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Abstract We propose a method for search privacy on the Internet, focusing on enhancing

plausible deniability against search engine query-logs. The method approximates the target

search results, without submitting the intended query and avoiding other exposing queries,

by employing sets of queries representing more general concepts. We model the problem

theoretically, and investigate the practical feasibility and effectiveness of the proposed

solution with a set of real queries with privacy issues on a large web collection. The

findings may have implications for other IR research areas, such as query expansion and

fusion in meta-search. Finally, we discuss ideas for privacy, such as k-anonymity, and how

these may be applied to search tasks.
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1 Introduction

The Internet has gradually become the primary source of information for many people.

More often than not, users submit queries to search engines in order to locate content.

Considering the Internet as a huge library, web-search corresponds to a search within this

library. While conventional library records are private under law, at least in the U.S.,

Internet users might be exposed by their searches.

Every time a user submits a query to a web search engine, some private information

about the user and her interests might be leaked with the query. The query representing the

interest will be saved in the engine’s session-logs, or it may be intercepted by the Internet
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provider or any other node in the network path. Table 1 presents some queries, which—

depending on culture, country laws, or corporation rules—may have privacy issues. Some

of those queries may correspond to malicious intentions, but we will not distinguish.

There is ongoing research on web-log anonymization, which has turned out to be a non-

trivial problem. The use of fairly advanced techniques like token-based hashing (Kumar

et al. 2007) and query-log bundling (Jones et al. 2008) shows that web-log anonymization

is by far not solved. Another server-based approach for anonymizing query logs is based on

micro-aggregation Erola et al. (2011). The above approaches require the user to trust the

good intentions of the search engine (with respect to the user’s privacy) and additionally to

tolerate the inevitable possibility of personal data leakage of the server-based methods.

Thus, it currently makes sense to investigate the issue also from the other side: how users

can protect themselves.

In September 2006, AOL released a collection with search query-log data containing

about 21 million web queries collected from about 650 thousand users over 3 months (Pass

et al. 2006). To protect user privacy, each real IP address had been replaced with a random

ID number. Soon after the release, the first ‘anonymous’ user had been identified from the

log data. In particular, the user given the ID 4417749 in AOL’s query-log was identified as

the 62-old Thelma (Barbaro and Zeller 2006 (accessed June 3, 2010)). Interestingly, this

identification was based solely on the queries attributed to her ID. Even though AOL

withdrew the data a few days after the privacy breach, copies of the collection still circulate

freely online. The incident only substantiated what was already known: web search can

pose serious threats on the privacy of Internet users.

There are some countermeasures a common user can take to protect her privacy. One is

to submit the query anonymously by employing standard tools, like the Tor network1 or

some anonymization proxy. This might seem as a step in right direction, but it does not

solve the privacy problem. In the AOL incident, the origin of each query was hidden, since

each IP address was replaced with a random ID. However, all queries originating from the

same IP were assigned the same ID. This linkability between queries submitted by the

same user, resolutely increased the leakage of personal data from her query set and led to

the exposition of Thelma and possibly other users. Consequently, a further step would be to

make the queries of a user unlinkable. To accomplish this, a user has to continuously

change her IP address and to cancel out several other information leak issues that may

originate elsewhere, e.g., cookies and embedded javascript.

Alternatively or in parallel, a user can try to obfuscate her ‘profile’ by submitting some

additional random queries. In this way, the real queries are hidden in a larger set, and the

task of identifying the actual interests of the user is hindered to some extent. The

TrackMeNot add-on (Howe and Nissenbaum 2009) for the Firefox browser implements

such a feature. Another interesting add-on is OptimizeGoogle which, among other features,

trims information leaking data from the interaction of a user with Google. An interesting

Table 1 Queries which may have privacy issues

welfare fraud post traumatic stress

rehabs in harrisburg pa herpes

how to make bombs lawyers for victims of child rape

hazardous materials acute hepatitis

gun racks police scanner

1 http://www.torproject.org
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combination of anonymization tools is employed in the Private Web Search tool (Saint-

Jean et al. 2007), which is also available as an (outdated2) Firefox add-on. An interesting

recent Firefox Add-on is Google Privacy, which removes the redirected links from the web

search results. While this does not protect the user query, it helps to prevent the monitoring

of which of the search results the user will actually retrieve. A community-based approach

to support user privacy in information retrieval is presented in Domingo-Ferrer et al.

(2009a); a user gets her query submitted by other users of a peer-to-peer community.

An interesting approach for improving search privacy was presented in Domingo-Ferrer

et al. (2009b), where a single-term query of a user is mixed with a set of k - 1 random search

terms. This approach achieves at most k-anonymity, which means that each keyword can be

assumed to be the actual keyword with probability of 1/k. In our view, the concept of

k-anonymity provides a handy tool to quantify privacy. However, as it is applied in Domingo-

Ferrer et al. (2009b) it raises practical issues; the number of terms in a search query is often

bounded; for example, Google’s API allows a maximum of 32 keywords. The problem

further escalates for multi-term queries, where the mixed query consists of k multi-term

expressions. Another related work is the plausibly deniable search technique of Murugesan

and Clifton (2009) where a query is transformed into a canonical form and then submitted

along with k - 1 appropriately selected cover queries. A survey on issues and techniques for

preserving privacy in web-search personalization is given in Shen et al. (2007).

There is an important reason why the above tools and methods alone might be inade-

quate: in all cases, the query is revealed in its clear form. Thus, privacy-enhancing

approaches employing proxies, anonymous connections, or k-anonymity, would not hide

the existence of the interest at the search engine’s end or from any sites in the network path.

In addition, using anonymization tools or encryption, the plausible deniability against the

existence of a private search task at the user’s end is weakened. Plausible deniability is a

legal concept which refers to the lack of evidence proving an allegation.3 If a query is

never disclosed to the network (never leaves the user’s device/computer), then the user can

deny the information need it represents. Such a denial may be deemed credible, believable,

or else, plausible, due to the lack of sufficient evidence of the contrary. One way to achieve

plausible deniability is to submit other related—but less exposing—queries instead, such

that each of the latter queries is pointing to many plausible information needs. A related

application of the notion of plausible deniability can be found in the aforementioned work

of Murugesan and Clifton (2009).

Finally, there is also the related field of Private Information Retrieval (PIR). In PIR, the

main problem addressed is to retrieve data from a database without revealing the query but

only some encrypted or obfuscated form of it, e.g., see Yekhanin (2010); Ostrovsky and

Skeith (2007); Chor et al. (1997). An interesting approach for private information retrieval

that combines homomorphic encryption with the embellishment of user queries with decoy

terms is presented in Pang et al. (2010). Another work in this line of research is the secure

anonymous database search system presented in Raykova et al. (2009). However, all the

above PIR methods have an important limitation: they assume collaborative engines.

