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Abstract Cluster-based and passage-based document retrieval paradigms were shown to

be effective. While the former are based on utilizing query-related corpus context mani-

fested in clusters of similar documents, the latter address the fact that a document can be

relevant even if only a very small part of it contains query-pertaining information. Hence,

cluster-based approaches could be viewed as based on ‘‘expanding’’ the document repre-

sentation, while passage-based approaches can be thought of as utilizing a ‘‘contracted’’

document representation. We present a study of the relative benefits of using each of these

two approaches, and of the potential merits of their integration. To that end, we devise two

methods that integrate whole-document-based, cluster-based and passage-based informa-

tion. The methods are applied for the re-ranking task, that is, re-ordering documents in an

initially retrieved list so as to improve precision at the very top ranks. Extensive empirical

evaluation attests to the potential merits of integrating these information types. Specifi-

cally, the resultant performance substantially transcends that of the initial ranking; and, is

often better than that of a state-of-the-art pseudo-feedback-based query expansion

approach.

Keywords Ad hoc retrieval � Re-ranking � Clusters � Cluster-based language models �
Passages � Passage-based language models

1 Introduction

A standard paradigm to addressing the ad hoc (query-based) retrieval task is devising

document and query representations, and using their similarity to induce ranking. In the

vector space model, for example, a vector representing the query and that representing a
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document can be compared using the cosine similarity measure (Salton et al. 1975). In the

language modeling framework, the KL divergence between the query and document lan-

guage models often serves for ranking (Lafferty and Zhai 2001).

There has been much work on devising query representations, document representa-

tions, and similarity measures. For instance, various approaches for automatic query

expansion have been developed (Buckley et al. 1994; Xu and Croft 1996; Lavrenko and

Croft 2001; Zhai and Lafferty 2001a). Furthermore, there is a large body of work on

integrating representations and similarity measures (Croft 2000b). Our focus in this paper

is on the document side, that is, (specific) document representations and their integration.

The document representation task has attracted quite a lot of research attention

throughout the history of information retrieval. The effectiveness of using manually versus

automatically selected terms to index the document with was studied (Salton and Lesk

1968). Using specific index terms versus using the entire document, or its abstract or title,

was also explored (Fisher and Elchesen 1972; McGill et al. 1979; Katzer et al. 1982). In

many cases, the conclusion was that integrating different document representations can

yield retrieval performance that is better than that of using each representation alone

(Katzer et al. 1982). Cognition-based arguments, for example, were proposed to support

the merits of such integration (Ingwersen 1994). Another form of document representation

that was explored is based on automatic summarization, performed in a query-independent

(Radev et al. 2002) or query-dependent (Tombros and Sanderson 1998) manner. Such

representations can help the user, for example, to effectively examine search results.

Document representation can also be based on information that is not part of the

document itself, e.g., so as to cope with the vocabulary mismatch between relevant doc-

uments and the query. For example, a document can be ‘‘expanded’’ using bibliographic

information (Salton 1963; Kwok 1975), or a thesaurus (Joyce and Needham 1958).

Alternatively, an expanded document form can be derived using similar documents in the

corpus (Singhal and Pereira 1999; Kurland and Lee 2004; Liu and Croft 2004; Tao et al.

2006), or by utilizing topic-based information that is induced from the corpus (Deerwester

et al. 1990; Hofmann 1999; Wei and Croft 2006; Yi and Allan 2009). On the Web,

hyperlink (and hypertext) information can be used to enrich the document representation

(McBryan 1994; Craswell et al. 1999; Kraaij et al. 2002; Ogilvie and Callan 2003; Metzler

et al. 2009). Recently, temporal versions of the document have been used to form a

representation (Elsas and Dumais 2010).

In that respect, the work on cluster-based retrieval could be viewed as representing a

conceptual approach that treats a document as part of its corpus context, rather than in

isolation. Examples include enriching a document model using information induced from

clusters of similar documents (Singhal and Pereira 1999; Kurland and Lee 2004; Liu and

Croft 2004, 2006b; Tao et al. 2006); and more generally, using document-cluster associ-

ations to identify documents pertaining to the query (Jardine and van Rijsbergen 1971;

Croft 1980; Voorhees 1985; Willett 1985; Kurland and Lee 2004; Liu and Croft 2004,

2006b, 2008; Kurland and Lee 2006; Yang et al. 2006).

A conceptually opposite approach to expanding a document representation is mani-

fested in passage-based document ranking models. The goal of such methods is to address

the fact that a long and/or topically heterogeneous relevant document might contain only a

small part (passage) with information pertaining to the query. A common retrieval method

is ranking a document by the highest query-similarity exhibited by any of its passages

(Salton et al. 1993; Callan 1994; Wilkinson 1994; Liu and Croft 2002).

Thus, the cluster-based and passage-based document ranking paradigms could be

viewed as two extremes of the spectrum of approaches utilizing different document
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representations, that is, expansion versus contraction. Furthermore, these paradigms

essentially address different, yet potentially complementary, goals: exploiting corpus

context versus handling long/heterogeneous documents. Naturally, then, the following

research questions rise. Can cluster-based and passage-based information be effectively

integrated, along with whole-document-based information, so as to improve upon using

each alone? are there cases wherein using cluster-based information is clearly more

effective than using passage-based information and vice versa? We note that although

demonstrated to be effective for document retrieval, cluster-based and passage-based

information have been utilized separately in different retrieval methods.

To address the research questions just stated, we perform the following study. We

devise two retrieval methods that integrate whole-document-based, cluster-based, and

passage-based information. The first is a language-model-based (LM) method that inte-

grates language models induced from documents, clusters, and passages. The method

generalizes some previously proposed ranking methods that utilize either passage-based or

cluster-based information, but not both. As such, the LM method enables us to thoroughly

study the relative performance contributions of each of the information types it leverages.

The second method that we present is based on a discriminative approach. Specifically, we

use a learning-to-rank algorithm (Joachims 2002; Liu 2009) that utilizes information

induced from documents, their passages, and clusters.

We use the proposed methods for the re-ranking task, which has attracted quite a lot of

research attention lately (Liu and Croft 2004, 2006a, b, 2008; Diaz 2005; Kurland and Lee

2005, 2006; Yang et al. 2006; Kurland 2009). That is, re-ordering documents in an initially

retrieved list so as to improve precision at the very top ranks. Extensive empirical eval-

uation performed using six TREC corpora shows that both the LM method and the

learning-to-(re-)rank approach are highly effective in re-ranking. Specifically, the perfor-

mance transcends that of a state-of-the-art cluster-based re-ranking method, and, that of a

commonly used passage-based document ranking approach. Furthermore, the performance

is often better than that of a state-of-the-art pseudo-feedback-based query expansion

approach. The latter comparison could conceptually be viewed as contrasting two para-

digms: enriching query representation versus enriching (and/or contracting) document

representation.

The findings with respect to the questions posted above that emerge in the study we

performed are as follows. Using passage-based information is much more effective than

using cluster-based information for corpora containing very long and topically-heteroge-

neous documents; e.g., TREC’s FR corpus. Yet, even for such corpora, integration of the

two types of information can yield performance that substantially transcends that of using

each alone. For the rest of the corpora we examine, using cluster-based information is

much more effective than using passage-based information, but yet again, their integration

can yield improved performance. More generally, we show that integration of whole-

document, cluster and passage-based information can yield clear merits over using any

subset of these three information types. Finally, we show that while simple learning,

performed across queries, of the relative impact of these information types yields highly

effective re-ranking performance, there is large room for improvement that can potentially

be attained by devising methods for setting this balance on a per-query basis.

