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Abstract A structured document retrieval (SDR) system aims to minimize the effort

users spend to locate relevant information by retrieving parts of documents. To evaluate

the range of SDR tasks, from element to passage to tree retrieval, numerous task-specific

measures have been proposed. This has resulted in SDR evaluation measures that cannot

easily be compared with respect to each other and across tasks. In previous work, we

defined the SDR task of tree retrieval where passage and element are special cases. In this

paper, we look in greater detail into tree retrieval to identify the main components of SDR

evaluation: relevance, navigation, and redundancy. Our goal is to evaluate SDR within a

single probabilistic framework based on these components. This framework, called

Extended Structural Relevance (ESR), calculates user expected gain in relevant informa-

tion depending on whether it is seen via hits (relevant results retrieved), unseen via misses

(relevant results not retrieved), or possibly seen via near-misses (relevant results accessed

via navigation). We use these expectations as parameters to formulate evaluation measures

for tree retrieval. We then demonstrate how existing task-specific measures, if viewed as

tree retrieval, can be formulated, computed and compared using our framework. Finally,

we experimentally validate ESR across a range of SDR tasks.
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1 Introduction

Much of the work in document retrieval has focused on the goal of developing systems that

retrieve relevant documents. In contrast, the goal of a structured document retrieval (SDR)

system is to retrieve relevant parts of documents. We refer to document parts as sub-
document results. SDR is particularly advantageous when dealing with long documents and

those covering a wide variety of topics.

SDR systems exploit the structure of a document in two ways. First, referred to as a

structural hint [40], sub-documents are ranked based on whether their encoding help users

in locating relevant information. Second, referred to as a structural constraint [42], a user

may direct the system to search for sub-documents with a desired encoding, using a query

language such as NEXI [43] or XQueryFT [8].

Several types of sub-document results exist in SDR, each of them ‘‘modelling’’ how

users locate relevant information. We illustrate these through examples taken from our

earlier work [5]. Let a collection contain the extract of the book (formatted in XML) shown

in Fig. 1a. The document structure of the book is, in this case, a tree, which is shown in

Fig. 1b; the tags have been abbreviated as follows: book (bk), front matter (fm),

body (bd), description (d), name (n), meta (m), and chapter (c). The line

numbers of elements shown in Fig. 1a correspond to the node ID of each corresponding

node in Fig. 1b. Consider the query ‘‘ship captain in Moby Dick’’. The query matches

terms in different structural parts of the book extract; specifically, node 4 (match on

‘‘Moby Dick’’), node 15 (on ‘‘ship’’) and node 16 (on ‘‘captain’’) in Fig. 1b. For a docu-

ment retrieval task, a system returns root nodes to model the user accessing the whole

book. For a focused retrieval task [25], as illustrated in Fig. 2a, an SDR system may return

nodes (encoded as elements or text passages) at separate ranks, which provides the user

with focused information but at the cost of having to examine results from the same book at

multiple rank positions. For a tree retrieval task [5], as illustrated in Fig. 2b, an SDR

system returns subtrees at separate ranks (the first rank corresponds to a subtree taken from

the book extract), which provides the user with single results that can direct the user to one

or more relevant parts of a book.

Fig. 1 a Extract from a book in XML markup, b Tree structure of book with relevant nodes highlighted
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The evaluation of the effectiveness of a classical information retrieval (IR) system (such

as a document retrieval system) is derived from the number of hits (relevant documents

retrieved) and misses (relevant documents not retrieved) in the system output. In contrast,

the output of an SDR system consists of hits (relevant sub-documents retrieved), misses
(relevant sub-documents not retrieved), and near-misses. Near-misses are retrieved sub-

documents that may not contain relevant information, but from which relevant information

can be accessed via navigation e.g. a user browsing, scrolling down in the user interface, or

following links. Therefore, SDR evaluation must take into account, not only the relevance

of sub-documents, but the fact that users may navigate within documents to locate relevant

information. The latter is usually not considered in classical (document) IR evaluation.

We refer to user navigation as the effort a user spends to locate relevant information

from search results. We illustrate how user navigation can cause redundancy. Consider the

ranked list in Fig. 2a from the book extract in Fig. 1a (nodes 4 and 15 at ranks 1 and 2,

respectively). The system first returns node 4. Upon seeing node 4, the user might navigate

to other nodes in the document. If the user saw node 15 by navigating to it from node 4

then he or she would experience what we refer to as redundancy when accessing node 15

directly at rank 2. SDR evaluation must account for how navigation can cause users to see

relevant information more than once (redundantly).

Much of the existing work in SDR evaluation has been done in the context of the

Initiative for the Evaluation of XML retrieval (INEX)1, a collaborative and international

effort dedicated to the development of effective XML or focused retrieval systems. Since

2002, INEX has investigated a wide range of SDR search tasks. This has resulted in task-

specific evaluation approaches for element retrieval [24, 28, 34, 35], passage retrieval [31]

and tree retrieval [5].

It is widely known that the evaluation of the range of SDR tasks has challenged INEX

since its beginnings [41]. For instance, in our earlier work [5], we showed how most of the

current approaches cannot evaluate tree retrieval because they are not able to represent how

users satisfy their information need with tree-structured results. Analogous limitations have

also been observed when customizing measures to evaluate specific search tasks [32]. This

situation has resulted in SDR evaluation measures (and performance results) that cannot be

compared with respect to each other and across search tasks. There are three main reasons

for this: (1) current SDR measures have different ways to consider and calculate relevance,

user navigation and redundancy, (2) they rely on task-specific assumptions of how the user

information need is satisfied, and (3) they depend on the relevance assessment methodology.

Fig. 2 Different SDR approaches; a element/passage, b tree

1 http://www.inex.otago.ac.nz/.
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The main contribution of this work is to address the above limitations by proposing a

single framework, called the Extended Structural Relevance (ESR) framework, that allows

evaluation across SDR search tasks. ESR is related to our earlier work [5], where we show

that tree retrieval is sufficient to capture all existing SDR approaches based on hits in the

output. ESR extends our earlier work by considering not only hits, but also, near-misses

and misses. More significantly, ESR revisits the relationship between relevance, user

navigation and redundancy posited in our earlier work [5] to allow the development of

measures that share the same set of parameters when evaluating SDR system performance.

A substantial benefit is that it then becomes possible to compare the performance differ-

ences between SDR systems, where various models of user navigation and relevance are

involved. The flexibility to support a wide variety of measures in a single framework is an

important advancement in SDR for investigating future search tasks, where navigation has

to be accounted for.

The outline of this paper is as follows. Section 2 reviews current approaches to SDR

evaluation. Section 3 reviews tree retrieval and provides the notation for this work. Section

4 presents our ESR parameters for relevance, user navigation and redundancy. Section 5

presents the main contribution of this work, the Extended Structural Relevance (ESR)

framework. Section 6 presents how to represent existing SDR evaluation measures in ESR.

Section 7 presents experimental results comparing our ESR proposals to existing SDR

measures. Finally, Sect. 8 concludes with remarks and future work.

2 Related work

The first SDR systems investigated in INEX were element retrieval systems. Their aim was

to return relevant XML elements from a collection of XML documents as answers to a

given query. The first measures used at INEX to evaluate element retrieval effectiveness

consisted of adaptations of classical IR measures, where the notion of a document was

replaced by the notion of an element. These early SDR measures considered the relevance

of elements (as simple hits and misses), but ignored user navigation and redundancy. Later

approaches to SDR evaluation proposed measures that capture user navigation and

redundancy, as well as applying to other SDR tasks. We introduce some of the approaches

next, while the actual measures are presented in Sect. 6.

Extended cumulated gain (XCG) [24] is a family of cumulated gain (CG) [20] measures

for evaluating element retrieval. XCG is motivated on the observation that the effect of

redundancy on the relevance of results is akin to wasted user effort because the same

information, seen more than once, is not relevant to the user [27]. Effectiveness in XCG is

defined by comparing the user gain in relevant information from a system to the gain

obtained by spending the same effort in an ideal system. Ideal elements provide the best

results for the user to see relevant information with the least effort. An ideal system ranks

elements such that a user maximizes their information gain within a minimum number of

ranks and experiences a minimum amount of redundancy. Kazai [23] noted two significant

problems with respect to ideality. First, assessing ideal elements and an ideal ranking is a

two-fold optimization, which is costly. Second, ideality introduces instability [11], stem-

ming from the chosen assessment methodology determining what constitutes an ideal

element.

Precision-Recall with User Modelling (PRUM) [35] is an extension of PRecall [37]

where navigation to ideal elements is stochastic. PRUM measures precision based on the

number of ranks in the output where the user obtains relevant information from ideal
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elements. Like XCG, PRUM requires knowing the ideal elements but, unlike XCG, it does

not require an explicit ranking of ideal elements. The main contribution of PRUM is that it

proposes a probabilistic model for user navigation that can be validated through studies of

user behaviours. Its main drawback is that, like XCG, it is prone to instability, as it too

relies on the adopted methodology for choosing the ideal elements.

A related measure, which solves some of the problems of PRUM by substantially

reducing its complexity, and which also allows for graded relevance, is the measure of

Expected Precision-Recall with User Modelling (EPRUM) [33]. For a given recall, it

defines precision as a comparison between the minimum rank that achieves the given recall

in an ideal system versus the minimum possible rank that achieves the given recall in the

actual system. This approach, although simpler to calculate than PRUM, does not address

instability because of its reliance, like PRUM, on ideality.

Highlighting XML evaluation (HiXEval) proposed in Pehcevski and Thom [31], and

further finalized in Kamps et al. [22], was developed to evaluate the performance of

systems that retrieve (or can be modelled as retrieving) passages, where a passage is a

block of text, delineated or not with XML tags (when delineated, the passage is an XML

element). We refer to this search task as passage retrieval. HiXEval measures are adap-

tations of classical IR precision and recall. Unlike XCG and PRUM, HiXEval does not rely

on ideality. The main limitation of HiXEval is that it assumes that user navigation does not

extend beyond the boundaries of retrieved passages and considers redundancy as only

occurring between adjacent retrieved text passages that overlap each other. Overlap of text

is a special-case of redundancy, and thus limits HiXEval in the investigation of the overall

effect of redundancy when measuring system performance.

Structural Relevance (SR), proposed in our earlier work [5], evaluates tree retrieval. SR

is a measure of the user expected gain in relevant information given that users may

experience redundancy. SR does not rely on ideality. The main contribution of SR is that it

proposes an integrated probabilistic model for expressing relevance, user navigation and

redundancy. The key drawback of SR is that it is limited to the measurement of precision

based on hits in the output.

