
Implicit indexing of natural language text
by reorganizing bytecodes

Nieves R. Brisaboa • Antonio Fariña •

Susana Ladra • Gonzalo Navarro

Received: 6 June 2011 / Accepted: 14 January 2012 / Published online: 4 February 2012
� Springer Science+Business Media, LLC 2012

Abstract Word-based byte-oriented compression has succeeded on large natural lan-

guage text databases, by providing competitive compression ratios, fast random access, and

direct sequential searching. We show that by just rearranging the target symbols of the

compressed text into a tree-shaped structure, and using negligible additional space, we

obtain a new implicitly indexed representation of the compressed text, where search times

are drastically improved. The occurrences of a word can be listed directly, without any text

scanning, and in general any inverted-index-like capability, such as efficient phrase sear-

ches, can be emulated without storing any inverted list information. We experimentally

show that our proposal performs not only much more efficiently than sequential searches

over compressed text, but also than explicit inverted indexes and other types of indexes,

when using little extra space. Our representation is especially successful when searching

for single words and short phrases.

Keywords Word-based compression � Searching compressed text � Compressed indexing

A preliminary partial version of this paper appeared in Proc. SIGIR 2008, pp. 139–146.

N. R. Brisaboa � A. Fariña � S. Ladra (&)
Database Laboratory, University of A Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain
e-mail: sladra@udc.es

N. R. Brisaboa
e-mail: brisaboa@udc.es

A. Fariña
e-mail: antonio.farina@udc.es

G. Navarro
Department of Computer Science, University of Chile, Blanco Encalada, 2120 Santiago, Chile
e-mail: gnavarro@dcc.uchile.cl

123

Inf Retrieval (2012) 15:527–557
DOI 10.1007/s10791-012-9184-1

1 Introduction

Text compression is not only useful to save disk space, but more importantly, to save

processing, transmission, and disk transfer time. In text databases, reducing the com-

pression ratio (that is, the size of the compressed file as a percentage of its uncompressed

size) is only one of the criteria to choose a compressor. It is also particularly important to

decompress quickly, to access the collection at arbitrary points for display purposes, and to

support fast pattern searches.

Compression techniques designed for natural language text databases have obtained

good compression ratios (around 25–30%) while allowing one to decompress the text

collection from any point (Turpin and Moffat 1997; Moura et al. 2000). By using slightly

more space they also offer very fast sequential searches on the compressed text, 3–8 times

faster than on the plain text (Moura et al. 2000; Brisaboa et al. 2007).

In order to offer indexed searches (that is, search times that do not scale up linearly with

the database size), an inverted index is usually added on top of the collection. A word-
addressing inverted index records the positions of each word in the collection, and it can

easily double the space of the compressed text (Baeza-Yates and Ribeiro-Neto 1999;

Witten et al. 1999). Block addressing (Navarro et al. 2000) is used to reduce space: the text

is cut into blocks and the index records only the blocks where each word appears. Then the

indexed searches must be complemented with some sequential scanning on compressed

text blocks, giving a space/time tradeoff related to the block size.

Most of the compressors that have succeeded in natural language text databases are

statistical methods that use a word-based model (Bentley et al. 1986; Moffat 1989), where

words, not characters, are taken as the source symbols1. Words exhibit a more biased

distribution of frequencies than characters. Thus, regarded as a sequence of words, the text

is highly compressible with a zero-order modeling. The use of words captures high-order

entropy statistics, while ensuring that the model is not too large [as the vocabulary grows

sublinearly with the size of the text collection (Heaps 1978)]. With the optimal binary

Huffman (1952) coding, compression ratios can be as low as 25%.

Although somewhat inferior to binary Huffman codes in compression effectiveness,

different coding methods, such as Plain Huffman Codes (Huffman 1952; Moura et al.

2000) or Restricted Prefix Byte Codes (Culpepper and Moffat 2005) encode the source

symbols as sequences of bytes instead of bits. This enables much faster decompression.

Other coding methods, such as Tagged Huffman Codes (Moura et al. 2000), End-

Tagged Dense Codes, and (s, c)-Dense Codes (Brisaboa et al. 2007), worsen the com-

pression ratios a bit more in exchange for self-synchronization. This means that codeword

boundaries can be distinguished starting from anywhere in the encoded sequence. Self-

synchronization enables random access to the compressed text, as well as very fast Boyer-

Moore-like direct searches on the compressed text (Boyer and Moore 1977).

In this paper we show that self-synchronized byte-encodings and block-addressing

inverted indexes may be unnecessary. We propose a rearrangement of the bytes of the

compressed text codewords into a tree-shaped data structure that we call Wavelet Trees on
Bytecodes (WTBC) for its resemblance to wavelet trees (Grossi et al. 2003). This reor-

dering by itself brings self-synchronization to any byte-encoding scheme. For example,

even using Plain Huffman Codes, the reordered compressed text can be directly accessed at

any word offset. This encourages the use of the most space-efficient byte-encodings, on

which direct access is achieved.

1 The strings separating words are called ‘‘separators’’ and handled like words too.

528 Inf Retrieval (2012) 15:527–557

123

What is even more striking is that the rearranged text turns out to offer implicit indexing
properties. That is, it can list the text positions of any word directly, just as with a word-

addressing inverted index. Moreover, it can in general simulate any functionality of such

an index, for example carrying out efficient phrase searches on the text. In addition, it

efficiently supports some operations that are hard to compute with inverted indexes, such

as counting word frequencies along ranges of the text.

We implemented block-addressing inverted indexes on top of different word-based com-

pressors and using the most efficient list compression and list intersection techniques, in order

to compare to WTBCs. Our results demonstrate that, within the same space usage, it is more

convenient to use WTBC than those space-efficient inverted indexes. Only if one is willing to

degrade compression ratios over some point, inverted indexes may take over in some queries.

We remark that we are focusing on the so-called ‘‘full-text retrieval’’, that is, on the

problem of retrieving the occurrences of a query in the text, and therefore we compare to

word-addressing inverted indexes. These must be converted into block-addressing indexes

in order to compete in space with our structure. A different problem is ‘‘document

retrieval’’, that is, retrieving the documents where a query appears. This is handled with a

document-addressing inverted index. We briefly discuss in the Conclusions about deriv-

atives of our present work that handle this type of search.

We also compare our proposal with other word-based compressed indexes in the lit-

erature. Those directly based on wavelet trees (Claude and Navarro 2008) achieve non-

competitive compression ratios. Those based on word-based suffix arrays (Brisaboa et al.

2008b), on the other hand, can use slightly less space than WTBC and are faster when

searching for phrases of 3 or more words. Yet, they are slower on the more common word

and 2-word queries2, and particularly slow to display portions of the text. They are also

unable to efficiently restrict the search to an area of the database.

Our technique is applicable in main memory due to its random access pattern. There has

been much recent interest on inverted indexes that operate in main memory (Sanders and

Transier 2007; Transier and Sanders 2010; Strohman and Croft 2007; Culpepper and

Moffat 2007, 2010), mainly motivated by the possibility of distributing a large collection

among the main memories of several interconnected processors. By using less space for

those in-memory indexes (as our technique allows) more text could be cached in the main

memory of each processor and fewer processors (and less communication and energy)

would be required. In small handheld devices, secondary memory may even be absent, and

using less space may make the difference between being able or not to handle a collection.

The paper is organized as follows. The next section describes the byte-coding schemes

we build on. Section 3 describes wavelet trees and how they can be used as compressed

indexes. Sections 4 and 5 present our WTBC technique, first the structure and then the

access algorithms. Section 6 presents our experimental results. We conclude in Section 7

and give future work directions.

2 Bytewise encoders

We cover the most representative byte-oriented coding methods: Huffman-based ones

(Huffman 1952; Moura et al. 2000), Dense Codes (Brisaboa et al. 2007), and Restricted

Prefix Bytes codes (Culpepper and Moffat 2005).

2 According to up-to-date studies, these comprise 65–90% of the queries posed to Web search engines in
various countries, see http://www.keyworddiscovery.com/keyword-stats.html.

Inf Retrieval (2012) 15:527–557 529

123

http://www.keyworddiscovery.com/keyword-stats.html

The byte-oriented variant of the binary Huffman code, called Plain Huffman Code (PH)

(Huffman 1952; Moura et al. 2000), is just a Huffman code with arity 256, so its target

symbols are bytes instead of bits. This worsens the compression ratio by around 5 per-

centage points over that obtained by binary Huffman coding on natural language and using

words as source symbols (Moffat 1989). In exchange, decompression and searching are

much faster on PH because no bit manipulations are needed. Tagged Huffman codes (TH)

(Moura et al. 2000) are similar to PH, but they use a flag bit to obtain synchronism at the

expense of another 5 percentage point loss in compression ratio.

End-Tagged Dense Code (ETDC) is the simplest and fastest member of the family of

(s, c)-Dense Codes (SCDC) (Brisaboa et al. 2007). It reserves the first bit of each byte to

flag the last byte of the codewords. Such flag bit is enough to ensure that the code is a prefix

code regardless of the content of the other 7 bits, so all the 128 possible combinations are

used. ETDC is better than TH in almost every aspect. In the more general SCDC codes,

values from 0 to s - 1 are final codeword bytes, and the other c = 256 - s values denote

that the codeword continues. SCDC codes get very close to PH in compression ratio and are

almost as efficient as ETDC, which is the particular case s = c = 128.

TH, ETDC, and SCDC are self-synchronizing codes, that is, one can start decom-

pression at any point in the compressed sequence, even from the middle of a code, in any

direction. They are also amenable to direct searching: a search pattern can be encoded and

searched for in the compressed text with any string matching algorithm, even those

skipping characters (Boyer and Moore 1977), without fear of false positives.

In Restricted Prefix Byte Codes (RPBC) (Culpepper and Moffat 2005) the first byte of

each codeword completely specifies its length. The encoding scheme is determined by a

4-tuple3 (v1, v2, v3, v4) satisfying v1 ? v2 ? v3 ? v4 B R, where the radix R is typically

256. The code has v1 one-byte codewords, Rv2 two-byte codewords, R2v3 three-byte

codewords and R3v4 four-byte ones. They require that v1 ? v2R ? v3R2 ? v4R3 is not less

than the vocabulary size. This method improves the compression ratio of ETDC as it adds

more flexibility to the codeword lengths. It maintains efficiency with simple encode and

decode procedures, but it loses the self-synchronization property. It is possible to run

Boyer-Moore-like searches over this encoding, but this is slower than searching text

compressed with ETDC.

