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Abstract Probabilistic topic models have recently attracted much attention because of

their successful applications in many text mining tasks such as retrieval, summarization,

categorization, and clustering. Although many existing studies have reported promising

performance of these topic models, none of the work has systematically investigated the

task performance of topic models; as a result, some critical questions that may affect the

performance of all applications of topic models are mostly unanswered, particularly how to

choose between competing models, how multiple local maxima affect task performance,

and how to set parameters in topic models. In this paper, we address these questions by

conducting a systematic investigation of two representative probabilistic topic models,

probabilistic latent semantic analysis (PLSA) and Latent Dirichlet Allocation (LDA), using

three representative text mining tasks, including document clustering, text categorization,

and ad-hoc retrieval. The analysis of our experimental results provides deeper under-

standing of topic models and many useful insights about how to optimize the performance

of topic models for these typical tasks. The task-based evaluation framework is general-

izable to other topic models in the family of either PLSA or LDA.
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1 Introduction

Recently, probabilistic topic models have received considerable attention in machine

learning and text mining (Hofmann 1999a; Blei et al. 2003, 2004, Blei and Lafferty 2005;

Wang and McCallum 2006, Nallapati et al. 2008). While many variants of topic models

have been proposed, the common basic idea behind virtually all the models is to model text

as a sample of words that are drawn from some mixture model involving multinomial

component models. A topic is captured through a multinomial distribution of words (i.e., a

unigram language model). A text document is generally assumed to contain potentially

multiple topics. By inferring the parameter values of a topic model based on a set of

observed text documents using either a Maximum Likelihood estimator (e.g,. Hofmann

1999a), or Bayesian inferences in the case of having a prior on parameters (e.g., Blei et al.

2003) , we would obtain a set of multinomial word distributions that can represent the

major topics (or latent semantic themes) and a distribution over all the topics that can

characterize the topic coverage in each document. Discovered topics and their distributions

can then be used for many interesting text mining tasks as has been demonstrated in the

previous work (see, e.g., Griffiths and Steyvers 2004; Mei et al. 2007; Wei and Bruce Croft

2006; Cai et al. 2008).

So far, the utilization of topic models can be categorized into three general ways.

(1) Discovering topics from text (e.g. Hofmann 1999a; Blei et al. 2003; Griffiths and

Steyvers 2004; Mei et al. 2007)): the discovered topic word distributions and topic cov-

erage distributions can be directly useful (e.g., for revealing the major topics covered in a

collection of text). (2) Obtaining a low-dimensional latent semantic representation of text

(e.g. Hofmann 1999b; Blei et al. 2003; Cai et al. 2008): the topic coverage distribution for

each document can serve as an alternative latent semantic representation of text, which is

potentially better than the original word-based representation in supporting semantic

matching of text. (3) Expanding text representation to accommodate semantic term

matching (e.g. Wei and Bruce Croft 2006; Yi and Allan 2009). The latent semantic

representation can also be expanded to recover a ‘‘smoothed’’ word-level representation of

text, which includes not just the original words in the text, but also some semantically

related words learned through the topic model; thus, such an expanded word-level rep-

resentation can better achieve semantic term matching.

Despite the recent success of topic models in literature, there is still a considerable gap

between the theoretical understanding of topic models and practical application for text

mining tasks. That is, although many existing studies have reported promising performance

of topic models, none of the work has systematically investigated the task performance of a

topic model. As a result, many important practical questions related to using topic models

for text mining tasks remain unanswered:

First, there has been no systematic comparison between alternative topic models in

terms of their task performance. For example, most topic models are in the families of

two basic models, i.e., probabilistic latent semantic analysis (PLSA) (Hofmann 1999a;

Hofmann 1999b) and Latent Dirichlet Allocation (LDA) (Blei et al. 2003) and in general,

a task can often be performed using either of the two families of models. However, the two

models have not been systematically compared in existing work using typical tasks such as

clustering, categorization, and retrieval. Indeed, the most popular comparison of the two

models is based on perplexity of a held-out test set (Blei et al. 2003; Wallach et al. 2009),

which measures the generalization performance of a model in document modeling. The-

oretical analysis also reveals the relation between two models (Girolami and Kabán 2003),

but it does not directly indicate the performance for any application task. As a result, it is
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unclear whether there is any difference between them in terms of task performance,

although from modeling perspective, there are some known advantages of LDA over PLSA

(Blei et al. 2003).

Second, all the topic models rely on some numerical algorithms to estimate parameters

or make inferences. Since we generally have multiple local maxima, the task performance

would presumably be affected by whether we can find a good local maximum. However,

little work has been done on investigating the influence of this factor on task performance

of topic models. LDA would theoretically suffer less from the problem of multiple local

maxima; would this advantage lead to superior empirical performance for application

tasks?

Third, there are often parameters that need to be set. For example, the estimation

algorithms for all the topic models are iterative numerical algorithms, and insufficient

iterations likely will lead to non-optimal parameter estimation, but how much influence do

sub-optimal parameter values (due to insufficient iterations) actually have on task per-

formance? Is there any difference between PLSA and LDA in this aspect? Also, we have to

pre-specify the number of topics for many topic models. How does this parameter affect

task performance? In many existing studies, parameters like this and some other param-

eters (e.g., hyper-parameter of LDA) are often set arbitrarily without much justification

(Wei and Bruce Croft 2006; Cai et al. 2008).

Clearly, answers to these questions are necessary to guide us for optimizing the task

performance of topic models in all kinds of applications. In this paper, we address these

questions by conducting a systematic investigation of the two representative basic topic

models, PLSA and LDA, using three representative text mining tasks, including document

clustering, text categorization and ad-hoc retrieval. These tasks have been chosen because

they are representative of the current text mining applications of topic models and also

enable us to evaluate the three typical ways of using topic models mentioned earlier with

standard test sets and quantitative measures. We systematically vary all the parameters of

these two models, looking into the performance sensitivity of each task to these parameter

values.

Our experimental results show that (1) when optimized, LDA has advantage over

PLSA for classification task requiring a fine granularity latent semantic representation that

is generalizable from training data to test data; in other tasks they tend to perform

similarly. However, the performance of LDA on all tasks is quite sensitive to the setting

of its hyper-parameter, and the optimal setting of hyper-parameters varies according to

how the model is used in a task; (2) while the problem of local maxima affects the learned

model (especially PLSA), whether it has a significant influence on the performance of

tasks depends on the nature of the task; and (3) the latent semantic representation

obtained through a topic model promotes semantic matching, but it may not perform well

by itself in text mining tasks, especially in the case of tasks requiring fine granularity

discrimination; in general, combining the low-dimensional latent semantic representation

with high-dimensional original text representation tends to be most robust and effective.

Our findings enable us to better understand the task performance of basic topic models

and provide useful guidance for optimizing the performance of topic models for these

typical tasks.

The rest of the paper is organized as follows. We first review the related work in Sect. 2.