User effort and redundancy have been investigated outside INEX. Salton et al. [39]

investigated effort in passage retrieval in full-text search. Studies in web retrieval dem-

onstrate how performance is improved by ranking results based on predictions of user

navigation within web pages (either modelled from user clicks [17] or based on tracking

navigation e.g. [1]). Other work includes Keskustalo et al. [29] who propose a relevance

feedback mechanism based on simulating how users prefer to spend effort reading docu-

ments and providing feedback to the system to refine search results. In SDR, users see

relevant information redundantly because of information fragmentation, i.e. documents are

fragmented into sub-documents [30]. Redundancy has also been considered in search result

diversification e.g. [14], which stems from the problem of information duplication, i.e. the

same information appears in more than one document [9]. The aim is to rank documents to

minimize the amount of redundant information contained in them [2]. Whereas our work

focuses on the issue of redundancy in IR evaluation, research on diversification is con-

cerned with the ranking of documents.

In the next section, we recall how tree retrieval can be used to model a range of search

tasks (including element, passage, and document retrieval), and we introduce some nota-

tion. In Sect. 4, we describe how our proposed ESR framework extends SR to account for

near-misses and misses.
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3 Tree retrieval task

In our earlier work [5], tree retrieval is defined as the task of ‘‘returning trees that provide
the user with access to the document nodes in the collection that are relevant to the user’s
information need’’. For a given query, the system outputs a ranked list of trees. The user

seeks relevant information in a retrieved tree by looking at the content contained in its

nodes. While doing so, the user may navigate from the nodes in the tree to other parts of

the document. At any point, the user may choose to return to the system output to access

the next lower-ranked tree. This process continues until the user either satisfies his or her

information need or exhausts the set of trees retrieved by the system.

Tree retrieval is a general task that can model many SDR search tasks. Figure 2a

(shown in Sect. 1) illustrates an example of how trees can model document retrieval (by

retrieving the root node of documents), element retrieval (by retrieving a node from the

document), and passage retrieval (by retrieving either single nodes or trees of sibling nodes

connected by their lowest-common ancestor node).2

The evaluation of tree retrieval tasks rests on the following three requirements origi-

nally posited in our earlier work [5]:

(i) the relevance of retrieved trees in the output are not independent of each other and

depend on whether users tolerate redundancy,

(ii) the purpose of the system is to retrieve trees that afford a user access to relevant

information by directly visiting a node in the tree or through navigating from a visited

node into the rest of the document, and

(iii) the same relevant information may be expressed in trees of varying structure.

To illustrate how these requirements affect the evaluation of SDR systems, consider the

trees in the ranked list shown in Fig. 3 as the output from an SDR system for the query

‘‘ship captain in Moby Dick’’ submitted by a user seeking literary references. First, the

nodes in the trees in ranks 1 and 2 appear in the tree in rank 3. The user who sees all three

trees will see each retrieved node at least twice (i.e., redundantly). This illustrates

Requirement (i), in that, the relevance of the tree in rank 3 must account for all of its nodes

having been retrieved earlier in the trees at ranks 1 and 2 and thus seen by the user. Second,

from the tree in rank 1, the user may navigate to the nodes that appear in the later trees in

both ranks 2 and 3. This illustrates Requirement (ii), in that, the relevance of these later

trees will be affected by the user navigating from the nodes in the earlier tree. Third, the

trees in ranks 2 and 3 would be relevant as literary references because they contain the

same relevant chapters. This illustrates Requirement (iii), in that, the evaluation must

account for relevant information being retrieved in trees of varying structure.

The requirements above present significant challenges for using current approaches to

evaluate tree retrieval systems (discussed at length in our earlier work [5]). Classical

approaches to evaluation assume that results are relevant independently of each other,

which invalidates Requirement (i). In the context of SDR evaluation, HiXEval does not

consider user navigation beyond retrieved passages so it invalidates Requirement (ii).

Measures based on ideality (as proposed for PRUM and XCG) do not meet Requirement

(iii), of encoding the same information in different trees. This is because it is not practical

to determine all possible and equivalent ideal trees. In contrast, SR meets Requirements (i),

2 In this paper, trees correspond to passages which match exactly with the boundaries of content in
document nodes, which is sufficient to evaluate our proposed ESR framework for a number of INEX tasks
(Sect. 7).
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(ii) and (iii) by using node-level assessments of relevance and user navigation to infer

relevance, and by capturing user navigation and redundancy in tree-structured outputs

without relying on ideality. But, SR is limited to measuring precision because it does not

consider near-misses.

We now define the notation used in this paper. We denote the output of the tree

retrieval task as a ranked list R ¼ t1; t2; . . .; tk of k distinct subtrees ti from a collection

C of trees. We denote the sublist of R up to rank i as Ri. The collection C is a forest of

trees where each tree represents a document. A tree T = {TV, TE} is a connected,

directed, acyclic graph where TV is a set of nodes, TE is a set of edges between pairs of

nodes from TV.

Two subtrees from a collection are distinct if one contains a node not found in the other.

Subtrees represent the sub-documents retrieved from the collection. A subtree t = (tv, te)
of tree T in collection C satisfies tv � TV and ðe1; e2Þ 2 te if there is a path from nodes e1 to

e2 in T. Moreover, when we refer to the tree t as a set, it refers to its set of nodes tv. A

subtree is a tree, and we use the terms interchangeably, unless stated otherwise.

The simplest tree is a single node called a singleton. We model element retrieval as

systems that retrieve singletons. A singleton is a subtree t with a single node tv = {e} and

no edges te = [. We refer interchangeably to subtrees with a single node as either sin-

gletons or nodes. A ranked list of nodes R ¼ e1; e2; . . .; ek is considered to be the same as a

ranked list of singletons R ¼ t1; t2; . . .; tk where ti = {ei}. We differentiate between nodes

(singletons) and trees using e and t, respectively. Specific to XML, we refer to nodes as

elements. XML elements are nodes in the document tree of an XML document.

4 Relevance, user navigation and redundancy

Extended Structural Relevance (ESR) is a framework to calculate the user expected gain by

conditioning the relevance of seen information with the probability of whether the infor-

mation is both seen and not redundant to the user. Our framework encapsulates, as

parameters, relevance, user navigation and redundancy, which we formalise in Sects. 4.1,

4.2 and 4.3, respectively.

4.1 Relevance

In IR evaluation, the relevance of information is a judgment made by a human assessor on

whether the subject matter of the information is meaningful to a given information need. In

classical retrieval, the relevance of information objects (e.g. documents) is assumed

independent from each other. This is often not the case in SDR because users may navigate

between sub-documents, and some information may be seen redundantly [44].

Fig. 3 Trees retrieved from the
same document
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As posited in Piwowarski et al. [35], a user gains relevant information in SDR when it is

seen by either retrieval, navigation, or a combination of both. However, a user may

consider the information contained in the sub-document, albeit relevant, not useful, i.e.

sub-optimal gain, because either it is redundant or its encoding format does not provide an

ideal context [24]. In this paper, we refer to the gain from seeing a sub-document as a

relevance value. In classical IR, because documents are assumed independent, relevance

and relevance value coincide.

How to assess the relevance of sub-documents is an active area of SDR research [36].

Kazai [23] showed that the assessment methodology, based on ideality, introduces insta-

bility into the measures (discussed in Sect. 2). The author suggested that instability can be

avoided by: (a) assessing the relevance of information independently of redundancy in the

output, (b) assessing relevance without considering how a user may navigate to informa-

tion, and (c) evaluating system effectiveness based on the effect of user navigation and

redundancy on the user gain in relevant information. Suggestions (a) and (b) remove the

need to assess ideality. Suggestion (c) implies that good SDR measures evaluate how users

spend effort to achieve gain. In this work, we address suggestions (a) and (b) by assuming

independence between relevance and user navigation (Assumptions 1 below). We address

suggestion (c) by using expected gains and losses.

We recall from Sect. 1 that users gain relevant information from hits and near-misses.

Near misses are defined in Kazai and Lalmas [24] as retrieved sub-documents that, may or

may not be relevant, but which can be navigated from by the user to see unretrieved,

relevant information. In this work, we reverse this definition. We consider a near-miss as a

relevant sub-document that has not been retrieved and that can be accessed by the user via

navigation from retrieved sub-documents. A hit is a relevant tree in the output. Finally, a

miss is a relevant tree that is not seen by the user. These three cases define the basis of gain

in ESR and are summarized in Table 1.

In ESR, we consider user navigation as a stochastic process. This is based on the

observations in Hammer-Aebi et al. [19] where users see nodes by navigating via a

graphical user interface from given nodes. Therefore, systems are evaluated in ESR based

on expected relevance values, which are calculated by conditioning relevance value by the

different cases (hits, misses, and near-misses) where relevant information is possibly both

seen by the user and redundant to the user.

The expected relevance value gain is E[rel(a)|a is seen ^ not redundant] for both hits

and near-misses. Relevant sub-documents that are not seen by the user are called misses,

and we refer to the expected relevance value of a miss as a loss. For a miss, the expected

relevance value loss is E[rel(a)|a is not seen].3 To calculate relevance value in ESR, we

make the following assumptions:

Table 1 Gain in SDR
Case Gain Description

Hits Gain without effort Retrieved tree seen once

Misses No gain Not retrieved tree not seen

Near-misses Gain with effort Not retrieved tree seen once

3 For completeness, we note that users experience relevance value loss when relevant information is seen
redundantly, i.e., E[rel(a)|a is seen ^ redundant]. We refer to this as the relevance value shrinkage, in that,
this value represents the diminution in the expected relevance value that the user can gain from hits and
near-misses. For any tree, the total probability for expected relevance value is P(a is seen, a is not
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Assumption 1 (Structural Relevance Assumptions) Relevance is independent of how a

user navigates to locate relevant information. Relevance is dependent on whether the user

sees relevant information redundantly, i.e., more than once.

These assumptions are required to justify conditioning relevance value on the proba-

bility of whether information is seen and redundant. In essence, we are assuming the

dependence of relevance on the outcome of the user spending effort (i.e. redundancy) and

not dependent on the amount of effort spent (i.e. ranks consulted and user navigation).

Using the above assumptions, we obtain E[rel(a)|a is seen ^ not redundant] = rel(a) 9

p(a is seen ^ not redundant). We next use this to develop expected relevance values

across hits, misses, and near-misses to show how gain is calculated in ESR.

Consider a hit ahit at a given rank m in a ranked list R. At rank m, the user sees the tree in

the output. The tree will not be redundant to the user if it has not been navigated to from

higher-ranked trees. Let 1 - p(ahit;Rm-1) denote the probability that the user does not

navigate to it from Rm-1 the higher-ranked trees. The expected relevance value gain from a

hit is thus E(ahit) = rel(ahit) 9 (1 - p(ahit;Rm-1)).

Next, consider a miss amiss in a ranked list R. For it to be a miss, the user would not

see it. So, the user would not navigate to it from the trees in the output R. Let

1 - p(amiss;R) denote the probability that the user does not navigate to see tree amiss. Thus,

the expected relevance value loss from a miss is E(amiss) = rel(amiss) 9 (1 - p(amiss;R)).

Finally, consider the near-miss anm in a ranked list R. p(anm;R) denotes the probability

that the user navigates from the trees in the output R to see tree anm. The expected

relevance value gain from a near-miss is thus E(anm) = rel(anm) 9 p(anm;R).