In this paper we will use PH, ETDC, and RPBC as the techniques to illustrate our

rearrangement strategy. Since we will obtain self-synchronization on any code and indexed

searches, there will be a strong reason to prefer PH over the other codes, as it achieves

minimum space and the advantages of the other codes will be blurred.

3 Wavelet trees

The wavelet tree is a data structure proposed by Grossi et al. (2003) for representing a

sequence S[1, n] in compressed form. The original wavelet tree is a balanced binary tree

that divides the alphabet into two halves at each node, and stores bitmaps in the nodes to

mark which side was chosen by each symbol in the sequence. The root handles the whole

sequence and each child handles recursively the subsequence with the symbols assigned to

it. The leaves correspond to a single symbol and are not represented. On an alphabet of size

3 Considering codewords composed of up to 4 bytes, the codeword assignment in RPBC can be easily
accomplished by using a simple brute force calculation. It can be extended to handle longer codeword
lengths, allowing for codewords of five or more bytes if required. Yet, in our experiments the longest
codeword used at most 4 bytes.

530 Inf Retrieval (2012) 15:527–557

123

r, the wavelet tree has dlog2 re levels, storing n bits overall per level. This makes up a total

of ndlog2 re bits, that is, the same as a plain representation of S.

To extract any S[i], the wavelet tree starts at the root bitmap B[1, n]. If B[i] = 0, then

S[i] belongs to the left half of the alphabet (i.e., S[i] \r/2) and we go to the left child,

otherwise we go to the right child. Now, on the left child, the symbol S[i] has been mapped

to position i0 � i; which is the number of 0s in B[1, i]. This is called rank0ðB; iÞ. Similarly,

we move to i0 ¼ rank1ðB; iÞ when going to the right child.

Operation rank on bitmaps B[1, n] can be solved in constant time using o(n) bits on top

of B (Jacobson 1989). If we create rank structures for all the bitmaps, we can compute any

S[i] in time O(logr) and using nlogr ? o(nlogr) bits of space. A similar algorithm

computes rankcðS; iÞ; the number of occurrences of symbol c in S[1, i], in time O(logr).

The operation complementary to rank is selectcðS; jÞ; which gives the position of the j-th
occurrence of c in S. On binary sequences, select can be solved also in constant time with

o(n) extra bits (Clark 1996; Munro 1996). If we give select support to the bitmaps, we can

also compute selectcðS; jÞ in time O(logr), by an upwards traversal from the leaf that

corresponds to symbol c, to the root.

The space required by the wavelet tree can be reduced to the zero-order entropy of S in

two ways. One is changing the balanced tree by a Huffman-shaped tree (Grossi et al.

2003), according to the frequencies of the symbols in S. Another is to use a compressed

bitmap representation that also gives constant-time rank and select (Raman et al. 2002).

Multi-ary wavelet trees were introduced by Ferragina et al (2007). As the tree is not

binary, it stores sequences over small alphabets, rather than bitmaps, on the nodes. In

theory the space is the same but the time can be divided by O(loglog n). No practical

implementation of this idea exists.

Claude and Navarro (2008) explored the idea of S being the sequence of word identifiers

of a text database. Then the wavelet tree represents S within its zero-order entropy (plus

some overhead) and allows accessing S at any position. Furthermore, the inverted list of the

positions of any word w is obtained with selectwðS; 1Þ; selectwðS; 2Þ; and so on. Arbitrary

positions of the list can also be obtained in order to simulate various list intersection

algorithms. The best space/time performance was obtained by combining Huffman shape

with compressed bitmap representations. Still, the compression ratio obtained when

applied to English texts was around 50%.

4 Wavelet trees on bytecodes

4.1 Conceptual description

Our proposal, called Wavelet trees on bytecodes, can be applied to any prefix-free byte-

oriented encoding technique (such as all those mentioned in Sect. 2). Basically the idea is

to reorganize the different bytes of each codeword, placing them in different nodes of a

wavelet-like tree (wavelet tree from now on, for shortness). That is, instead of representing

the compressed text as a concatenated sequence of codewords (composed of one or more

bytes), each one replacing the original word at that position in the text, we represent the

compressed text as a wavelet tree where the different bytes of each codeword are placed at

different nodes.

The root of the wavelet tree contains the first byte of all the codewords, following the

same order as the words in the original text. That is, at position i in the root we place the

first byte of the codeword that encodes the i-th word in the source text. The root has as

Inf Retrieval (2012) 15:527–557 531

123

many children as different bytes can be the first byte of a codeword composed of more than

one byte. For instance, in ETDC the root has always 128 children and in RPBC it will

typically have 256 - v1. The node x in the second level (taking the root as the first level)

stores the second byte of those codewords whose first byte is x. Hence each node handles a

subset of the text words, in the same order they have in the original text. That is, the byte at

position i in node x is the second byte of the i-th text codeword that starts with the byte x.

The same arrangement is done to create the lower levels of the tree. That is, node x has as

many children as different second bytes exist in codewords with more than 2 bytes having

x as their first byte.

Formally, let us represent the text words as hw1;w2. . .wni. Let us call cwi the codeword

representing word wi. Note that two codewords cwi and cwj can be the same if the i-th and

j-th words in the text coincide. The bytes of codeword cwi are denoted as hc1
i . . .cm

i i were m

is the size in bytes of codeword cwi. The root node of the tree is formed by the sequence of

bytes hc1
1; c

1
2; c

1
3. . .c1

ni. Notice that the root has as many bytes as words has the text. As

explained, the root has a child for each byte value that can be the first in a codeword with

more than one byte. Assume there are r words in the source text encoded by codewords

(longer than 1 byte) starting with the byte x : cwi1 . . .cwir . Then the node x will store the

sequence hc2
i1
; c2

i2
; c2

i3
. . .c2

ir
i. Some of those will be the last byte of their codeword, yet

others would correspond to codewords with more than two bytes.

Therefore, node x would have in turn children as explained before. Assume node xy is a

child of node x. It stores the byte sequence hc3
j1
; c3

j2
; c3

j3
. . .c3

jk
i of all the third bytes of

codewords cwj1 . . .cwjk starting with xy, in their original text order. Our wavelet tree is not

balanced because some codewords are longer than others. The number of levels is equal to

the number of bytes of the longest codewords assigned by the encoding scheme.

Figure 1 shows a small example where we built a WTBC4 from the text ‘‘LONG TIME
AGO IN A GALAXY FAR FAR AWAY’’, and the source alphabet of words

R ¼ fA; AGO; AWAY; FAR; GALAXY; IN; LONG; TIMEg. After obtaining the codewords for all

the words in the text, using a known encoding technique, we reorganize their bytes in the

WTBC data structure following the arrangement explained. The first byte of each code-

word is placed in the root node. The next bytes are contained in the corresponding child

nodes. For example, the second byte of the word ‘‘AWAY’’ is the third byte of node B2,

because it is the third word in the root node having b2 as first byte. Its third byte is in node

B2B4 as its two first codeword bytes are b2 and b4.

Assume we want to know which is the 6-th word in the text. Starting at the root node in

Fig. 1, we read the byte at position 6 of the root node: root½6� ¼ b4. The encoding scheme

indicates that the codeword is not complete yet, so we move to the second level of the tree.

The second byte is contained in the node B4, which is the child node of the root where the

second bytes of all the codewords starting with byte b4 are stored. Using a byte-wise rank
operation we obtain rankb4

ðroot; 6Þ ¼ 2. This means that the second byte of the codeword

starting in the byte at position 6 in the root node will be the second byte in node B4. In the

next level, B4[2] = b5, therefore b5 is the second byte of the codeword we are looking for.

Again the encoding scheme indicates that the codeword is still not complete, and

rankb5
ðB4; 1Þ ¼ 1 tells us that the third byte of that word will be in node B4B5 at position 1.

One level down, we obtain B4B5[1] = b2, and now the obtained sequence b4b5b2 is a

complete codeword according to the encoding scheme. It corresponds to ‘‘GALAXY’’,

which therefore is the 6-th word in the source text.

4 Note that only the shaded byte sequences are stored in the nodes; the text is shown only for clarity.

532 Inf Retrieval (2012) 15:527–557

123

This process can be used to recover any word. Note that this mechanism gives direct

access and random decompression capabilities to any encoding method, including those

that do not mark the codeword boundaries. With the proposed arrangement, those

boundaries become automatically defined (each byte in the root corresponds to a new

codeword).

If we want to search for the first occurrence of ‘‘AWAY’’ in the example of Fig. 1, we start

by finding out its codeword, which is b2b4b3. Therefore, the search will start at the node

B2B4, which holds all the codewords starting with b2b4. In this leaf node we find out where

the first byte b3 occurs, because b3 is the third byte of the codeword sought. Operation

selectb3
ðB2B4; 1Þ ¼ 1 tells us that the first occurrence of our codeword is the first of all

codewords starting with b2b4, thus in the node B2 the first occurrence of byte b4 is the one

encoding the first occurrence of the word ‘‘AWAY’’ in the text. Again, to know where the first

byte b4 occurs in the node B2, we perform selectb4
ðB2; 1Þ ¼ 3. Now we know that, in the root

node, the third byte b2 will be the one corresponding to the first byte of our codeword. To

know where that third byte b2 is in the root node, we compute selectb2
ðroot; 3Þ ¼ 9. Finally,

the result is that the word ‘‘AWAY’’ appears for the first time as the 9-th word of the text. Note

that it would be easy to obtain a snippet of an arbitrary number of words around this

occurrence, just by using the explained decompression mechanism.