We then give a brief introduction to probabilistic topic models in Sect. 3, with a focus on

PLSA and LDA. After that we discuss our design of experiments and evaluation results in

Sects. 4, 5, and 6, for the three tasks respectively. Finally, we summarize the findings and

conclude in Sect. 7.
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2 Previous work

Hofmann (1999a) introduced the probabilistic latent semantic analysis (PLSA) in 1999,

which models each word in a document as a sample from a mixture model with multi-

nomial component models. While the PLSA model produced impressive results on a

number of text document problems such as information retrieval (Hofmann 1999b), the

parameterization of the model was susceptible to overfitting and did not provide a

straightforward way to make inferences about new documents not seen in the training data.

Blei et al., addressed these limitations by proposing a more general Bayesian probabilistic

topic model called Latent Dirichlet Allocation (LDA) (Blei et al. 2003).

Later, many extensions of the two basic models have been proposed. For example,

Griffiths and Steyvers (2004) showed how Gibbs sampling, a Markov chain Monte Carlo

technique, could be applied to estimation and inferences in LDA, and experimented with

this approach using 11 years of abstract data from the Proceedings of the National

Academy of Sciences. In Zhai et al. (2004), PLSA was extended to include a background

component to explain the non-informative background words and a cross-collection

mixture model was proposed to support comparative text mining. The work by Steyvers

et al. (2004) extends probabilistic topic models to include authorship information. Li and

Mccallum (2006) extends LDA by capturing correlations between topics using a directed

acyclic graph (DAG). Mei and Zhai (2006) propose a general contextual text mining model

which is an extension of PLSA to incorporate context information. Recently, they further

regularize PLSA with a harmonic regularizer based on a graph structure in the data (Mei

et al. 2008). There are many other topic models proposed, such as Blei and Lafferty

(2005), Wang and McCallum (2006), Nallapati et al. (2008), which demonstrated inter-

esting results in various scenarios.

PLSA, LDA and their extensions have been successfully applied in many text mining

tasks. The most popular application is to mine a large collection of document and sum-

marize it using topics (Griffiths and Steyvers 2004; Mei et al. 2007). Promising results on

text categorization were reported in the original LDA paper (Blei et al. 2003). Lacoste-

Julien et al. (2008) proposes a supervised variation of LDA specialized for the classifi-

cation task. Recently, Wei and Bruce Croft (2006) shows that LDA could improve the

state-of-the-art information retrieval in the language modeling framework. Yi and Allan

(2009) conduct in-depth retrieval studies and one of the conclusions states that PAM, an

extension of LDA that captures topic dependencies, provides no additional gains over

LDA. Cai et al. (2008) demonstrates promising clustering results of PLSA, LDA and their

own extension called LapPLSI.

There has been some theoretical analysis studying the connection between PLSA and

LDA (Girolami and Kabán 2003), but little comprehensive empirical comparison has been

made, especially between most commonly used implementations of the two algorithms.

Most comparison reported in the literature was based on probability of held-out data (Blei

et al. 2003, Blei and Lafferty 2005, Steyvers and Griffiths 2007; Wallach et al. 2009). As a

result, there is still little insight about how to optimize the performance of topic models for

various text mining tasks and many questions related to the task performance of topic

models have not been answered. We address these problems in our work. A recent paper

(Chang et al. 2009) conducts user studies to quantitatively compare the semantic meaning

in topics inferred by PLSA and LDA. While they focus to quantify the interpretability of

topics with human effort, we study the task performance of topic models in three standard

text mining applications, which can be quantified objectively using standard measures.

Thus, our work is supplementary to theirs.
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There is another line of closely related algorithms called the Non-negative Matrix

Factorization (NMF) family. According to Gaussier and Goutte (2005), PLSA solves the

problem of NMF with KL divergence. However, the NMF family are based on linear

algebra, thus do not have probabilistic interpretations. We do not intent to cover them in

this paper, but a comparative study of probabilistic topic models and NMF would be a very

interesting future work.

3 Probabilistic topic models

In this section, we give a brief introduction to probabilistic topic models. Since most topic

models are extended based on two representative ones, i.e. PLSA (Hofmann 1999a) and

LDA (Blei et al. 2003), we focus our discussion on these two basic models.

All current probabilistic topic models are based on the same fundamental idea that

documents are mixtures of topics, where a topic is represented by a multinomial distri-

bution of words, i.e. a unigram language model. A topic model is a generative model for

documents: it specifies a probabilistic process by which documents can be generated. To

model the process of writing a new document, one usually first chooses a distribution over

topics. Then, to generate each word in that document, one chooses a topic at random

according to this distribution, and draws a word from that topic. Different topic models

differ in how they vary this basic generation process and what statistical assumptions are

made.

3.1 Notations

We assume that all the documents in the collection D fit into a finite set of K topics, each

topic z is associated with a multinomial word distribution P(w|z) over the vocabulary V.

A document d is represented as a bag of words. We use P(z|d) for the distribution over

topics z in a particular document and P(w|z) for the probability distribution over words

w given topic z. To simplify the notations, let /ðjÞw ¼ Pðwjz ¼ jÞ refer to the multinomial

distribution over words for topic j and hðdÞj ¼ Pðz ¼ jjdÞ refer to the multinomial distri-

bution over topics for document d. The parameters / and h indicate which words are

important for which topic and which topics are important for a particular document,

respectively.

3.2 Probabilistic latent semantic analysis

Model Probabilistic latent semantic analysis (PLSA) (Hofmann 1999a, 1999b) was

introduced by Hoffman. A document d is regarded as a sample of the following mixture

model.

PðwjdÞ ¼
XK

j¼1

/ðjÞw hðdÞj ð1Þ

Estimation The word-topic distributions /̂ and topic-document distributions ĥ can be

estimated using the Expectation-Maximization (EM) algorithm (Dempster et al. 1977) by

maximizing the (log) likelihood that the collection D is generated by this model:
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log PðDj/; hÞ ¼
X

d2D

X

w2V

cðw; dÞ log
XK

j¼1

/ðjÞw hðdÞj

( )
ð2Þ

where c(w, d) is the number of times word w occurs in document d. In the E-step, we

estimate the hidden variable z based on the model parameter at the previous iteration:

Pðzd;w ¼ jÞ ¼
/ðjÞw hðdÞj

PK
j0¼1 /ðj

0Þ
w hðdÞj0

ð3Þ

Then, in the M-step, the updating formulas for the model parameters are as follows:

hðdÞj ¼
P

w2V cðw; dÞPðzd;w ¼ jÞP
j0
P

w2V cðw; dÞPðzd;w ¼ j0Þ

/ðjÞw ¼
P

d2D cðw; dÞPðzd;w ¼ jÞP
w02V

P
d2C cðw0; dÞPðzd;w0 ¼ jÞ

3.3 Latent Dirichlet Allocation

Model The PLSA model does not make any assumptions about how the mixture

weights h are generated, so its generative semantics are not well-defined (Blei et al.