In view of the limitations of the aforementioned approaches, we define the Query

Scrambling Problem (QSP) for privacy-preserving web search as: Given a query for a web

search, it is requested to obtain related web documents. To achieve this, it is allowed to

2 The Private Web Search (PWS) tool is a Firefox Add-on. It is available on-line but seems not to be further
developed. Its latest version is v0.4.2, which supports Firefox up to version 2. The PWS as well as the
TrackMeNot tool have been developed in the context of the Portia project (http://crypto.stanford.edu/portia/).
3 http://en.wikipedia.org/wiki/Plausible_deniability
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interact with search engines, but without revealing the query; the query and the actual

interest of the user must be protected. The engines cannot be assumed to be collaborative

with respect to user privacy. Moreover, the amount of information disclosed in the process

about the query should be kept as low as possible.

To address QSP, we propose the QueryScrambler; in a nutshell, it works as follows.

Given a query corresponding to the intended interest, we generate a set of scrambled

queries corresponding loosely to the interest, thus blurring the true intentions of the

searcher. The set of scrambled queries is then submitted to an engine in order to obtain a

set of top-n result-lists which we call scrambled rankings. Given the scrambled rankings,

we attempt to reconstruct, at the searcher’s end, a ranking similar to the one that the query

would have produced, which we call target ranking. The process of reconstruction we call

descrambling. Figure 1 depicts the architecture of such a system.

The novelty of the QueryScrambler is that it does not reveal the important terms of the

exposing query, but it employs semantically related and less exposing terms. The amount

of privacy gained can be controlled by users via a parameter which determines the min-

imum semantic distance between the intended query and each of the scrambled queries

issued. In this respect, the QueryScrambler only protects the query against query-logs or

sites in the network path. Thus, an adversary with knowledge of the method and access to

all (or many) of the scrambled queries of a particular scrambled search could potentially

reverse the procedure getting to the actual interest, nevertheless, this is easy to fix. In

practice, the QueryScrambler can—and should—be combined with other orthogonal

methods, such as those mentioned earlier. Especially, adding random queries and/or

querying via multiple proxies/agents can make adversarial descrambling nearly impossible.

Inevitably, the QueryScrambler introduces an overhead over traditional web-search. We

are currently not interested in its efficiency, as long as its requirements are within the

reaches of current commodity desktop systems and retail Internet speeds. What we are

interested in is its feasibility, focusing on the trade-off between privacy and quality of

retrieved results: the method may be lossy, in the sense that the quality of results may

degrade with enhanced privacy.

The rest of this paper is organized as follows. In Sect. 2, we introduce a model for

generating a set of scrambled queries given a query, and investigate methods for

descrambling rankings. In Sect. 3, we evaluate the effectiveness of the scrambler

for different parameter values and descrambling methods. In Sect. 4, we provide a further

analysis of the results, and based on observations, identify parts of the approach which may

have a negative impact on retrieval effectiveness and suggest future improvements. In Sect.

5, we discuss some more concepts related to private search, and investigate whether we

Fig. 1 Architecture of a privacy-enhancing search system
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achieve our privacy goals. Conclusions and directions for further research are given in

Sect. 6.

2 A query scrambler

The proposed QueryScrambler is based on a semantic framework (Sect. 2.2). First we

discuss feasibility issues.

2.1 Theoretical and practical feasibility

There is no question of the theoretical feasibility of a near lossless QueryScrambler.

Suppose we submit to the engine scrambled queries consisting of very frequent words, e.g.,

near stop-words. A few such scrambled queries could cover almost all the collection,

which then could be downloaded to the user’s site, indexed, and searched with the query.

Accounting for the difference between the retrieval models, that of the engine’s (usually

proprietary) and that of the user’s, a near-target or satisfactory ranking could be produced

locally without revealing the user’s target interest. In reality, such a procedure would be

highly impractical or impossible for large web search engines.

Having established the theoretical feasibility of near lossless solution to QSP with the

procedure described above, what we are interested in is the trade-off between the

descrambled ranking quality and the following three quantities:

1. scrambling intensity, i.e., the minimum semantic distance between the query and the

set of scrambled queries,

2. query volume, in terms of the cardinality of the scrambled query set, and

3. ranking depth, i.e., the number of results returned by the engine for a scrambled query.

The scrambling intensity represents the degree of hiding the true intentions; it should be

given the highest priority and be kept high, affecting negatively the ranking quality. Query

volume and ranking depth have the largest impact on the practical feasibility of the task;

they should be kept low, affecting again negatively the ranking quality.

In practice, web search engines usually do not return the full set of results, but truncate

at some rank n. For example, the Google API returns a maximum of top-1000 results per

query. In this respect, we could eliminate the depth from the parameters by setting it to top-

1000, a rather sufficient and practical value.

2.2 A semantic framework

Simplifying the analysis, let us assume that a query represents a single concept. Concepts

more general to the query, i.e., hyper-concepts, would completely cover the query’s

concept, as well as other concepts. In this respect, some other query representing one of the

hyper-concepts of the query would target more results than the query but include all results

targeted by the query. Privacy for the query can be enhanced by searching for any of the

hyper-concepts instead and then filtering the results for the query concept. Thus, queries

representing hyper-concepts of the query can be used as scrambled queries (SQ).

Figure 2a depicts an idealized concept space. As an example consider a query Q rep-

resenting the concept ‘herpes’ (the disease), but searching for the concept of ‘infectious

disease’. SQ1 could represent ‘infectious disease’. SQ2 could represent ‘health problem’, a

more general concept than this of SQ1 denoted by covering a larger area in the space. We
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assume that the space has a uniform concept density. Both SQ1 and SQ2 cover Q

completely.

Trying to transform Fig. 2a to a document space, some important issues come at play:

1. Concept retrieval via the bag-of-words paradigm is inherently noisy. Semantic

relations between keywords or phrases are seldom used. Thus, using concept names as

keywords, e.g., using ‘infectious disease’ directly as SQ1, would count on 100 %

co-occurrence of this phrase on all documents containing the word ‘herpes’ in order to

fulfil Fig. 2a.

2. Web search engines usually do not return the full set of results but truncate at some

rank n.

3. Document spaces are non-uniform, a direct result of the collection at hand not

covering all concepts equally.

Let us first consider an idealized uniform document space. The first issue would result to

SQ1 and SQ2 circles not covering Q completely, with their centers positioned at slightly

different areas (assuming keyword retrieval approximates well concept retrieval). The

second issue would enforce equal circle areas for SQ1 and SQ2, denoting n results

(assuming that both scrambled queries have Cn results). These are depicted in Fig. 2b.

Factoring in non-uniformity of the document space, i.e., the third issue, the picture

changes to Fig. 2c; the SQ2 area is denser than the area of SQ1, denoted by the reduced

area covered by n results. The size of the Q area may also change, depending on the

number of relevant results in the collection. Obviously, a single SQ would not cover all

results corresponding to the query, so for a full coverage multiple SQs would have to be

used.

Next, we investigate theoretically the trade-off between the number of SQs used and the

expected coverage. Then, we describe the current implementation of the QueryScrambler.