The sum of the space needed for the byte sequences stored in all the nodes of the tree is

exactly the same as the size of the compressed text obtained by compressing the text with a

word-based compressor using the same encoding technique as that used to build the WTBC

data structure. Just a rearrangement has taken place. Yet, a negligible (as little as 0.05%, as

we shall demonstrate shortly) amount of extra space is required to store a few pointers that

Fig. 1 Example of WTBC data structure for a short text

Inf Retrieval (2012) 15:527–557 533

123

permit us to keep information of the tree shape. Actually, the shape of the tree is deter-

mined by the compression technique, so in many cases it is not necessary to store those

pointers, but only the length of the sequence at each node. For example, if we use a

canonical PH, it is not necessary to store pointers to maintain the shape of the tree and

determine the i-th child of a given node in constant time. In the same way, the wavelet trees

built using ETDC or RPBC can be navigated without the need of extra pointers due to the

dense assignment of codewords, which causes that all the nodes with children are con-

tiguously located in the wavelet tree. If an arbitrary code is used, the use of pointers or

bitmaps may be required to determine which node is the i-th child of a given node.

In addition, some extra space can be used to support fast rank and select operations over

the byte sequences.

4.2 Implementation of bytewise rank and select

We explored different alternatives to implement rank and select operations over byte

sequences, due to their importance on the efficiency of the final structure.

A baseline solution is to carry out those operations by brute force, that is, by sequen-

tially counting all the occurrences of the byte we are interested in, from the beginning of

the node sequence. This simple option does not require any extra structure. Interestingly

enough, it already allows searches to be carried out more efficiently than in classically

compressed files. In both cases we perform sequential searches, but with WTBC these

searches process a reduced portion of the file. Likewise, it is possible to access the text at

random, even using non-synchronized codes such as PH and RPBC, much faster than

scanning the file from the beginning.

Furthermore, it is possible to drastically improve the performance of rank and select
operations at a very moderate cost in extra space, by adapting well-known techniques

(Jacobson 1989). Given a sequence of bytes B[1, n], we use a two-level directory structure,

dividing the sequence into blocks of size b and superblocks of size sb. The first level stores

the number of occurrences of each byte5 from the beginning of the sequence to the start of

each superblock. The second level stores the number of occurrences of each byte up to the

start of each block from the beginning of the superblock it belongs to. The second-level

values cannot be larger than sb; and hence can be represented with fewer bits. We use

integers for superblock values and short integers for block values.

With this approach, rankbi
ðB; jÞ is obtained by counting the number of occurrences of bi

from the beginning of the last block before j up to the position j, and adding the values

stored in the corresponding block and superblock for byte bi. Instead of O(n), this structure

answers rank in time O(b).

To compute selectbi
ðB; jÞ we binary search for the first value x such that

rankbi
ðB; xÞ ¼ j. We first binary search the values stored in the superblocks, then those in

the blocks inside the right superblock, and finally complete the search with a sequential

scan in the right block. The time is O(b ? logn).

There is a space/time tradeoff associated to parameter b. The shorter the blocks, the

faster the sequential counting of occurrences of byte bi. In addition, we can speed up select
operations by storing the result obtained for the last query. Since it is common to perform

several selectbi
ðB; jÞ operations for the same byte value bi and consecutive j values, for

instance when finding all the occurrences of a word, this stored value can be used when the

previous occurrence of the byte value is located in the same block than the one sought.

5 Actually, only for bytes that appear in the sequence.

534 Inf Retrieval (2012) 15:527–557

123

Hence, instead of searching from the first position of the block, we can start the sequential

search from the position of the previous occurrence. This improved performance in

practice. Another related improvement we tried was exponential instead of binary searches,

but this did not have much effect.

With this solution we obtain better overall performance in practice than using other

alternatives to compute rank and select over arbitrary sequences, as shown by Ladra

(2011). We remark that this is not the general case, but it holds for our particular appli-

cation, due to the frequency distribution of words and the higher relevance of access and

select operations compared to rank in the operations that emulate an inverted index.

4.3 Construction algorithm

The construction algorithm performs two passes over the source text. In the first pass we

obtain the vocabulary and the model (frequencies), and then assign codewords using any

prefix-free encoding scheme. In the second pass the source text is processed again and each

word is translated into its codeword. Instead of storing those codewords sequentially, as in

a classical compressor, the codeword bytes are spread along the different nodes in the

wavelet tree. The node where a byte of a codeword is stored depends on the previous bytes

of that codeword, as explained.

It is possible to precompute how many nodes will form the tree and the length of the

sequence of each node before the second pass starts, as it is determined by the encoding

scheme and the frequencies of the words of the vocabulary. Then, the nodes can be allocated

according to these sizes and filled with the codeword bytes as the second pass takes place.

We maintain an array of markers that point to the current writing position at each node, so

that they can be filled sequentially following the order of the words in the text.

Finally, we obtain the WTBC representation as the concatenation of the sequences of all

the nodes in the wavelet tree, and we add a header with the assignment between the words

of the vocabulary and their codewords, determined by the encoding technique employed.

In addition, WTBC data structures include the length of the sequence for all the nodes of

the tree and some extra information, if needed, of the shape of the tree. This information

depends on the encoding method used; if ETDC is the chosen technique, then there is no

extra information to maintain, whereas if we reorganize the compressed text of PH, then a

few extra bytes representing the canonical Huffman tree are needed.

Algorithm 1 shows the pseudocode of this procedure, where the input is the source text

we want to represent and the output is the WTBC data structure generated.

5 Access and search algorithms

In the previous section we have described the new data structure WTBC. We showed how

it is navigated using a small example. In this section we detail the general algorithms for

accessing to any position of the text and extracting the word located at that position, as well

as those for searching for patterns in the text represented by the data structure.

5.1 Random extraction

Operation extract is vital for a structure that replaces the text, as the latter is not available

otherwise. This operation allows one to decompress portions of the text, starting at any

word offset, or to recover the whole original text.

Inf Retrieval (2012) 15:527–557 535

123

We first explain how a single word is extracted using the WTBC data structure, and in

the next section we generalize the algorithm such that longer sequences of the text can be

extracted.

To extract a random text word j, we access the j-th byte of the root node sequence to

obtain the first byte of its codeword. If the codeword has just one byte, we finish at this

point. If the byte read bi is not the last one of a codeword, we have to go down in the tree to

obtain the rest of the bytes. As explained, the next byte of the codeword is stored in the

child node Bi, the one corresponding to words with bi as first byte. All the codewords

starting with that byte bi store their second byte in Bi, so we count the number of occur-

rences of byte bi in the root node before position j by using a rank operation,

rankbi
ðroot; jÞ ¼ k. Thus k is the position in the child node Bi of the second byte of the

codeword. We repeat this procedure as many times as the length of the codeword, as we

show in Algorithm 2 (which also defines operation fullaccess(x) as the one returning the

codeword at position x).

The complexity of this algorithm is (‘ - 1) times the complexity of the rank operation,

where ‘ is the length of the codeword. Therefore, its performance depends on how the rank
operation is implemented.

We can also decompress backward or forward from a given position. For instance, if we

need to return a snippet consisting of r words around the occurrence of a word at position

Algorithm 1 Construction algorithm of WTBC

Algorithm 2 Extract x (Fullaccess if it returns cw instead of w)

536 Inf Retrieval (2012) 15:527–557

123

p we can follow the same algorithm starting with the entries at positions [p - r, p ? r] in

the root node.

5.2 Full text decompression

Since WTBC represents the text, we must be able to recover the original text from its data

structures. After loading the vocabulary and the whole structure of the WTBC, a full

recovery of the text consists in decoding sequentially each entry of the root.

Instead of extracting each word individually, which would require (‘ - 1) rank oper-

ations for each word (‘ being the length of its codeword), we follow a faster procedure that

avoids all those rank operations. Since all the nodes of the tree will be processed

sequentially, we can gain efficiency if we maintain pointers to the current first unprocessed

entry of each node, similarly to the markers used at construction time (Sect. 4.3). Once we

obtain the child node where the codeword of the current word continues, we can avoid

unnecessary rank operations because the next byte of the codeword will be the next byte to

be processed in the corresponding node. Except for this improvement, the procedure is the

same as the one explained in Sect. 5.1. Its pseudocode is given in Algorithm 3.

5.2.1 Starting the decompression at a random position

It is also possible to extract a portion of the text, starting from a random position different

from the first position of the text. The algorithm is the same as the one described in

Algorithm 3, which retrieves the whole original text, except for the initialization of the

markers. If we do not start the decompression of the text from the beginning, we cannot

initialize the markers with the value 1 for each node, they must be initialized with their

corresponding values, that are at first unknown. Hence, we start the algorithm with all the

markers uninitialized. During the top-down traversal of the tree performed to obtain the

codeword of each word, the marker of a node might not contain the value of the next byte

to be read. Thus, if the marker is uninitialized, a rank operation is performed to establish

that value. If the marker is already initialized, the rank operation is avoided and the value

contained in the marker is used. At most t rank operations are performed, being t the total

number of nodes of WTBC data structure.

Algorithm 3 Full text decompression

Inf Retrieval (2012) 15:527–557 537

123

5.3 Searching

As already mentioned, WTBC data structure provides some implicit indexing properties to

the compressed text. Hence, it enables some search operations in a more efficient way than

over the text compressed with a regular compressor.

5.3.1 Counting word occurrences

If we want to count the occurrences of a given word, we can just compute how many times

the last byte of the codeword assigned to that word appears in the corresponding leaf node.

That leaf node is the one identified by all the bytes of the codeword except the last one.

For instance, if we want to count how many times the word ‘‘TIME’’ occurs in the text

of the example in Fig. 1, we first notice that its codeword is b2b1. Then, we just count the

number of times its last byte b1 appears at node B2 (since the first byte of its codeword is

b2). Analogously, to count the occurrences of the word ‘‘GALAXY’’, we obtain its codeword

b4b5b2, and count the number of times its last byte b2 appears at node B4B5 (since the first

bytes of its codeword are b4b5). The pseudocode is presented in Algorithm 4.

The main advantage of this procedure is that we count the number of times that a byte

appears within a node, instead of processing the whole text. Generally, leaf nodes are not

large and the procedure is much faster than searching the regular compressed text, while

using essentially the same space. In addition the cost in time is drastically reduced if we

include structures to support efficient rank operations on the bytes stored at the node.