2003); thus there is no natural way to predict a previously unseen document, and the

number of parameters grows linearly with the number of training documents, which

makes the model susceptible to overfitting. To solve these problems (Blei et al. 2003),

introduced a new topic model, Latent Dirichlet Allocation (LDA). The basic generative

process of LDA closely resembles PLSA. In PLSA, the topic mixture is conditioned on

each document. In comparison, the topic mixture h in LDA is drawn from a conjugate

Dirichlet prior. As a conjugate prior for the multinomial, the Dirichlet distribution is a

convenient choice as prior, which can simplify the statistical inference. The parameters

of this Dirichlet distribution are specified by a1,..., aK. Each hyper-parameter aj can be

interpreted as a prior observation count for the number of times topic j is sampled in a

document, before having observed any actual words from that document. It is mathe-

matically convenient to use a symmetric Dirichlet distribution with a single hyper-

parameter a such that a1 = a2 = _ = aK = a. The probability density is given by:

PðhðdÞjaÞ ¼ DirðhðdÞjaÞ ¼ CðKaÞ
CðaÞK

YK

j¼1

ðhðdÞj Þ
a�1 ð4Þ

where CðxÞ ¼
R1

0
tx�1e�tdt is an extension of the factorial function, with its argument

shifted down by 1, to real and complex numbers. The C functions in the equation serve

as normalization factors that make sure the probabilities sum up to 1. By placing a

Dirichlet prior on the topic distribution h, the result is a smoothed topic distribution, with

the amount of smoothing determined by the a parameter. Similarly, a symmetric

Dirichlet prior with hyper parameter b can be placed on / as well. Given the parameters

a and b, the probability of the collection of documents D can be calculated by inte-

grating over h and /:
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PðDja;bÞ

¼
Z

/ð1Þ
� � �
Z

/ðKÞ

YK

i¼1

Pð/ðiÞjbÞ
Y

d2D

Z
PðhðdÞjaÞ

Y

w2V

XK

j¼1

hðdÞj /ðjÞw

 !cðw;dÞ

dhðdÞd/ð1Þ � � � d/ðKÞ

Estimation The LDA model is complex and cannot be solved by exact inference.

There are a few approximate inference techniques available in the literature: variational

methods (Blei et al. 2003), expectation propagation (Minka and Lafferty 2002; Griffiths

and Steyvers 2004), and Gibbs sampling (Geman and Geman 1984; Griffiths and

Steyvers 2004). A recent work (Teh and Görür 2009) studies different estimation

algorithms for LDA by evaluating on perplexity, and conclude that when hyperpa-

rameters are optimized, the performance differences among algorithms diminish sig-

nificantly. In our study, we choose to use Gibbs sampling here, because of its

advantage in finding the global optimum and its prevalent use in existing work (Geman

and Geman 1984; Griffiths and Steyvers 2004; Wei and Bruce Croft 2006) . Never-

theless, it is interesting future work to also compare different estimation algorithms for

LDA.

Given a text collection w ¼ fw1;w2; . . .;wNg, Gibbs sampling considers each word

token wi in document di in turn, and then samples a topic zi for wi: the probability of

assigning the current word token to each topic is computed conditioned on the topic

assignments to all other word tokens z-i.

Pðzi ¼ jjz�i;wÞ /
n
ðwiÞ
�i;j þ b

n
ð:Þ
�i;j þ Nb

�
n
ðdiÞ
�i;j þ a

n
ðdiÞ
�i þ Ka

ð5Þ

where n
ðwiÞ
�i;j is the number of word instances wi being assigned to topic j, not including the

current word; n
ð:Þ
�i;j is the total number of words being assigned to topic j, not including the

current word; n
ðdiÞ
�i;j is the number of words from document di assigned to topic j, not

including the current one; and n
ðdiÞ
�i is the total number of words in document di not

including the current one. From this conditional distribution Pðzi ¼ jjz�i;wÞ, a topic is

sampled and stored as the new topic assignment for this word token. After the estimation is

done, the word-topic distributions /̂ and topic-document distributions ĥ can be estimated

from one complete Gibbs sample of the whole collection as:

/̂ðwÞj ¼ Pðwjz ¼ jÞ ¼
n
ðwÞ
j þ b

P
w n
ðwÞ
j þ Nb

ð6Þ

ĥðdÞj ¼ Pðz ¼ jjdÞ ¼
n
ðdÞ
j þ a

P
j n
ðdÞ
j þ Ka

ð7Þ

where n
ðwÞ
j is the number of instances of word w assigned to topic z = j and n

ðdÞ
j is

the number of words in document d assigned to topic z = j. So
P

w n
ðwÞ
j is the total
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number of words assigned to topic z = j; and
P

j n
ðdÞ
j is the total number of words in

document d.

The Dirichlet prior on the topic distributions can be interpreted as forcing on the topic

combinations with higher a moving the topics away from the corners of the simplex,

leading to more smoothing effect (Steyvers and Griffiths 2007). For a\ 1, the modes of

the Dirichlet distribution are located at the corners of the simplex. In this case, there is a

bias towards sparsity, and the pressure is to pick topic distributions favoring just a

few topics. A commonly used setting recommended by (Steyvers and Griffiths 2007) is

a = 50/K and b = 0.01.

Many other topic models have been proposed in recent literature (Zhai et al. 2004;

Steyvers et al. 2004; Blei and Lafferty 2005; Li and Mccallum 2006; Mei and Zhai 2006,

Mei et al. 2008; Wang and McCallum 2006; Nallapati et al. 2008). These models are

generally extended from the basic form of either PLSA or LDA. In this paper, we select

PLSA and LDA as the representative for the two family of models.

3.4 Un-answered questions

Many extensions of the two basic topic models (i.e., PLSA and LDA) have been proposed,

no existing work, however, has systematically investigated the issue of how to optimize the

task performance of a topic model. Moreover, the comparison of the PLSA and LDA in

existing work only include (1) Blei et al. (2003) shows that LDA outperforms PLSA in

perplexity of predicting new document and (2) Girolami and Kabán (2003) theoretically

proves that PLSA is equivalent to MAP estimated LDA under a uniform prior. Never-

theless, perplexity does not directly imply task performance in applications and different

estimation methods can also lead to different task performance. Since there is no sys-

tematic emperical study of the two topic models, the following important questions about

how to optimally apply topic models to text mining tasks remain mostly unanswered:

• Many tasks can be performed with either PLSA or LDA, but these two basic

representative models have not been systematically compared directly in terms of their

performances in real mining tasks. Is one significantly better than the other, or do they

perform similarly? The only comparison between the two models seems to be based on

perplexity (Blei et al. 2003), and PLSA is shown to be more susceptible to overfitting

than LDA. However, to what extent does the overfitting affect the performance in

mining tasks? In text mining applications, how can we choose one of these competing

models?