2.3 Scrambled query volume

One important parameter of the QueryScrambler is the number of scrambled queries that

should be executed. Naturally, a larger number of scrambled queries will increase the

recall. We provide a simple probabilistic argument for how the number of scrambled

queries trades off with recall.

Assume that we are interested in ‘ B n target items, where n is the search engine’s

truncation rank. Also, assume that we manage to generate a set of scrambled queries, such

that each scrambled query catches r of the target items. If for example r = 5, ‘ = 50 and

(a) (b) (c)

Fig. 2 Results for two scrambled queries in relation to a query Q: a all results in a concept space of uniform
density, b top-n results in a uniform document space, c top-n results in a non-uniform document space. Q
represents all relevant results
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n = 1000, then each scrambled query will retrieve (on average) r = 5 target items in 1000

retrieved items. The precision of the scrambled ranking will only be 0.5 %, a value which

should be considered sufficiently low for protecting the user’s privacy.

How many scrambled queries should we submit in order to catch, with a high proba-

bility, all target items? If we assume that the target items in the results of each scrambled

query are independent random items of the set of ‘ target items (of course, in reality the

items will not be independent, but we will make this simplifying assumption here to obtain

an indication about the number of scrambled queries that are needed), then this problem

can be modelled as a balls and bins problem; each target item corresponds to a bin and we

throw balls randomly into the bins until all bins have at least one ball. In particular, this

specific problem corresponds to the coupon collector’s problem in which there are n types

of coupons and independent random coupons are chosen until a coupon of each type has

been found. The following result which gives the average number of coupons that have to

be drawn in order to find all ‘ coupons is well-known; see for example Motwani and

Raghavan (1995); Mitzenmacher and Upfal (2005). For completeness, we provide a short

proof of it in the context of QSP.

Lemma 1. The average number of random target items that have to be drawn in order to

find all ‘ target items is ‘ H‘, where H‘ is the harmonic number. The harmonic number

satisfies ln ‘�H‘� ln ‘þ 1; which implies that H‘ ¼ ln ‘þHð1Þ.

Proof For 0 B i B ‘ - 1, assume that i distinct target items have been found. Let Xi be

the number of random target items that have to be drawn until the next distinct target item

is found. Then, the sum Y‘ =
P

i=0
‘-1 Xi is a random variable that corresponds to the total

number of random target items that are drawn until all ‘ distinct target items are found.

Each random variable Xi is geometrically distributed with parameter pi ¼ ‘�i
‘ . Thus, the

expected value of Xi is E[Xi] = 1/pi and the expected value of the sum Y‘ is

E½Y‘� ¼ E½X1 þ � � � þ X‘� ¼ E½X1� þ � � � þ E½X‘� ¼ ‘
X‘

i¼1

1

i
¼ ‘H‘: ð1Þ

For the harmonic number H‘, it holds

H‘ ¼
X‘

i¼1

1

i
�
Xblog ‘c

i¼0

X2i�1

j¼0

1

2i þ j
�
Xblog ‘c

i¼0

X2i�1

j¼0

1

2i
�
Xblog ‘c

i¼0

1� log ‘þ 1: ð2Þ

h

We now apply the above arguments to the QueryScrambler. Let Y‘ be the number of

random target items that have to be retrieved to obtain the ‘ target items. As noted earlier,

Y‘ is a random variable and Fig. 3 shows how its expected value E[Y‘] is related to ‘. For

‘ = 50, the expected number of random items that have to be drawn to retrieve all target

items is s = 50 H50 ^ 225. If every scrambled ranking includes r = 5 target items, then

this implies that on average v = 45 scrambled queries have to be executed. This number is

reduced to v = 15, if the scrambled queries return on average r = 15 target items.

To account for deviations, we may set a more conservative goal where we focus on

obtaining not necessarily all distinct target items but only a (large) fraction of them. Let Z

be the number of distinct random items after m random target items have been retrieved

and let l be its expected value l = E[Z]. Then, it is not hard to show the following

Lemma.
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Lemma 2 The average number l of distinct random items after drawing m random

target items is

l ¼ E½Z� ¼ ‘ð1� ð1� 1=‘ÞmÞ: ð3Þ

Proof For each distinct target item i, let Zi be an indicator random variable such that

Zi ¼
0; if item i has not been selected after m random items,

1; if item i has been selected after m random items:

�

ð4Þ

Then

E½Zi� ¼ Pr½Zi ¼ 1� ¼ 1� Pr½Zi ¼ 0� ¼ 1� ð1� 1=‘Þm: ð5Þ

For Z ¼ Z1 þ � � � þ Z‘ the average number of distinct target items after m random items is

E½Z� ¼ E½Z1 þ � � � þ Z‘� ¼ ‘ð1� ð1� 1=‘ÞmÞ. h

In Fig. 4, the upper line shows for ‘ = 50 how the expected number of target items

found increases with the number of random items retrieved. Again, dividing the number of

random items by r = 5 gives the average number of scrambled queries.

The lower line in Fig. 4 presents a lower (tail) bound on the number of target items

found. More precisely, the line shows that with probability at least 0.9, at least so many

items have been found. The corresponding tail inequality is obtained from (Motwani and

Raghavan 1995, theorem 4.18) by focusing on the number Z of occupied bins instead of the

number of empty bins. Then, as in the original theorem of Motwani and Raghavan (1995),

a corresponding martingale sequence4 is defined and then Azuma’s inequality is applied.

The outcome is that for k[ 0,

Pr½jZ � lj � k� � 2 exp � k2ð‘� 1=2Þ
‘2 � l2

� �

; ð6Þ

where Z is the number of distinct target items found after m random target items

and l = E[Z]. Setting the right hand side in the above equation to be Bq = 0.1 and

solving for k gives that k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘2�l2Þ lnð2=qÞ

‘�1=2

q
. The minimum possible value of k given by the

above inequality is used to draw the lower line in Fig. 4.

Fig. 3 The expected number
E[Y‘], where Y‘ is the number of
random items that have to be
retrieved until all ‘ target items
have been found

4 A simple definition of a martingale sequence from Motwani and Raghavan (1995): A sequence of random
variables X0;X1; . . .; is said to be a martingale sequence if for all i [ 0;E½XijX0; . . .;Xi�1� ¼ Xi�1:
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2.4 Current implementation

In order to generate scrambled queries representing hyper concepts of the query, we

currently employ an ontology for natural language terms. The approach taken is a brute

force one which does not involve deep semantic analysis of the query.

First, we perform a massive indiscriminate generalization taking all possible combi-

nations of generalized query terms up to a certain higher conceptual level. Then, we apply

a similarity measure to determine the distance between the query and scrambled queries;

the further the distance, the better the privacy enhancement. In this respect, the similarity

measure is ‘loaded’ with the task of classifying the scrambled queries into privacy levels,

getting rid at the same time of generalized queries unsuitable to the task.

2.4.1 Query generalization

As an ontology, we employ WordNet, version 3.0 (2006), a freely available lexical

database used extensively for supporting automatic text analysis and artificial intelligence

applications (Miller, 1995). WordNet attempts to model the lexical knowledge of a native

speaker of English. Its database contains about 150,000 words or collocations5, organized

in over 115000 synonym sets (synsets) across four types of part of speech (PoS): noun,

verb, adjective, and adverb.