An extension to the count operation consists in counting the number of times a word

appears in a range within the text collection. This is relevant for handling hierarchical,

versioned, or temporal databases, for example. To count the number of occurrences of

word w between text words i and j, we use operation fullrankðcw; iÞ; which maps position i
towards the leaf of cw ¼ codeðwÞ; that is, it counts the number of occurrences of codeword

cw in T[1, i] (just as symbol rank operation on sequences). Then counting in range [i, j] is

efficiently implemented as fullrankðcw; jÞ � fullrankðcw; i� 1Þ. Algorithm 5 gives the

pseudocode for fullrank.

Algorithm 4 Operation count

Algorithm 5 Operation fullrank

538 Inf Retrieval (2012) 15:527–557

123

5.3.2 Locating individual words

As explained in the example of Sect. 4, to locate all the occurrences of a given word, we

start by looking for the last byte of the corresponding codeword cw in the associated leaf

node using operation select. If the last symbol of the codeword, cjcwj; occurs at position j in

the leaf node, then the previous byte cjcwj�1 of that codeword will be the j-th one occurring

in the parent node. We proceed in the same way up in the tree until reaching the position

x of the first byte c1 in the root node. Thus x is the position of the first occurrence of the

word searched for. The basic procedure, also called fullselect when receiving the codeword

instead of the word, is shown in Algorithm 6.

To find all the occurrences of a word we proceed in the same way, yet we can use

pointers to the already found positions in the nodes to speed up the select operations, as

explained in Sect. 4.2. Furthermore, to find all the occurrences of a word in the text range

[i, j], we use fullrank to find the range of occurrences of the word in that range, and then

locate only those occurrences.

5.3.3 Counting and locating phrase patterns

It is also possible to search for a phrase pattern, that is, a pattern composed of several

words. We locate all the occurrences of the least frequent word in the root node, and then

check if all the first bytes of each codeword of the pattern match with the previous and next

entries at the root node. If all the first bytes of the codewords of the pattern match, we

verify their complete codewords around the candidate occurrence by performing the cor-

responding top-down traversal over the tree, until either a byte fails to match the search

pattern or we find the complete phrase pattern.

This algorithm describes both the procedure for counting and locating the occurrences

of a given phrase pattern, so both operations are equally time-costly. Its pseudocode is

detailed in Algorithm 7.

In addition to this native method for searching for phrase patterns over the WTBC, it is

interesting to remark that WTBC also supports list intersection algorithms to search for

phrases over the compressed text. Inverted indexes search for phrase patterns by obtaining

the lists associated to the words that compose the pattern, and then intersecting those lists.

The efficiency of the list intersection is crucial for search engines, and it continues to be an

open research problem, where new list intersection algorithms are constantly being pro-

posed (Sanders and Transier 2007; Transier and Sanders 2010; Culpepper and Moffat, 2007,

2010; Barbay et al. 2009). These algorithms can be applied over WTBC by noticing that we

can generate any arbitrary entry of the posting list associated to any word on the fly.

Algorithm 6 Locate the j-th occurrence of word w (Fullselect if it receives cw instead of w)

Inf Retrieval (2012) 15:527–557 539

123

As an example, the pseudocode of a set-vs-set-type intersection algorithm implemented

over WTBC is shown in Algorithm 8. Note that the native method we explained first,

however, has been especially adapted to take advantage of WTBC data structures. For

instance, it will not be necessary to make complete top-down traversals over the tree to

check an occurrence in the longest list if we detect a mismatch at an upper level of the tree

on the first codeword bytes of some word. In the next section we experimentally show that

our native method outperforms the set-vs-set-type list intersection algorithm when

searching for phrases over a real text.

6 Experimental evaluation

This section presents the experimental performance of the new method proposed, WTBC.

We first show that WTBC is much more efficient than the sequential representation of the

compressed text when search functionality is required. This is due to the implicit indexing

properties that WTBC provides.

We also compare our WTBC data structure with explicit inverted indexes, when using

the same amount of space. More concretely, we use block-addressing compressed inverted

indexes (Navarro et al. 2000; Zobel et al. 1998), since they are the best choice, as far as we

know, when little space is available. Our results demonstrate that using WTBC is more

convenient than trying to use very space-efficient inverted indexes. In addition to this

comparison, we compare the performance of WTBC with some recent compressed indexes

of the literature.

Section 6.1 describes the collections and the machines used in the experiments. Section

6.2 compares the new technique with the original compression methods. Section 6.3

compares our proposal with indexing structures, that is, inverted indexes and other com-

pressed indexes.

Algorithm 7 Locate all occurrences of phrase w1w2…wp

540 Inf Retrieval (2012) 15:527–557

123

6.1 Experimental framework

We used a large corpus (ALL), with around 1 GB, created by aggregating the following

text collections: AP Newswire 1988 and Ziff Data 1989–1990 (ZIFF) from TREC-2, Con-

gressional Record 1993 (CR) and Financial Times 1991–1994 from TREC-46, in addition to

the small Calgary corpus7. We also used CR and ZIFF corpora individually to have smaller

corpora to experiment with. Table 1 presents the main characteristics of the corpora used.

The first column indicates the name of the corpus, the second its size (in bytes), the third

the number of words that compose the corpus, and the fourth the number of different words

in the text.

To create our vocabulary, we split the text into words (a maximal sequence of alpha-

numerical characters) and separators (a sequence of non-alphabetical characters between

two contiguous words). Then, both words and separators were encoded. We used the

spaceless word model (Moura et al. 2000) to model the separators. That is, if a word is

followed by a single space, we just encode the word, otherwise both the word and the

separator are encoded. As a result, the vocabulary is formed by all the different words and

all the different separators, excluding the single white space. We did not perform any

additional pre-processing of the text. Therefore, operations such as case-folding, stemming,

etc. were not considered.

Two different machines have been used for the experiments. In Sect. 6.2 we used an

isolated IntelrPentiumr-IV 3.00 GHz system (16Kb L1 ? 1024Kb L2 cache), with 4 GB

dual-channel DDR-400Mhz RAM. It ran Debian GNU/Linux (kernel version 2.4.27). The

compiler used was gcc version 3.3.5 and -O9 -m32 compiler optimizations were set. In Sect.

6.3 we used an isolated IntelrXeonr-E5520@2.26GHz with 72GB-DDR3@800MHz

Algorithm 8 List intersection

6 http://trec.nist.gov.
7 We concatenated in a single file a subset of the files from the Calgary collection that includes only the text
files: book1-2, bib, news, and paper1-6. It is available at ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.
compression.corpus.

Inf Retrieval (2012) 15:527–557 541

123

http://trec.nist.gov
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus

RAM. It ran Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1 with -O9 -m32
options. Time results refer to CPU user time.

In Sect. 6.3 we analyze the search performance of our technique over the ALL corpus.

We use 8 sets of 100 test patterns. The first four sets are composed of single-word patterns

with different frequency ranges: Wa, Wb, Wc, and Wd with words occurring respectively

[1, 100], [101, 1000], [1001, 10000], and ½10001;1� times. Those words were chosen at

random from the vocabulary following the model by Moura et al. (2000) were each word is

sought with uniform probability. The overall number of occurrences for such sets are

5,679; 30,664; 258,098; and 2,273,565 respectively. The other four sets, P2, P3, P4, and

P6, consist of phrase-patterns composed of 2, 3, 4, and 6 words respectively that were

randomly chosen from the text. We ensured that phrases consisting only of stopwords8

were not included in the sets Pi. The number of occurrences of such sets are 201,956;

31,964; 4,415; and 144 respectively.

6.2 Comparison with regular text compressors

As already explained, WTBC can be built over different byte-oriented encoding schemes.

The new proposed structure rearranges the bytes of the codewords that conform the

compressed text in a tree-shaped data structure. In this section, we build the WTBC

structure over PH, ETDC, and RPBC (see Sect. 2) obtaining respectively what we call

WTPH, WTDC, and WTRPBC.

We measure how the reorganization of the codeword bytes induced by our proposal

affects the main compression parameters, such as compression ratio and both compression

and decompression times. We also show the searching capabilities of the new WTBC-

based structures, including results for count and locate operations.

Table 2 shows that compression ratio is essentially not affected, as expected. There is a

very slight loss of compression (close to 0.01%), due to the storage of the tree shape. In this

experiment addressing just compression, no blocks and superblocks are built on WTPH,

WTDC, and WTRPBC.

Tables 3 and 4 show the compression and decompression times obtained using the

WTBC data structure. The absolute differences in time are similar both at compression and

decompression: WTBC worsens the time by around 0.1 s for CR corpus, 0.4 s for ZIFF

corpus and 3.5 s for ALL corpus. This is because with WTBC strategy, compression and

decompression operate with data that is not sequentially stored in main memory. For each

word of the text, a top-down traversal is carried out on the tree, so the benefits of cache and

spatial locality are reduced. This is more noticeable at decompression than at compression,

since in the latter the overhead of parsing the source text blurs those time differences.

Therefore, compression time is almost the same (2–4% worse) as for the sequential

Table 1 Description of the corpora used

Corpus Size (bytes) No. of words Voc. size

CR 51,085,545 10,113,143 117,713

ZIFF 185,220,211 40,627,131 237,622

ALL 1,080,720,303 228,707,250 885,630

8 We used a list of stopwords (prepositions, articles, etc.) available at http://vios.dc.fi.udc.es/indexing/wsi/
download.html.

542 Inf Retrieval (2012) 15:527–557

123

http://vios.dc.fi.udc.es/indexing/wsi/download.html
http://vios.dc.fi.udc.es/indexing/wsi/download.html

compression techniques. That is, almost the same time is required to build the WTBC from

the text than just to compress it. In decompression, those gaps increase and WTBC

structures become around 20–25% slower than the regular counterparts.