• Existing work has shown that topic models can potentially improve the performance of

text mining tasks such as classification and retrieval through providing a low-

dimensional latent semantic representation. But how robust is the improvement? Can

they always improve the performance over the original word-based high-dimensional

representation? If not, under what conditions they can and under what conditions they

cannot?

• It is well known that iterative parameter estimation algorithms such as the EM

algorithm can only find a local maximum; if there are multiple local maxima, it is not

guaranteed to reach the global maximum. Similar stability issue also exists in Gibbs

sampling. However, how does this affect task performance?

• We know that the Dirichlet parameter a in LDA has the effect of regularizing topic

distributions, but how should we set this parameter in practice? Is the recommended
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setting in literature (e.g., as in Steyvers and Griffiths 2007) reasonable in different

tasks?

In the following three sections, we address these questions by investigating the per-

formance of the two representative basic topic models (PLSA and LDA) in three repre-

sentative text mining tasks. These three tasks correspond to three typical ways of using

topic models in applications described in Sect. 1. Although in this paper we study these

questions with the two basic representative models, these questions can be asked for almost

any topic model. Thus our findings can also offer insights about how to optimize the task

performance of other extensions of these basic models.

We acknowledge that there are numerous techniques proposed for each of the three

tasks. To avoid distraction of our main focus, we intentionally do not compare with them.

Rather, we start with reasonably good baseline; the purpose is to provide a fair basis to

compare the two topic modeling algorithms, and to understand their commonalities and

differences, instead of proposing the best method for the specific tasks.

4 Document clustering

The first task we have chosen is document clustering. Generally, there are two ways of

using topic models for document clustering. The first approach uses a topic model to map

the original high-dimensional representation of documents (word features) to a low-

dimensional representation (topic features) and then applies a standard clustering algorithm

like k-means in the new feature space. The other approach uses topic models more directly.

The basic assumption is that each topic corresponds to a cluster, so the number of topics in

topic models matches the number of clusters. After estimating the parameters, the docu-

ments are clustered into the topic with the highest probability:

arg maxj¼1...KhðdÞj :

Here we focus on the second approach of clustering, because it allows us to examine how

well the topic distribution h could recover the most significant topic, i.e. cluster. We leave

the study of the effectiveness of dimension reduction using topic models to the next task.

4.1 Experimental setup

Data sets We use two standard data sets: the TDT21 and the Reuters-215782 (or simply,

Reuters) document corpora. Every document in the corpora has been manually assigned

one or more labels indicating which topic(s) it belongs to. The TDT2 corpus consists of

11,201 on-topic documents which are classified into 96 semantic categories. In this

experiment, since we want to study applications of topic models in the standard clustering

setting, where each document belongs to exactly one cluster or class, documents appearing

in two or more categories are removed. We further select the largest 10 categories so as to

eliminate outlier categories, leaving us with 7,456 documents in total. The Reuters corpus

contains 21,578 documents which are grouped into 135 categories. It is much more

unbalanced than TDT2, with some large clusters more than 30 times larger than some

small ones. In our experiments, we discarded documents with multiple category labels, and

1 http://projects.ldc.upenn.edu/TDT2/.
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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only selected the largest 10 categories, which left us with 8,246 documents in total. Table 1

provides some statistics of the two document corpora.

Evaluation metric The clustering result is evaluated by comparing the Normalized

mutual information (Xu et al. 2003; Cai et al. 2008) of the obtained label of each document

and that provided by the document corpus (the ground truth). Let C denote the set of

clusters obtained from the ground truth and C0 obtained from our algorithm. Their mutual

information metric MI(C, C0) is defined as:

MIðC;C0Þ ¼
X

ci2C;c0j2C0

pðci; c
0
jÞlog2

pðci; c
0
jÞ

pðciÞpðc0jÞ

where p(ci) and p(cj
0) are the probabilities that a document arbitrarily selected from the

corpus belongs to the clusters ci, and is assigned to cj
0, respectively; p(ci, cj

0) is the joint

probability that the arbitrarily selected document belongs to the cluster ci and is assigned to

cj
0 at the same time. We use the normalized mutual information MI :

MI ¼ MIðC;C0Þ
maxðHðCÞ;HðC0ÞÞ

where H(C) and H(C0) are the entropies of C and C0, respectively. It is easy to see that MI
ranges from 0 to 1. MI ¼ 1 if the cluster assignments and the ground truth are identical,

and MI ¼ 0 if they are independent.

Default setting Unless specified otherwise, our default setting for document clustering

uses K = 10 clusters, a = 50/K for LDA, and runs each topic model for 200 iterations.

4.2 Performance

We summarize the observations made from our experiments according to the questions to

be answered. The first a few questions provide us with guidance on how to optimize the

performance of topic models in clustering. The last question compares the two topic

models under their optimal setting.

Does number of iterations matter? The inference and parameter estimation of all topic

models are based on some iterative numerical algorithms. A practical parameter that has to

be set for such an algorithm is the number of iterations. Existing work (e.g., Cai et al.

2008) often leaves out the discussion of this. A commonly adopted practice is to run the

estimation until some convergence condition is met (for PLSA) or until a pre-set large

number of iterations (2000 iterations are usually used in Gibbs sampling estimation of

Table 1 Statistics of TDT2 and
Reuters corpora

Statistics TDT2 Reuters

Number of documents used 7,456 8,246

Number of unique words 47,047 26,269

Number of categories used 10 10

Average document length 401 117

Max category size 1,844 3,945

Min category size 167 116

Mean category size 746 825
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LDA). This is often a time consuming process, which limits the use of topic models in a

real world application. However, to achieve a good performance in a task such as clus-

tering, it may not be necessary to reach the exact convergence of a topic model. Here we

vary the number of iterations, and investigate the performance of PLSA and LDA on both

data sets. The results in Fig. 1a, b show that after 200 iterations, performance becomes

quite stable for both PLSA and LDA. Although the minimum number of iterations to

achieve the near-optimum performance should vary across different data sets, we can tell

from the performance curves that the clustering task performance is not very sensitive to

‘‘insufficient’’ iterations. For example, LDA with 200 iterations can achieve similar per-

formance as with 2000 iterations which is commonly used.

How do topic models compare with k-means baseline? To compare topic models for

clustering with a traditional clustering method, we have aslo tested a baseline of k-means.

It gives a normalized mutual information of 0.4901 on Reuters and 0.8136 on TDT2, which

are significantly higher than the best performance using PLSA or LDA. This suggests that

using the most likely topic in topic models as the cluster is not as accurate as traditional

clustering baseline such as k-means. This may be because topic models assume that all

documents can potentially cover multiple topics, and such a topic may not necessarily

aligned well to the topic covered in a cluster of documents.