This completes our calculation of expected relevance values, namely:

1. E(ahit) = rel(ahit) 9 (1 - p(ahit;Rm-1)), the expected relevance gain from a hit at rank

m seen in the output,

2. E(amiss) = rel(amiss) 9 (1 - p(amiss;R)), the expected relevance loss from a miss not

seen in the collection,

3. E(anm) = rel(anm) 9 p(anm;R), the expected relevance gain from a near-miss seen in

the collection.

These expectations are crucial to our ESR framework. We will revisit these in Sect. 4.3

where we describe how to calculate redundancy, i.e. p(a;R). In Sect. 5, these expectations

form the basis of ESR. In Sect. 6, we then propose several SDR measures formulated using

ESR. Finally, in Sect. 7, we test our proposed measures by evaluating a range of SDR

tasks.

4.2 User navigation

A user may navigate from the retrieved results to seek (further) relevant information. Our

interpretation of navigation is largely based on the work of Ali et al. [7], who define

navigation as the effort spent by a user in seeking relevant information. More precisely,

given a retrieved tree, a user may choose to seek from any node in that tree, via navigation,

relevant information contained in nodes outside of that retrieved tree.

Footnote 3 continued
redundant) ? P(a is seen, a is redundant) ? P(a is not seen, a is not redundant) ? P(a is not seen, a is
redundant) = 1. A tree cannot be both unseen and redundant, therefore P(a is not seen, a is redundant) = 0.
We do not further consider shrinkage in this paper.
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To formally capture this, we introduce the user navigation graph which is a graph of a

partition of the nodes in the collection where the edges of the graph are weighted. The user

navigation graph allows modelling different navigational strategies in tree retrieval (e.g.

navigation via document structure, contextual markup, semantic linking) at different

granularities, as well as leading to faster computation [6, 7]. The weight between two

nodes reflects the effort associated with the user navigating between them. Weights can be

derived through the analysis of clicks, time spent, common routes, or retinal focus, and

form the basis to calculate probabilities of user navigation in ESR.

Our methodology for measuring effort is inspired by the study in Hammer-Aebi et al.

[19], where for a given information need, the user is tasked with finding, judging and

marking the relevant parts of a retrieved document. The study begins by presenting the user

with a document where retrieved information has been highlighted. The user’s attention is

directed to an initial highlight, referred to as the entry point. The user then navigates within

the document using whatever means provided by the graphical user interface (such as

scrollbars or hyperlinks in a table of contents). The user navigation is recorded as steps

between nodes along a route starting from the entry point. The effort spent to make each

step is measured. Examples of measured effort include cumulated gain [20], tolerance to

irrelevance [44], expected search length [13], or time taken to read documents [15].

Let us now demonstrate user navigation along routes. Consider an XML document

encoding an article (a) with sections (sec and ss1, respectively) and paragraphs (p).

Given a user information need, the tree shown in Fig. 4a shows an article where nodes e3

and e4 are relevant. For our example, let us assume that the user navigates solely by

clicking on hyperlinks such that a node is visited if and only if the user clicks on a link to

the node. The node identifiers are shown beside each respective node, and their character

lengths are shown in parentheses. So, for instance, node e3 is 30 characters long. Figure 5

shows three examples of routes. Route 1 describes a user who entered the document via

node e3, then stepped to node e1 then e2 then e4. Route 1 is composed of three steps;

e3 ! e1, e1 ! e2, and e2 ! e4. As a possible measure of effort, let the number of times a

step is observed indicate the ease with which users navigate it. Based on the routes shown

in Fig. 5, step e3 ! e1 requires less effort than step e3 ! e2 because e3 ! e1 occurs twice

whereas step e3 ! e2 occurs only once.

Next, to determine the probabilities needed to calculate ESR, we partition the nodes in

the collection into a user navigation graph where directed edges are defined based on the

routes users navigate. The weights on these directed edges are inversely proportional to the

effort that users spend. To calculate ESR, we calculate probabilities for navigating steps

based on the user navigation graph weighted by some function of effort. A higher prob-

ability for a step between two nodes corresponds to a lower effort for the user to take the

Fig. 4 a Tree structure of an
article, b User navigation graph
based on partition
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step. Let ~pðei; ejÞ denote the probability of navigating to node ei from node ej, i.e., ej ! ei.

Thus, if ~pðei; ejÞ[ ~pðea; ebÞ then we can conclude that the user spends less effort to take

step ej ! ei than for step eb ! ea.

The most obvious partition to choose is the collection itself where the nodes in the user

navigation graph correspond, one-to-one, with the nodes in the collection. We refer to this

case as the elementary user navigation graph. Let our user navigation graph be the ele-

mentary case, which, in this case, is the tree shown in Fig. 4a with bi-directional edges. Let

us consider the steps in the observed routes (such as the examples shown in Fig. 5) as

edges in the user navigation graph.

Let w(ei;ej) be the weight on a directed edge between node ej to node ei in the user

navigation graph. For this example, let the weight w(ei;ej) be the number of occurrences of

step ej ! ei in Fig. 5 and let us assume that the effort spent is independent across routes

and steps. Thus, for instance, the weight w(e1;e3) is 2 and w(e2;e3) is 1 given the routes

shown in Fig. 54 Table 2 summarizes our example weighting matrix for the elementary

user navigation graph in Fig. 4a given the observed routes in Fig. 5.

We now calculate the ESR navigation probabilities. We calculate the probability of the

user navigating the step ej ! ei using ~pðei; ejÞ ¼ wðei; ejÞ=WðeiÞ where W(ei) =
P

j=1
N -

w(ei;ej) denotes the total weight of the directed edges in the user navigation graph leading

to ei. The total probability of navigating to node ei from all other nodes in the collection isP
i 6¼j ~pðei; ejÞ ¼ 1, if and only if it is possible for the user to navigate to ei. Otherwise,

~pðei; ejÞ is 0. For instance, the probability ~pðe3; e1Þ is 2/3 = 0.66 because the total weight

on the edges leading to e3 is w(e3;e1) ? w(e3;e2) = 2 ? 1 = 3 and w(e3;e1) = 2. The

values in parentheses in Table 2 summarize the ESR navigation probabilities modelled as

elementary user navigation using the routes shown in Fig. 5.

In practice, the weights in elementary user navigation graphs cannot be determined (e.g.

via human studies) because the graphs can be very large. Indeed, if N is the number of

nodes in the collection, for each node ei, there will be N - 1 probabilities ~pðei; ejÞ needed

Fig. 5 Examples of routes
navigated

Table 2 Elementary user
navigation weights and
navigation probabilities
(in parentheses)

e1 e2 e3 e4 e5 e6

e1 0 1 (0.5) 0 0 0 1(0.5)

e2 0 0 0 2 (1.0) 0 0

e3 2 (0.66) 1 (0.33) 0 0 0 0

e4 0 0 0 0 1 (1.0) 0

e5 0 0 0 0 0 0

e6 0 0 0 0 0 0

4 A special case of navigation is abandonment which occurs when a user opts to not navigate. We denote
the probability that a user abandons navigation from node e with ~pðe; eÞ. To account for abandonment, we
could include the terminal nodes of routes in our weights w(e;e). For instance, consider the routes shown in
Fig. 5, our weights for abandonment would be w(e4;e4) = 1, w(e5;e5) = 1, w(e6;e6) = 1 and w(e;e) = 0 for
all other nodes. Other approaches would be to include in our weighting scheme the amount of time users
spend in given nodes. For simplicity, we ignore abandonment in our examples so w(e;e) = 0 and ~pðe; eÞ ¼ 0
for all nodes.
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to define navigation. Therefore, N 9 (N - 1) weights are needed to calculate ~pðei; ejÞ for

all nodes in the collection, which is impractical to assess in user studies for large N. We

therefore consider a simplified model for navigation where the user navigates from one

node subset to another, where the set of subsets form a partition of the nodes in the

collection. For instance, the nodes in the tree shown in Fig. 4a can be grouped by their

XML tags: article node e1; section nodes e2, e3, and e6; and paragraph nodes e4

and e5. Figure 4b shows a graph based on this partitioning scheme where S1 contains

article nodes; S2 contains section nodes; and, S3 contains paragraph nodes. We

proposed this approach originally in Ali et al. [6] using XML tags to partition nodes, and

later validated our approach in Ali et al. [7].

Using this partition, we weight the directed edges between partitions. For instance, in

Table 2, the outgoing steps from the nodes in S2 are: e3 ! e1 twice, e3 ! e2, e2 ! e4 twice.

This corresponds to the following weights on the edges from S2: w(S1;S2) = 2,

w(S2;S2) = 1, and w(S3;S2) = 2. Table 3 shows the resulting weighting matrix. We

approximate the probability of navigation as ~pðei; ejÞ � ~pðSi; SjÞ ¼ wðSi; SjÞ=WðSiÞwhere Si

denotes the partition of node ei and Sj denotes the partition of node ej, respectively. For

instance, ~pðe3; e1Þ � ~pðS2; S1Þ ¼ wðe3; e1Þ=ðwðe2; e4Þ þ wðe3; e1Þ þ wðe3; e2ÞÞ ¼ 2=ð2þ
2þ 1Þ ¼ 0:4. Table 3 summarizes (in parentheses) the ESR navigation probabilities for this

model.

Partitioning schemes, such as the one described above, can be used to model different

navigational strategies and lead to less costly computation. A further computational

reduction is presented in our earlier work [5] where user navigation can be calculated over

an infinite number of steps, i.e., using steady-state probabilities.

For instance, in Ali et al. [7], we use the partitioning schema developed in Consens

et al. [12] and analysis from the eye-tracking study in Hammer-Aebi et al. [19] to model

navigation in the INEX Wikipedia collection as a graph consisting of four partitions

(namely, article, section, ss1, other) where each partition is weighted inversely

to the tag depth of the nodes included in the partition. We refer to this as a depth-weighted
summary model of navigation and use this model in our experiments (Sect. 7).

4.3 Redundancy

Redundancy occurs when a user sees the same relevant information more times than they

tolerate [44]. Previously, in Sect. 4.1, we defined the user expected gain (and loss) of

relevance value without clarifying how to calculate redundancy. In ESR, redundant

information is considered not relevant to the user, and we consider information redundant

if it is seen more than once.

Below, we restate the expected gains in Sect. 4.1 from hits (1) and near-misses (3), and

the expected loss from misses (2).

EðahitÞ ¼ ð1� pðahit; Rm�1ÞÞ � relðahitÞ ð1Þ

Table 3 Summary model
weights and navigation
probabilities (in parentheses)
where S1, S2, and S3 are the
summary nodes shown in Fig. 4b

S1 S2 S3

S1 0 2 (1.0) 0

S2 2 (0.4) 1 (0.2) 2 (0.4)

S3 0 0 1 (1.0)
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EðamissÞ ¼ ð1� pðamiss; RÞÞ � relðamissÞ ð2Þ

EðanmÞ ¼ pðanm; RÞ � relðanmÞ ð3Þ

where R is a ranked list output of k trees, Ri is a sublist of R up to rank i such that if i [ k
then Ri = R and if i B 0 then R0 = [, ahit is a hit at rank m, anm is a near-miss, amiss is a

miss, rel(a) is the relevance value of tree a, and p(a;R) is the probability that the user will

see tree a once by navigating from the trees in output R.