We now compare the search results obtained by WTBC with those obtained when

performing searches over text compressed with PH, ETDC, and RPBC.9 We focus in two

main search operations: we measure the user time required to count all the occurrences of a

pattern (in milliseconds) and to locate all those occurrences (in seconds). We run our

experiments over the largest corpus, ALL, and show the average time to search for 100

distinct words randomly chosen from the vocabulary (we removed stopwords, since it

makes no sense to search for them). We present the results obtained by the compression

methods PH, ETDC, and RPBC; and by the WTBC data structure implemented without

blocks and superblocks (WTPH, WTDC, and WTRPBC). We also include alternatives

WTPH?, WTDC?, and WTRPBC?, which correspond to wasting 1% of extra space in

the WTBC (i.e., 1% of the size of the original collection T) on block and superblock

structures to speed up the operations.

To adjust WTBC to a desired extra space, we proceed as follows. Firstly, being N the

number of bytes of the indexed sequence, the overall size of the rank/ select structures (E)

is roughly estimated as E = (Ks 9 256) N/(s 9 b) ? (Kb 9 256) N/b, where Ks is the byte

size of the superblock counters (in our case 4, the size of an unsigned int) and Kb is the byte

size of the block counters (in our case 2, the size of an unsigned short int). Therefore, we

Table 2 Compression ratio (in %) of WTBC built using PH, ETDC and RPBC versus their regular
counterparts for three different natural language texts

PH ETDC RPBC WTPH WTDC WTRPBC

CR 31.057 31.941 31.062 31.060 31.948 31.065

ZIFF 32.876 33.770 32.883 32.878 33.774 32.885

ALL 32.833 33.659 32.845 32.835 33.662 32.847

Table 3 Compression time (s)

PH ETDC RPBC WTPH WTDC WTRPBC

CR 2.886 2.870 2.905 3.025 2.954 2.985

ZIFF 11.033 10.968 11.020 11.469 11.197 11.387

ALL 71.317 71.452 71.614 74.631 73.392 74.811

Table 4 Decompression time (s)

PH ETDC RPBC WTPH WTDC WTRPBC

CR 0.574 0.582 0.583 0.692 0.697 0.702

ZIFF 2.309 2.254 2.289 2.661 2.692 2.840

ALL 14.191 13.943 14.131 16.978 17.484 17.576

9 We used our own implementations to search within compressed text. For PH the searcher marks the
searched pattern in the vocabulary and then simulates decompression (Moura et al. 2000). For ETDC we
used a Horspool-based searcher (Horspool 1980) available at http://vios.dc.fi.udc.es/codes. Finally, for
RPBC we implemented the Horspool-based algorithm from RPBC’s authors (Culpepper 2007, p. 100).

Inf Retrieval (2012) 15:527–557 543

123

http://vios.dc.fi.udc.es/codes

obtain b = N [256 9 (Ks/s ? Kb)]/E. By fixing s (to a small value) and the expected extra

space E, we obtain a first approximation for the value of b. Finally, we manually fine-tune

b until we reach the expected 1% extra space. In our case, we obtained b = 21,000 bytes

and superblocks of s = 10 blocks.

Table 5 shows time results for count and locate for each method and also the amount of

memory they need in order to solve those queries. To have a fairer comparison, all the

compared alternatives maintain the vocabulary of words using a hash table with identical

parameters and data structures. Its space requirements are also included within the values

in Table 5.

We observe that, even when no extra space is used for the block and superblock

structures, the use of WTBC data structure improves search performance by an order of

magnitude compared to scanning regular compressed text, especially for counting the

number of occurrences. By using just 1% of extra space for rank and select support,

searching times improve much more.

On the other hand, the time performance of the different realizations of WTBC and

WTBC? is very similar.

6.3 Comparison with other indexes

As explained, the reorganization carried out by the WTBC data structure brings some

(implicit) indexed search capabilities into the compressed file. It improves searches in such

a way that it becomes competitive with other indexing structures. In this section we

compare the search performance of WTPH? with two block-addressing compressed

inverted indexes (Navarro et al. 2000), a bit-oriented Huffman-shaped wavelet tree as

described in Sect. 3 (Grossi et al. 2003; Claude and Navarro 2008) and a word-based

compressed index based on suffix arrays (Brisaboa et al. 2008b), working in main memory.

The inverted indexes used are block-grained: they assume that the indexed text is

partitioned into blocks of size b, and for each term they keep a list of occurrences that

stores all the block-ids in which that term occurs.

The first compressed inverted index, II-scdc, is built over text compressed with SCDC,

whereas the second index, II-huff, is built over text compressed with binary Huffman. We

use SCDC for one of the inverted indexes due to its efficiency at decompression and

searches, while achieving a good compression ratio (33.02% for the ALL corpus). For the

other inverted index we use Huffword, which consists in the well-known bit-oriented

Table 5 Search performance
for the ALL corpus

Memory
usage (%)

Count (ms) Locate (s)

PH 35.128 2605.600 2.648

ETDC 35.955 1027.400 0.940

RPBC 35.140 1996.300 2.009

WTPH 35.129 238.500 0.754

WTDC 35.957 221.900 0.762

WTRPBC 35.141 238.700 0.773

WTPH? 36.113 0.015 0.123

WTDC? 36.953 0.015 0.129

WTRPBC? 36.086 0.015 0.125

544 Inf Retrieval (2012) 15:527–557

123

Huffman coupled with a word-based modeler (Witten et al. 1999). It obtains better com-

pression ratios than SCDC (29.22% for ALL corpus), but it is much slower at both

decompression and searches. For our two alternatives, II-scdc and II-huff, we built several

indexes where we varied the block size, which brings an interesting space/time tradeoff. If

we use the slower Huffman coding, we can exchange the space gain by a denser sampling,

so that shorter blocks will be scanned. If we use the faster SCDC, scanning will be faster

but it will be performed on longer blocks.

To reduce the size of the index, the lists of occurrences were compacted using Rice

codes (Witten et al. 1999) for the shorter lists and bitmaps for the longer ones. We follow a

list compression strategy (Moffat and Culpepper 2007; Culpepper and Moffat 2010) where

the list L of a given word is stored as a bitmap if |L| [u/8, being u the number of blocks.

No sampling is used. As the posting lists are compressed with variable-length codes,

intersection of lists is performed using a merge-type algorithm along with the decoding of

such lists (that is, the lists are intersected as they are sequentially decoded). We have tried

other strategies to deal with the inverted lists, including sampling for direct access (Sanders

and Transier 2007; Transier and Sanders 2010; Culpepper and Moffat 2007, 2010) or codes

that are only slightly less space-efficient but faster to decode (Ding et al. 2010; Anh and

Moffat 2005; Zukowski et al. 2006; Yan et al. 2009). Yet, search times were practically

unaffected as they depend mainly on the block size. The reason is that most of the time is

spent in scanning blocks and not on traversing lists. Adding sampling or a less space-

efficient code wastes some space that is much better used in a denser sampling with

reduced block size.

In addition, we compare WTBC with other compressed indexes that support fast

searches for words or phrases and occupy space comparable to our WTBC. We will not

compare our proposal with classical full-text compressed indexes that can search for any

pattern (not only words). This comparison is unfair because these indexes offer stronger

functionality, and require much more space: around 40–60% for natural language text

(Ferragina et al. 2009). Instead, we first compare WTPH? with a binary Huffman-shaped

wavelet tree (Grossi et al. 2003; Claude and Navarro 2008) representing the sequence of

words of the text, denoted WTbitHuff, and also with a word-based version of a classical

compressed index such as the word-based Compressed Suffix Array (WCSA) (Brisaboa

et al. 2008b).

For the comparison, we create several Huffman-shaped wavelet trees with different

sizes, varying the size for the extra structure used to compute fast binary rank and select
operations. We used the implementations of WTbitHuff available at the Compact Data

Structures Library (libcds)10. For WCSA, we create several indexes with different sizes,

varying construction parameters such as the sample periods tA, tA
-1 and tW for A, A-1 and

W; which also gives an interesting space/time tradeoff.

To illustrate the behavior of WTBC, we compute search times for the variant built over

PH (WTPH?), since it obtains the best space/time results.

Note that, for the experiments of this section and the following ones, the vocabulary is

not stored using a hash table, as in the previous section. We store the vocabulary in

alphabetic order, so that we can obtain the codeword assigned to a word with a binary

search over this structure. This solution is lighter than using a hash table, and the WTBC

data structure built over the compressed text of the ALL corpus using PH requires just

33.32% of the original text to solve any query (without any rank and select extra structure).

Our method cannot use less than that memory to represent the ALL corpus in an indexed

10 http://libcds.recoded.cl/.

Inf Retrieval (2012) 15:527–557 545

123

http://libcds.recoded.cl/

way, whereas other indexes, such as WCSA or the inverted index using Huffman coding

(II-huff) can still go beyond our lower bound.

We built several configurations for WTPH? using different sizes for the rank and select
structure, so that we can show the space/time tradeoff obtained by the representation. We

compare WTPH? with the other indexes over the corpus ALL, using the sets of patterns

Wa, Wb, Wc, Wd, P2, P3, P4, and P6 described in Sect. 6.1. We measure the amount of

main memory occupied by the indexes, and the time to perform the following search

operations:

• locate: we measure the time to locate all the occurrences of a pattern.

• extract: we measure the time to extract some portions of text of different lengths.

• display: we measure the time to display a snippet around all the occurrences of a

pattern, which includes the time to locate its occurrences and to extract snippets

containing 20 words, starting at an offset 10 words before each occurrence.

Results for both locate and display operations refer to average time per occurrence (in

msec/occurrence). We do not measure counting time since it could be solved trivially for

word patterns by including the number of occurrences for each word along with the

vocabulary (worsening compression ratio by around 0.75 percentage points). WTBC

counting times for phrase patterns are similar to locating them; hence, those counting times

can be obtained from the figures for locate operation. Results for extract are measured in

time per character extracted (in ls/char).

6.3.1 Locating times

Figure 2 shows the performance of the indexes for locating individual words for scenarios

Wa (top left),Wb (top right),Wc (bottom left), and Wd (bottom right). We can observe that

WTPH? obtains the best results, regardless of the frequency of the word sought, when

little space is used to index the compressed text.