How does a affect LDA? a is the hyper parameter in LDA which controls the smoothing

effect of h (see Eq. 6), where larger a results in more smoothed topics while a\ 1 would

cause the modes of the Dirichlet distribution to be located at the corners of the simplex,

thus favoring more sparse topics. A recommended setting is a = 50/K (Griffiths and

Steyvers 2004; Steyvers and Griffiths 2007), keeping constant the sum of the Dirichlet

hyper-parameters, which can be interpreted as the number of virtual samples contributing

to the smoothing of h. However, since in our definition of the clustering task, each doc-

ument belongs to only one cluster, we would naturally expect topic models to assign a

skewed topic distribution to a document, where there is a clear preference for some topic

j. So we test this hypothesis with different values of a in LDA in Fig. 2. The default a of

50/K = 5 clearly is not optimal. Using a smaller a, instead of the default, gives better

clustering performance. It is interesting to notice that LDA with the Reuters collection is

more sensitive when a value is changed compared with the TDT2 collection. One

explanation is that Reuters has shorter documents and more diverse category distribution

(as in Table 1).
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Fig. 1 Clustering performance versus number of iterations: performance converges after 200 iterations
(K = 10). a PLSA: number of iterations, b LDA: number of iterations
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To provide a more intuitive illustration of the smoothing effect of a, we show, in Fig. 3,

a plot of P(z) to visualize P(z) together with the true class labels in the setting of two

clusters. The data points represent documents while the two shapes of data points corre-

spond to their true class labels. Since there are only two clusters, the y value of each data

point represent the probability of the corresponding document assigned to one cluster;

Thus 0.5 is the cut-off for assigning documents to the two clusters. We color the data points

based on the gold standard. It could be observed that using a default setting a = 5, the data

points tend to locate in the middle area, so the clustering decision boundary is crowded,

resulting in lower performance. As we use smaller a, the data pointers tend to move to the

two extremes, which helps breaking close-tie in the boundary cases. For comparison, we

also show the scatter plot for PLSA, which generates more skewed distribution of topics

because it overfits the data by calculating a maximum likelihood estimate.
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Fig. 2 Clustering performance
versus a: a affects clustering
performance; a = 0.1
significantly outperforms default
setting (K = 10)
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Fig. 3 Structure of two clusters using different a, compared with PLSA. a PLSA, b LDA with default
a = 5, c LDA with a = 1, d LDA with a = 0.1
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Does number of topics matter? To answer this question, we vary the number of clusters

in Fig. 4. For each given cluster number K (except for K = 10, when we only have one

run), 10 test runs were conducted on different randomly chosen clusters, and the final

performance scores were calculated by averaging the scores from the 10 tests. Again, LDA

using a default a value does not perform as good as PLSA especially when the number of

clusters is smaller (i.e. a value is big). If we set a smaller a = 0.1 LDA performance could

be greatly improved over the default setting. But there is no clear sign that one topic model

is better than the other, because even with the optimal parameter LDA outperforms PLSA

on one data set but not the other.

Do topic models provide stable performance? Since in clustering task, we use the topic

distribution h directly to obtain the cluster label, the performance could be sensitive to

different trials of topic model where different initial values of parameters are used. Indeed,

PLSA has the problem of multiple local maxima and Gibbs LDA has the inconsistency

issue between samples, because h and / are computed from only one sample. In Table 2,

we show the MAX, MEAN, MIN, and standard deviation of the clustering performance of

each topic model by running it for 10 independent trials. We can see that both models

suffer from a non-trivial variance, which is larger when using PLSA. The variation of alpha

that we tried does not seem to affect this stability. Thus, if we use topic models for

clustering, especially PLSA, we do want to run multiple trials of the estimation to avoid the

local maxima problem.

2 4 6 8 10

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Number of Clusters

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LDA(α=50/K)
LDA(α=1)
LDA(α=0.1)
PLSA

2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

0.5

Number of Clusters

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LDA(α=50/K)
LDA(α=1)
LDA(α=0.1)
PLSA

(a) (b)

Fig. 4 Clustering performance versus number of clusters. a TDT2, b Reuters

Table 2 Stability of topic
models in clustering

Data MI LDA (a = 0.1) LDA (a = 1) PLSA

Reuters Max 0.4803 0.4787 0.4837

Min 0.4619 0.4537 0.4317

Mean 0.4680 0.4646 0.4620

SD 0.0110 0.0113 0.0195

TDT2 Max 0.6686 0.6762 0.6691

Min 0.6300 0.6305 0.6266

Mean 0.6492 0.6498 0.6441

SD 0.0147 0.0146 0.0218
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How do the two models compare? In our experiments, PLSA and LDA achieved com-

parable performance in terms of the normalized mutual information. When optimized,

LDA generally outperforms PLSA on the Reuters dataset, but TDT2 presents a mixed

pattern, where LDA outperforms PLSA when dealing with 2 clusters and 10 clusters, while

PLSA outperforms LDA when dealing with 4, 6, and 8 clusters. Nevertheless, the dif-

ference is not statistically significant according to Wilcoxon signed rank test. Note that

there is one more parameter to tune in LDA, which significantly affects the clustering

performance. When a suboptimal parameter a is used (e.g., the default a), the performance

of LDA quickly drops below PLSA.

5 Text categorization

Next we would like to examine the effectiveness of the low-dimensional latent semantic

representation obtained from PLSA and LDA. For this purpose, we use text categorization

as a test task, where we want to classify a document into one of the defined categories. We

focus on the discriminative framework in (Blei et al. 2003). A challenging aspect in the

discriminative framework is the choice of features. Unigram features are known as a

reasonable representation and a strong baseline, where there are as many features as the

number of words in the vocabulary and the value of a feature is the normalized frequency

of the corresponding word, i.e.
cðw;dÞ
jdj . As an alternative, we can use a topic-based repre-

sentation with each P(z = j) as an element in the vector; we thus have K features, cor-

responding to K topics. More specifically, topic models can be applied on all the

documents without reference to their true class label. After that the dimensionality of the

feature space is reduced to the number of topics, and the new feature set becomes

hðdÞ ¼ PðzjdÞ. Compared with document clustering, where only the most likely topic in h(d)

affects the performance, the categorization performance is expected to be more sensitive to

the whole h(d).

5.1 Experimental setup

Data sets and evaluation metric The same two data sets are used as those in document

clustering. We utilize the SVMmulticlass toolkit.3 In order to compare unigram representation

with topic representation, we feed them as features to the classifier and evaluate the error

rate of the multi-class classification. A lower error rate indicates a better feature

representation.

Default setting In order to examine each parameter separately, we fix other parameters to

some default settings. Unless specified otherwise, we use 10 categories, a random subset of

0.01 (1%) as training data, a = 50/10 = 5 for LDA, run each topic model for 200 itera-

tions to estimate 100 topics, and average the scores of each topic models from three

independent trials. The regularization parameter in SVMmulticlass that trades off margin size

and training error is tuned to be optimal for each feature representation and for each

training size.