A synset is the smallest unit, which represents a specific meaning of a word or collo-

cation. Synsets are connected to each other through explicit semantic relations. The

hypernymy/hyponymy relations for nouns and the hypernymy/troponymy for verbs con-

stitute an ‘is-a-(kind-of)’ hierarchy. The holonymy/meronymy relations for nouns consti-

tute ‘is-a-part/member/substance-of’ hierarchies. Such taxonomic properties for adverbs

and adjectives do not exist in the ontology. The synsets are also organized into senses.

Initially, WordNet’s lemmatization process is applied to each keyword of the query,

followed by stopword removal using the traditional SMART system’s English stoplist.

Fig. 4 The random variable Z is the number of distinct target items (out of a total of ‘ = 50 distinct target
items) that have been found after m random target items have been retrieved. For ‘ = 50, the upper line
shows the expected value of E[Z] with respect to m. The lower line shows a lower (tail) bound on Z (with
probability at least 0.9) with respect to m; with probability at least 0.9 the value of Z is not below the lower
line

5 A collocation is two or more words that often go together to form a specific meaning, e.g., ‘hot dog’.
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Then, possible collocations are recognized by checking consequent query words against

WordNet. All resulting terms (i.e., single keywords or collocations) go through part-of-

speech (PoS) and sense disambiguation.

PoS and sense disambiguation cannot be performed well without enough contextual

information, e.g., a complete sentence. Thus, we used a manual approach which gives the

user more control over the whole procedure; the extra user effort is deemed insignificant in

the big picture of privacy enhancement, considering also the fact that web queries consist

of only 2 to 3 terms on average. The system finds all possible PoS for each term using

Wordnet and prompts the user to select the proper one. Similarly, the user selects the

proper sense.

Hyper-concepts for query’s terms are approximated via hypernyms and holonyms for

nouns, and hypernyms for verbs. For each query term, a bag of related terms is generated

following the hypernymy and holonymy relations in the ontology up to a minimum level of

2 or up to 3 if level 2 results to less than 300 scrambled queries. The set of scrambled

queries is the Cartesian product of those bags of words. Thus, accounting for collocations,

scrambled queries have length equal to the query.

We do not generalize adverbs or adjectives since WordNet does not have similar

relations, but keep them in scrambled queries. This does not seem to be a problem; adverbs

and adjectives are unlikely to have privacy issues, since they are usually modifiers to verbs

and nouns, respectively.

2.4.2 Measuring privacy enhancement

Several methods for determining semantic similarity between terms have been proposed in

the literature. We apply the approach of Wu and Palmer (1994) to estimate the semantic

similarity between two terms. The method has been found to be among the best edge

counting methods applied on WordNet (Varelas et al. 2005), and it has been used widely in

the literature, e.g., Strube and Ponzetto (2006); Yan et al. (2006). It measures the depth of

the two concepts in the WordNet taxonomy as well as the depth of the least common

subsumer (LCS)6, and combines these figures into a similarity score

simi;j ¼
2 depthðLCSÞ

depthðiÞ þ depthðjÞ ð7Þ

where, for the task at hand, we will denote a query term with i and a scrambled query term

with j.

The similarity between pairs of terms is used to calculate the similarity between each

scrambled query and the query. Let SQ be a scrambled query. If q is the length of the

query, then any SQ has also length q. Thus, there are q2 term(SQ)-to-term(query) simi-

larities. For each scrambled query term j, what determines the privacy level is its max

similarity with any of the query terms, i.e., maxisimi,j; the larger the max, the lesser the

privacy. Similarly, for a multi-term query what determines the privacy level is the least

private term, justifying again the use of max. Thus, the similarity simSQ between the

scrambled query and the query is

6 The LCS is defined as the ancestor node common to both input synsets whose shortest path to the root
node is the longest.
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simSQ ¼ max
j

max
i

simi;j ð8Þ

where maxj selects the most exposing scrambled query term with respect to the query

terms.

The last measure is a very strict criterion for privacy. In the current implementation,

considering that adverbs and adjectives appear in scrambled queries unchanged, the

measure would return 1 denoting no privacy. In this respect, we relax the criterion by

taking the average instead:

simSQ ¼
1

q

X

j

max
i

simi;j ð9Þ

On the one hand, this implies that adverbs and adjectives reduce privacy, but not

destroying it altogether. This reduction makes the measure safer from a privacy perspec-

tive. On the other hand, a too general term would not contribute too much to increasing the

privacy of a multi-term scrambled query: too general terms are filtered out by limiting the

paths on the ontology to 2 or 3 edges, as described in Sect. 2.4.1.

Table 2 shows all scrambled queries generated with the current query generalization

method for the query ‘gun racks’, together with their similarities to the query as these are

calculated by Eq. 9.

2.5 Descrambling ranked-lists

Each scrambled query run on a search engine produces a scrambled ranking. We inves-

tigate two ways of reconstructing the target ranking from many scrambled rankings.

2.5.1 Fusion

A natural and efficient approach to reconstructing the target ranking would be to fuse the

scrambled rankings. However, standard fusion methods from meta-search, such as

CompSUM, Borda Count, etc., may not be suitable: the scrambled rankings are results of

queries targeting different, more general than the query, information needs.

Figure 2c depicts a document space, with the areas targeted by a query and two

scrambled queries. The further from a query’s center, the deeper in the ranking. The results

we are interested in appear deeper in scrambled rankings than their top ranks. To com-

plicate things further, web search engines usually do not return scores. Thus, a fusion

approach should be based solely on ranks and have a positive bias at deep or possibly

middle ranks of scrambled rankings.

A simple method that may indirectly achieve the desired result is to fuse by the number

of scrambled rankings an item appears in. Assuming that sets of top results of scrambled

rankings, as well as sets of noisy results, would be more disjoint than sets of deep to middle

results, such a fusion method would over-weigh and rank at the top the common good

results. We will call this fusion by occurrence count (FOC) descrambling. The method

results to a rough fused ranking since it classifies items into v ranks, where v is the number

of scrambled queries or rankings.

In order to determine whether Fig. 2 corresponds well to the reality of the proposed

scrambler, we will also fuse with Borda Count (BC). BC is a consensus-based electoral

system which in its simplest form assigns votes to ranks as N � rankþ 1; where N is the

total number of items. Since N is unknown for web search engines, we set it to 1,000, i.e.,

Inf Retrieval (2013) 16:657–679 667

123



the depth of the scrambled lists. Then, votes per item are added for all rankings, and items

are sorted in a decreasing number of total votes. Note that BC results in a smoother ranking

than FOC.

2.5.2 Local re-indexing

Another approach to re-constructing a target ranking, which does not suffer from low

correspondence of ranks to relevance and produces smoother rankings than FOC or BC,

would be to recover item scores. This can be achieved by re-indexing the union of

scrambled results at the user’s end, and running the query against a local engine. We will

call this method local re-indexing (LR) descrambling.