Now, we explain the calculation of p(a;R) using the probability ~pðti; tjÞ that a user

navigates from the nodes of tree tj to the nodes in tree ti. The user sees a tree by navigating

to all of its nodes. The probability of seeing a tree by navigating to its nodes from a given

tree is presented in our earlier work [5]. We state the probability here, as follows,

~pðti; tjÞ ¼
P

ej2tj=ti

P
ei2ti=tj

~pðei; ejÞ
jtij � jtjj

ð4Þ

where ti is a tree from the collection, tj is a different tree from the collection, x/y denotes

the set of nodes in tree x not in tree y, ei and ej are nodes, |t| is the number of nodes in tree t,
and the probability ~pðei; ejÞ is the probability that a user will navigate to node ei given that

he or she navigates from node ej (as shown in Sect. 4.2).

We next explain navigation between trees shown in (4). Consider a user navigating from

the nodes in tree tj to the nodes in tree ti. Assume that each visit to a node by the user is

independent. From a visit to node f in subtree tj, the expected number of distinct nodes

from subtree ti that the user would see is E½ti; f � ¼
P

e2ti
~pðe; f Þ. For each node in tj, the

previous expected number of distinct nodes has a maximum value of |ti|. We refer to tj as

the previous subtree, and ti as the current subtree. The number of nodes seen in the current

subtree from the previous subtree is
P

f2tj
E½ti; f �. The maximum number of nodes seen is

jtij � jtjj. The proportion of the nodes in the current subtree that were seen from the previous

subtree is ~pðti; tjÞ ¼
P

f2tj
E½ti; f �=ðjtjj � jtijÞ. This is the probability that the nodes in the

current subtree have been seen from the previous subtree. Substituting the expected

number of distinct nodes for E[ti;f], the probability becomes pðti; tjÞ ¼
ð
P

f2tj

P
e2ti

pðe; f ÞÞ=ðjtij � jtjjÞ and, thus we obtain (4).

Finally, in Sect. 4.1 above, we defined redundancy in ESR as the conditioning proba-

bilities for expected gains (losses) from hits and near-misses (misses). We recall that p(a;R)

denotes the probability P(a is seen once;R) that tree a is seen once by navigating from the

trees in the output R. Assume that the navigation from each tree in the output is inde-

pendent. We can calculate redundancy p(a;R) using (4), as follows

pða; RÞ ¼ 1�
Yk

j¼1

ð1� ~pða; tjÞÞ ð5Þ

where a is a tree in the collection, R ¼ t1; t2; . . .; tk is an output of k trees, and ~pða; tjÞ is

shown in (4).

4.4 Example toy system and models

In this section, we present a toy collection, a navigation model, a set of relevance judg-

ments, and three example system outputs that we will use in later Sects. 5 and 6.5 to

demonstrate ESR.
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For a query, consider the retrieval of elements from the article shown in Fig. 4a. Let the

assessed elements be e3 and e4, i.e. A = e3,e4. When relevance is binary, let rel(e3) =

rel(e4) = 1. When we use the number of highlighted characters to measure relevance

(relevance by length), let rel(e3) = 30 and rel(e4) = 20. The relevance values for both

binary relevance and relevance by length of e3 and e4 are shown in Table 4. User navi-

gation, the probability of the user navigating to a node from a given node5, is shown in

Table 5.

Table 6 shows the outputs for three systems for the query. System 1 (R1) retrieves a

near-miss in rank 1 and hits in ranks 2 and 3. System 2 (R2) retrieves three near-misses.

System 3 (R3) retrieves a near-miss in rank 2 and hits in ranks 1 and 3. We expect System 2

to have the worst performance because it does not retrieve any hits, and System 3 to have

the best performance because it retrieves a hit in rank 1, whereas System 1 does not

retrieve a hit until rank 2. We expect System 1 to be the second best performing system.

This completes the presentation of relevance, user navigation and redundancy in ESR.

In the next section, we present the overall ESR framework where these expected gains and

losses are calculated over the relevant trees in the collection in order to compute the user

total relevance value gain (loss) for a given output composed of hits, misses, and near-

misses, respectively.

Table 4 Relevance value of
assessments rel(e), for tree
e in A

e3 e4

Binary Relevance 1 1

Relevance by Length 30 characters 20 characters

Table 5 User navigation
~pðei; ejÞ e1 e2 e3 e4 e5 e6

e1 0 0.53 0.16 0.11 0.11 0.11

e2 0.63 0 0 0.133 0.133 0.133

e3 1 0 0 0 0 0

e4 0.5 0.5 0 0 0 0

e5 0.5 0.5 0 0 0 0

e6 0.5 0.5 0 0 0 0

Table 6 Three example system
outputs

Ranks

1 2 3

System 1 (R1) e1 e3 e4

System 2 (R2) e1 e2 e6

System 3 (R3) e3 e1 e4

5 Our example ESR navigation probabilities are based on the PRUM user navigation model, used in Sect.
6.4, for hierarchical navigation which can be found in Equation 9 (p. 22) in Piwowarski et al. [35]. For the
current example, we use the PRUM probabilities as weights on the edges of the article graph shown in
Fig. 4a and obtain ESR user navigation as follows: ~pðei; ejÞ ¼ pðej eiÞ=

P
e pðe eiÞ. There are, of course,

other means to estimate ~pðei; ejÞ. Indeed, our calculation of navigation is purely illustrative. Our intention

is not to suggest that ESR and PRUM share equivalent navigation models (because they do not—see
Footnote 10).
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5 Extended structural relevance framework

Our proposed Extended Structural Relevance framework (ESR) provides the means to

formulate measures based on the user expected gain (or loss) in relevance value given

redundancy. ESR is motivated by the collection partitioning scheme presented in Bollman

[10] (which, in turn, is largely motivated by the much earlier work in Robertson [38]).

Bollman [10] shows that a family of document retrieval evaluation measures (such as

precision, recall, and fallout) can be derived from the number of hits and misses in the

output and the collection. The ESR framework represents a similar family of parameters

for SDR measures based on partitioning sub-documents in the output and collection into

hits, misses and near-misses.

We begin by partitioning the relevant trees in the collection into hits and misses in the

output. For a given information need, consider the relevant trees in the assessments A that

are hits in the output R. The hits are obtained from the intersection R \ A (6). The misses

are obtained from the set difference A/R (7). The hits A \ R and misses A/R define a

partition because A=R
T

A \ R ¼ ; and A=R
S

A \ R ¼ A6.

Hits ¼ R \ A ð6Þ

Misses ¼ A=R ð7Þ
If we assume that relevance value judgments are independent as stated in Assumptions

1, then the total expected relevance value for hits, misses, and near-misses can be obtained

by summing the expectations across the trees in the appropriate set of judgments [(6) and

(7), respectively]. The total expected relevance value gain from hits E[Hits, R, A] is

obtained by summing the expected relevance value of the trees in the set Hits (6) using the

expected relevance value gain for a hit in (1) (in Sect. 4.3). Similarly, the total expected

relevance value loss from misses E[Misses, R, A] is obtained by summing the expected

relevance value of the trees in the set Misses (7) using the expected relevance value loss for

a miss in (2) (in Sect. 4.3). Finally, the total expected relevance value gain from near-

misses E[Near-misses, R, A] is obtained by summing the expected relevance value of the

trees in the set Misses (7) using the expected relevance value gain for a near-miss in (3) (in

Sect. 4.3). Thus, the total expected relevance values can be stated, as follows,

E½Hits;R;A� ¼
X

a2R\A

relðaÞ � ð1� pða; Rm�1ÞÞ ð8Þ

E½Misses;R;A� ¼
X

a2A=R

relðaÞ � ð1� pða; RÞÞ ð9Þ

E½Near-misses;R;A� ¼
X

a2A=R

relðaÞ � pða; RÞ ð10Þ

where R ¼ t1; t2; . . .; tk is a ranked list of k trees, A ¼ a1; a2; . . .; an is a set of n assess-

ments, m is the rank of a in R, rel(a) is the relevance value of tree a, and p(a;R) is the

probability that the user will see a once when consulting R, i.e., redundancy (5).

6 Equations 6 and 7 are defined using perfect matches between the trees in the assessments (A) and the
output (R). A more general, albeit more complex, approach is to define hits as the trees seen with certainty
p(a;R) = 1, and misses as the trees not seen with certainty p(a;R) \ 1. This is a practical issue and does not
constitute any loss in generality.
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The total expected relevance value in the collection is the sum of the total expected

relevance value for hits, misses, and near-misses. We refer to this as the recall-base. It is

stated, as follows,

E½Recall-base;R;A� ¼ E½Hits;R;A� þ E½Misses;R;A� þ E½Near-misses;R;A� ð11Þ
The total expected relevance value of the recall-base can be defined in this way because

Hits and Misses are disjoint; and the expected loss and gain, respectively, of misses and

near-misses are complementary. The total expected relevance value of the recall-base

represents the maximum relevance value gain that a user could experience given an output

and a set of all relevant trees.

In our earlier work [5], we evaluated system performance based on inferred relevance
value. This basis limits evaluation of tree retrieval effectiveness to precision, because gain

is limited to the user seeing relevant nodes in the output. ESR goes beyond this, by

calculating the user expected gain (or loss) in relevance value based on the user seeing

relevant nodes from the output as hits, misses and near-misses, and combining these to

define recall.

We complete this section with an example calculation of our ESR expected relevance

value gain from hits, misses and near-misses, based on the toy collection in Fig. 4a; the

navigation model in Table 5; the set of relevance judgments for both binary relevance and

relevance by length of nodes e3 and e4 shown in Table 4; and, the three example outputs

for System 1 (R1), System 2 (R2), and System 3 (R3), all given in Sect. 4.4.

We begin by illustrating how ESR parameters are calculated for System 1. We recall

that ESR relies on three main parameters expressing, respectively, how the user gains

relevant information either by the system retrieving the information directly (hits with

E[Hits;R, A] in (8)), by the user locating the relevant information via navigation (near-

misses with E[Near-misses;R, A] in (10)), or, not at all (misses with E[Misses;R, A]

in (9)).

We determine the ESR parameters of expected relevance value of hits, misses and near-

misses at rank cut-off k = 1 for System 1 in Table 6 (recall that R1 = e1, e3, e4). At rank

1, System 1 outputs element e1. This is not a hit because A \ R11 = [ (6). The misses are

A/R11 = e3,e4 (7). The probability that relevant element e3 can be navigated to from

retrieved element e1 is pðe3; R11Þ ¼ 1� ð1� ~pðe3; e1ÞÞ ¼ ~pðe3; e1Þ ¼ 0:16 (5). Similarly,

the probability that e4 can be navigated to is pðe4; R11Þ ¼ 1� ð1� ~pðe4; e1ÞÞ ¼ 0:11.