All in all, we note that our contributions are two fold. First, we study the relative merits

of using whole-document-, cluster-, and passage-based information, and their integration,

in the ad hoc retrieval setting. Second, we present re-ranking methods that integrate these

three information types and which yield high precision at top ranks. Naturally, users would

like to see the documents pertaining to their information needs at the highest ranks of the
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retrieved lists. Furthermore, for applications such as question answering that rely on search

as an intermediate step high precision at top ranks is important (Voorhees 2002). Finally,

we note that while the focus of this paper is on the ‘‘document side’’, further future

performance improvements can potentially be attained by integration with techniques

relying on the ‘‘query side’’; e.g., query expansion.

2 Related work

There is a large body of work on re-ranking an initially retrieved list using information

induced from clusters of documents in the list (Willett 1985; Liu and Croft 2004, 2006a, b,

2008; Kurland and Lee 2006; Yang et al. 2006; Kurland 2009). As will be shown in Sect.

3.1.1, our main (re-)ranking method generalizes a state-of-the-art cluster-based re-ranking

model (Kurland 2009), which does not utilize passages. The relative performance merits of

our model, which utilizes passage-based information on top of cluster-based information,

are demonstrated in Sect. 4.3.

Graph-based re-ranking methods utilizing inter-item similarities have become quite

common (e.g., Baliński and Daniłowicz 2005; Diaz 2005; Kurland and Lee 2005; Kurland

and Lee 2006; Yang et al. 2006; Krikon et al. 2009). Specifically, document centrality

(Kurland and Lee 2005), cluster centrality (Kurland and Lee 2006), and passage centrality

(Krikon et al. 2009) induced over such graphs, were shown to be effective for re-ranking

documents. Extending our model by using such centrality measures is a future venue we

aim to explore. Indeed, the merits of such practice were demonstrated in work that also

uses passages as proxies for documents (Krikon et al. 2009); however, cluster-based

information, which is highly effective for re-ranking as we show in Sect. 4.3, was not

utilized (Krikon et al. 2009). Re-ranking an initially retrieved list using inter-document

similarities was also employed for searching over digital libraries (Van and Beigbeder

2008), cross-lingual retrieval (Diaz 2008), and fusion of retrieved lists (Meister et al.

2010).

A common passage-based document retrieval method is ranking a document by the

highest query-similarity that any of its passages exhibits (Callan 1994; Wilkinson 1994;

Kaszkiel and Zobel 2001; Liu and Croft 2002; Bendersky and Kurland 2008; Na et al.

2008); and, interpolating this similarity score with a document-query similarity score

(Buckley et al. 1994; Callan 1994; Wilkinson 1994; Cai et al. 2004; Bendersky and

Kurland 2008). Our re-ranking model generalizes these methods as will be shown in Sect.

3.1.1. Furthermore, we show in Sect. 4.3 that the model posts much better performance

than that of these methods.

There is some work on discriminative models for passage-based document retrieval

(Wang and Si 2008). In contrast to the learning-to-re-rank approach that we present,

cluster-based information, which is highly effective for re-ranking as we show in Sect. 4.3,

is not utilized.

Utilizing information induced from passages could be viewed as a means for exploiting

relationships between terms that are somewhat close to each other in the text. Using

Markov random fields (Metzler and Croft 2005), positional language models (Lv and Zhai

2009; Zhao and Yun 2009), and approaches that utilize the document structure (e.g., for

XML documents) (Beigbeder et al. 2009) has also been suggested for exploiting infor-

mation induced from inter-term and term-(document) position proximities. In Sect. 4.3 we

use unigram language models in our re-ranking approaches so as to facilitate the

comparison with previous work in the language modeling framework on (i) passage-based
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(Liu and Croft 2002), (ii) cluster-based (Kurland and Lee 2004; Kurland 2009), and (iii)

relevance-model-based (Lavrenko and Croft 2001; Abdul-Jaleel et al. 2004) retrieval that

used these unigram models. However, we hasten to point out that the Markov random field

approach, and/or positional language models, can be used in our methods for estimating the

document-query and passage-query ‘‘match’’ so as to potentially improve performance—a

venue which we leave for future work.

Previous work on passage-based retrieval has focused on identifying and utilizing

different types of passages. For example, (i) discourse passages are inferred from docu-

ment markup (e.g., sentences or SGML tags) (Salton and Buckley 1991; Callan 1994;

Wilkinson 1994; Cai et al. 2004; Hussain 2004), (ii) semantic passages are induced based

on presumed topic shifts in a document (Hearst and Plaunt 1993; Mittendorf and Schäuble

1994; Ponte and Croft 1997; Denoyer et al. 2001; Jiang and Zhai 2004), and (iii) fixed (or

variable) length passages are simply windows of consecutive terms in the document

(Callan 1994; Kaszkiel and Zobel 1997; Liu and Croft 2002; Wade and Allan 2005; Na

et al. 2008; Wang and Si 2008). While we focus on the latter in the evaluation presented in

Sect. 4, as those were shown to be highly effective for document retrieval (see Sect. 4.2 for

further details), we note that our re-ranking methods are not committed to any specific type

of passages.

Furthermore, there is a large body of work on devising passage-based (Liu and Croft

2002; Abdul-Jaleel et al. 2004; Murdock and Croft 2005; Wade and Allan 2005; Bend-

ersky and Kurland 2008) and cluster-based (Liu and Croft 2006b, 2008; Tao et al. 2006)

language models. These language models could be used by our models, which are not

committed to a specific language-model induction technique, so as to potentially improve

their performance.

3 Re-ranking search results

Notational conventions We use q, d, and D to denote a query, a document, and a corpus

of documents, respectively. Our goal is to re-rank an initial list, Dinit (� D), which was

retrieved by some search algorithm in response to q, so as to improve precision at top

ranks. To that end, a set of clusters of similar documents, ClðDinitÞ, created from docu-

ments in Dinit by some clustering algorithm, is utilized; c is used to denote a cluster. Our

re-ranking methods also exploit information induced from passages in documents. We use

g to denote a passage, and write g 2 d if g is part of d. The methods we present are not

committed to a specific clustering algorithm, nor to a specific technique of segmenting

documents to passages.

3.1 A language-model-based approach

We rank the documents in Dinit using a probabilistic approach. Specifically, we aim to

estimate pðdjqÞ—the probability that d is relevant to the information need expressed by q.