Re-indexing such non-random subsets of a web collection would locally create different

frequency statistics than these at the remote end. This may result in a ranking quality

inferior to the target ranking, even if all target results are found by the scrambled queries

and re-indexed. Furthermore, it is inefficient compared to the fusion approaches: retrieving

and indexing the union of results may introduce a significant network load, increased disk

usage, and CPU load.

3 Evaluation

In order to evaluate the effectiveness of the QueryScrambler and how its quality trades off

with scrambling intensity and scrambled query volume, we set up an offline experiment.

We are currently not interested in the efficiency of the approach, as long as the time and

Table 2 All scrambled queries
for the query ‘gun racks’

simSQ SQ

0.9442725 weapon system support

0.9442725 weapon support

0.9442725 arm support

0.9150327 instrument support

0.9111842 weapon system device

0.9111842 weapon device

0.9111842 arm device

0.8952206 device support

0.8819444 instrument device

0.8736842 weapon system instrumentation

0.8736842 weapon system instrumentality

0.8736842 weapon instrumentation

0.8736842 weapon instrumentality

0.8736842 arm instrumentation

0.8736842 arm instrumentality

0.8621324 device device

0.8503268 instrument instrumentation

0.8503268 instrument instrumentality

0.8433824 device instrumentation

0.8433824 device instrumentality
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space needed is within the reaches of current commodity desktop systems and retail

Internet speeds.

First, we describe the datasets, the software and parameters, and the effectiveness

measures used. Then, we present the experimental results.

3.1 Datasets, tools and methods

The query dataset consisted of 95 queries selected independently by four human subjects

from various query-logs. The selection was based on the rather subjective criterion of:

queries which may have required some degree of privacy. Table 1 presents a sample of the

test queries; the full set of the test queries is available online.7

The ClueWeb09 dataset consists of about 1 billion web pages, in 10 languages, crawled

in January and February, 2009.8 It was created by the Language Technologies Institute at

CMU. As a document collection, we used the ClueWeb09_B dataset consisting of the first

50 million English pages of the ClueWeb09 dataset. The dataset was indexed with the

Lemur Toolkit V4.11 and Indri V2.11, using the default settings of these versions, except

that we enabled the Krovetz stemmer.9 We used the baseline language model for retrieval,

also with the default smoothing rules and parameters. This index and retrieval model

simulate the remote web search engine.

A local engine re-indexes, per query, the union of sets of results returned by the remote

engine for all scrambled queries. For the local engine, we again used the Lemur Toolkit

and Indri, but in order to simulate that a remote engine’s model is usually proprietary, we

switched the local retrieval model to tf.idf. The items for re-indexing were extracted as

term vectors directly from the remote engine’s index; this implies a common pre-pro-

cessing (e.g., tokenization, stemming, etc.) across the remote and local engines.

3.2 Effectiveness measures

There are several ways for measuring the top-n quality of an IR system, e.g., precision and

recall at various values of n, mean average precision (MAP), etc. These compare two top-n lists

by comparing them both to the ground truth, but this presents two limitations in the current setup.

First, such measures typically give absolute ratings of top-n lists, rather than a relative measure of

distance. Second, in the context of the web, there is often no clear notion of what ground truth is,

so they are harder to use.

We are interested in the quality of the re-constructed ranking in terms of how well it

approximates the target ranking, not in the degree of relevance of the re-constructed result-

list. Although, this could still be measured indirectly as a percentage loss of a traditional IR

measure (assuming ground-truth exists), e.g., MAP, we find more suitable to opt for direct

measures of result set intersection and rank distance. In this way we will still measure the

effectiveness even for queries poorly formulated for the information need, or information

needs with near zero relevance in a collection.

A simple approach to measure the distance between two top-n lists s1, s2, is to regard

them as sets and capture the extent of overlap between them. We measure the overlap with

the following disjointness metric (DM), which is based on the symmetric difference of the

two lists:

7 http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt
8 http://boston.lti.cs.cmu.edu/Data/clueweb09/
9 http://www.lemurproject.org
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DMðs1; s2Þ ¼
jðs1 � s2Þ [ ðs2 � s1Þj

js1j þ js2j
: ð10Þ

It lies in [0, 1], with 1 denoting disjoint lists. For lists of the same size, DM equals 1 minus

the fraction of overlap.

Traditional measures of rank distance (i.e., distance between two permutations), such as

Kendall’s tau distance (Kendall, 1938) or Spearman’s rho, are not very suitable because

our lists are truncated so they may rank different results. Thus, we use Kendall’s distance

with penalty parameter p, denoted K(p), which is a generalization of Kendall’s tau distance

to the case of truncated lists. K(p) was introduced in Fagin et al. (2003), where it was shown

that it is not a metric in the strict mathematical sense, but still a near metric in the sense of

satisfying a ‘relaxed’ triangle inequality. On the other hand, DM is a metric.

The original Kendall distance between two permutations is essentially equal to the

number of exchanges in a bubblesort to convert one permutation to the other. The gen-

eralized �K
ðpÞ
i;j ðs1; s2Þ measure is also related to the permutation distance between the two

truncated lists, albeit with some plausible assumptions about items that do not belong to

both lists. The detailed description of K(p) is out of the scope of this work and the interested

reader is referred to Fagin et al. (2003). In short, we first define a penalty �K
ðpÞ
i;j ðs1; s2Þ for

each pair of items in P(s1, s2), where P(s1,s2) is the union of the sets of items of the two

lists. Then,

KðpÞðs1; s2Þ ¼
Xfi;jg2Pðs1;s2Þ

�K
ðpÞ
i;j ðs1; s2Þ: ð11Þ

From the definition of K(p)(s1,s2) and assuming that the penalty parameter is p 2 ½0; 1�;
the maximum distance between two top-k lists occurs when the lists are disjoint. In this

case the value of the distance measure is k((p ? 1)k ? 2 - p). We use the above maxi-

mum value of the K(p) measure to normalize it; the normalized distance takes values in the

interval [0,1]. We report results with p = 0.5; this corresponds to the ‘neutral’ approach,

and moreover, K(0.5) is equivalent to other rank distance measures (Kavg, KHausdorff), as it is

shown in Fagin et al. (2003).

A very important feature of the Kendall’s distance with penalty parameter p is that it is a

measure that can be applied even if the lists are obtained from a very large universe whose

exact size might be unknown, thus it is suitable in the web retrieval context.

We evaluate with the averages of both measures on the test query dataset at top-‘ for

‘ = 50 instead of n = 1000. We find top-50 to be more realistic for web retrieval than the

top-1000 of traditional IR evaluations. In addition, this allows us to put our results

somewhat in perspective with the K(0) results for top-50 reported in Fagin et al. (2003)

where rankings returned from different web search engines for the same query are com-

pared to each other. In initial experiments, we found that K(0) and K(0.5) give values not too

far away from each other. The authors in the last-mentioned study regard values of around

0.3 as ‘very similar’ rankings, while comparing a ranking fused from several engines to the

individual rankings generated K(0) distances between 0.3 and 0.8.