Assume binary relevance. The expected relevance value of the near-miss e3 is

rel(e3) 9 p(e3;R11) = 0.16 (10). The expected relevance value of the miss e3

is rel(e3) 9 (1 - p(e3;R11)) = 0.84 (9). The expected relevance value of the near-miss e4

is rel(e4) 9 p(e4;R11) = 0.11 (10) and miss e4 is rel(e4) 9 (1 - p(e4;R11)) = 0.89 (9).

The recall-base is 0.16 ? 0.84 ? 0.11 ? 0.89 = 2 (11). The expected relevance value

gains, defined by binary relevance, are shown in Row 3 of Table 7. The values in Row 3 in

parentheses show the expected relevance value gains if we define the relevance value as

relevance by length.

The expected relevance value of hits, misses, and near-misses across rank cut-offs for

Systems 1, 2 and 3 are shown for binary relevance and relevance by length (in parentheses)

in Table 7. These can be used to understand whether these systems retrieve information

directly or whether the user must navigate to find relevant information. For instance, at

k = 3 (Row 12 to 15), we note that both Systems 1 and 3 retrieve relevant information,

whereas in System 2 the system returns near-misses and hence the user will need to spend

some effort to locate relevant information.
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The expected relevance value of the recall-base across rank cut-offs is shown in

Table 8. At a given rank cut-off, the size of the recall-base changes inversely to the

redundancy in the output up to the given rank, i.e., more redundancy in the output will

reduce the size of the recall-base (and the expected relevance value from hits and near-

misses). In our example, we note that by using System 3 the user will experience the least

redundancy (Row 4 in Table 8) with the greatest gain (from Row 15 in Table 7). Addi-

tionally, we note that users of System 2 experience the least overall gain (from Row 14 in

Table 7). This corresponds to our earlier assertion that System 2 would have the worst

performance and System 3 would have the best.

To summarize, the ESR framework is comprised of four related expected values;

namely expected relevance value gain from the user seeing hits in the output (8), expected

relevance value loss from (unseen) misses in the collection (9), expected relevance value

gain from the user seeing near-misses in the collection (10), and the sum of these three

Table 8 Recall-base using
binary relevance
(relevance by length)

1 Recall-base

2 k = 1 k = 2 k = 3

3 Sys. 1 2(50) 1.84(45.2) 1.73(43)

4 Sys. 2 2(50) 2(50) 2(50)

5 Sys. 3 2(50) 2(50) 1.89(47.8)

Table 7 Hits, Near-misses and misses using binary relevance (relevance by length)

1 Hits Near-misses Misses

2 k = 1 e3 e4 e3 e4 e3 e4

3 Sys.
1

– – 0.16(4.8) 0.11(2.2) 0.84(25.2) 0.89(17.8)

4 Sys.
2

– – 0.16(4.8) 0.11(2.2) 0.84(25.2) 0.89(17.8)

5 Sys.
3

1(30) – – 0(0) – 1(20)

6 Hits Near-misses Misses

7 k = 2 e3 e4 e3 e4 e3 e4

8 Sys. 1 0.84(25.2) – – 0.11(2.2) – 0.89(17.8)

9 Sys. 2 – – 0.16(4.8) 0.23(4.56) 0.84(25.2) 0.77(15.4)

10 Sys. 3 1(30) – – 0.11(2.2) – 0.89(17.8)

11 Hits Near-misses Misses

12 k = 3 e3 e4 e3 e4 e3 e4

13 Sys. 1 0.84(25.2) 0.89(17.8) – – – –

14 Sys. 2 – – 0.16(4.8) 0.23(4.56) 0.84 (25.2) 0.77(15.4)

15 Sys. 3 1(30) 0.89(17.8) – – – –
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expectations (11), i.e. the recall-base. Next, we show how this framework is used to

measure performance for several task-specific approaches in SDR.

6 ESR evaluation measures

In this section, we formulate SDR evaluation measures for SR, HiXEval, XCG, and PRUM

(introduced in Sect. 2) within our ESR framework. We consider each by first describing the

original measures and then expressing them in ESR. Note that each represents a family of

measures, and we formulate only a selection in each. The selected measures are expressed

in terms of the expectations defined in the previous section.

6.1 Structural relevance

Structural relevance (SR) [5] is a measure of the user expected gain in relevant information

given that the information may be redundant. SR is calculated by summing the expected

inferred relevance value gain for the trees in the output:

SRðRÞ ¼
Xk

i¼1

relðtiÞ � ð1� pðti; Ri�1ÞÞ ð12Þ

where rel(ti) is the inferred relevance value of subtree ti, and p(ti;Ri-1) is the probability that

the nodes in subtree ti are seen more than once by the user. In our earlier work [5], SR in

Precision (SRP), which is SRP = SR(R)/k, was proposed to measure precision of tree

retrieval systems, and to rank systems using mean average precision across rank cut-offs.

To represent SRP in ESR, we replace the expected inferred relevance value gain SR(R)

with the expected relevance value gain from hits in ESR, i.e., SR(R) (12) with

E[Hits, R, A] (8):

ESRPðR;AÞ ¼ E½Hits;R;A�=k: ð13Þ
Note that if the inferred relevance value is equal to the assessed relevance value then

SR(R) and E[Hits, R, A] are equivalent. For instance, in element retrieval, systems retrieve

singletons and the inferred relevance in SR is exactly the judged relevance value in ESR,

thus explaining the above equivalence.

A key limitation of inferred relevance value rel(ti), as originally proposed in SR, is that

it is not possible to calculate recall. This is because rel(ti) can only represent gain from hits

or near-misses. Misses (corresponding losses) cannot be accounted for, thus recall cannot

be defined. By formulating SR in our framework, as shown next, this limitation is

overcome.

Indeed, we recall that the user gains relevant information from hits (8) and near-misses

(10). The recall-base in 11 represents the user maximum possible gain. We obtain a

measure of recall by dividing the sum of the gain from hits and near-misses by the recall-

base. We refer to our recall measure as Structural Relevance in Recall (ESRR):

ESRRðR;AÞ ¼ ðE½Hits;R;A� þ E½Near�misses;R;A�Þ
E½Recall-base;R;A� ð14Þ

In the case where a user cannot navigate (~pðti; tjÞ ¼ 0 for all trees in the collection) and

assuming binary relevance (rel(a) = 1 for relevant trees), it can be shown that ESRP and

ESRR reduce to classical precision (r/k) and recall (r/N), respectively.
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6.2 Highlighting XML retrieval evaluation

Highlighting XML evaluation (HiXEval) proposed in Pehcevski and Thom [31], and

further finalized in Kamps et al. [22], was developed to evaluate the performance of

systems that retrieve (or can be modelled as retrieving) passages, where a passage is a

block of text, delineated or not with XML tags.

HiXEval exploits the relevance assessment methodology used at INEX since 2005 [36],

where human judges highlight the relevant passages in retrieved (pooled) documents. With

this methodology, for a given information need, the relevant parts in documents are those

that have been highlighted by the human judges [36]. HiXEval measures precision and

recall based on the amount of relevant information retrieved; the amount of relevant

information in the collection; and the overlap of the relevant text in retrieved passages. The

‘‘amount of information’’ is measured using the character length of passages.

In HiXEval, for a given information need the total relevance value of the information

contained across all documents in the collection is given by the number of highlighted

characters in the whole collection. Let Trel denote the number of characters in the relevant

(highlighted) text in the collection. The relevance value of a retrieved passage in HiXEval

is the character length of the relevant text in the passage. If the relevant text overlaps with

another retrieved passage, then the overlapped text is relevant to the user with probability

a 2 ½0; 1�, where a refers to the user tolerance to overlap. HiXEval assumes that user

navigation does not extend beyond the boundaries of retrieved passages. Thus, HiXEval

considers redundancy as only occurring between adjacent retrieved text passages over-

lapping each other.

For a retrieved passage e, the user gain in relevant information is given by rsize(e),

which is defined as follows. Let size(e) denote the size of the retrieved passage. Let rel(e)

denote the size of the relevant text in the passage. Let rov(e) denote the number of

characters in the relevant text that is overlapped with a higher-ranked passage in the output.

The gain is stated as follows:

rsizeðeÞ ¼ relðeÞ � ð1� aÞ � rovðeÞ ð15Þ
Based on the above, numerous measures can be obtained for measuring precision and

recall in passage retrieval. In this section, we consider two HiXEval measures; namely

interpolated precision (iP) and interpolated recall (iR)7. Interpolated precision is the user

gain in relevant information divided by the number of characters retrieved (16). Interpo-

lated recall is the user gain in relevant information divided by the total relevance value in

the collection (17).

iP@r ¼
Pr

i¼1 rsizeðeiÞPr
i¼1 sizeðeiÞ

ð16Þ

iR@r ¼
Pr

i¼1 rsizeðeiÞ
Trel

ð17Þ

where R ¼ e1; e2; . . .; ek is a ranked list of k passages and r 2 ½1; k� is a rank. Mean average

precision across either rank cut-offs or recall points is used to rank systems.

7 At INEX, generalized precision (gP) and generalized recall (gR) are currently the official (HiXEval-based)
measures. Interpolated precision (iP) and interpolated recall (iR) have been used in the past as official
measures at INEX [22]. In Sect. 7, we validate ESR for iP, iR, and gP.
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We formulate now HiXEval, i.e. iP and iR, in the ESR framework. First, we define the

relevance value rel(a) as the number of characters in the relevant text in the nodes of the

tree a. Second, we note that overlap in tree retrieval is a specific case of redundancy where

trees in the output share nodes in common, and that this can be accounted for in ESR using

an appropriate user navigation model. Third, let Trel be the number of characters in the

relevant text in the collection and size(t) denote the number of characters in the nodes of

tree t.
We replace the user gain in relevant information rsize() (15) with the sum of the gain

from hits (8). We limit gain to hits because HiXEval (and XCG) measures limit consid-

eration of user navigation to within retrieved elements. This is fully accounted for in ESR

with hits. Indeed, as stated in Sect. 4.1, near-misses in HiXEval (and XCG) are defined

differently than in ESR8. We obtain the following ESR measures for interpolated precision

(SRiP) and recall (SRiR), stated without derivation,

SRiPðR;AÞ ¼ E½Hits;R;A�
Pk

i¼1 sizeðtiÞ
ð18Þ

SRiRðR;AÞ ¼ E½Hits;R;A�
Trel

ð19Þ

The key differences between iP/iR and SRiP/SRiR are that the latter are based on tree

retrieval and consider a broader notion of redundancy than overlap (which is a special case

of redundancy). The SRiP/SRiR measures above can be applied to any search task that can

be modelled using tree retrieval. This demonstrates an important advantage when using

ESR in that an evaluation approach like HiXEval can be applied to tasks that go beyond the

search paradigm, here passage retrieval, for which it was originally proposed.