Assuming a uniform prior distribution over documents, the following rank equivalence

holds

pðdjqÞ ¼rank
pðqjdÞ: ð1Þ

In the language-modeling framework (Ponte and Croft 1998; Croft and Lafferty 2003), for

example, pðqjdÞ is regarded as the probability of generating the terms in q by a language
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model induced from d. However, we hasten to point out that the derivation to follow is not

committed to any specific paradigm of estimating probabilities, albeit we will use lan-

guage-model-based estimates for implementation.1

Clusters in ClðDinitÞ could potentially be thought of as representing query-related

‘‘aspects’’, by the virtue of the way they are created, that is, from documents retrieved in

response to the query (Liu and Croft 2004; Kurland and Lee 2006). We therefore use

clusters as proxies for d (Kurland and Lee 2004):

pðqjdÞ ¼
X

c2ClðDinitÞ
pðqjd; cÞpðcjdÞ: ð2Þ

To estimate pðqjd; cÞ, we use a simple mixture governed by a free parameter kclust:

ð1� kclustÞpðqjdÞ þ kclustpðqjcÞ. As pðcjdÞ is a probability distribution over ClðDinitÞ, the

universe of clusters that we consider, we can use some probability algebra to derive a

previously-proposed cluster-based retrieval algorithm (Kurland and Lee 2004; Kurland

2009):2

ScoreclustðdjqÞ ¼defð1� kclustÞpðqjdÞ þ kclust

X

c2ClðDinitÞ
pðqjcÞpðcjdÞ: ð3Þ

Consequently, document d is highly ranked if it exhibits a good ‘‘match’’ to the query,

as measured by pðqjdÞ, and if it is strongly associated with clusters of documents in Dinit

(as measured by pðcjdÞÞ that are a good ‘‘match’’ to the query ðpðqjcÞÞ.
A potential shortcoming of the ranking function in (3) is that d is treated as a whole unit.

Indeed, it could be the case that only a small part (passage) of d contains information

pertaining to q, and d is still deemed relevant—e.g., by TREC’s relevance-judgment

regime (Voorhees and Harman 2005). More generally, since passages could be considered

as more coherent units than documents, they can potentially serve as proxies in estimating

the document-query match—pðqjdÞ in our case. For example, some previous work

(Bendersky and Kurland 2008) has demonstrated the merits in using

ScorepsgðdjqÞ ¼defð1� kpsgÞpðqjdÞ þ kpsg max
gi2d

pðqjgiÞ ð4Þ

as an estimate for pðqjdÞ; kpsg is a free parameter. Such an approach can help to address the

above-mentioned scenario of having a single passage in a document that contains query-

pertaining information.

To integrate information induced from both passages and clusters, we can use the

estimate from (4) for pðqjdÞ in (3) so as to get:

ScoreðdjqÞ ¼defð1� kclustÞð1� kpsgÞpðqjdÞ
þ ð1� kclustÞkpsg max

gi2d
pðqjgiÞ þ kclust

X

c2ClðDinitÞ
pðqjcÞpðcjdÞ: ð5Þ

Algorithm The probabilities in (5) can be estimated in various ways. Here, we follow

common practice in the language-modeling framework (Ponte and Croft 1998; Croft and

Lafferty 2003). Specifically, we use a language-model-based estimate, py(x), for pðxjyÞ;

1 We do not assume an underlying generative theory in contrast to Lavrenko and Croft (2001) and Lavrenko
(2004), inter alia.
2 The shift in terminology from ‘‘probability’’ to ‘‘score’’ is intended to emphasize the transition from
model-based probabilities to estimates of such probabilities.
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py(x) is based on the probability of generating the text x by a language model induced from

text y. (Specific language-model induction details are described in Sect. 4.1). Thus, we

arrive to our cluster-document-passage language-model-based re-ranking algorithm,

henceforth referred to as CDPlm:

ScoreCDPlmðdjqÞ ¼
defð1� kclustÞð1� kpsgÞpdðqÞ
þ ð1� kclustÞkpsg max

gi2d
pgi
ðqÞ þ kclust

X

c2ClðDinitÞ
pcðqÞpdðcÞ: ð6Þ

CDPlm is a three-component mixture model. The first component is based on the direct

‘‘match’’ between d and q. The second component uses d’s passage that exhibits the best

‘‘match’’ to q as a proxy in estimating d’s ‘‘match’’ to q. The third component uses clusters

as proxies for d.

3.1.1 Generalizing previous models

The CDPlm method, and more generally, the ranking criterion in (5) on which it is based,

generalize various previously proposed document ranking methods. For example, setting

kclust = kpsg = 0 in (6)—i.e., using no passage-based and cluster-based information—

yields the standard language model approach (Ponte and Croft 1998). Alternatively, setting

only kpsg = 0, hence using no passage-based information, we get, as mentioned above, a

previously-proposed cluster-based ranking model (Kurland and Lee 2004), with which we

empirically compare CDPlm in Sect. 4.3.

Setting kclust = 0, that is, ignoring cluster-based information, yields a commonly used

passage-based document ranking approach (Buckley et al. 1994; Callan 1994; Cai et al.

2004; Wilkinson 1994) with which we empirically compare CDPlm in Sect. 4.3; further

setting kpsg = 1 yields another commonly used passage-based document ranking principle

(Callan 1994; Kaszkiel and Zobel 2001; Wilkinson 1994; Liu and Croft 2002; Bendersky

and Kurland 2008).

3.2 Learning to re-rank

The CDPlm method is based on estimating the probability of document relevance using

language-model estimates. We now turn to devise an alternative re-ranking method that is

based on a discriminative approach, but which also uses language-model-based estimates.

Specifically, we employ a commonly used learning to rank method, SVMrank (Joachims

2006), which uses support vector machines. The learner is presented with examples of

queries and rankings of the initial document lists for these queries; the rankings are

determined using relevance judgments. The learned ranking function is then used to

re-rank an initial list for a new query.

Each document d in the initial list is represented by a vector of features that presumably

indicate its relevance to the query. A weight vector for the features is learned so as to

discriminate non-relevant documents from relevant documents for (roughly speaking) as

many such pairs as possible in the training set (Joachims 2002).3 We use a linear kernel

3 Experimental results—specific numbers are omitted as they convey no additional insight—show that
SVMrank that optimizes MAP (Yue et al. 2007) yields performance comparable to that of standard SVMrank

(Joachims 2006) in our experimental setup.
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SVM; hence, the learned function is linear in features. Now, recall that our CDPlm method

is a linear mixture of three information types (whole-document-based, passage-based, and

cluster-based). Hence, we use these three as features representing a document with respect

to a query so as to study whether the balance between them can be learned using a

discriminative approach as that employed by SVMrank:

1. The document-based feature:

DocFeatureðdÞ ¼def
pdðqÞ:

2. The cluster-based feature:

ClustFeatureðdÞ ¼def
X

c2ClðDinitÞ
pcðqÞpdðcÞ:

3. The passage-based feature:

PsgFeatureðdÞ ¼def
max
gi2d

pgi
ðqÞ

The resultant (re-)ranking model is denoted CDPsvm.

We note that using binary features that indicate whether document d is among the top-

ranked documents with respect to a specific feature value, as originally proposed (Joachims

2002), has shown no merit.4 Furthermore, adding features that utilize some types of pas-

sage-based and document-based information other than those utilized by CDPlm has

yielded no performance gains. For example, using in addition to the features described

above passage centrality and document centrality induced over similarity-based graphs—as

those were shown to be effective for re-ranking (Kurland and Lee 2005; Krikon et al.

2009)—has not yielded performance improvements.

4 Evaluation

In what follows we present an evaluation of the performance of the CDPlm and CDPsvm

methods. The rest of this section is organized as follows. In Sect. 4.1 we describe the

language model estimate used for implementation. Section 4.2 provides details with

respect to the experimental setup. Section 4.3 presents the results of our experiments.

4.1 Language-model induction

In this section, we refer to documents, passages, and queries as term sequences. A cluster is

represented by the long document that results from concatenating its constituent documents

(Kurland and Lee 2004; Liu and Croft 2004). The order of concatenation has no effect

since we use unigram language models that assume term independence.