3.3 Experiments and results

We run experiments for 3 levels of scrambling intensity and 3 levels of query volume. By

looking into the sets of scrambled queries generated via the method described in Sect. 2.4,

it seemed that a test query to scrambled query similarity of less than 0.70 results in
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extremely weak semantic relationship between the two. Consequently, we took the simi-

larity intervals of (1, 0.7], (0.9, 0.7], and (0.8, 0.7], for low, medium, and high scrambling

respectively. For scrambled query volume, we arbitrarily selected volumes in

{1, 10}, {11, 25}, and {26, 50}, for low, medium, and high volume respectively.

When a combination of intensity and volume levels had 0 scrambled queries for a test

query, we did not take that test query into account in averaging results. In such cases,

search privacy for the query at the requested scrambling intensity and volume is not

possible with the proposed method and other methods must be applied. Table 3 presents

the number of test queries averaged per combination. In the parentheses, we further give

the minimum, median, and maximum numbers (in this order) of scrambled queries that the

test queries had for the combination at hand. The combinations with the fewest test queries

are the ones where a high volume was requested, especially at high scrambling; the

proposed method can generate a limited number of scrambled queries. This can be a

limitation of all ontology-based methods which statistical methods may not have.

Tables 4 and 5 present the mean K(0.5) and DM (Sect. 3.2) for FOC and BC

descrambling (Sect. 2.5.1) respectively. The best results are expected at the top-left corners

of the tables for both measures, i.e., high-volume/low-scrambling, and are expected to

decline with decreasing volume and/or increasing scrambling. The best experimental

results are in boldface. In all experiments, the two measures appear correlated, in the sense

that a better DM also implies a better ranking or K(0.5).

The best DM results correspond to an average intersection of only 2 or 3 results between

fused and target top-50 rankings, for both fusion methods. In any case or measure, BC

works better than FOC. This seems to be a result of the rougher ranking that FOC provides,

since the results of the two methods become closer as volume increases. Results degrade

with increasing scrambling, as expected, but also degrade with increasing volume. The

Table 3 Numbers of test queries and (min, median, max) numbers of scrambled queries per scrambling-
volume combination

Scrambling

Low Med High

Volume

High 55 (27, 50, 50) 33 (29, 50, 50) 19 (26, 50, 50)

Med 72 (11, 25, 25) 62 (13, 25, 25) 30 (11, 25, 25)

Low 94 (3, 10, 10) 88 (1, 10, 10) 58 (1, 10, 10)

Table 4 Mean K(0.5) and DM for FOC descrambling

Mean K(0.5) Mean DM

Scrambling Scrambling

Low Med High Low Med High

Volume

High 0.980 0.989 0.998 0.985 0.992 0.999

Med 0.961 0.978 0.998 0.968 0.983 0.999

Low 0.962 0.969 0.993 0.971 0.977 0.996
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later is due to the fact that larger volumes of scrambled queries presuppose larger degrees

of scrambling even within the same scrambling interval.

Table 6 presents results for LR descrambling (Sect. 2.5.2); they are much better than the

fusion descrambling results. The unexpected degradation with increasing volume appears

again, but only at low or med scrambling. However, it is now more difficult to explain, and

we can only speculate that it is a result of having biased global statistics in the local

collection. Here, the best DM result corresponds to an average intersection of 7 to 8 results

between descrambled and target top-50 rankings.

4 Retrieval failure analysis and improvements

The task we set out to perform is daunting. Nevertheless, on average, we get to the same 7

or 8 results of the top-50 of the plain query, without submitting its important keywords; we

consider this a decent result. In this section, however, we examine further the results in

order to identify what may have a negative impact on retrieval effectiveness and suggest

future improvements.

Firstly, it is easy to see that we have a problem in fusing scrambled ranked lists, since

the Local Re-indexing and re-ranking approach (LR descrambling) yields the triple

effectiveness of the two fusion methods we have tried. Nevertheless, we do not believe that

LR descrambling represents the ceiling of achievable performance. In order to measure the

quality of scrambled queries without the influence of descrambling, (i.e., neither fusion nor

local re-indexing is used), we can look at the number of the target top-50 results found by

all scrambled queries combined. Table 7 presents these numbers, averaged over all test

queries. The previously best result of 7 or 8 is now raised to almost 13. We see

improvements of at least 40 % and up to 100 % all over the table. In other words, although

Table 5 Mean K(0.5) and DM for BC descrambling

Mean K(0.5) Mean DM

Scrambling Scrambling

Low Med High Low Med High

Volume

High 0.970 0.981 0.994 0.978 0.987 0.996

Med 0.944 0.971 0.994 0.956 0.978 0.996

Low 0.927 0.958 0.983 0.944 0.969 0.988

Table 6 Mean K(0.5) and DM for LR descrambling

Mean K(0.5) Mean DM

Scrambling Scrambling

Low med high Low Med High

Volume

High 0.848 0.898 0.864 0.891 0.926 0.906

Med 0.832 0.883 0.901 0.876 0.915 0.932

Low 0.812 0.870 0.914 0.856 0.903 0.940
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the scrambled queries retrieve quite a few of the target top-50 results, local re-indexing can

rank roughly half or two-thirds of those in the descrambled top-50. This is clearly due to

having biased term frequency statistics in the local collection, and results could be

improved by using a generic source of frequencies instead.

Secondly, there seems to be amble room for improving the method of generating

scrambled queries. Let us consider a user who wants maximum privacy (i.e., high

scrambling) irrespective of cost (i.e., she is willing to trade off time and use a high query

volume). Assuming ideal descrambling (i.e. yielding the results of Table 7), the ceiling of

performance would be 7.5 items out of 50, or a 15 % intersection between targeted and

obtained results in the top-50. The ‘missing’ 85 % represents the price that such a user

needs to pay for privacy, under the currently proposed method for generating scrambled

queries. Milder privacy requirements (i.e., low scrambling) can raise the intersection to

22–25 % (or lower the missing items to 75–78 %). In any case, many target items are

missed, thus we examined the recall of the scrambled queries with respect to the overall

recall that they achieve for the original user query. To this end, we used the results of Sect.

2.3 to predict the overall recall from the recall of the scrambled queries and compared this

number with the experimental values. Indicative results are presented in Fig. 5.

In general, the measured overall recall is lower then its predicted value. The distance

becomes larger for larger volumes of random target items (which in most cases implies a

larger number of scrambled queries or scrambled queries of lower scrambling degree). A

plausible explanation for the divergence of the measured recall is that the target items

captured by the scrambled queries are correlated and not independent samples of the set of

target items as it should be in the ideal case. This in turn provides a strong indication that

the scrambled queries do not catch independent random subsets of the set of target items.

Instead many scrambled queries return practically the same target items in their results.