6.3 Extended cumulated gain

Extended cumulated gain (XCG) [24] is a family of measures that evaluate the user gain in

relevant information from an actual system compared to the gain possible from an ideal

system (see Sect. 2 for details on ideality). One of the XCG measures is the normalized

extended cumulated gain (NXCG), which we formulate now within our ESR framework.

NXCG is the ratio of the user cumulated gain in relevant information from an actual

system compared to the cumulated gain from an ideal system. The cumulated gain xCG[k]

(20) is the user gain after consulting k ranks from the actual system. The ideal cumulated

gain xCI[k] (shown in (21)) is the user gain after consulting k ranks from the ideal system.

NXCG is defined as their ratio (22).

xCG½k� ¼
Xk

i¼1

xG½i� ð20Þ

xCI½k� ¼
Xk

i¼1

xI½i� ð21Þ

8 Near-misses are defined for XCG in Kazai and Lalmas [24] as retrieved sub-documents that, may or may
not be relevant, but which can be navigated from by the user to see non-retrieved, relevant information.
Whereas, in ESR, we reverse this definition.
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NXCG½k� ¼ xCG½k�
xCI½k� ð22Þ

where xG[i] is the gain from the ith element in the actual system output R ¼ e1; e2; . . .; ek, and

xI[i] is the gain from the ith element in the ideal system output I ¼ ideal1; ideal2; . . .; idealn.

XCG has been developed for measuring element retrieval systems9, and thus ei is an XML

element in the output, and ideali is an element in the set of assessed ideal elements. Averaged

NXCG at a given rank cut-off is used to rank systems.

Relevance in XCG is considered as follows. At each rank consulted, the user gains

relevant information depending on whether the consulted element contains relevant text

and whether its text overlaps with other retrieved elements. There are numerous ways in

XCG to calculate the user gain in relevant information, depending on how the relevance of

elements has been determined (which has changed over the years at INEX [36]). For

illustrative purposes, we use the same approach described in Sect. 6.2, which is based on

the amount of highlighted characters.

Let size(e) denote the number of characters in a retrieved element. Let rsize(e) denote

the number of characters in the text of a retrieved element that are relevant to the user. The

calculation of rsize(e) is shown in Sect. 6.2 in (15). The actual gain in (20) is then

xG[i] = rsize(ei)/size(ei). The ideal gain in (21) is then xI[i] = rsize(ideali)/size(ideali).

As for HiXEval, we limit gain in XCG to hits. We now formulate NXCG using ESR.

For this, we first consider xCG and xCI within our ESR framework. We start with xCG

(20). The user total expected relevance value gain is the sum of hits (8). We refer to this as

the cumulated gain CG and show this below in (23).

We now discuss xCI (21). In this work, we propose an alternative that mitigates the

instability caused by ideality cited in Kazai et al. [26]. We propose that ideal cumulated

gain be replaced with a desired cumulated gain. The latter (desired) refers to the cumulated

gain that a user expects by spending a given effort. Similar approaches to measuring effort-

gain relationships can be found in expected search length [13] and PRecall [37]. The desired

cumulated gain can be calculated as follows. Let m denote the desired effort spent (by

number of ranks) to satisfy the user information need. Let l denote the desired recall to

satisfy the user information need. Let i denote a rank cut-off. The total relevance value

needed to satisfy the user information need is the recall-base (11) times the desired recall. If

we divide this by the desired effort, then we obtain the desired gain per rank. We multiply

this by the current rank cut-off to get the cumulated desired gain. This is shown in (24).

Thus, we can now express NXCG within ESR. We divide the user gain from hits CG[i]
by the desired cumulated gain CD[i]. We call this measure normalized extended cumulated

gain in ESR (NSRCG), shown in (25).

CG½i� ¼ E½Hits;Ri;A� ð23Þ

CD½i� ¼ i� l� E½Recall-base;Ri;A�=m ð24Þ

NSRCG½i� ¼ CG½i�
CD½i� ð25Þ

where i 2 ½1; k� is the number of ranks consulted, l 2 ð0; 1� is the desired recall, and m is

the desired effort.

NSRCG does not require an ideality assumption, which allows it (and other measures in

the XCG family) to be applied to any SDR search task that can be modelled as tree retrieval.

9 Although this does mean that XCG cannot be extended to evaluate passage retrieval.
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6.4 Precision-recall with user modeling (PRUM)

Precision-Recall with User Modelling (PRUM) [35] is a measure of whether a user sees

a desired number of ideal elements. It is the ratio of the expected number of rank

positions where the user gains relevant information by seeing ideal elements compared

to the expected number of rank positions that the user consults to satisfy their infor-

mation need. It is defined, given an information need, desired recall, and output, as

follows,

PRUM ¼ E½#of rank positions user sees ideal�
E½# of rank positions consulted� ð26Þ

where average PRUM at the user desired recall-level is used to rank systems.

To see elements, a user either consults the system output or navigates from a retrieved

element. PRUM is calculated by enumerating all of the possible scenarios of consultations

and navigations that result in the user seeing the desired number of ideal elements. Let i
denote the desired number of ideal elements. Each scenario includes the number of ranks

consulted C(i) and the number of ranks where the user gains relevant information by seeing

ideal elements CL(i). The probability P(S) of each scenario S occurring can be calculated

based on the taken (and not taken) navigations. The expected ranks are calculated by

conditioning C(i) and CL(i), respectively, on the probability P(S) such that PRU-

M = E[CL(i)]/E[C(i)].
We illustrate with an example. Consider calculating PRUM for a system that outputs

R = e3, e1, e4 for the document shown in Fig. 4a. The calculation of PRUM is as follows,

and summarized in Table 9. Let the ideal elements be e3 and e4, which are outputs in rank

positions 1 and 3, respectively. Let the desired recall-level be two ideal elements i = 2.

Assume that the only possible navigation is from element e1 to element e4. Given this

navigation model, there are two possible scenarios:

(A) the user sees e3 by consulting the ranked list and sees e4 by navigating from e1, so the

user consults the ranked list two times (C(2) = 2) and there are two ranks (1 and 2)

that lead to seeing unique, ideal elements (CL(2) = 2);

(B) the user sees e3 and e4 by consulting the ranked list and does not navigate to e4 from

e1, so the user consults the ranked list three times (C(2) = 3) and there are two ranks

(1 and 3) that lead to seeing unique, ideal elements (CL(2) = 2);

Table 9 Example of PRUM
ðPðe1 e4Þ ¼ 0:2Þ Scenarios

Rank A B

1 (e3) e3 e3

2 (e1) e4

3 (e4) e4

P(S) Pðe1 e4Þ
0.2

1� Pðe1 e4Þ
0.8

EXP PRUM

CL(2) 2 2 2

C(2) 2 3 2.8 0.714
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The probability of each scenario occurring is determined as follows. Let Pðf eÞ denote

user navigation as the probability10 that the user has seen element e given that the user has

seen element f. Assume user navigation is Pðe1 e4Þ ¼ 0:2. For scenario A, the user

navigates to e4 from e1, i.e., PðAÞ ¼ Pðe1 e4Þ. For scenario B, the user does not navigate

to e4 from e1, i.e., PðBÞ ¼ 1� Pðe1 e4Þ. Table 9 summarizes the scenarios A and B,

where the row P(S) shows the probability of each scenario occurring, the column EXP

shows the expected values of CL(2) and C(2), and the column PRUM shows that the

PRUM precision for this example is 0.714.

Next, we use ESR to formulate PRUM. For this, we need to express CL and C within

ESR. The user desire is to see non-redundant, relevant information at each rank position

consulted. Note that PRUM, as defined in Piwowarski et al. [35], does not consider graded

assessments. Thus, let us assume binary relevance values. User navigation in ESR and

PRUM is similar (they differ in their probabilistic interpretation, but, in general, both

consider navigation between pairs of nodes). Thus, unlike HiXEval and XCG, PRUM

considers near-misses in ESR and the user gain in PRUM is the sum of hits (8) and near-

misses (10). The desired number of consultations of the output is equal to the gain because

each relevant tree contributes up to 1 to the gain. Thus, the desired number of ranks is

stated as:

CLðiÞ ¼ E½Hits;Ri;A� þ E½Near-misses;Ri;A� ð27Þ

where i 2 ½1; k� is a rank cut-off, and rel(a) = 1 for relevant trees a 2 A, and rel(a) = 0

otherwise.

The number of ranks that the user consults to satisfy a given information need is

obtained by calculating the rank cut-off for a given recall level. Let r be the user desired

recall level. Let m be the minimum rank cut-off where the user desired recall level

is achieved. This cut-off is calculated using ESRR(R, A) (14) by evaluating ESRR

across rank cut-offs m 2 ½1::k� until ESRR(Rm, A) is greater than or equal to the desired

recall r:

C ¼ m; where ESRRðRm;AÞ� r ð28Þ
Precision in PRUM using ESR (SRPRUM) is the ratio between the desired number of

ranks to achieve a given recall-level CL(C) and the rank cut-off C where a given recall-

level is achieved, which is

SRPRUM ¼ CLðCÞ=C ð29Þ

where CL(C) (27) is the desired number of consultations of the output to achieve recall r,

and C (28) is the actual number of consultations to achieve recall r.

ESR does not rely on ideality, as does not SRPRUM. Similarly, assuming binary rel-

evance of judged trees, SRPRUM can be applied to any (SDR and beyond) search task that

can be modelled as tree retrieval.

10 Pðf eÞ in PRUM is different from ~pðe; f Þ in ESR. Pðe f Þ is the probability that a user who has seen
element f has also seen element e. Whereas, ~pðe; f Þ is the probability that a user who navigates from element
f will navigate to element e. The difference lies in how user navigation is assessed in e.g. user studies.
Pðf eÞ is determined by asking the reader post-assessment whether specific ideal elements were seen or
not. In contrast, ~pðe; f Þ is determined by tracking the reader’s attention and assuming that navigation is
independent of relevance.
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6.5 Calculating SR, HiXEval, XCG and PRUM using ESR

Let us now continue our illustrative example of ESR evaluation. In Sect. 4.4, we intro-

duced a toy collection (Fig. 4a), a navigation model for the collection (Table 5), a set of

relevance judgments for both binary relevance and relevance by length of nodes e3 and e4

(Table 4), and three example outputs R1, R2, and R3 (Table 6) where System 3 (R3) is the

best system, System 1 (R1) is the second-best system, and System 2 (R2) is the worst

system. In Sect. 5, we calculated the ESR expected relevance value gain from hits, misses

and near-misses across the rank positions of each example system output (as summarized

in Table 8). In this section, we demonstrate how we use our ESR expectations to calculate

the ESR measures proposed in this section.