Compared with inverted indexes, WTPH? is faster since it directly jumps to the next

occurrence, while inverted indexes have to scan the text. When little memory is used, the

inverted indexes obtain poor results, since a sequential scan must be performed over large

blocks. The worst scenario for WTPH? is locating low-frequency words, since it must

perform a bottom-up traversal of the tree from the deepest leaves, and thus several select
operations must be carried out. For this scenario Wa, inverted indexes overcome WTPH?

when the index occupies more than 39% of the original text size. This scenario is par-

ticularly advantageous for II-scdc inverted index: we are searching for low-frequency

words, which have long codewords assigned, over short blocks of SCDC compressed text.

Moreover, SCDC enables Boyer-Moore-type searching, which skips bytes during the

search, and since the codewords sought are long, the Boyer-Moore algorithm can skip more

bytes. For scenarios Wb, Wc, and Wd WTPH? obtains better times than the inverted

indexes, even when using much space.

WTPH? also outperforms the binary Huffman-shaped wavelet tree (WTbitHuff). Since

the alphabet is so large (around 885,000 words) the wavelet tree requires several levels,

and thus accessing, counting, and locating the symbols of the sequence become slow. In

addition, the tree has a large number of nodes, which require many pointers to maintain the

tree shape. Therefore, WTbitHuff uses significantly more space than the zero-order entropy

of the text (note that the compression ratio obtained by binary Huffman code over ALL

corpus is 28.55%).

546 Inf Retrieval (2012) 15:527–557

123

Compared with WCSA, WTPH? is significantly faster at locating the occurrences of

individual words. However, WCSA can achieve lower spaces than WTPH?. WTPH built

over ALL corpus occupies 33.32% of the text, when no rank or select structures are used.

In the figures, we illustrate the behavior of several configurations of WTPH? using a

structure for rank and select operations with varying sample period. When very little space

is used for rank and select structures, the compression ratio obtained gets close to that of

WTPH, but WTPH? becomes very inefficient due to the sparseness in the samples of the

rank and select directory of blocks and superblocks. The efficiency of WCSA also

decreases when we use less space, but it can index the same text using less than 33% of

space.

Figure 3 shows the performance when locating phrase patterns for scenarios P2 (top

left), P3 (top right), P4 (bottom left), and P6 (bottom right). From the experimental results

we can observe that WTPH? can efficiently locate short phrase patterns (of length 2) but

its efficiency decreases for longer patterns. Note that the average time for locate is mea-

sured in milliseconds per occurrence. Since long phrase patterns are less frequent than the

short ones, this average time is worse for long phrase patterns. In addition, when the

phrases are long, verifications require to perform ‘ top-down traversals over the tree, being

‘ the length of the phrase. Even if some more false matchings are detected at the root level,

those extra rank operations worsen the average locating time. Inverted indexes become a

better choice to search for long phrase patterns for compression ratios above 37%, as it

happened when searching for less frequent patterns: when searching for long phrases, we

can skip more bytes during the sequential scan of the blocks. However, WTPH? is always

the preferred solution when little space is used.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100])

II-scdc
II-huff
WCSA

WTbitHuff
WTPH+

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

II-scdc
II-huff
WCSA

WTbitHuff
WTPH+

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

II-scdc
II-huff
WCSA

WTbitHuff
WTPH+

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq = > 10000)

II-scdc
II-huff
WCSA

WTbitHuff
WTPH+

Fig. 2 Time/space tradeoff for locating individual words with WTBC strategy over PH against other
searching structures, varying the frequency of the word sought

Inf Retrieval (2012) 15:527–557 547

123

Word-based compressed suffix array clearly outperforms WTPH? when searching for

long phrase patterns. This is an expected result since suffix arrays were designed to

efficiently count and locate all the occurrences of substrings of the text. WCSA is a word-

based compressed index based on suffix arrays, hence, it easily recovers all the occurrences

of the word phrases of the text. However, WTPH? still obtains better results than WCSA

when searching for phrases composed of two words.

6.3.2 Locating phrase patterns versus list intersection

Recall that, apart from the native algorithm presented in Sect. 5.3.3 for locating the

occurrences of phrase patterns, other list intersection algorithms could be used. We now

compare the performance of the native algorithm with the implementation of the set-vs-set-
type intersection method in the WTBC.

We run our experiments over the ALL corpus and show the average time to search for

two different sets of phrase-patterns composed of 2 words. The first set (S1) contains 100

distinct 2-words phrases randomly chosen from the text, where the most frequent word of

each phrase occurs less than 100,000 times in the text. The second test set (S2) contains 100

distinct phrases composed of two words that were randomly chosen from the vocabulary

among all the words of frequency f, such that 1,000 B f B 50,000. Note that the artificially

generated phrases in S2 do not necessarily exist in the text. We present the results obtained

for both techniques by WTBC built over PH (WTPH?) using blocks of 21,000 bytes and

superblocks of 10 blocks, which waste 1% of extra space, to speed up rank and select
operations.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 scenario: phrases with 2 words

II-scdc
II-huff
WCSA

WTPH+

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P3 scenario: phrases with 3 words

II-scdc
II-huff
WCSA

WTPH+

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P4 scenario: phrases with 4 words

II-scdc
II-huff
WCSA

WTPH+

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6 scenario: phrases with 6 words

II-scdc
II-huff
WCSA

WTPH+

Fig. 3 Time/space tradeoff for locating phrases with WTBC strategy over PH against other searching
structures, varying the length of the phrase sought

548 Inf Retrieval (2012) 15:527–557

123

In Table 6, we can observe that the best results are obtained by the native algorithm

when searching for phrases in the WTBC. Remember that this algorithm consists in

searching for the occurrences of the least frequent word and then checking the surrounding

positions to know whether there is an occurrence of the phrase or not. This can be very

efficiently checked by just comparing the first bytes of the codeword in the first level of the

WTBC, which permits fast detection of false matchings. If the first bytes match, then we

check the bytes at the second level. Only if all the bytes at each level of the tree coincide,

we reach the leaf level of the WTBC and check if there is an occurrence of the phrase-

pattern. On the other hand, the set-vs-set-type list intersection algorithm performs complete

top-down traversals of the WTBC, which may be unnecessary.

Note that the set-vs-set-type algorithm for list intersection may be faster than the native
method if we search for a phrase composed of two words, where each word occurs more

frequently in one portion of the text. Thus, we will avoid checking all the occurrences of

the least frequent word, as the algorithm may skip several occurrences of the word that

appears in one portion of the document by jumping to another portion of the document.

However, these list intersection algorithms (Barbay et al. 2009) were designed for inter-

secting lists of documents on bag-of-word queries, where the described situation is more

plausible. It seems less likely that this arises in words that are searched for as a phrase. Our

experiments show that the effect is far from relevant when we choose random pairs of

words.

6.3.3 Range-restricted locating

As mentioned in Sect. 5.3, our WTBC strategy efficiently supports counting and locating

the occurrences of patterns within a certain range (for phrases the only way to count the

occurrences is to locate them). We now compare its performance with inverted indexes and

WCSA. Inverted indexes can find, for each of the involved lists, the first entry that falls

within the range, and continue the intersection until leaving the range. This way they

support efficient locating in a range, yet they cannot directly count, even for simple word

queries. For the WCSA the problem is even harder, as the positions are delivered out of

order, so the only way to query within a range is to carry out the full query and then restrict

the positions.

We generated random intervals of width n, n/10, n/100, n/1,000, and n/10,000, being

n = 228,707,250 the number of words of the text ALL. We configured the indexes to

obtain a compression around 36%. For WTPH? we use blocks of 5,000 bytes and su-

perblocks of 8 blocks, obtaining a compression ratio of 35.94%. II-scdc is tuned to obtain a

compression ratio of 36.31%, II-huff obtains 36.36%, and WCSA obtains 36.10%.

We measured the time to count and locate all the occurrences of 100 distinct patterns

from three different sets: Wc, P3 and P6, averaging over 20, 1,000, and 5,000 random

ranges of each size, respectively. We measured counting and locating average times per

pattern (in msec/pattern).

Table 6 Average times (in msec/pattern) to locate 2-words phrases from the sets S1 and S2, for WTPH?
using two different intersection algorithms

Searching technique S1 S2

Native phrase searching algorithm 86.07 28.89

Set-vs-set-like list intersection algorithm 411.30 100.15

Inf Retrieval (2012) 15:527–557 549

123

Figure 4 shows space/time results for scenarios Wc (top), P3 (bottom left) and P6

(bottom right). For Wc we represent separately the times for counting and locating the

occurrences of the query word with WTPH? whereas for phrase-pattern scenarios we only

show locating times, as there is no independent algorithm for counting.

We can observe that WTPH? becomes the most efficient technique to locate patterns in

a range as its width decreases, that is, as the query becomes more selective. Even for the

most disadvantageous scenario, that is, when searching for the occurrences of long phrase

patterns (P6), WTPH? outperforms WCSA when restricting to shorter ranges.

Moreover, WTPH? can efficiently count the number of occurrences of an individual

word between two positions of the text by performing just two byte-wise rank operations,

whereas the other indexing structures must obtain the occurrences and count them.

6.3.4 Extraction times

In this section we study the efficiency of WTBC at extracting portions of text, comparing it with

the other two compressed indexes, that is, WCSA and WTbitHuff. We do not compare WTBC

with inverted indexes, since these carry out sequential searches on the blocks, and therefore

they can display any snippet around occurrences found without any extra time penalty.

We created three sets of intervals [i, i ? w - 1], where i is a random position on the

sequence of N words that compose the text (1 B i B N - w), and w is the interval width.

We tried three different values for w (10, 100, and 1,000 words), so that we start the

extraction of text from the i-th word and recover a substring containing the following

 0.001

 0.01

 0.1

 1

 10

 100

 1000

n/10000n/1000n/100n/10n

lo
ca

te
 ti

m
e

(m
se

c/
pa

tte
rn

)

range width

Wc scenario: words freq = [1001..10000]

II-scdc
II-huff
WCSA

WTPH+ locate
WTPH+ count

 0.001

 0.01

 0.1

 1

 10

 100

 1000

n/10000n/1000n/100n/10n

lo
ca

te
 ti

m
e

(m
se

c/
pa

tte
rn

)

range width

P3 scenario: phrases with 3 words

II-scdc
II-huff
WCSA

WTPH+

 0.001

 0.01

 0.1

 1

 10

 100

n/10000n/1000n/100n/10n

lo
ca

te
 ti

m
e

(m
se

c/
pa

tte
rn

)

range width

P6 scenario: phrases with 6 words

II-scdc
II-huff
WCSA

WTPH+

Fig. 4 Time/space tradeoff for locating patterns in a range with WTBC strategy over PH against other
structures, varying the width of the range considered

550 Inf Retrieval (2012) 15:527–557

123

w words. We will refer to such sets as 10w, 100w, and 1000w, and they contain respec-

tively 106, 105, and 104 intervals. Therefore, we will extract 106 substrings consisting of

10 words, 105 of 100 words, and 104 substrings with 1,000 words respectively. Results for

extract are given in microseconds per extracted character (lsec/char).