3 http://svmlight.joachims.org/svm_multiclass.html.
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5.2 Performance

The observations made from our experiments can be summarized with answers to the

following questions:

Do topic models help? We would like to see whether/when the low-dimensional repre-

sentation by topic model could improve over the unigram baseline. Figure 5a, b show the

classification error rates of unigram, PLSA and LDA with different percentage of training

data on two data sets. It can be seen that, low-dimensional representation of topic models

outperforms the unigram baseline when the training data is small, i.e. 1 or 2%. But as the

size of training data increases, the richness of unigram features demonstrates its superi-

ority. What is more important, if we further combine the unigram feature with the topic

model features, it usually helps even more, showing that combining low-dimension latent

semantic representation with high-dimension original text representation is more robust

and effective. However, in order to study the property of topic models more directly, we

only use topic features in low-dimension in our following experiments. Besides, we

observe that LDA consistently outperforms PLSA on both data sets, indicating that

(1) PLSA may suffer from the over-fitting problem since it does not make any assumption

about how h is generated; and (2) LDA is more effective when used as latent semantic

structure.

Do topic models provide stable performance? First, in order to see (1) how multiple local

maxima affect categorization and (2) how many iterations are appropriate to achieve stable

performance, we run topic models with different number of iterations in three trials. The

results on both data sets are shown in Fig. 6. First of all, the variance among different trials

of PLSA can be large. Especially, one trial on Reuters data is significantly worse than the

other two, but all trials outperform the baseline after 100 iterations. Second, the error rate

does not necessarily decrease as we run more interations of topic model estimation: In the

case of LDA, sampling method is used, so it is not surprising that the performance can be

fluctuating across different number of iterations as in Fig. 6a, c; in the case of PLSA, error

rate may even go up as we run more iterations as in Fig. 6d. In order to examine whether

this is caused by the over-fitting effect of PLSA, we also look into the training errors in

Fig. 7: although the EM algorithm of PLSA is guaranteed to achieve higher likelihood

values after more iterations, the training errors are not always decreasing. This obervation

rules out the possibility of overfitting. An intuitive explanation is that since topic models
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Fig. 5 Classification error rate versus training size. a Error rate versus training size on Reuters, b error rate
versus training size on TDT2
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are used for dimension reduction in the classification task, larger likelihood values do not

mean that data in the reduced dimensions are easier to separate.

As a result, for fair comparison, in the rest of the experiments, we average the per-

formance of three trials for each topic models, and each trial is run for 200 iterations.

Does number of topics matter? How does the number of topics affect classification? As

shown in Fig. 8, as long as we use 20–100 topics, topic models outperform the unigram

baseline in both data sets. But PLSA is more sensitive to the number of topics used: 50

topics performs best, and using more topics hurts the performance. In contrast, the error

rate of using LDA is more stable if at least 50 topics are used.
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Fig. 6 Classification error rate versus number of iterations. a LDA: number of iterations on Reuters,
b PLSA: number of iterations on Reuters, c LDA: number of iterations on TDT2, d PLSA: number of
iterations on TDT2
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How does a affect LDA? Is the default a in LDA optimal in categorization task?

Figure 9a, b show the error rate of LDA with different values of the a parameter on Reuters

data; for comparison, we also plot the error rate of unigram and PLSA with the same

setting. The plot for TDT2 data has a similar trend. Using 20 topics, LDA with the default

a setting 2.5 does not perform as well as PLSA. But a smaller a, e.g. 0.1 or 0.5 tends to

produce better performance than PLSA. One possible explanation is that using a large a
does not work well in classification, because too much smoothing decreases the discrim-

ination among topics.

How do the two models compare? In general, LDA with the optimal setup works better in

text categorization than PLSA, although the difference is only statistically significant on

the Reuters data at 95% level based on Wilcoxon test. Note that in a text classification task,

the topic-document distribution h is used as low dimension representation of documents.

We can see that when training data is small, the problem of over-fitting has limited the

performance of PLSA. On the other hand, when the training set is large enough, simple

unigram features outperform the low dimension representation of documents when either

of the topic models is used. Despite its better optimal performance, LDA has one more

parameter to tune than PLSA. When a suboptimal a is used, the performance of LDA could

become worse than PLSA and even worse than the unigram baseline.
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6 Ad-hoc information retrieval

In the previous two tasks, we test the document-topic distribution h through clustering and

categorization. What we have not explored is the topic-word distribution /, which could be

used to manipulate the representation of text documents. In this section, we investigate the

topic-word distribution of the two topic models in the context of ad hoc document retrieval.

We adopt KL-Divergence (Zhai and Lafferty 2001) as our retrieval framework, which

is one of the most effective retrieval models derived under the language modeling

framework. In this framework, queries and documents are all represented by unigram

language models. And it scores a document d with respect to a query q by computing the

Kullback-Leibler divergence between the query language model hq and the document

language model hd as follows:

�DKLðhdjjhdÞ ¼ �
X

w2V

PðwjhqÞlog
PðwjhqÞ
PðwjhdÞ

where V is the set of all words in the vocabulary.

What remains to be solved is how to appropriately estimate the hq and hd. The query

language model hq can be estimated using maximum likelihood which equals the empirical

distribution.

PðwjhqÞ ¼ PðwjqÞ ¼ cðw; qÞ
jqj

where c(w, q) is the number of occurrences of word w in query q, and |q| is the length of

query. A state-of-the-art baseline of document language model hd is estimated with Di-

richlet prior smoothing method (Zhai and Lafferty 2001) as shown below:

PðwjdÞ ¼ cðw; dÞ þ l � PðwjCÞ
jdj þ l

where c(w, d) is the number of occurrences of word w in document d, PðwjCÞ is the

empirical word distribution in the whole collection C, and l is a parameter that controls the

degree of smoothing.

The performance of a retrieval model essentially depends on both the query language

model and the document language model. Topic models can be applied to improve the

estimation of hd, as the information in a document tends to be too sparse to estimate an

accurate hd. And topic models can be applied to further smooth the document represen-

tation. Following Wei and Bruce Croft (2006), we use the topic model representation of a

document to further smooth the document language model.

PðwjhdÞ ¼ ð1� kÞ cðw; dÞ þ lPðwjCÞ
jdj þ l

þ kPTMðwjhdÞ ð8Þ

where

PTMðwjhdÞ ¼
XK

j¼1

/ðjÞw hðdÞj ;

and /̂, ĥ are the estimated the parameters of a topic model.
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Note the two extreme cases: (1) if k = 0, we simply use the document language model

with Dirichlet smoothing, which is our baseline; (2) if k = 1, we simply use the document

representation computed from the topic models.