Let pDir½l�
z ð�Þ be the Dirichlet-smoothed unigram language model induced from text z (a

query, document, cluster, or passage) with smoothing parameter l (Zhai and Lafferty

2001b). We use a previously-proposed estimate based on the KL divergence (Lafferty and

Zhai 2001; Kurland and Lee 2004, 2005):

4 Normalizing feature values across documents per query has shown no merit as well.
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pyðxÞ ¼def
exp �D pDir½0�

x ð�Þ pDir½l�
y ð�Þ

���
���

� �� �
:

The estimate was shown to be effective in work on cluster-based retrieval (Kurland and

Lee 2004; Kurland 2009) with which we compare our methods, and passage-based

retrieval (Krikon et al. 2009). For example, the estimate addresses underflow and length-

based issues that result from assigning language-model probabilities to long sequences of

text (Lafferty and Zhai 2001; Lavrenko et al. 2002; Kurland and Lee 2005), e.g., pd(c).

While the estimate does not constitute a probability distribution—as is the case for unigram

language models—normalizing it to this end yields no performance merits as was the case

in some previous work (Krikon et al. 2009; Kurland 2009).

4.2 Experimental setup

We conducted experiments using the TREC corpora specified in Table 1. For each corpus

we report the average document length of a document in the corpus, and the average

similarity between passages in a document in the initial list, Dinit, to be re-ranked (further

details below). The latter is computed by 1
jDinitj

P
d2Dinit

P
gi2d;gj2d

pgi
ðgjÞ

mðdÞ2 , where m(d) is the

number of passages in d and jDinitj is the number of documents in Dinit.
5 The motivation for

using these corpora is based on the different types of documents that they contain (news

articles, federal register records, and Web pages), the varying average document length and

presumed document ‘‘homogeneity’’ (as measured by inter-passages similarities) that can

affect the relative effectiveness of document-based, passage-based and cluster-based

retrieval; and, compliance with previous work on cluster-based re-ranking (Kurland 2009)

and passage-based retrieval (Callan 1994; Liu and Croft 2002) that used some of these

corpora and with which we compare our models.

Specifically, AP, SJMN and WSJ are news corpora. TREC8, which is considered a hard

benchmark (Voorhees 2005), is mainly composed of news documents, but also contains

federal register records. FR is composed of only federal register records. Furthermore,

passage-based document ranking methods are known to be more effective than whole-

document-based approaches for FR (Callan 1994; Liu and Croft 2002; Bendersky and

Kurland 2008; Wang and Si 2008). This finding is often attributed to the fact that the FR

documents are very long and ‘‘heterogeneous’’. Indeed, the average document length for

Table 1 TREC corpora used for experiments

Corpus # of docs Avg. doc length Inter-passage similarity Queries Disks

AP 242,918 464 0.113 51–150 1–3

FR 45,820 1,498 0.098 51–150 1–2

SJMN 90,257 414 0.108 51–150 3

TREC8 528,155 481 0.106 401–450 4–5

WSJ 173,252 452 0.104 151–200 1–2

WT10G 1,692,096 611 0.061 451–550 WT10G

5 Since px(y) is an asymmetric function, we consider both pgu
ðgvÞ and pgv

ðguÞ in the average. The similarity

of a passage to itself is also considered as it serves as a regularization factor that can help address the fact,
for example, that many documents in the news corpora have a single passage and omitting these (which
might be considered ‘‘homogeneous’’) results in somewhat biased statistics.
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FR is much higher than that for other corpora; and, the average within-document inter-

passage similarity is quite low with respect to that for the news corpora. We come back to

these points later on. WT10G is a Web corpus that contains quite long (on average)

documents. Furthermore, the Web documents are quite ‘‘heterogeneous’’ as measured by

the within-document inter-passage similarities.

We used titles of TREC topics for queries.6 Tokenization and Porter stemming were

applied using the Lemur toolkit (http://www.lemurproject.org). Stop words were not

removed. The Lemur and Zettair (http://www.seg.rmit.edu.au/zettair) toolkits were used

for experiments.

We use the experimental setup proposed in some previous work on re-ranking (Kurland

and Lee 2005, 2006; Kurland 2009; Krikon et al. 2009). The list Dinit, upon which

re-ranking is performed, is set to the 50 documents in the corpus that yield the highest

pd(q)—i.e., a standard language-model-based approach. We note that re-ranking methods

that utilize inter-document similarities—in our case, using information induced from

document clusters—are known to be most effective when employed over relatively short

retrieved lists (Diaz 2005; Kurland 2006). The document language-model smoothing

parameter, l, is set to optimize MAP (at 1000) so as to have an initial list of reasonable

quality. In Sect. 4.3 we show that when employed over such a reasonable ranking, our re-

ranking methods can yield performance that is better than that of state-of-the-art retrieval

methods, whether used to rank the entire corpus or only re-rank the initial list.

The goal of re-ranking methods is to improve precision at the very top ranks. Therefore,

we focus on the precision of the top 5 and 10 documents (p@5 and p@10, respectively) as

evaluation measures. Statistically significant performance differences are determined using

the two-tailed paired t test at a confidence level of 95% (Sanderson and Zobel 2005;

Smucker et al. 2007).

As mentioned above, our methods are not committed to a specific type of passages and

clusters. We use half-overlapping windows of 150 terms for passages, as these were shown

to be effective (e.g., in comparison to other types of passages and in comparison to

windows of 50 and 25 terms) in work on passage-based document retrieval (Callan 1994;

Wang and Si 2008), specifically, in the language modeling framework (Liu and Croft 2002;

Bendersky and Kurland 2008; Krikon et al. 2009).

To cluster Dinit, we employ a commonly used nearest-neighbor-based approach that

yields overlapping clusters (Griffiths et al. 1986; Kurland and Lee 2006; Liu and Croft

2006a; Kurland 2009). For each d (2 Dinit) we define a cluster that contains d and the

k - 1 documents di in Dinit (di = d) that yield the highest pd_i(d). We use clusters of

k = 10 documents, as such small clusters were shown to be effective in work on cluster-

based retrieval, specifically, for the re-ranking task (Kurland and Lee 2006; Liu and Croft

2006a; Kurland 2009).

Parameters The smoothing parameter, l, is set to 2000 (Zhai and Lafferty 2001b) in all

methods, except for estimating pd(q), where we use the value chosen for creating Dinit so as

to maintain consistency with the initial ranking.

The CDPlm method incorporates two free parameters, kclust and kpsg, which control the

relative impact of cluster-based and passage-based information, respectively. To thor-

oughly study the relative merits of using these information types, and the overall resultant

effectiveness of CDPlm, we use the following experimental settings.

6 Queries with no relevant documents were not considered.
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In Sect. 4.3.1 we study the optimal performance that can be attained by CDPlm and the

components it is composed of. To that end, we set kclust and kpsg to values that yield

optimized performance on a per-query basis. This practice enables to compare the relative

effectiveness of whole-document-, passage-, and cluster-based information when com-

pletely neutralizing free-parameter-values effects. Then, in Sect. 4.3.2 we set kclust and kpsg

to values that result in optimized average performance over the set of queries for corpus.

Doing so helps to shed light on the potential performance of CDPlm when using the same

(effective) parameter values for all queries. Finally, in Sect. 4.3.3 we present performance

numbers when learning the values of the free parameters of CDPlm, and those of the

reference comparisons, using a leave-one-out cross-validation procedure performed over

queries.