Let us begin our demonstration by calculating SR, HiXEval, XCG and PRUM for

System 3 (R3 = e3, e1, e4) at rank cut-off k = 2. We begin by calculating structural rel-

evance in precision (ESRP) and structural relevance in recall (ESRR). Assume binary

relevance. The expected relevance values for R32 are found in Row 10 of Table 7. The sum

of the hits in Row 10 is E[Hits, R32, A] = 1 ? 0 = 1. The sum of the near-misses in Row

10 is E[Near-misses, R32, A] = 0 ? 0.11 = 0.11. The sum of the misses in Row 10 is

E[Misses, R32, A] = 0 ? 0.89 = 0.89. From Row 5 of Table 8, our recall-base is

E[Recall-base, R32, A] = 2. Precision is ESRP(R3, A)@2 = E[Hits, R32, A]/2 = 0.5 (13)

and the recall ESRR(R3,A)@2 = (1 ? 0.11)/2 = 0.555 (14). Table 11 tabulates ESRP

and ESRR across rank cut-offs for all systems.

Next, we calculate interpolated precision (SRiP) and recall (SRiR) in HiXEval. Assume

relevance by length. The expected relevance values for R32 can be found in Row 10 of

Table 7. The sum of the hits E[Hits, R32, A] in Row 10 is 30 ? 0 = 30. The recall-base is

E[Recall-base, R32, A] = 50 from Row 5 of Table 8. Interpolated precision is

SRiP@2 = 30/130 = 0.231 (18). Interpolated recall is SRiR@2 = 30/50 = 0.6 (19).

Table 12 tabulates SRiP and SRiR across rank cut-offs for all systems.

Next, we use normalized cumulated gain in ESR (NSRCG) to calculate XCG. Again,

assume relevance by length. The expected relevance values for R32 can be found in Row

10 of Table 7 and the recall-base in Row 5 of Table 8. Let the desired recall be l = 100%

Table 10 Summary of SDR measures

INEX ESR

SRPðRÞ ¼
Pk

i¼1
relðtiÞ�ð1�pðti ;Ri�1ÞÞ

k
ESRP ¼ E½Hits;R;A�

k

– ESRR ¼ E½Hits^Near-misses;R;A�
E½Recall-base;R;A�

iP@r ¼
Pr

i¼1
rsizeðeiÞPr

i¼1
sizeðeiÞ

SRiP ¼ E½Hits;R;A�Pk

i¼1
sizeðtiÞ

iR@r ¼
Pr

i¼1
rsizeðeiÞ

Trel

SRiR ¼ E½Hits;R;A�
Trel

xCG[k] =
P

i=1
k xG[i] CG[i] = E[Hits, Ri, A]

xCI[k] =
P

i=1
k xI[i] CD[i] = i 9 l 9 E[Recall-base, Ri, A]/m

NXCG[k] = xCG[k]/xCI[k] NSRCG[i] = CG[i]/CD[i]

PRUM ¼ E½#of rank pos: user sees ideal�
E½#of rank pos: consulted�

CL(i) = E[Hits ^ Near-misses, Ri, A]

C = m, where ESRR(Rm, A) C r

SRPRUM =CL(C)/C
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and let the desired effort be m = 2 ranks. The desired cumulated gain is

CD[2] = 2 9 100% 9 50/2 = 50 (24). Similarly, the user’s expected gain is CG[2] = 30

(23). Normalized cumulated gain is NSRCG[2] = CG[2]/CD[2] = 30/50 = 0.6 (25).

Table 13 tabulates CD, CG, and NSRCG across rank cut-offs for all systems.

Finally, we calculate PRUM using precision-recall with user modelling in ESR (SRP-

RUM). Assume binary relevance values. The expected relevance values for R32 can be

found in Row 10 of Table 7 and the recall-base in Row 5 of Table 8. Let the required

number of ranks to achieve the desired recall be C = 2 (28), which corresponds to a

desired recall of l C0.555 using ESRR in Table 11. The expected number of rank positions

where the user gains relevant information at C = 2 is CL(2) = 1 ? 0.11 = 1.11 (27).

Precision-recall with user modelling in ESR is SRPRUM =1.11/2 = 0.555 (29). Table 14

tabulates SRPRUM at a desired recall of l = 100% for all systems.

Tables 11, 12, 13, and 14 show our results for ESRP/ESRR, SRiP/SRiR, NSRCG, and

SRPRUM, respectively, for all systems. We can observe the following. System 2 does not

retrieve hits. At rank cut-off 3 (which is the maximum recall for all systems), for SR,

HiXEval and PRUM, the system ranking is R3 	 R1 	 R2, where 	 denotes the left-hand

system performing better than the right-hand system. Using XCG, System 1 and 3 are tied

Table 11 Structural relevance in precision (ESRP) and recall (ESRR)

ESRP@1(ESRR@1) ESRP@2(ESRR@2) ESRP@3(ESRR@3)

System 1 0 (0.135) 0.42 (0.516) 0.577 (1)

System 2 0 (0.135) 0 (0.194) 0 (0.194)

System 3 1 (0.5) 0.5 (0.555) 0.63 (1)

Table 12 Precision and recall for HiXEval using ESR

SRiP@1(SRiR@1) SRiP@2(SRiR@2) SRiP@3(SRiR@3)

System 1 0 (0) 0.194 (0.558) 0.287 (1)

System 2 0 (0) 0 (0) 0 (0)

System 3 1 (0.6) 0.231 (0.6) 0.319 (1)

Table 13 XCG using ESR

CG[k]/CD[k] = NSRCG[k]

k = 1 k = 2 k = 3

System 1 0/25 = 0 25.2/45.2 = 0.56 25.2/64.5 = 0.39

System 2 0/25 = 0 0/50 = 0 0/75 = 0

System 3 30/25 = 1.2 30/50 = 0.6 30/71.7 = 0.42

Table 14 PRUM using ESR

System 1 System 2 System 3

SRPRUM 0.577 0.129 0.63
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and the system ranking is ðR3;R1Þ 	 R2. As expected, in Sect. 4.4, both Systems 1 and 3

outperformed System 2 for all measures. Similarly, in terms of precision, System 3 out-

performs System 1 and is the best system. Using XCG, System 3 outperforms System 1.

Overall, we obtain the expected ranking of systems as predicted above in Sect. 4.4.

6.6 Discussion

In this section, we have demonstrated how current SDR measures can be formulated and

calculated in ESR. Table 10 summarizes the original measures (as proposed at INEX) and

the corresponding ESR measures. When formulated within ESR, the resulting measures are

not necessarily exact equivalents of the original measures. We have however shown in our

previous work on SR in [5–7], upon which ESR is based, that the probabilistic approach

presented here for measuring precision is a reliable performance measure with respect to

both XCG and HiXEval. The goal of this work is to provide a framework in which new

measures for SDR evaluation can be developed. Our intention in this section was to show

how current SDR measures could have been (directly) expressed within our ESR frame-

work. Our future work will be to further refine our proposals if needed (e.g. accounting for

near-misses and overlap in INEX measures), and then to fully validate the ESR framework

across these and additional measures, and search tasks.

The benefit of ESR is that we have now SDR measures that become inherently com-

parable because they rely on the same set of parameters, namely E[Hits;R, A], E[Mis-

ses;R, A], E[Near-misses;R, A], and E[Recall-base;R, A] (8, 9, 10, and 11, respectively). In

addition, ESR provides a convenient way for measures to share common models of rele-

vance value and user navigation; provides a means to apply evaluation approaches

developed for different paradigms to tree retrieval; and, system performance can be

compared in both general terms of how users gain relevant information (via hits, misses

and near-misses) and how a system fulfills a specific search task (via task-specific mea-

sures). We believe that the flexibility to support such varied measures in a single frame-

work is an important advancement for the development and evaluation of complex search

tasks, many of which are to come in the near future.

7 System rankings using ESR measures

In this section, we compare our ESR measures, to their originals by evaluating three SDR

tasks, namely, Focused (2006, 2007), Best In Context (2006), and Relevant In Context

(2007), all carried out in INEX. To calculate user navigation probabilities, we use the

depth-weighted summary model of navigation described in Sect. 4.2 (originally proposed

and validated in Ali et al. [7]). For each ESR measure tested, we compared the system

rankings from ESR to the official INEX results using Kendall’s Tau, a common way to

compare rankings of systems in information retrieval evaluation. Kendall’s Tau (s) indi-

cates whether two separate rankings, as generated in our case by two evaluation measures

(an ESR measure and its INEX original counterpart), are positively (s [ 0) or negatively

(s\ 0) ordered. The p value is the probability that the compared rankings are not corre-

lated. If a p value is\0.05 then the two measures are correlated in terms of how they order

systems. So, in comparing system rankings for a current measure versus a reference

measure, the rankings will be either positively correlated, negatively correlated, or not

correlated. A positive correlation implies that our ESR measure is an appropriate repre-

sentation of its original INEX counterpart.
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To calculate recall-points for ESR measures SRiP (18) and SRiP2 (30), we selected

SRiR2 (31). To calculate recall-points for ESR measure ESRP (13), we selected ESRR (14).

We noted in Sect. 5 that HiXEval and XCG, like SRP, do not consider near-misses. For

comparative purposes, we propose ESR formulations of HiXEval and XCG where near-

misses are included. Interpolated precision and recall in HiXEval including near-misses

(SRiP2 and SRiR2, respectively) are:

SRiP2ðR;AÞ ¼ E½Hits;R;A� þ E½Near�Misses;R;A�
Pk

i¼1 sizeðtiÞ
ð30Þ

SRiR2ðR;AÞ ¼ E½Hits;R;A� þ E½Near�Misses;R;A�
Trel

ð31Þ

Similarly, normalized extended cumulated gain (NSRCG2) is:

CG½i� ¼ E½Hits;Ri;A� þ E½Near-Misses;R;A� ð32Þ

CD½i� ¼ i� l� E½Recall-base;Ri;A�=m ð33Þ

NSRCG2½i� ¼ CG½i�
CD½i� ð34Þ

where i 2 ½1; k� is the number of ranks consulted, l 2 ð0; 1� is the desired recall, and m is

the desired effort. By including near-misses, our updated ESR formulations of XCG and

HiXEval capture user navigation, which was not the case with our initial formulations, i.e.

nXCG and iP/iR. In this work, recall points for ESR HiXEval measures are calculated

using SRiR2 (31). Finally, mean-average precision is calculated over 101 recall points.

7.1 Focused task (2006): nXCG and iP

In the Focused Task, a system is tasked with retrieving non-overlapping, focused document

parts. The reported INEX measures for this task in 2006 are MAiP (16 mean-averaged) at

rank cut-off k = 1000, and nXCG (22) at rank cut-off k = 10. For nXCG, the reported

INEX measures are further sub-divided into nXCG ON (the user does not tolerate over-

lapped text) and nXCG OFF (the user tolerates overlapped text). From Sect. 6.2, overlap

ON means a = 1 and overlap OFF a = 0. MAiP is reported with overlap ON.

We evaluated 43 runs across 107 topics using the ESR measures NSRCG (25) at rank

cut-off k = 10, NSRCG2 (34) at rank cut-off k = 10, MASRiP (18) at rank cut-off

k = 1000, and MASRiP2 (30) at rank cut-off k = 1000. The 43 systems included the top-30

officially best systems (as determined using nXCG ON) and 13 randomly selected systems.