Fold-in heuristic Note that to compute PTM(w|hd), one doesn’t have to estimate the topic

models from the entire collection. Instead, a ‘‘fold-in’’ scheme can be used. As stated in

Hofmann (1999b), folding-in is a heuristic way to solve the problem of computing a

representation for a document that was not contained in the original training collection

where the topic models are estimated. Instead of estimating topic model parameters from all

the documents, we estimate topics Pðwj/̂; zÞ from a randomly sampled subset, then we use

‘‘fold-in’’ heuristic to estimate the topic distributions h for all documents. Basically, it can

be computed using an EM algorithm, similar to that used in PLSA estimation, except that

the Pðwj/̂; zÞ is fixed so that only hs are updated in the M step. Essentially, PLSA and LDA

produce different Pðwj/̂; zÞ on the sampled subset; after that, the same ‘‘fold-in’’ heuristic is

applied to estimate h. Thus any performance difference between LDA and PLSA would be

entirely due to the different estimate of Pðwj/̂; zÞ. There are two advantages of using a

‘‘fold-in’’ scheme: (1) the fold-in scheme investigates the adaptiveness of topic models

across different document collections; (2) folding-in with a sampled document set is much

more efficient than estimating topic models based on the whole collection.

6.1 Experimental setup

Data sets and evaluation metric Our goal is study the empirical difference between

PLSA and LDA for the retrieval task; thus, to ensure a thorough and fair comparison, we

need to run many experiment using different settings for each algorithm. However, due to

the high computational complexity of PLSA and LDA, we mainly employ two modest-size

test collections from TREC: San Jose Mercury News (SJMN) 1991 with queries 51–150,

and LA Times (LA) with queries 301–400, which follows the practice of previous works

on using topic models for information retrieval (Wei and Bruce Croft 2006, Yi and Allan

2009). Moreover, we also conduct experiments on TREC7/TREC8 which is a relatively

large heterogeneous collection with queries 351–400 (for TREC7) and 401–450 (for

TREC8). However, because of the high computational complexity of PLSA and LDA, it is

infeasible to vary all the parameters to run many experiments. We thus focused on using

this large data set to test whether the major conclusions we draw on the two modest-size

data sets can be generalized to this larger data set. Specifically, we focused on the com-

parison of PLSA and LDA and varied the most important parameter a of LDA. Even for

such focused experiments, it is still expensive to estimate PLSA and LDA on the whole

collection, we thus opted to estimate PLSA and LDA on a random subset of 10K docu-

ments.4 Although the topic models are estimated using a subset, the application of the

Table 3 Statistics of SJMN and
LA corpora

Statistics SJMN LA TREC78

Number of documents 90,257 131,896 528,155

Number of unique terms 334,913 326,609 730,270

Average document length 266 290 481

Collection size (Gb) 0.29 0.48 2.15

4 For example, estimating PLSA on the whole collection of LA would take about 40 h for a single run of 50
iterations on a Linux server four 2.2 GHz AMD Opteron 848 processors and 32GB memory.
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model for retrieval is done for the entire set of documents using the fold-in heuristic.

Queries are taken from the ‘‘title’’ field of TREC topics. Relevance judgments are taken

from the judged pool of top retrieved documents by various participating retrieval systems

from previous TREC conferences.

Statistics of the collections are given in Table 3. Mean average precision (MAP) is used

as the basis of evaluation for ad hoc retrieval, because it reflects the quality of the overall

ranking accuracy.

Default setting Our default setting for ad hoc retrieval uses 5% of the collection to

estimate topic models, a = 50/K for LDA, and runs each topic model for 50 iterations on

400 topics (which is the recommended setting in Wei and Bruce Croft (2006). Unless

specified otherwise, the performance we report is the best MAP performance by tuning

the l and k parameter in the document language model.

6.2 Performance

As in the previous sections, we analyze the results on retrieval evaluation according to the

questions to be answered. The first a few questions provide guidance on how to optimize

the task performance of topic models in the context of ad hoc retrieval. The last question

compares the two topic models with their optimal setting.

Do topic models help? Our general observation on two data set is that smoothing with

topic models improves over the KL-divergence baseline if k [ [0.5, 0.7] and l is set to a

reasonable range, e.g. [250,1000]. Recall that k is the parameter which controls the effect

of topic models in smoothing. This means smoothing using the topic model based repre-

sentation indeed improves retrieval performance.

Can we use topic models alone? We have also tried to set k = 1 deliberately, which is

essentially using only the topic model representation for a document based on topics. The

MAP performance is consistently below 0.1 for both data sets, which is significantly worse

than the baseline. This indicates that in ad hoc retrieval task, which requires a fine gran-

ularity matching of query words, low dimension representation of topics is not fine enough

for distinguishing relevant documents from irrelevant ones. So an interpolation of docu-

ment representation is important.
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Fig. 10 MAP versus l. a SJMN: MAP versus l, b LA: MAP versus l
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Are two smoothing methods interfering? There is some correlation of setting the optimal

Dirichlet prior smoothing parameter l and topic model smoothing parameter k. In Fig. 10,

we plot the retrieval performance of PLSA on SJMN and LA data for different combi-

nations of l and k. (The trend is similar for LDA) We can observe that: when k is small,

e.g. 0.1 or 0.3, the retrieval performance is not so sensitive to the value of Dirichlet

smoothing parameter l; however, as k goes larger, we need to set a smaller l in order to

get better retrieval performance. In Eq. 8, we can see that both l and k provide smoothing

effect of the original document model. So the observation from Fig. 10 shows that we need

to reserve enough weights for the original document representation and ‘‘over-smoothing’’

the document model (e.g. by setting k = 0.9 and l = 2000) would deteriorate perfor-

mance of information retrieval where fine granularity matching of query words is

important. In our experiments, l = 500 and k [ [0.5,0.7] usually gives the near-optimal

performance.

Does number of iterations matter? We test the number of iterations of topic models on

SJMN and LA data in Fig. 11. Performance of both models becomes relatively stable when

iteration number reaches 50, which is similar to the findings of LDA-based retrieval (Wei

and Bruce Croft 2006). Again, due to the sampling procedure, LDA is not guaranteed to

achieve better performance if we run it for more iterations (e.g. Fig. 11a).
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Fig. 11 MAP versus number of iterations. a SJMN: number of iterations, b LA: number of iterations.
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Fig. 12 MAP versus sample size (in log scale). a SJMN: sample size, b LA: sample size
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Does fold-in work? It would be interesting to see how our ‘‘fold-in’’ scheme work with

different number of documents to use as the subset. In Fig. 12, we show the MAP per-

formance when using different size of subset to learn the topic models. Interestingly, it is

not necessarily true that the larger subset we use the better retrieval performance we can

achieve. This could be explained by the fact that: topic models are estimated by maxi-

mizing the collection likelihood, essentially

Y

d

Y

w

PTMðwjdÞ ¼
Y

d

Y

w

XK

j¼1

/ðjÞw hðdÞj

Each PTM(w|d) is then used to smooth the document language model. If the estimation is

‘‘perfect,’’ PTM(w|d) would be the same as PML(w|d), where there is no effect of topic

model smoothing at all; instead smoothing with k would essentially discount the Dirichlet

smoothing effect of l. However, if we estimate word-topic distribution /ðjÞw on a subset,

and use fold-in to get topic-document distribution hðdÞj , the new PTM(w|d) can obtain more

smoothing power.