The evaluation metric for which performance is optimized in all cases is p@5.7 The

values of kclust and kpsg are chosen from f0; 0:1; . . .; 1g. For compatibility, we also use in

Sect. 4.3.4 a leave-one-out cross validation procedure to train/test the learning-to-re-rank

method, CDPsvm.

Efficiency considerations We segment documents to passages prior to retrieval time.

Hence, the main computational overhead posted by our methods on top of the initial

retrieval is clustering the initially retrieved list; specifically, computing inter-document

similarities. However, the initial list is quite short—composed of only 50 documents—and

therefore, this overhead is not substantial. Furthermore, inter-document-similarities could

be computed based on snippets of documents, rather than using whole-document content,

as was done for example, in work on clustering the results of Web search engines (Zamir

and Etzioni 1998). Similar efficiency considerations were echoed in previous work on

using query-specific clusters—i.e., clusters of top-retrieved documents—for re-ranking

(Willett 1985; Liu and Croft 2004, 2006a; Kurland and Lee 2005, 2006; Yang et al. 2006)

and, in work on graph-based re-ranking methods that utilize inter-document-similarities

among top-retrieved documents (Diaz 2005; Kurland and Lee 2005; Krikon et al. 2009).

4.3 Experimental results

In what follows we present and analyze the performance of CDPlm and its components

(Sects. 4.3.1–4.3.3), and that of CDPsvm (Sect. 4.3.4), when re-ranking an initial list that

was retrieved using a language-model-based approach as described above. In Sect. 4.3.5

we study the effectiveness of CDPlm in re-ranking an initial list that was retrieved using

Okapi-BM25 (Robertson et al. 1994).

4.3.1 Optimal-performance analysis

Our first order of business is studying the relative effectiveness of using whole-document-

based, cluster-based, and passage-based information. To that end, we use free-parameter

settings that yield specific instances of CDPlm [refer back to (6)]. Furthermore, we neu-

tralize the effect of free parameters that are not fixed, by using values that yield optimal

7 When optimizing performance per query, if two parameter configurations yield the same p@5, we choose
the one maximizing p@10, as we are interested in optimal performance. When optimizing average per-
formance over a set of queries per corpus, p@5 ties are broken by using the configuration minimizing p@10
so as to provide conservative estimates of performance. Finally, in case of p@5 ties in the learning phase of
the cross validation procedure, we choose the configuration maximizing p@10 so as to learn the best
possible configuration.
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p@5 on a per-query basis, as explained above. Such practice enables a fair comparison of

the optimal performance that can be attained by CDPlm and its components. The parameter

settings are:

• Doc (kclust = kpsg = 0): the initial ranking that is based solely on whole-document

information;

• Clust (kclust = 1): uses only cluster-based information; this is a previously proposed

cluster-based (re-)ranking method (Kurland and Lee 2004; Kurland 2009);

• Psg (kclust = 0, kpsg = 1): a commonly used method that utilizes only passage-based

information (Callan 1994; Liu and Croft 2002);

• DocClust (kpsg = 0): uses document-based and cluster-based information, and was

shown to yield state-of-the-art re-ranking performance (Kurland 2009);8

• DocPsg (kclust = 0): uses document-based and passage-based information; this is also a

commonly used passage-based ranking approach (Buckley et al. 1994; Callan 1994;

Wilkinson 1994; Cai et al. 2004; Bendersky and Kurland 2008); and,

• ClustPsg (kpsg = 1): uses cluster-based and passage-based information.

Table 2 presents the performance numbers. The numbers in the first row represent the

upper bound on performance; that is, the performance attained by positioning all relevant

documents in the initial list, Dinit, at the highest ranks.

Our first observation based on Table 2 is that when used alone, cluster-based information

(Clust) is in most cases more effective than whole-document-based (Doc) and passage-based

(Psg) information. The notable exception is the FR corpus for which Clust posts poor per-

formance in comparison to that of Doc and Psg. This finding can be explained by the statistics

presented in Table 1 about FR containing long and heterogeneous documents as manifested

in within-document inter-passage similarities. As clustering is based on inter-document

Table 2 Optimal-performance analysis of the information types utilized by CDPlm; free-parameter values
are set to optimize per-query performance

AP FR SJMN TREC8 WSJ WT10G

p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

Upper
bound

88.5 79.6 50.7 33.1 77.9 63.8 94.4 85.0 90.4 79.4 74.5 58.9

Doc
(init. rank)

45.7 43.2 24.8 18.5 34.7 29.6 50.0 45.6 53.6 48.4 33.9 28.0

Clust 53.3c
i 49.8c

i 10.4c
i 8.9c

i 38.9c 35.1c
i 55.2c 48.6c 56.4c 51.4c 33.7c 29.3c

Psg 46.1c 41.7c 24.8c 19.4c 31.5c
i 28.6c 44.8c

i 43.0c 48.8c 44.6c 32.9c 29.3c

DocClust 61.0c
i 55.6c

i 28.1c 20.6c 49.1c
i 40.4c

i 66.0c
i 54.4c

i 64.8c
i 56.8c

i 44.3c
i 36.1c

i

DocPsg 53.3c
i 47.9c

i 30.4i 21.3i 38.9c
i 34.0c

i 53.6c
i 49.2c

i 58.8c
i 51.6c

i 41.2c
i 34.3c

i

ClustPsg 63.0c
i 55.8c

i 28.9c 20.9c 46.8c
i 39.6c

i 65.2c
i 53.8c

i 64.4c
i 55.8c

i 45.9c
i 37.0c

i

CDPlm 65.9i 57.8i 32.6i 22.8i 50.6i 42.1i 68.0i 56.4i 66.8i 58.6i 49.6i 38.8i

The best performance attained by a re-ranking method per corpus and evaluation measure is boldfaced; ‘i’
and ‘c’ mark statistically significant differences with Doc (the initial ranking) and CDPlm, respectively

8 This method was originally termed ‘‘interpolation’’ (Kurland and Lee 2004; Kurland 2009).
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similarities, and those could be dominated by many non-query-related aspects in case the

documents are highly heterogeneous, clusters then convey less effective information for re-

ranking than in cases wherein documents are relatively ‘‘homogeneous’’.9 Indeed, WT10G,

which also contains heterogeneous documents (refer to Table 1), is the second corpus in

addition to FR, for which Clust underperforms Doc (in terms of p@5); for the news-based

corpora, which contain relatively short and homogeneous documents, this does not happen.

Nevertheless, we can see that integrating cluster-based information with whole-document-

based (DocClust) or passage-based information (ClustPsg) yields effective re-ranking per-

formance even for the FR and WT10G corpora.

More generally, the integration of any two types of information yields performance that

is substantially better than that of using each alone; furthermore, the resultant performance

is much better than that of the initial ranking. Specifically, the ClustPsg method outper-

forms both Clust and Psg by a considerable margin. As the performance of Psg is often

below that of the initial document-based ranking, and that of Clust is often beyond that of

the initial ranking, we conclude that passage-based and cluster-based information are

complementary, and there are clear merits in integrating them.

We can also see in Table 2 that the performance of CDPlm, which integrates whole-

document-, cluster-, and passage-based information, is better to a substantial (and often to a

statistically significant) degree than that of its specific instances that utilize one or two of the

three information types. Thus, the overall picture rising from Table 2 is that the integration of

whole-document-, cluster-, and, passage-based information has a clear potential. In other

words, if we were able to automatically set per each query the kclust and kpsg parameters, which

control the relative impact of the information types, to highly effective values, then the

integration of these information types would be of clear merit. Still, there is much room for

improvement, as the ‘‘upper bound’’ numbers attest, and which can be addressed by using

some of the approaches discussed in Sect. 2 in addition to CDPlm.