Figure 5 shows the results for the set 10w (top left), 100w (top right), and 1000w (bottom

left). As we can observe, WTBC outperforms the other indexes when extracting snippets.

This shows in particular a weak side of the WCSA, which is slow at this task.

Figure 5 (bottom right) shows how the performance of the extract operation improves as

the length of the snippet increases. Remember from Sect. 5.2.1 that we use one pointer per

node to avoid rank operations over the tree. These pointers are uninitialized at first, and one

rank operation is required to set their value for a node if needed. Once its value is established,

no more rank operations are performed to access a position of that same node. The longer the

snippet, the lower the amortized cost per traversed byte. In addition, we can see in the figure

that the time depends on the size of the structure that supports rank operations. As expected,

we obtain better time results if we spend more extra space to speed up this bytewise operation.

6.3.5 Display times

We now show the results for operation display, which are analogous to the results obtained

for locate. Note that the display operation consists in first locating the occurrences and then

extracting some portion of text around those occurrences. Therefore, again, as long as we

set the indexes to use less space, WTPH? becomes the preferred choice.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 32 34 36 38 40 42 44 46 48 50ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

Extract words: 10 words (106 times)

WCSA
WTbitHuff

WTPH+

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 32 34 36 38 40 42 44 46 48 50ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

Extract words: 100 words (105 times)

WCSA
WTbitHuff

WTPH+

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 32 34 36 38 40 42 44 46 48 50ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

Extract words: 1000 words (104 times)

WCSA
WTbitHuff

WTPH+

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 34 36 38 40 42ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

Extracting on WTPH+: influence of the snippet length

WTPH+ (10w)
WTPH+ (100w)

WTPH+ (1000w)

Fig. 5 Time/space tradeoff for extracting operation. WTBC strategy over PH is compared with the other
compressed indexes, varying the length of the extracted snippet

Inf Retrieval (2012) 15:527–557 551

123

Figure 6 shows only the results for some of the scenarios for individual words and

phrase patterns, since the results can be obtained by adding locating plus extracting times.

More concretely, we show space/times results for scenarios Wa (top left) and Wd (top

right), as well as for scenarios P2 (bottom left) and P3 (bottom right).

Differences in time between WTBC and inverted indexes are larger when comparing

locate times than when we compare snippet extraction times. Note that those gaps in

snippet extraction time tend to reduce since decompression is faster in inverted indexes

than in WTPH?, especially for the inverted index built over SCDC. However, WTBC still

obtains better time results when displaying all the occurrences of a word, especially for not

very frequent words, where there are fewer snippets to extract.

Compared with the other compressed indexes, the results of WTBC for display are

slightly better than in the case of the locate operation, as the extraction of the text is more

efficient in our WTBC strategy than for WCSA or WTbitHuff. For instance, when

searching for either single-word patterns or short phrases, we can observe how WTPH?

always outperforms WCSA at displaying, whereas their performance is more similar for

locating. WCSA is again the best choice to display some portions of the text around the

occurrences of long phrase patterns, but WTBC dominates the space/time tradeoff for the

rest of the scenarios: displaying individual words and short phrases.

We remark that our good results compared with inverted indexes essentially owe to the

fact that we are not sequentially scanning any significant portion of the file, whereas a

block addressing inverted index must sequentially scan (sometimes many) blocks. As more

space is allowed to those structures, both improve in time but the inverted indexes

eventually take over WTPH? (this occurs when both use around 37% of the text size).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

II-scdc
II-huff
WCSA

WTbitHuff
WTPH+

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

II-scdc
II-huff
WCSA

WTbitHuff
WTPH+

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 scenario: phrases with 2 words

II-scdc
II-huff
WCSA

WTPH+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

di
sp

la
y

tim
e

(m
se

c/
oc

c.
)

compression ratio (%)

P3 scenario: phrases with 3 words

II-scdc
II-huff
WCSA

WTPH+

Fig. 6 Time/space tradeoff for displaying 20-words snippets. WTBC strategy over PH is compared with the
other indexes, for individual words (top) and phrase patterns (bottom)

552 Inf Retrieval (2012) 15:527–557

123

Of course, if sufficient space were given, the inverted indexes could directly point to

occurrences instead of blocks and that scanning could be avoided. Yet, as explained in the

Introduction, using little space is very relevant for the current trend of maintaining the

index distributed among the main memory of several processors. What our experiments

show is that WTBC makes better use of the available space when there is not much to

spend.

6.4 Scalability

We present now new experiments on a larger text collection: the INEX 2009 Wikipedia

Dataset11. It consists of a dump of the English Wikipedia created on October 8, 2008 and

contains 2,666,190 articles that make up 50.7GiB of XML data (Schenkel et al. 2007). We

removed all the XML tags and retained only the text content, obtaining a corpus containing

8.76GiB of plain text (1.8 9 109 words), and a vocabulary of 14.88 million words (a rather

heterogeneous collection). We include experiments for locate operation searching for a set

of 429 queries12 (including both phrases and single words) extracted from the topics in the

INEX 2009-2010 Adhoc Track13. Figure 7 shows the results.

We use the inverted index based on SCDC encoding, which gave us the best results. Its

space is lower bounded by the compression ratio obtained by SCDC compression, which is

around 36.1%. Even when we set the block size to 16MiB, the inverted index uses around

39.2% space. WTPH?, with a sparse sampling configuration, is able to obtain compression

ratios under 37%. WCSA takes advantage of higher order compression and almost reaches

30% compression.

Focusing on operation locate, we observe similar results as those in Fig. 3 for P2

scenario. That is, WTPH? obtains the best space/time trade-off in the wide range of

38–47% compression ratios. Only when we want to obtain compression ratios below 38%,

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 32 34 36 38 40 42 44 46 48 50

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

II-scdc
WCSA

WTPH+

Fig. 7 Time/space tradeoff for locate comparing WTBC strategy over PH with other indexes on the INEX
corpus

11 http://www.mpi-inf.mpg.de/departments/d5/software/inex.
12 Available at http://vios.dc.fi.udc.es/indexing/wsi/download.html.
13 https://inex.mmci.uni-saarland.de/data/documentcollection.jsp.

Inf Retrieval (2012) 15:527–557 553

123

http://www.mpi-inf.mpg.de/departments/d5/software/inex
http://vios.dc.fi.udc.es/indexing/wsi/download.html
https://inex.mmci.uni-saarland.de/data/documentcollection.jsp

the WCSA becomes the best choice due to its better compression. At that compression

level, we force WTPH? to use a very sparse sampling whereas WCSA uses still a rather

dense setup. Both techniques clearly overcome block-addressing inverted indexes.

7 Conclusions and future work

It has been long established that semistatic word-based byte-oriented compressors such as

those considered in this paper are useful not only to save space and time, but also to speed

up sequential search for words and phrases (Moura et al. 2000). However, the more space-

efficient compressors such as Plain Huffman (Moura et al. 2000) and Restricted Prefix

Byte Codes (Culpepper and Moffat 2005; Culpepper 2007) are not that fast at searching or

random decompression, because they are not self-synchronizing techniques. In this paper

we have shown that a simple reorganization of the bytes of the codewords obtained when a

text is being compressed, marks clear codeword boundaries for those compressors. Our

proposal, Wavelet Trees on Bytecodes (WTBC), gives better search and random access

capabilities than all the byte-oriented compressors, even those that exchange some com-

pression degradation by marking codeword boundaries [Tagged Huffman (Moura et al.

2000), End-Tagged Dense Codes (Brisaboa et al. 2007)].

As our reorganization permits carrying out all those operations efficiently over Plain

Huffman, the most space-efficient byte-oriented compressor, the usefulness of looking for

coding variants that sacrifice compression ratio for search or decoding performance is

questioned: A WTBC over Plain Huffman (WTPH) will do better in almost all aspects.

This reorganization has also surprising consequences related to implicit indexing of the

compressed text. Block-addressing inverted indexes over compressed text have been long

considered as the best low-space structure to index a text for efficient word and phrase

searches (Navarro et al. 2000). They can trade space for speed by varying the block size.

We have shown that the reorganized codewords provide a powerful alternative to these

inverted indexes. By adding a small extra structure to WTBC, the search operations are

speeded up so sharply that the structure competes successfully with block-addressing

inverted indexes that take the same space on top of the compressed text. Especially, our

structure is superior when little extra space on top of the compressed text is permitted.

Other compressed indexes like word-based compressed suffix arrays (Brisaboa et al.

2008b) perform better than WTBC when searching for phrases of 3 words or more, and

may achieve less space. They are, however, slower at other operations like searching for

words and short phrases, searching on text ranges, and displaying portions of the text.

An interesting challenge for this representation is to support dynamism, so as to remove

documents from the collection or add others at the end. This requires traversing all the

nodes and remove part of the sequences, or append more data at the end of the sequences.

The total amount of work is similar to that of updating an inverted index, where each list

must be edited. There is the issue, however, of maintaining the encoding up to date with

changing frequencies. Recent work on dynamic (s, c)-Dense Codes (Brisaboa et al. 2010)

may prove this code better suited for this task, as it can maintain optimality within a

moderate number of changes in the encoding.

Since its conference publication (Brisaboa et al. 2008a), WTBC has been successfully

extended in various ways. A very interesting extension has been its adaptation to emulate a

document-addressing inverted index (Arroyuelo et al. 2010), so as to natively support

document retrieval operations. In particular, they target at answering conjunctive queries.