Does number of topics matter? Selecting the right number of topics is also an important

problem in topic modeling. As we can see in Fig. 13a, b, although the topic model per-

formance is sensitive to the number of topics used, it consistently outperforms the baseline

for a wide range of numbers of topics.
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Fig. 13 MAP versus number of topics. a SJMN: number of topics, b LA: number of topics
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Fig. 14 MAP versus a in LDA: retrieval performance is sensitive to a; optimal a lies between 0.5 and 2.
a SJMN: a value in LDA, b LA: a value in LDA.
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How does a affect LDA? In the previous experiments, we used the default a in LDA, i.e.

a = 50/K. Since we use a large number of topics in retrieval (K has a large value), resulting

in small value of a, the estimated topic distribution is less smooth with topics more closely

fitting the sampled subset. So during the fold-in process, those topics may not generalize

well on the unseen documents. Indeed, in Fig. 14a, b, we see that setting a larger a, e.g.

between 0.5 and 2, gives better retrieval performance, which is to make the topics learned

from the subset more smooth and general.

To further test this important observation, we conduct this experiment on TREC7/

TREC8 data, where a subset of 10K documents are used to estimate the topic models.

Although the topic models are estimated using a subset, the application of the model for

retrieval is done for the entire set of documents. In Fig. 15, we plot the MAP performance

of the KL-Divergence baseline, smoothing with PLSA, and smoothing with LDA using

different a parameters. Consistent with previous finding, the optimum a is 0.5 in both

TREC7 and TREC8, which is larger than the optimum setting in the classification and

clustering tasks.

Do topic models provide stable performance? Finally, we run each topic model with the

same setting for three times with different random starting points, and it turns out that the

retrieval performance is not very sensitive to different trials (see Table 4). This is because

we interpolate the topic models with the original representation of documents, which is a

more indirect way of using the learned topic models than in clustering or categorization.

How do the two models compare? Based on the observations from the experiments,

PLSA and LDA achieve comparable performance when used appropriately in retrieval.
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Fig. 15 MAP versus a in LDA: retrieval performance is sensitive to a; optimal a lies between 0.5 and 2.
a TREC7: a value in LDA, b TREC8: a value in LDA

Table 4 Retrieval trial variance
Data set SJMN LA

Topic model LDA PLSA LDA PLSA

Trial-1 0.2138 0.2179 0.2508 0.2512

Trial-2 0.2115 0.2185 0.2542 0.2527

Trial-3 0.2106 0.2195 0.2540 0.2525

Mean 0.2120 0.2186 0.2530 0.2521

SD 0.0016 0.0008 0.0019 0.0008
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PLSA appears superior than LDA on the SJMN collection, and LDA outperforms PLSA on

the LA collection with its optimal setup; but neither of the differences is statistically

significant based on Wilcoxon test. However, unlike PLSA, the performance of LDA is

contingent on the optimal setting of parameter a. When a suboptimal a is used, the

performance of LDA drops considerably and thus performs worse than PLSA.

7 Conclusions

In this paper, we conduct a systematic and thorough investigation of two representative

probabilistic topic models, probabilistic latent semantic analysis (PLSA) and Latent

Dirichlet Allocation (LDA), using three representative text mining tasks, including doc-

ument clustering, text categorization and ad-hoc retrieval. To summarize the findings

in our experiments with PLSA and LDA in the three tasks, a few points could be

made:

How to use topic models appropriately to improve task performance? When used

inappropriately, topic models could hurt the task performance. Our emperical findings

suggest that when used as a latent semantic representation, topic models are more effective

than the original high dimension representation when both (1) the task only requires coarse

category matching, such as text categorization and (2) the data is sparse (training data is

small) so that the latent semantic representation helps bridging the vocabulary gap. In tasks

like retrieval which needs fine granularity matching of query words, the latent semantic

representation alone is not sufficient due to the lack of discrimination. As a result, com-

bining the low dimension representation of topic models with the original high dimension

representation tends to be most robust and effective, such as combining unigram features

with topic features for text categorization and smoothing document language models with

topic distributions for ad hoc retrieval.

How does hyper-parameter a affect task performance? The performance of LDA on all

tasks is quite sensitive to the setting of its hyper-parameter a, and the optimal setting varies

according to how the model is used in a task. In tasks where the latent semantic repre-

sentation of topics is used alone, such as classification and clustering, optimal performance

is achieved when a is set to be small, e.g. between 0.1 and 0.5. In tasks like retrieval, where

we interpolate the original high-dimensional representation with the topics, a relatively

larger a between 0.5 and 2 would give better performance. Our experiments also show that

there is no stable single optimal value of a. The choice of this parameter also depends on

the collection.

How does local maxima affect task performance? Although there is no guarantee of

finding the global maximum for topic models, the problem of getting to only local maxima

does not necessarily affect task performance much. If we use the topics directly as in

classification and clustering, we do want to run topic models multiple times, especially

PLSA. But if we use topics indirectly, a finely tuned topic model does not necessarily lead

to good task performance. For example, the retrieval performance is not sensitive to

different trials of topic models, since only aggregated topic model parameters are used to

smooth the document language model in retrieval, which does not need a finely tuned

topic model to achieve optimal performance. This observation can help saving some

concerns of local maxima in applications where the learned topics are not used directly by

themselves.
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Which topic model is better? From our emprical observations, PLSA and LDA (when

optimized) perform similarly on two out of the three application tasks, i.e. clustering where

the most significant topic is used as cluster label and retrieval where only the word-topic

distribution is different for the two models. However, LDA works better in text catego-

rization where the topic-document distribution h is used as low dimension representation.

Although it has been shown in existing work (Blei et al. 2003) that LDA is better than

PLSA by measuring perplexity of predicting new documents, evidences from emperical

experiments indicate that LDA has a competitive edge over PLSA at computing a gen-
eralizable fine-granularity low-dimension semantic representation by eliminating the over-

fitting problem; while in other cases there is no clear distinction of task performance

difference. This provides more insight for practitioners who would like to choose one of

the two models.

A major limitation of our study is that due to the high computational complexity of

current topic model implementations, the size of collections used in evaluation (especially

in the case of retrieval experiments) is relatively small. Thus an important future work is to

use more efficient implementations (e.g., based on parallel algorithms) to further confirm

our observations on larger-scale experiments. Our study has exclusively focused on PLSA

and LDA, the two representative basic topic models. In the future, it would be interesting

to further evaluate other topic models as well as other commonly used estimation algo-

rithms for solving topic models. We are also interested in investigating some other tasks,

such as summarization, which is the most popular application of topic models and also the

most difficult one to quantitatively evaluate.Another future direction is to conduct a

comparison study between topic models and the non-negative matrix factorization family.
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