4.3.2 Performance analysis when using the same effective free-parameter values for all
queries

The analysis presented above focused on the optimal potential performance of CDPlm and

its components. The optimal performance was attained by setting free-parameter values to

optimize performance per each query. We now turn to analyze the potential effectiveness

of CDPlm when using the same (effective) free-parameter values for all queries per corpus;

specifically, kclust and kpsg are set to values that optimize average (over queries) p@5.

Naturally, finding such effective parameter values is a task at its own right, which we

address in the next section using cross validation. Yet, such practice enables us to study,

using a setup more practical than that above, the relative benefits of cluster-based and

passage-based information. Furthermore, we can contrast the performance of CDPlm with

that of reference comparisons when (partially) ameliorating the effects of free-parameter

values, yet avoiding per-query fitting of parameter values.

We first study the general effectiveness of CDPlm as a re-ranking method. To that end,

we compare its performance with that of the initial ranking upon which re-ranking is

performed. Recall that the initial ranking was created by a standard language-model

approach (pd(q)) wherein the smoothing parameter, l, was optimized for MAP. Hence, we

9 While previous work showed that Psg substantially outperforms Doc when ranking the entire FR corpus
(Callan 1994; Liu and Croft 2002; Bendersky and Kurland 2008), Table 2 shows that this is not the case
when Psg is used to re-rank the list retrieved by Doc.
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also compare CDPlm with optimized baselines that use pd(q) to rank all documents in the

corpus, with l optimized for p@5 and p@10, independently. We can see in Table 3 that

CDPlm consistently and substantially outperforms both the initial ranking and the opti-

mized baselines, often, to a statistically significant degree.10

To further study the impact of cluster-based and passage-based information, we present

in Fig. 1 the effect of varying the values of kclust and kpsg on the p@5 performance of

CDPlm; when setting one of the two parameters to some value, the value of the second

parameter is set so as to maximize average (over queries) p@5. It is important to note that

while kclust solely determines the impact of cluster-based information, both kpsg and kclust

determine that of passage-based information. [Refer back to (6)].

Putting aside the case for the FR corpus, we can see in Fig. 1 that the performance of

CDPlm is much superior to that of the initial ranking for a vast majority of the values of kclust

(= 0), and for all values of kpsg. These findings attest to the merits of the way CDPlm utilizes

and integrates passage-based and cluster-based information. Furthermore, we can see that

using kclust 2 f0:1; 0:2g and kpsg 2 f0:2; 0:3g often yields near-optimal performance.

For the FR corpus, we see as shown above, that using cluster-based information results in

in-effective re-ranking performance. Furthermore, only relatively large values of kpsg—i.e.,

putting a lot of emphasis on passage-based information—yield performance that is (much)

better than that of the initial ranking. (For kpsg = 1, no document-based information is used

on top of passage-based information, and hence, there is a relative decrease in performance.)

Similarly, we see that putting too much emphasis on cluster-based information is not effective

for WT10g, which as FR, contains long and heterogeneous documents.

Comparison with pseudo-feedback-based query expansion The CDPlm method uses

information from the initial list, Dinit, to re-rank it. Pseudo-feedback-based query expan-

sion methods, on the other hand, use information from Dinit to construct a query model

using which the entire corpus is re-ranked. Furthermore, CDPlm, as noted above, can

conceptually be viewed as integrating different approaches for representing a document,

while query expansion methods focus on the query representation. Thus, we turn to

compare the performance of CDPlm with that of a state-of-the-art pseudo-feedback-based

query expansion approach, namely, relevance model number 3 (RM3) (Lavrenko and Croft

Table 3 Comparison with the initial ranking and optimized baselines when using the same (optimized)
free-parameter values for all queries

AP FR SJMN TREC8 WSJ WT10G

p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

init. rank 45.7 43.2 24.8 18.5 34.7 29.6 50.0 45.6 53.6 48.4 33.9 28.0

opt. base 46.5i 43.9 24.8 18.9 34.9 30.5i 51.2 46.4 56.0 49.4 34.1 28.2

CDPlm 54.3o
i 50.2o

i 26.7 20.0 42.3o
i 36.6o

i 57.6i 49.0 57.2 51.2 37.4 31.8o
i

‘i’ and ‘o’ mark statistically significant differences with the former and latter, respectively. The best result in
a column is boldfaced

10 While our focus here is on precision at top ranks, we note that the MAP (optimized) performance of
CDPlm at cutoff 50—the size of the initial list Dinit—also consistently transcends that of the initial ranking:
CDPlm yields MAP of 10.1, 24.9, 15.9, 17.9, 23.1 and 14.0 over AP, FR, SJMN, TREC8, WSJ and WT10G,
respectively; the initial ranking MAP is 9.3, 24.8, 14.6, 17.5, 22.3 and 13.3, respectively.
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2001; Abdul-Jaleel et al. 2004). For completeness of comparison, we also study a variant,

RM3(re), which uses the constructed relevance model to re-rank Dinit, rather than to rank

the entire corpus. Ranking with a relevance model is based on its cross entropy with the

document language model (Lavrenko 2004).

The values of the free parameters of RM3 and RM3(re) are set to optimize average p@5

over the set of queries per corpus, as is the case for CDPlm. Specifically, the (Jelinek–

Mercer) smoothing parameter used for relevance-model construction is chosen from

f0; 0:1; 0:3; . . .0:9g; the number of terms used by the models is chosen from

{25, 50, 75, 100, 500, 1000, 5000, ALL}, where ‘‘ALL’’ stands for using all terms in the

vocabulary; and, the interpolation parameter that controls the reliance on the original query

is set to a value in f0; 0:1; . . .; 0:9g. The (Dirichlet) document language model smoothing

parameter (l) used for ranking with a relevance model is set to 2000 as in all other

methods. Table 4 presents the performance comparison.
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Fig. 1 Effect of varying kclust (first and second rows) and kpsg (third and fourth rows) on the p@5
performance of CDPlm. The performance of the initial ranking, depicted with horizontal lines, is presented
for reference. Note: figures are not to the same scale
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We can see that the performance of CDPlm is superior to that of the relevance models in

most relevant comparisons (corpus 9 evaluation measure). Specifically, CDPlm posts p@5

performance—the metric for which performance was optimized—that is substantially better

than that of the relevance models over AP and TREC8; the improvement over RM3 for AP is

also statistically significant. We can also see that in the few cases that CDPlm is outperformed

by the relevance models the performance differences are not statistically significant.

4.3.3 Learning free-parameter values

Heretofore, we evaluated the potential performance of CDPlm, and that of the reference

comparisons, by ameliorating issues that rise from free-parameter values. Now, we turn to

study whether effective parameter values generalize from one query to another. We note

that this study is different than that presented in Fig. 1, wherein we analyzed the robustness

of the average (over queries) performance of CDPlm with respect to free-parameter values.

