as the distribution of weights depends on both the number of votes and the ratio of

conflicting vote (see Sect. 4.1.2), there is no straightforward interpretation of these results.

6 Discussion

In this section we discuss and contextualise the results of the dataset analysis and

experiments.
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6.1 Learning results

The experiments presented here have shown, that learning similarity measures from rel-

ative user ratings can achieve significant improvements over a standard Euclidian metric,

yielding a accuracy of almost 70 % on test constraints. The results are better when

transductive learning is included by using TD-sampling, reaching 75.5 %. TD-sampling

can be useful, e.g. in a closed database scenario, but depends on the training set covering a

large proportion of the clips in the database.

These results leave room for improvement, and we discuss possible potential options for

further development. A relevant question is whether we can expect better results from

improving the algorithms and procedures, acquiring more or better data, or from changes in

the approach.

6.2 Choice of algorithms

The tested algorithms show different behaviour, on different features and different simi-

larity data. The choice of algorithm clearly depends on the scenario: for ID-sampling both

MLR and SVM-Light achieve significant improvements over the Euclidian metric. MLR

results are better, especially in training, but SVM-Light , reaching similar generalisation

results, is more efficient in the implementation we used and thus the resulting metric can be

calculated more efficiently. For TD-sampling, only MLR achieves significantly better

results than the Euclidian metric and the improvement is smaller than for ID-sampling.

WDMLR is the most effective when using weighted training, but DMLR performs much

worse than MLR and SVM-Light in all other tasks.

The experiments with RDNN show low performance in all tasks despite the potentially

higher flexibility of the model. However, the near perfect training performance of the MLR

shows that the flexibility of the Mahalanobis matrix is already sufficient. There are

alternatives for network architectures and parametrisations that we have not yet explored,

so that there may be potential for improvement.

All algorithms showed high differences in performance between training and test sets,

even with optimised regularisation. This indicates that improving the amount of data may

lead to either improved results or to a high level of noise in the data.

6.3 Input features and preprocessing

The reduction of the input dimensionality with PCA (Sect. 5.2.1) has no significant effect

on the generalisation with either the 12- or the 52-dimensional feature sets, although the

training results improve considerably with larger feature dimensionality. This is likely the

result of the number of parameters increasing with the feature dimensionality. The gen-

eralisation results show that the SVM-Light algorithm is robust and extracts relevant

information from input data in high and low dimensions. Higher dimensional features

might improve in generalisation given a greater amount of training data.

On the other hand, the choice of input features has significant effects in almost all

experiments, even if the input dimensionality is normalised as in the PCA12 and PCA52

datasets. Chroma features generally perform poorly, while genre, timbre and the music-

structural features defined by Slaney et al. (2008) provide useful additional information.

The calculation of clusters for chroma and timbre features provides additional information

to the system. Although earlier experiments with MLR show small improvements for

4-cluster features, the simpler averaging features show more stable results while there was
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no significant difference in the overall performance. The single most effective way to

improve the performance is to combine different types of features, which yields significant

improvements over all individual features, regardless of whether clustering or dimension

reduction is applied or not.

6.4 Data quality and quantity

The MagnaTagATune similarity dataset is the only available dataset of its kind and

therefore worth studying. However, the analysis reveals that there several issues that

impede effective learning and interpretation of results. When compared to psychological

studies, the weighting data does not fulfil criteria of balancedness to allow for any con-

clusions. Even for the general MagnaTagATune similarity dataset, we found that the data

has an unsystematic distribution of genres over the test triplets. In informal tests on the

MagnaTagATune dataset, subjects found it difficult to make a decision in the odd-one-out

scenario, because each of the clips came from a different genre. The lack of reappearance

of songs in between triplets (see Sect. 4.1) also prevents the study of learning transitivity.

The results consistently support the interpretation that the learning performance is

limited by the size and the quality of the dataset. Thus, collecting more data in a more

balanced way is a promising way to potentially improve results.

6.5 Approaches for improvement

One possible approach for improvement is the selection of the stimuli and feature

extraction process. The 30 s clips may introduce artefacts or uncertainties that might

prevent reliable similarity judgements. However, subjects in informal tests reported no

issues with the length of the stimuli. The features tested here are already of different types,

but it seems interesting to develop new features that model more aspects of musical

structure. However, the low ratings of chroma values, which are associated with the

distribution of pitch classes, suggests this is not a straightforward task.

Another approach is the use of user data and more cultural context information. As

discussed in Sect. 2.1, perceived similarity can depend on context of the objects and the

subject, especially cultural terms of reference. Both music metadata and user related

information could help improve the learning results by enabling selective training set for

multiple models or incorporating contextual information into the model. In addition to user

information, multiple models or contextual models will require more and more balanced

data than currently available. Both approaches can enable personalised and contextualised

music information retrieval, providing not only improved machine learning, but also

improved services for users. In addition, such models could provide information to

researchers on cultural aspects of music perception.

7 Conclusions and future work

In this study we addressed learning music similarity measures from relative user ratings.

To this end we analysed the MagnaTagATune similarity dataset and applied a number

feature extraction and machine learning techniques. We evaluated the learning success in

relation to a number of choices regarding features, algorithms and scenarios. The main

findings can be summarised as follows:
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• Learning of metrics based on relative user ratings is possible with the tested features

and algorithms. The performance on unseen test data can be significantly improved,

depending on the application, the choice of algorithm, and features used.

• Mahalanobis metrics, and often weighted Euclidian metrics, are sufficiently flexible to

model similarity relations in the given data, as the more flexible model.

• For SVM learning on the given dataset, chroma features are least effective, and

combinations of different feature types are most effective, independent of dimension-

ality reduction and clustering vs. averaging of timbre and chroma data.

• The test performance leaves considerable room for improvement, which we attribute

mostly to the dataset used.

As the results show, using machine learning is a good choice on a static dataset. For a

dynamic MIR scenario and a small data set like the MagnaTagATune for training, the

results are not yet on the level needed for many applications.

Given the successful application of the MLR and SVM-Light algorithms in other

contexts (Galleguillos et al. 2011; Mcfee and Lanckriet 2010; Schultz and Joachims 2003)

the main areas for work towards improved performance on new data are the quantity and

quality of the training data. Another approach is the extraction of features that capture

more of the musical structure. Generally, a better understanding of music perception and

cognition and its cultural dimensions can help improve the development of MIR systems

that meet user needs.

7.1 Future work

As discussed in Sect. 5, setting the regularisation parameters is a difficult but crucial step

for reaching optimal training performance. Particularly for computationally expensive

algorithms like MLR, optimisation can be very costly. For learning with growing training

sets, plans are to adapt regularisation dynamically, proportional to the number of training

examples.

The drawbacks of MagnaTagATune dataset are being addressed in a similarity data

collection framework which is currently being tested at City University. It allows for a

controlled presentation of same and different-genre triplets as well as for a balancing of

triplet permutation and recurrence of songs across different triplets. Ultimately, we are

interested in researching and modelling the impact of cultural factors on reported clip

similarity. To this end, the user similarity votes are being annotated with user-provided

information, the cultural indicators. By correlating these indicators with parameterisations

of learnt similarity models we hope to establish better user models. These user models can

then be used for further research and should enable better learning success to support

group-specific or personalised music recommendation and retrieval.
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