The above observation defines an important issue related to the retrieval procedure with

scrambled queries. The challenge is how to select scrambled queries such that they cover

more effectively the whole range of target items of the original query. The Wordnet-based

approach used in this work is a first step in this direction but the results show that it can be

improved. Specifically, the problem seems to be that the nearness of two terms in

Wordnet’s graph does not imply a high co-occurrence of them in documents. In this

context, we are considering to enhance our scrambled query generation procedure with

statistical methods, e.g., incorporate term co-occurrence statistics. Wordnet also presents a

couple of other limitations in this context: there is no obvious way to deal with phrases

(except collocations), and it is a rather generic, domain-independent, thesaurus. Domain-

specific knowledge could be beneficial.

Thirdly, using a search engine based on semantics might improve results. The approach

taken is based on the premise that a generalization of a concept X appears in some

documents that treat X. However, most of the currently big and popular commercial search

engines—as well as the research engine we used in the experiments—use very little of the

Table 7 Mean number of the
target top-50 results found by all
scrambled queries combined

Scrambling

Low Med High

Volume

High 11.1 9.7 7.5

Med 12.1 7.8 5.1

Low 12.7 8.0 4.3
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semantic structure behind the concepts for ranking items. Consequently, we are falling

back to simply targeting co-occurrence between user and scrambled terms, missing rele-

vant results. To this end, we submitted a dozen of our test queries to the standard non-

semantic engine of Google as well as two semantic engines: Cognition10 and Hakia11

Instead of the user query ‘‘acute hepatitis’’ (which returned 10 good results in all three

engines), we submitted the scrambled query ‘‘acute liver disease’’. By visually examining

the snippets of the top-10 results, Google returned 0 results on hepatitis, while Med-

line.Cognition returned 4, and Hakia (which groups results in categories) returned 1 in

Credible, 3 in Pubmed, 0 in News, and 7 in Blogs. This example suggests that using

semantic engines (as well as domain-knowledge) would improve results. Nevertheless, we

had a difficult time finding another so good example, thus it is unclear how big the benefits

may currently be. Although there are risks in exchanging a popular big and proven non-

semantic search engine with an unproven semantic engine of possibly less coverage, this

matter certainly deserves a further investigation in the current context.

Lastly, our results may be more promising when measured in absolute retrieval effec-

tiveness than goodness of approximating the target ranking. We set our ultimate goal to

reconstructing the target ranking, i.e., the one the original query would have returned.

However, by submitting multiple scrambled queries, we may retrieve new relevant doc-

uments not appearing in a target top-50 ranking. However, we cannot measure this in our

current testbed, since it consists of custom queries with privacy issues for which no

relevance judgements exist. This may even be ‘tricky’ in other standard testbeds: Given

that it is customary to approximate ground-truths through pooling processes (i.e., humans

judging only the union of top results of many different systems assuming all the rest non-

relevant), and that most systems participating in a pool are based on the bag-of-words

Fig. 5 The total number of distinct target items with respect to the total number of random target items for
each query-experiment. The dashed line shows the expected number of distinct target items, if the target
items are independently randomly selected. The continuous line presents the experimental results. The line
simply connects a large number of points, where each point corresponds to a single experiment

10 http://www.congition.com
11 http://www.hakia.com
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paradigm, the ground-truth provided with standard Web test collections may not be suf-

ficient for our purpose. Again, further experimentation with semantic engines seems

important.

5 Privacy analysis

In the previous section we identified parts of our approach which may have a negative

impact on retrieval effectiveness. Here, after a brief discussion on IR privacy, we inves-

tigate whether our approach achieves its the privacy goals.

5.1 Discussion on IR privacy

An interesting concept that fits into the context of privacy enhanced web search is plausible

deniability, a legal concept which refers to the lack of evidence proving an allegation. The

scrambler may enhance the plausible deniability, since the original query is never disclosed

and the real interest of the user is hidden within a broader concept space. This is the main

privacy-enhancing feature of the QueryScrambler. Instead of the user query, a set of

scrambled queries representing more general concepts is used.

Also of great importance is the fact that the QueryScrambler can perform searches while

protecting not only the privacy of the user but also the query itself. A query may pose

serious privacy threats even if it is submitted anonymously. In competitive fields like

business or academic research, a query may contain some interesting new idea which

should not be disclosed at least while the user is still making background searches on it.

In addition to the original query, the privacy of a web search might also be endangered

by the results of the query. If the results have very high precision, then important infor-

mation about the original user interest might be inferred from them. Regarding this issue,

an inherent privacy-enhancing principle of the QueryScrambler is that each scrambled

query usually retrieves only a small number of items that are in the real interest of the user.

The results of an ideal scrambled query should contain some of the target items but only

mixed with a large volume of unrelated or loosely related items and preferably not in the

first ranks. More specifically, each scrambled query should have small recall and small

precision with respect to the ‘ most related target items. In this way, the privacy of the user

is not seriously endangered by simply monitoring the results. A decisive parameter of the

QueryScrambler that can be used to achieve this is the degree of scrambling. If the

scrambling degree is too high, then the recall in the scrambled results will be too low;

privacy will be preserved, but the query will remain unanswered. If the scrambling degree

is too low, then the final recall will be high but the user privacy will be endangered.

A formal criterion that can be used for privacy is k-anonymity (Sweeney 2002), which

demands that every piece of information about items in a set be indistinguishably related to

no fewer than k items. There are more than one ways this concept can be used with the

QSP. One is the approach used in Domingo-Ferrer et al. (2009b) to hide a term of the plain

query within a group of k terms. As noted earlier, the weakness of this approach is that in

this case k is bounded by a very small constant number. A more robust approach would be

to achieve k-anonymity or k-indistinguishability in the concept space of a search query.

The higher-level scrambled query should indistinguishably correspond to a large number

k of conceptually lower-level terms. This way, the real interest of the user is hidden within

a large field. This is our aim, and as we show in Sect. 5.2, on average the QueryScrambler
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can accomplish this goal. However, there is still work to be done. For example, there are

particular cases where the semantic generalization applied by the QueryScrambler may

achieve k-anonymity only for small values of k. This happens when a higher-level term

corresponds only to a small number of lower-level terms. We will further investigate this

issue and examine ways to overcome it, for example, by employing additional sources of

semantic information or extending our approach with statistical techniques.

5.2 Privacy of the QueryScrambler

The privacy goal of the QueryScrambler is to protect the actual interest of a user who wants

to submit a query to a search engine. We assume that the user’s interest is expressed with

the original query, thus, this query should not be disclosed. We also assume that the

ground-truth with respect to the retrieval task is given with the results (in this work the top-

50 items) of the search engine for the original query. Consequently, these results should

also be protected. In summary, we define the following privacy requirements:

A. The original user query should not be disclosed.

B. The results of the original query must be protected.

A common way to examine the effectiveness of security or privacy measures is to

evaluate the system against a so-called adversary, who (in the QSP context) represents the

malicious entity whose aim is to violate the privacy of the user by identifying her true

search interest. What are the features of the adversary? If an adversary can monitor all

scrambled queries, then we expect that the privacy of the plain query can be violated.