We take a leave-one-out cross-validation approach. The free-parameter values of a

method per query are set to those optimizing p@5 performance over all other queries for

Table 4 Comparison with a relevance model used to either rank all corpus (RM3) or to re-rank the initial
list (RM3(re))

AP FR SJMN TREC8 WSJ WT10G

p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

init. rank 45.7 43.2 24.8 18.5 34.7 29.6 50.0 45.6 53.6 48.4 33.9 28.0

RM3 50.3i 48.6i 25.2 18.1 42.3i 37.8i 54.4 49.4 58.4i 51.0 35.7 28.7

RM3(re) 51.1i 48.2i 25.2 18.1 41.5i 35.7i 54.4 48.6 58.8i 52.0 36.3 29.4

CDPlm 54.3r
i 50.2i 26.7 20.0 42.3i 36.6i 57.6i 49.0 57.2 51.2 37.4 31.8r

i

Free-parameter values are set for each method so as to optimize average p@5 per corpus. Best result in a
column is boldfaced; ‘i’ and ‘r’ mark statistically-significant differences with the initial ranking and RM3,
respectively; the differences between CDPlm and RM3(re) are not statistically significant

Table 5 Performance numbers when learning free parameter values using a leave-one-out cross validation
procedure

AP FR SJMN TREC8 WSJ WT10G

p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

init. rank 45.7 43.2 24.8 18.5 34.7 29.6 50.0 45.6 53.6 48.4 33.9 28.0

DocPsg 38.8i 41.1 25.9 20.2 34.0 30.2 48.0i 44.8 54.0 48.8 35.5 29.5

DocClust 53.3p
i 50.2p

i 24.8 18.5 38.9p 36.0i
p 53.2 47.4 53.6 50.8 36.1 31.8i

RM3 49.9p 48.5p
i 23.7 18.1 41.5p

i 37.4p
i 50.8 49.4 54.8 51.0 30.4pc

i 28.1c

RM3(re) 51.1p
i 48.2p

i 23.7 18.1 37.4r 34.6pr
i 50.4 47.6 52.0r 50.6 36.3r 29.4r

CDPlm 52.3p
i 49.2p

i 25.9 20.2 42.1pc
ie 36.6p

ie 53.6 49.0 52.8 50.6 37.3r 31.8r
i

‘i’, ‘p’, ‘c’, ‘r’, and ‘e’ mark statistically significant differences with init. rank, DocPsg, DocClust, RM3, and
RM3(re), respectively. Boldface marks the best result in a column
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the same corpus. We present the resultant performance of CDPlm and the reference

comparisons in Table 5.

Our first observation based on Table 5 is that CDPlm outperforms the initial ranking in

almost all reference comparisons; often, the improvements are substantial and statistically

significant. This finding further attests to the effectiveness of CDPlm in re-ranking.

Another observation we make based on Table 5 is that CDPlm outperforms its specific

instantiations, DocPsg (a standard passage-based ranking method (Buckley et al. 1994;

Callan 1994; Wilkinson 1994; Cai et al. 2004; Bendersky and Kurland 2008)) and

DocClust [a state-of-the-art cluster-based re-ranking approach (Kurland and Lee 2004;

Kurland 2009)] in most relevant comparisons; in several cases (e.g., refer to AP and

SJMN), the performance differences are also statistically significant. Furthermore, DocPsg

and DocClust never outperform CDPlm in a statistically significant manner. These findings

show that the relative importance of whole-document-, passage-, and cluster-based

information, as determined by CDPlm’s free-parameters’ values, can be relatively effec-

tively learned across queries. Naturally, however, the performance numbers (both for

CDPlm and for DocPsg and DocClust) are much lower than those presented in Table 2,

which were attained by setting parameter values so as to optimize per-query performance.

Hence, there is much room for improvement that can potentially be obtained by devising

methods for automatically setting the relative importance of whole-document, passage, and

cluster-based information on a per-query basis.

We can also see in Table 5 that CDPlm outperforms RM3, which ranks the entire corpus,

and RM3(re), which re-ranks the initial list, in most relevant comparisons; some of these

performance differences are also statistically significant. We also note that while RM3 out-

performs CDPlm over WSJ—although, not to a statistically significant degree—the statis-

tically significant improvements posted by CDPlm over RM3 for WT10G are quite striking.

As is the case for CDPlm, the relevance model approach can benefit much from devising

methods for automatically setting free-parameter values on a per-query basis. A case in point,

compare the performance numbers of the relevance-model implementations presented in

Tables 4 and 5—the former, which in many cases are much better than the latter, are based on

using free-parameter values that result in optimized average performance for a corpus, and the

latter are based on using cross validation to set free-parameter values.

All in all, we see that in general, when learning free parameter values using cross vali-

dation, CDPlm is the most effective method among those presented in Table 5. (Note that the

p@5—the metric based on which learning of free parameter values was performed—posted

by CDPlm is the best for four out of six corpora; furthermore, CDPlm is the only method in

Table 5 that is never outperformed in a statistically significant manner by any other method.)

4.3.4 Learning to re-rank

The learning-to-re-rank method, CDPsvm, uses SVMrank (Joachims 2006). We use the

default values for all SVMrank parameters, except for that of c, which controls the bias-

variance trade-off. As it turns out, c has considerable impact on the resultant re-ranking

performance. Thus, we present performance numbers for two settings of CDPsvm.

The first setting, CDPsvm(B), is based on using a leave-one-out cross validation for

training/testing SVMrank over all queries for each value of c. Then, the value of c that

yields the best (average over queries) p@5 performance is selected, and the resultant

performance is reported. In the second setting, CDPsvm(L), the value of c is learned for

each query as follows. We perform a leave-one-out cross-validation over the rest of the

queries to find the value of c that optimizes p@5. Using this value, we then learn a model
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using these queries and apply it to the query at hand. The values of c are chosen from

f10�5; 5 � 10�5; . . .; 0:1; 0:5; 5; 50; 500; 1000; 5000; 10000g.
For comparison purposes, we present the performance of CDPlm when its two free

parameters, kclust and kpsg are optimized for average-over-queries performance (CDPlm(B)),
as was the case in Table 3; and, its performance when using leave-one-out cross validation to

learn the values of these parameters (CDPlm(L)), as was the case in Table 5.

We can see in Table 6 that in most reference comparisons, the implementations of our

methods improve over the initial ranking, often to a substantial and statistically significant

degree. This finding further supports the merits of integrating cluster-, document-, and

passage-based information for re-ranking, whether using a probabilistic model (CDPlm) or

a learning-to-rank approach (CDPsvm).

Evidently, the potential performance of CDPlm is somewhat better than that of

CDPsvm as manifested in the best-parameter-values setups (‘B’) for most relevant com-

parisons. Now, recall that both CDPlm and CDPsvm use a linear interpolation of the same

language-model-based estimates. Hence, these performance differences—although not

statistically significant—may imply that learning a ‘‘good’’ balance between the three

information types (cluster-, document-, and passage-based) in a discriminative manner by

SVMrank can fall short, possibly due to query-variability issues (Peng et al. 2010).

The comparison between CDPlm and CDPsvm when learning free parameter values

(‘L’) reveals that the performance of the former is in most relevant comparisons somewhat

superior to that of the latter; for WT10G, the difference is quite substantial and also

statistically significant.

We can also see in Table 6 that in some cases the performance of CDPlm and CDPsvm can

quite decrease when moving from the best (‘B’) to the learned (‘L’) parameter settings. Thus,

while both CDPlm and CDPsvm are very effective in most reference comparisons when

learning free-parameter values, there is still room for improvement with respect to setting

these values on a per-query basis—a challenging task, as mentioned above, that we leave for

future work.