Their solution is more efficient than inverted indexes in some scenarios. Another extension

554 Inf Retrieval (2012) 15:527–557

123

has been the use of WTBC to index XML documents (Brisaboa et al. 2009), supporting

XPath queries in efficient time and space proportional to the compressed XML document.

We believe that many other extensions will come.

Finally, we wish to remark that our general idea could have wider applications. Grossi

et al. (2003) initially defined balanced wavelet trees, which are built on the source symbols

of a sequence. They also introduced the idea of skewed wavelet trees, by giving them

Huffman shape. It is not hard to see that both wavelet trees on Huffman codes and our

wavelet trees on byte codes are just two representatives of a more general idea: Given an

encoder C : R! s�; and a sequence S[1, n] over R; create a |s|-ary tree with one root-to-

leaf path spelling each element in the image of CðRÞ. Store at the root a sequence over s
with the first symbol of the code of each S[i], and continue recursively with the t-th child of

the root with the subsequence of S formed by the symbols whose target code starts with

t 2 s. Give rank capabilities to the sequences. Then the total space of the tree is essentially

the same as that of S encoded with C, and we have direct access to any S[i] in the time

required to compute |C(S[i])| rank queries. This is an interesting alternative to the usual

sampling schemes. Moreover, we can find all the occurrences of a given symbol c 2 R in

S by going upwards from the leaf corresponding to C(c) and using select. In this paper we

have shown how relevant this idea can be to Information Retrieval, but we believe it may

find applications in many other areas as well.

Acknowledgments Funded by MICINN grants TIN2009-14560-C03-02 and TIN2010-21246-C02-01,
Ministerio de Ciencia e Innovación grant CDTI CEN-20091048, and Xunta de Galicia grant 2010/17 (for the
Spanish group); and for the fourth author by Fondecyt grant 1-110066.

References

Anh, V., & Moffat, A. (2005). Inverted index compression using word-aligned binary codes. Information
Retrieval, 8(1), 151–166.

Arroyuelo, D., González, S., & Oyarzún, M. (2010). Compressed self-indices supporting conjunctive queries
on document collections. In Proceedings of the 17th international symposium on string processing and
information retrieval (SPIRE), LNCS 6393, (pp. 43–54).

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Boston, MA: Addison-Wesley
Longman.

Barbay, J., López-Ortiz, A., Lu, T., & Salinger, A. (2009). An experimental investigation of set intersection
algorithms for text searching. ACM Journal of Experimental Algorithmics (JEA), 14(7), 3, 24 pp.

Bentley, J., Sleator, D., Tarjan, R., & Wei, V. (1986). A locally adaptive data compression scheme.
Communications of the ACM (CACM), 29(4), 320–330.

Boyer, R., & Moore, J. (1977). A fast string searching algorithm. Communications of the ACM (CACM),
20(10), 762–772.

Brisaboa, N., Fariña, A., Navarro, G., & Paramá, J. (2007). Lightweight natural language text compression.
Information Retrieval, 10, 1–33.

Brisaboa, N., Fariña, A., Ladra, S., & Navarro, G. (2008a). Reorganizing compressed text. In Proceedings of
the 31th annual international ACM SIGIR conference on research and development in information
retrieval (SIGIR), (pp. 139–146).

Brisaboa, N., Fariña, A., Navarro, G., Places, A., & Rodrı́guez, E. (2008b). Self-indexing natural language.
In Proceedings of the 15th international symposium on string processing and information retrieval
(SPIRE), LNCS 5280, (pp. 121–132).

Brisaboa, N., Cerdeira, A., & Navarro, G. (2009). A compressed self-indexed representation of XML
documents. In Proceeding of the 13th European conference on digital libraries (ECDL), LNCS 5714,
(pp. 273–284).

Brisaboa, N., Fariña, A., Navarro, G., & Paramá, J. (2010). Dynamic lightweight text compression. ACM
Transactions on Information Systems (TOIS), 28(3), 10, 32 pp.

Inf Retrieval (2012) 15:527–557 555

123

Clark, D. (1996). Compact pat trees. PhD thesis. Canada: University of Waterloo.
Claude, F., & Navarro, G. (2008). Practical rank/select queries over arbitrary sequences. In Proceedings of

the 15th international symposium on string processing and information retrieval (SPIRE), LNCS 5280,
(pp. 176–187).

Culpepper, S. (2007). Efficient data representations for information retrieval. PhD thesis. Australia:
Department of Computer Science and Software Engineering, University of Melbourne.

Culpepper, S., & Moffat, A. (2005). Enhanced byte codes with restricted prefix properties. In Proceedings of
the 12th international symposium on string processing and information retrieval (SPIRE), LNCS 3772,
(pp. 1–12).

Culpepper, S., & Moffat, A. (2007). Compact set representation for information retrieval. In Proceedings of
the 14th international symposium on string processing and information retrieval (SPIRE), LNCS 4726,
(pp. 137–148).

Culpepper, S., & Moffat, A. (2010). Efficient set intersection for inverted indexing. ACM Transactions on
Information Systems (TOIS), 29(1), 1, 25 pp.

Ding, S., Attenberg, J., & Suel, T. (2010). Scalable techniques for document identifier assignment in
inverted indexes. In Proceedings of the 19th international conference on world wide web (WWW), (pp.
311–320).

Ferragina, P., Manzini, G., Mäkinen, V., & Navarro, G. (2007). Compressed representations of sequences
and full-text indexes. ACM Transactions on Algorithms (TALG), 3(2), 20, 24 pp.

Ferragina, P., González, R., Navarro, G., & Venturini, R. (2009). Compressed text indexes: From theory to
practice. ACM Journal of Experimental Algorithmics (JEA), 13, 12, 31 pp.

Grossi, R., Gupta, A., & Vitter, J. (2003). High-order entropy-compressed text indexes. In Proceedings of
14th annual ACM-SIAM symposium on discrete algorithms (SODA), (pp. 841–850).

Heaps, H. (1978). Information retrieval—computational and theoretical aspects. New York, NY: Academic
Press.

Horspool, R. (1980). Practical fast searching in strings. Software: Practice and Experience (SPE), 10(6),
501–506.

Huffman, D. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the
Institute of Radio Engineers (IRE), 40(9), 1098–1101.

Jacobson, G. (1989). Space-efficient static trees and graphs. In Proceedings of 30th IEEE symposium on
foundations of computer science (FOCS), (pp. 549–554).

Ladra, S. (2011). Algorithms and compressed data structures for information retrieval. PhD thesis. Spain:
Department of Computer Science, University of A Coruña.

Moffat, A. (1989). Word-based text compression. Software: Practice and Experience (SPE), 19(2),
185–198.

Moffat, A., & Culpepper, S. (2007). Hybrid bitvector index compression. In Proceedings of the 12th
Australasian document computing symposium (ADCS), (pp. 25–31).

Moura, E., Navarro, G., Ziviani, N., & Baeza-Yates, R. (2000). Fast and flexible word searching on
compressed text. ACM Transactions on Information Systems (TOIS), 18(2), 113–139.

Munro, I. (1996). Tables. In Proceedings of the 16th conference on foundations of software technology and
theoretical computer science (FSTTCS), LNCS 1180, (pp. 37–42).

Navarro, G., Moura, E., Neubert, M., Ziviani, N., & Baeza-Yates, R. (2000). Adding compression to block
addressing inverted indexes. Information Retrieval, 3(1), 49–77.

Raman, R., Raman, V., & Rao, S. (2002). Succinct indexable dictionaries with applications to encoding k-
ary trees and multisets. In Proceedings of the 13th annual ACM-SIAM symposium on discrete algo-
rithms (SODA), (pp. 233–242).

Sanders, P., & Transier, F. (2007) Intersection in integer inverted indices. In Proceeding of the 9th workshop
on algorithm engineering and experiments (ALENEX), (pp. 71–83).

Schenkel, R., Suchanek, F., & Kasneci, G. (2007) Yawn: A semantically annotated wikipedia xml corpus. In
12th GI conference on databases in business, technology and web (BTW), (pp. 277–291).

Strohman, T., & Croft, B. (2007). Efficient document retrieval in main memory. In Proceedings of the 30th
annual international ACM SIGIR conference on research and development in information retrieval
(SIGIR), (pp. 175–182).

Transier, F., & Sanders, P. (2010). Engineering basic algorithms of an in-memory text search engine. ACM
Transactions on Information Systems (TOIS) 29(1), 2, 37 pp.

Turpin, A., & Moffat, A. (1997). Fast file search using text compression. In Proceedings of the 20th
Australasian Computer Science Conference (ACSC), (pp. 1–8).

Witten, I., Moffat, A., & Bell, T. (1999). Managing gigabytes: Compressing and indexing documents and
images, 2nd edn. San Francisco, CA: Morgan Kaufmann Publishers.

556 Inf Retrieval (2012) 15:527–557

123

Yan, H., Ding, S., & Suel, T. (2009) Inverted index compression and query processing with optimized
document ordering. In Proceedings of the 18th international conference on world wide web (WWW),
(pp. 401–410).

Zobel, J., Moffat, A., & Ramamohanarao, K. (1998). Inverted files versus signature files for text indexing.
ACM Transactions on Database Systems (TODS), 23(4), 453–490.

Zukowski, M., Heman, S., Nes, N., & Boncz, P. (2006). Super-scalar RAM-CPU cache compression. In
Proceedings of the 22nd international conference on data engineering (ICDE), (p. 59).

Inf Retrieval (2012) 15:527–557 557

123

	Implicit indexing of natural language text by reorganizing bytecodes
	Abstract
	Introduction
	Bytewise encoders
	Wavelet trees
	Wavelet trees on bytecodes
	Conceptual description
	Implementation of bytewise rank and select
	Construction algorithm

	Access and search algorithms
	Random extraction
	Full text decompression
	Starting the decompression at a random position

	Searching
	Counting word occurrences
	Locating individual words
	Counting and locating phrase patterns

	Experimental evaluation
	Experimental framework
	Comparison with regular text compressors
	Comparison with other indexes
	Locating times
	Locating phrase patterns versus list intersection
	Range-restricted locating
	Extraction times
	Display times

	Scalability

	Conclusions and future work
	Acknowledgments
	References