However, as we discussed earlier, we can encounter the possibility of such an attack; for

example, the query scrambling can be combined with other approaches like submitting

individual queries via different agents or through the Tor network etc. If the adversary

captures only individual scrambled queries, then the privacy of the user depends on the

minimum distance between the scrambled queries and the plain query. A different attack is

to use the search results of a scrambled query to extract information about the interest. As

noted earlier, the QueryScrambler has the potential to generate scrambled queries of low-

enough precision and high-enough recall to unbrace such attacks. We assume that an

adversary

– knows that a particular scrambled query is actually scrambled,

– can capture any scrambled query but cannot link independent scrambled queries to the

same original query,

– can also capture the results that are returned by the search engine for any particular

scrambled query, and

– has no background knowledge about the original query.

Next, we consider the criterion of k-anonymity, or more appropriately in this context,

k-indistinguishability for the user’s interest as a plausible criterion for the privacy goals of

the QueryScrambler. An adversary should not be able to come closer to the real interest of

the user than a set of k possible interests.

Requirement A, is addressed with the query scrambling procedure described in Sect.

2.4. In the experiments, each scrambled term can correspond to any of each descendant

nodes in the 2 or 3 lower levels of the Wordnet hierarchy. In our query test-set there were

on average about 319 distinct words in the two lower levels. Any of these words could be

the original query term that gave the corresponding scrambled query term that was
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intercepted by the adversary. For example, the original term ‘cortisone’12, gives the

scrambled term ‘hormone’13 (in this case a scrambled term three levels higher than the

original term), and the indistinguishability for cortisone is 1 out of 138, i.e., k = 138. For

multi term queries, indistinguishability increases multiplicatively with each additional

query term. Thus, on average, every original query is indistinguishably hidden within a

large number of possible terms.

An important issue is that, given a scrambled query, the corresponding candidate seed

queries may not all be equally plausible. However, this non-uniformity of the candidate seed

query set does not mean that an adversary who is attacking the system can with certainty

exclude some of them. Let us consider the following example: An adversary who is aware of

the QueryScrambling approach intercepts the scrambled query ‘‘manufacturer portable

device’’, and then calculates a corresponding (large) set of candidate seed queries. Assume

that the queries ‘‘Nokia tablet’’14 and ‘‘Apple Tablet’’ both belong to this set. Can the

adversary exclude one of them, for example ‘‘Nokia tablet’’? In our view, the fact that

the query about Apple is more likely does not necessarily mean that the user did not submit

the other one. In fact, the less common candidate seed query can even be more interesting,

because it might reveal some interest about a less expected topic. Concluding, despite the fact

that some of the candidate seed queries may be more likely than others, in most cases it should

not be possible to significantly reduce the set of candidate queries using this information.

Combining this with the large average number of candidate seed queries per scrambled query

we believe that indistinguishability holds for the QueryScrambler approach.

Requirement B, is addressed implicitly by keeping the recall and the precision of each

scrambled query low as discussed above. Even though the low precision of the scrambled

queries seems to be an unavoidable consequence of the query scrambling procedure, it suits

very well this requirement. In our experiments we measured an average precision of 0.0053

(or 0.018 if we exclude scrambled queries that completely failed, i.e., zero precision) at the

top-1000 results. Even if an adversary knew this average precision, the low precision makes

the relevant result item indistinguishable within the 1000 returned items. For example, if

there are 6 relevant items, then each item of the scrambled results is a real item with

probability 0.006 and even worse the correct set of the 6 relevant item is indistinguishable

from a total of Cð1000; 6Þ ’ 1:37 � 1015 combinations (here subsets) of 1000 items taken 6 at

a time. Of course, the remaining 994 items may also convey some information about the user

query but they do not belong to the assumed ground-truth for the query.

In our view, the above arguments indicate that a good scrambled query can force an

adversary to examine a prohibitive large set of possible interests of the user. Thus, on the

one hand, we achieve the privacy goals. On the other hand, the high level of privacy for

several queries in our test-bed may also justify the low retrieval effectiveness achieved.

Concluding, further investigation is needed to strike a better, more usable, balance between

privacy and retrieval effectiveness.

6 Conclusions

We introduced a method for search privacy on the Internet, which is orthogonal to standard

methods such as using anonymized connections, agents, obfuscating by random additional

12 More precisely, ‘‘cortisone#n#1’’ in Wordnet, i.e., its 1st, most-frequent, sense as a noun.
13 More precisely, ‘‘hormone#n#1’’ in Wordnet, i.e., its 1st, most-frequent, sense as a noun.
14 At the time of the writing of this paper, there was no Nokia tablet in the market.
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queries or added keywords, and other techniques preventing private information leakage.

The method enhances plausible deniability against query-logs by employing semantically

more general queries for the intended information need. The key assumption is: the more

general a concept is, the less private information it conveys; an assumption deemed true by

example. We theoretically modelled the problem, providing a framework on which similar

approaches may be built in the future.

The current implementation is based on a semantic ontology without using sophisticated

natural language processing techniques or deep semantic analysis. It is arguably a brute force

approach focusing on investigating the practical feasibility of the proposed method and the

trade-off between quality of retrieved results and privacy enhancement. The proposed

scrambling method gets up to 25 % of the top-50 target results, in the ceiling of its perfor-

mance. Obviously, there is a price to pay for privacy, i.e., a retrieval effectiveness loss. We

investigated this trade-off in a system study; it should also be investigated in a user study in

order to determine the levels of trade-off users find acceptable. Overall, the exercise dem-

onstrated promising aspects and revealed important issues that future research should tackle.

There seems to be room for improving the method of generating scrambled queries. A

thorough study of query transitions, from which one might be able to take ideas for

improving the scrambled queries, is in Boldi et al. (2009). Also, knowledge of user behavior

(Spink et al. 2001) could help to improve such privacy protocols. Most importantly, the

failure analysis suggested that using semantic engines, as well as domain-knowledge, would

improve results. Another direction to pursue is the fusion of loosely-related data such as

results corresponding to queries targeting different but related topics. This may have further

extensions for meta-search, or ad hoc retrieval via multiple queries. Also, it seems inter-

esting to investigate the retrieval effectiveness on non-uniform collection samples such as

samples obtained via related queries. We have merely scratched the surface of a series of

interesting aspects which beyond enhancing privacy may also prove useful for improving

retrieval.

A complete scrambler-based system for privacy-preserving Internet search could be as

follows. The steps to obtain a set of scrambled queries for an original user query can be

executed locally at the user’s side. The scrambled queries can then be submitted to search

engines or any appropriate information providers. This step should not reveal the IP of

the user. Furthermore, the scrambled queries should not be linkable with each other, thus,

the interaction with search engines should not leak any information that might link the

scrambled queries. Existing tools like Tor and OptimizedGoogle Search show how this can

be done. Results are de-scrambled locally. An important feature of the proposed method is

that it can be deployed in the current Internet; there are no requirements or assumptions on

current search engines and, moreover, there is no need for external trusted parties or other

external parties at all.
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