4.3.5 Re-ranking an Okapi-BM25-based initially retrieved list

Insofar, the initial list, Dinit, upon which re-ranking was performed, was set to the 50

documents that were the highest ranked by a language-model-based approach. We now

Table 6 Comparison of CDPsvm with CDPlm

AP FR SJMN TREC8 WSJ WT10G

p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

init. rank 45.7 43.2 24.8 18.5 34.7 29.6 50.0 45.6 53.6 48.4 33.9 28.0

CDPlm(B) 54.3i 50.2i 26.7 20.0 42.3i 36.6i 57.6i 49.0 57.2 51.2 37.4 31.8i

CDPsvm(B) 54.3i 49.8i 24.4 19.1 41.5i 36.4i 57.2i 49.2 56.4 51.4 36.5 29.7

CDPlm(L) 52.3i 49.2i 25.9 20.2 42.1i 36.6i 53.6 49.0 52.8 50.6 37.3 31.8i

CDPsvm(L) 54.3l
i 49.9i 24.4 19.1 41.3i 36.4i 55.6 48.8 52.4 49.8 33.7l 29.7l

The best result in a block is boldfaced; ‘l’ marks statistically difference between CDPsvm(L) and
CDPlm(L); the performance differences between CDPsvm(B) and CDPlm(B) are not statistically significant;
‘i’ marks statistically significant difference with the initial ranking
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turn to study whether CDPlm is effective in re-ranking an initial list that is retrieved by a

different retrieval method; specifically, we use Okapi-BM25 (Robertson et al. 1994). As

was the case for the initial language-model-based ranking, we set Okapi’s free-parameters

to values that optimize MAP (@1000) so as to create an initial list of a reasonable quality.

Following previous recommendations (Robertson et al. 2000, 2004), we use the following

free-parameter values ranges: k1 2 f0:1; 0:25; 0:5; 0:75; 0:9; 1; 1:2; 2; 2:5; 3g; k3 2 f0:1;
0:2; 0:5; 0:8; 1; 2; 5; 7; 10; 15; 20g; and, b 2 f0:1; 0:2; 0:3; 0:5; 0:75; 0:85; 0:95; 1; 1:5; 2:5;
3g. The 50 highest ranked documents are re-ranked using CDPlm, which uses language-

model-based estimates as described above; CDPlm’s free-parameter values are set to

optimize average p@5 performance per corpus as was the case in Sect. 4.3.2 The per-

formance numbers are presented in Table 7.

As we can see in Table 7, the performance of CDPlm is superior to that of the Okapi-

based initial ranking in almost all reference comparisons; furthermore, in quite a few cases

the improvements are statistically significant. These findings further demonstrate the

effectiveness of CDPlm in re-ranking.

Note For the WSJ corpus the Okapi-BM25 initial ranking can be quite improved if stopwords

are removed from queries. (We used Zettair’s stopword list; recall that in our experimental setup

above stopwords were not removed from queries and documents.) For the other corpora,

however, it is the case that the improvements are smaller or there are no improvements or there

can even be performance degradation. For WSJ removing stopwords from queries results in

initial Okapi-BM25 ranking with p@5 and p@10 of 57.2 and 49.4, respectively. Employing

CDPlm upon this initial ranking yields p@5 and p@10 of 61.2 and 54.2, respectively; the p@10

improvement is also statistically significant. Thus, we see that even when improving the

effectiveness of the initial ranking (by using a different pre-processing regime here), CDPlm

still posts quite substantial performance improvements over this ranking.

5 Conclusions and future work

Cluster-based and passage-based document ranking approaches could be viewed as

employing two opposite approaches for document representation. Cluster-based document

retrieval is often based on expanding the document representation with corpus context

manifested in the clustering structure. Passage-based document retrieval is based on

focusing on a specific part of the document.

We presented a study of the relative merits of each of these approaches, and of the

potential of integrating them. To perform the study, we devised two retrieval methods that

Table 7 Performance of CDPlm when re-ranking an initial list of documents that was retrieved using
Okapi-BM25

AP FR SJMN TREC8 WSJ WT10G

p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

BM25 init. rank 45.5 42.9 26.7 21.1 34.3 31.1 48.0 45.2 54.0 50.8 35.9 29.8

CDPlm 52.5b 48.9b 27.0 20.7 42.1b 35.4b 55.6b 47.2 58.8 53.2 37.8 33.0b

The best result in a column is boldfaced; ‘b’ marks statistically-significant difference with the BM25-based
initial ranking
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integrate whole-document-, cluster-, and passage-based information. The first is a proba-

bilistic approach that uses document-based, passage-based and cluster-based language

models. The second is a discriminative, learning-to-rank, approach that uses language-

model-based estimates.

We evaluated and studied the proposed methods when applied for the re-ranking task—

re-ordering documents in an initially retrieved list so as to improve precision at the very

top ranks. We showed that the methods consistently and substantially outperform the initial

ranking. The resultant performance of the probabilistic approach also transcends that of

document ranking methods that use either cluster-based or passage-based information, but

not both. Hence, the empirical findings support the complementary nature of these two

information types, and the potential in integrating them. Furthermore, we showed that the

integration can yield performance that often transcends that of a state-of-the-art pseudo-

feedback-based query expansion method—i.e., an approach that focuses on query repre-

sentation, rather than on document representation, which is the focus of this paper.

In addition, the study showed that using cluster-based information is much more effective

than using passage-based information for document ranking, except for corpora containing

very large (and heterogeneous) documents for which the reverse holds. Nevertheless, inte-

grating cluster-based and passage-based information can yield performance that substantially

transcends that of using each alone. More generally, we showed that integrating these two

types of information with whole-document-based information can yield performance that is

substantially better than that of using any subset of the three information types.

A future direction that emerged in the study was devising an automatic way of bal-

ancing the use of whole-document-, cluster-, and passage-based information on a per-query

basis. While there is some work on controlling the use of whole-document-based versus

passage-based information (Bendersky and Kurland 2008) on a per-document basis, an

open challenge is how to balance those with respect to using cluster-based information on a

per-query basis.

As noted above, the study presented in this paper addresses one component of a search

system; that is, (a part of) the document representation task is addressed from an effec-
tiveness perspective. As already stated, our approach does not incur a considerable com-

putational overhead over the initial ranking that is based on document-query similarities.

Hence, from an efficiency point of view, the approach is applicable in practical retrieval

settings. Yet, a natural question, which rises with regard to Cranfield-style-based evalua-

tions (Hersh et al. 2000; Turpin and Hersh 2001; Smucker and Jethani 2010) as the one we

presented here, is whether the presented effectiveness improvements can be translated to

improved user satisfaction/effectiveness. While this is an interesting question at its own

right, we note that there are still additional means that can be employed so as to potentially

improve the performance of our approach, and which can further increase the potential for

merits to the user in practical search settings. For example, while our focus was on the

‘‘document side’’, integrating in addition different (expanded) query representations can

potentially help improve performance; e.g., cluster-based (and topic-model-based) query

expansion (Liu and Croft 2004; Tao et al. 2006; Wei and Croft 2006; Kalmanovich and

Kurland 2009) and passage-based query expansion (Liu and Croft 2002; Bendersky and

Kurland 2008) were shown to be of merit. Furthermore, using different types of passages,

and utilizing different types of language models and/or term-proximity-based models, can

also potentially improve performance as mentioned in Sect. 2.
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