Tables 15 and 16 show the system ranking comparison results between the original

(INEX) and ESR measures using Kendall’s Tau and p value (in parentheses). Table 15

shows that the system rankings from NSRCG are negatively ordered (s\ 0) with nXCG

OFF (where user tolerates overlaps). With overlap ON, system rankings via NSRCG are

not correlated (p value\0). System rankings via NSRCG2 are positively ordered (s[ 0)

with nXCG OFF but not correlated (p value\0.05). However, with overlap ON, NSRCG2

is positively ordered (s[ 0) with nXCG and correlated (p value\ 0.05). Table 16 shows

that the system rankings via MASRiP and MASRiP2 are positively ordered (s[ 0) and

positively correlated (s [ 0, p value \ 0.05) with those via MAiP.

Thus, in the focused task, NSRCG and NSRCG2 are not appropriate representations of

nXCG OFF. But, NSRCG2 is with respect to nXCG ON, whereas NSRCG is not. In
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addition, both MASRiP and MASRiP2 are both appropriate representations of iP with

overlap ON. Based on the negative ordering of ESR measures for nXCG with overlap OFF,

we theorize that ESR, as defined thus far, does not capture users who tolerate seeing

overlapped information. This is likely because we have limited our consideration of user

navigation, in this work, to between nodes and not within the same node.

7.2 Focused task (2007): iP

This task is the same as for 2006 above. However, the official measure for this task is iP

(16) at the recall point 0.01 calculated using iR (17) with overlap ON, i.e. a = 1. We

evaluated 77 runs across 102 topics using the ESR measures MASRiP (18) at rank cut-off

k = 1000; SRiP (18) at recall point 0.01; MASRiP (30) at rank cut-off k = 1000; and,

SRiP2 (30) at recall point 0.01.

Table 17 shows the system ranking comparison results between the original (INEX) and

ESR measures. MASRiP, MASRiP2, SRiP, and SRiP2 are positively ordered (s[ 0) and

positively correlated (s[ 0, p value \0.05) to iP. The mean-averaged ESR measures

(MASRiP and MASRiP2) have better rank correlation (s is higher) than their corre-

sponding rank cut-off measures (SRiP and SRiP2, respectively). These results agree with

our results in Sect. 7.1 that SRiP and SRiP2 are appropriate representations of iP for the

focused task.

7.3 Best in context task (2006): EPRUM

In this search task, a system is asked to retrieve the single, most focused, relevant part of a

document. The official INEX measure for this task is EPRUM11 [33] (introduced in Sect.

2) which is a simplified version of PRUM. Navigation in EPRUM uses a proximity

measure based on a scalar parameter A, representing the distance, in the document, that a

user will navigate from a given entry point to locate relevant information. A = 0.1 refers to

a user willing to navigate to information very close to the entry point, whereas A = 100

Table 15 INEX 2006 Focused
Task, XCG, 107 topics, 43
Systems

NSRCG[10] NSRCG2[10]

nXCG[10] OFF -0.25(0.02) 0.01(0.92)

nXCG[10] ON -0.072(0.5) 0.26 (0.01)

Table 16 INEX 2006 Focused
Task, MAIP, 107 topics, 43
Systems

MASRiP MASRiP2

MAIP 0.30(0.00) 0.58(0.00)

11 EPRUM models the expected relative effort a user spends to achieve a desired recall l using an actual

system versus the effort using an ideal system. It is calculated as follows: EPRUMðlÞ ¼ EðminI ðlÞ
minsðlÞÞ where

minI(l) is the minimum number of consulted elements to achieve a recall l in an ideal output, and mins(l) is
the minimum number of consulted elements over all possible scenarios to achieve a recall l in the actual
output.
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refers to a user willing to navigate to information much further away to the entry point. The

reported INEX measures included A = 0.1, 1, 10, 100.

We evaluated 64 runs across 107 topics using the ESR measures SRPRUM (29) and

ESRP (13 mean-averaged across recall points). We used ESRR (14) for calculating recall

points. Table 18 shows the system ranking comparison results between the original (INEX)

and ESR measures. The system rankings from SRPRUM are positively ordered (s[ 0) and

positively correlated (s [ 0, p value \0.05) to EPRUM for all values of A. The system

rankings from ESRP are positively ordered (s [ 0) but uncorrelated (p value \ 0.05) to

EPRUM for all values of A. We conclude that SRPRUM is an appropriate representation of

EPRUM for the best in context task.

7.4 Relevant in context task (2007): MAgP

In the this search task, the system is tasked with retrieving focused answers grouped per

document. The official measure for this task is MAgP, which is generalized precision
mean-averaged across recall points where recall is measured using generalized recall (gR)

[21]. In HiXEval, to account for near-misses, generalized measures have been proposed.

These measures extend interpolated measures by accounting for user gain at the document-

level. For instance, if a system retrieves a passage with x number of relevant characters

from a document containing y relevant characters, then, depending on how navigation is

modelled, the user is modelled to see between x and y relevant characters from the given

document. This is akin to how, in this work, navigation p(ti;tj) (in (4)) is only non-zero

between sub-documents in the same document. In this way, navigation in generalized

measures goes beyond retrieved text passages and is more akin to near-misses as defined in

ESR. This approach solves the navigational limitations mentioned in Sect. 6.2 in the case

where documents in the collection can be considered as single passages (such as Wikipedia

articles). But, it remains to be seen whether this approach can address cases where doc-

uments cannot be considered as single passages such as in online books or semantically

linked data.

We evaluated 77 across 102 topics using the ESR measures MASRiP (18) at rank cut-

off k = 1000 and MASRiP2 (30) at rank cut-off k = 1000. Table 19 shows the system

ranking comparison results between the original (INEX) and ESR measures. Both MASRiP

and MASRiP2 are positively ordered (s[ 0) and positively correlated (s [ 0, p value

Table 17 INEX 2007 focused task, 102 topics, 77 systems

SRiP_0.01 MASRiP SRiP2_0.01 MASRiP2

iP_0.01 0.17(0.03) 0.54(0.00) 0.38(0.00) 0.53(0.00)

Table 18 INEX 2006 best in
context task, 107 topics, 64
systems

SRPRUM ESRP

EPRUM A= 0.01 0.32(0.00) 0.02(0.83)

EPRUM A= 1 0.66(0.00) 0.10(0.2)

EPRUM A = 10 0.60(0.00) 0.12(0.15)

EPRUM A=100 0.58(0.00) 0.09(0.25)
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\0.05) to MAgP. We conclude that MASRiP and MASRiP2 appropriate representations of

MAgP for the relevant in context task.

7.5 Summary

In this section, we tested our ESR proposals for XCG, (E)PRUM and HiXEval to their

counterpart INEX measures. We summarize our results in Table 20.

For XCG, (E)PRUM, and HiXEval, appropriate representations in ESR measures exist

for all tasks except in the focused task where the user tolerates overlap (i.e., overlap OFF).

In INEX, overlap is evaluated using a factor on the gain to represent the user’s tolerance

for seeing relevant, retrieved information more than once [44]. With how we have defined

ESR, gain is not explicitly penalized in cases of overlapped results. Instead, we relied on

the notion of redundancy to account for it. We theorize that the navigation model used in

this study does not adequately address the issue of overlap, as considered at INEX. Indeed,

a better approach would be to sub-divide, into overlapped and non-overlapped relevant

text, the ESR partition for relevant text in the collection that has been retrieved, i.e.,

E[Hits, R, A] in (8). This would allow us to introduce an overlap parameter a akin to the

one used for HiXEval and XCG. We leave this for future work.

Our results however demonstrate the advantages of our ESR common basis of perfor-

mance based on hits, misses, near-misses using a model based on relevance, navigation and

redundancy. ESR allows us to generalize performance calculation across approaches (e.g.,

HiXEval, XCG, and PRUM). The contrast in measures across tasks allows us to isolate

problems in evaluation (e.g., overlap). In ESR, we can address these problems by refining

our common basis.

Table 19 INEX 2007 relevant
in context task, 102 topics, 77
systems

MASRiP MASRiP2

MAgP 0.34(0.00) 0.34(0.00)

Table 20 Final results (Yes: s[ 0.25, No: otherwise)

Task INEX ESR Appropriate

Focused nXCG, overlap OFF nSRCG No

Focused nXCG, overlap OFF nSRCG2 No

Focused nXCG, overlap ON nSRCG No

Focused nXCG, overlap ON nSRCG2 Yes

Focused MAiP, overlap ON MASRiP Yes

Focused MAiP, overlap ON MASRiP2 Yes

Focused iP, overlap ON, iR = 0.01 MASRiP Yes

Focused iP, overlap ON, iR = 0.01 MASRiP2 Yes

Focused iP, overlap ON, iR = 0.01 SRiP No

Focused iP, overlap ON, iR = 0.01 SRiP2 Yes

Best in context EPRUM SRPRUM Yes

Best in context EPRUM ESRP No

Relevant in context MAgP MASRiP Yes

Relevant in context MAgP MASRiP2 Yes
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8 Conclusions and future work

In this paper, we proposed a general framework, called Extended Structural Relevance

(ESR), in which to express evaluation measures for SDR. This paper follows from our

previous work [5] on evaluating tree retrieval, which many of the current search tasks in

SDR, are special cases. In this previous work, we identified three main pillars for evalu-

ating the performance of SDR systems, namely, relevance, navigation and redundancy.

ESR incorporates relevance, navigation and redundancy into a single probabilistic

framework, and thus allows us to calculate the user expected gain in relevant information

accounting for hits, misses or near-misses. We use these expectations as parameters

defining a basis to formulate evaluation measures for SDR.

Our aim was to overcome a main drawback that arose from the development of task-

specific measures in SDR, i.e., current SDR measures of performance cannot easily be

compared with respect to each other and across search tasks. Our experimental results

validated that task-specific measures at INEX, namely, SR, PRUM, HiXEval and XCG,

can be formulated and calculated using ESR. Two outstanding methodological issues that

should be addressed in future work are further refinement on how to assess the relevance of

sub-documents [36] and how task-specific issues, such as tolerance to overlap [44], are

represented in ESR.

ESR is the first framework of its kind in the literature. ESR measures are comparable

with respect to each other because they share a common basis for defining the way they

consider relevance, user navigation and redundancy. It provides insights into how measures

relate and differ, which is not easily replicated with current SDR measures.

We believe that relevance, user navigation and redundancy are also of concern to search

tasks outside of SDR. For instance, within the context of semantic web search systems (i.e.

searching collections of RDF documents [18]), we are investigating how ESR can be

applied to evaluate systems that search collections that do not contain structured documents

but, instead, structured information (e.g., semantic associations and ontologies), where

navigation also plays an important role. Comparing the relative effectiveness of semantic

web search systems using classical precision and recall is a well-known challenge [3, 4, 16].

Our belief is that our ESR framework can serve as a basis to define measures for evaluating

search tasks across SDR, semantic web search of RDF collections, and many other areas of

information access. Finally, the ESReval package, written in Java, implements all of the

measures presented in this work and is available upon request from the authors.
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