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Abstract An experimental comparison of a large number of different image descriptors
for content-based image retrieval is presented. Many of the papers describing new tech-
niques and descriptors for content-based image retrieval describe their newly proposed
methods as most appropriate without giving an in-depth comparison with all methods that
were proposed earlier. In this paper, we first give an overview of a large variety of features
for content-based image retrieval and compare them quantitatively on four different tasks:
stock photo retrieval, personal photo collection retrieval, building retrieval, and medical
image retrieval. For the experiments, five different, publicly available image databases are
used and the retrieval performance of the features is analyzed in detail. This allows for a
direct comparison of all features considered in this work and furthermore will allow a
comparison of newly proposed features to these in the future. Additionally, the correlation
of the features is analyzed, which opens the way for a simple and intuitive method to find
an initial set of suitable features for a new task. The article concludes with recommen-
dations which features perform well for what type of data. Interestingly, the often used, but
very simple, color histogram performs well in the comparison and thus can be recom-
mended as a simple baseline for many applications.
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1 Introduction

Image retrieval in general and content-based image retrieval (CBIR) in particular are well-
known fields of research in information management in which a large number of methods
have been proposed and investigated but in which still no satisfying general solutions exist.
The need for adequate solutions is growing due to the increasing amount of digitally
produced images in areas like journalism, medicine, and private life, requiring new ways of
accessing images. For example, medical doctors have to access large amounts of images
daily (Miiller et al. 2004), home-users often have image databases of thousands of images
(Sun et al. 2002), and journalists also need to search for images by various criteria
(Markkula and Sormunen 1998; Armitage and Enser 1997). In the past, several CBIR
systems have been proposed and all these systems have one thing in common: images are
represented by numeric values, called features or descriptors, that are meant to represent
the properties of the images to allow meaningful retrieval for the user.

Only recently have some standard benchmark databases and evaluation campaigns been
created which allow for a quantitative comparison of CBIR systems. These benchmarks
allow for the comparison of image retrieval systems under different aspects: usability and
user interfaces, combination with text retrieval, or overall performance of a system.
However, to our knowledge, no quantitative comparison of the building blocks of the
systems, the features that are used to compare images, has been presented so far. In
(Shirahatti and Barnard 2005) a method for comparing image retrieval systems was pro-
posed relying on the Corel database, which has restricted copyrights, is no longer
commercially available today, and can therefore not be used for experiments that are meant
to be a basis for other comparisons.

Another aspect of evaluating CBIR systems are the requirements of the users. In
(Markkula and Sormunen 1998) and (Armitage and Enser 1997) studies of user needs in
searching image archives are presented and the outcome in both studies is that CBIR alone
is very unlikely to fulfill the needs but that semantic information obtained from meta data
and textual information is an important additional knowledge source. Although today the
semantic analysis and understanding of images is much further developed due to the recent
achievements in object detection and recognition, still most of the requirements specified
are not satisfiable fully automatically. Therefore, in this paper we compare the perfor-
mance of a large variety of visual descriptors. These can then later be combined with the
outcome of textual information retrieval as described e.g., in (Deselaers et al. 2006).

The main question we address in this paper is: Which features are suitable for which
task in image retrieval? This question is thoroughly investigated by examining the per-
formance of a wide variety of different visual descriptors for four different types of CBIR
tasks.

The question of which features perform how well is closely related to the question
which features can be combined to obtain good results in a particular task. Although we do
not directly address this question here, the results from this paper lead to a new and
intuitive method to choose an appropriate combination of features based on the correlation
of the individual features.

For the evaluation of the features we use five different publicly available databases
which are a good starting point to evaluate the performance of new image descriptors.

Although today various initiatives for evaluation of CBIR systems have evolved, only
few of them resulted in evaluation campaigns with participants and results: Benchathlon'

' http://www.benchathlon.net/
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was started in 2001 and located at the SPIE Electronic Imaging conference but has
become smaller over time. TRECVID® is an initiative by the TREC (Text Retrieval
Conference) on video retrieval in which video retrieval systems are compared.
ImageCLEF? is part of the Cross-Language Evaluation Framework (CLEF) and started in
2003 with only one task aiming at a combination of multi-lingual information retrieval
with CBIR. In 2004, it comprised three tasks, one of them focused on visual queries and
in 2005 and 2006 there were four tasks, one and two of them purely visual, respectively.
We can observe that evaluation in the field of CBIR is at a far earlier stage than it is in
textual information retrieval (e.g., Text REtrieval Conference, TREC) or in speech
recognition (e.g., Hub4-DARPA evaluation). One reason for this is likely to be the
smaller commercial impact that (content-based) image retrieval has had in the past.
However, with the increasing amount of visual data available in various form, this is
likely to change in the future.
The main contributions of this paper are answers to the questions above, namely

e an extensive overview of features proposed for CBIR, including features that were
proposed in the early days of CBIR and techniques that were proposed only recently in
the object recognition and image understanding literature as well as a subset of features
from the MPEG?7 standard.

e a quantitative analysis of the performance of these features for various CBIR tasks (in
particular: stock photo retrieval, personal photo retrieval, building/touristic image
retrieval, and medical image retrieval).

e pointing out a set of five databases from four different domains that can be used for
benchmarking CBIR systems.

Note that we do not focus on the combination of features nor on the use of user feedback
for content-based image retrieval in this paper; several other authors propose and evaluate
approaches to these important issues (Yavlinski et al. 2004; Heesch and Riiger 2003;
Miiller et al. 2000; Miiller et al. 2000; MacArthur et al. 2000). Instead, we mainly
investigate the performance of single features for different tasks.

1.1 State of the art in content-based image retrieval

This section gives an overview on literature on CBIR. We mainly focus on different
descriptors and image representations. More general overviews on CBIR are given in
(Smeulders et al. 2000; Forsyth and Ponce 2002; Rui et al. 1999). Two recent reviews of
CBIR techniques are given in (Datta et al. 2005; Lew et al. 2006).

In CBIR, there are, roughly speaking, two different main approaches: a discrete
approach and a continuous approach (de Vries and Westerveld 2004). (1) The discrete
approach is inspired by textual information retrieval and uses techniques like inverted files
and text retrieval metrics. This approach requires all features to be mapped to binary
features; the presence of a certain image feature is treated like the presence of a word in a
text document. (2) The continuous approach is similar to nearest neighbor classification.
Each image is represented by a feature vector and these features are compared using
various distance measures. The images with lowest distances are ranked highest in the

2 http://www.nlpir.nist.gov/projects/trecvid/

3 http://www.imageclef.org
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retrieval process. A first, though not exhaustive, comparison of these two models is
presented in (de Vries and Westerveld 2004).

Among the first systems that were available were the QBIC system from IBM
(Faloutsos et al. 1994) and the Photobook system from MIT (Pentland et al. 1996). QBIC
uses color histograms, a moment based shape feature, and a texture descriptor. Photobook
uses appearance features, texture features, and 2D shape features. Another well known
system is Blobworld (Carson et al. 2002), developed at UC Berkeley. In Blobworld,
images are represented by regions that are found in an Expectation-Maximization-like
(EM) segmentation process. In these systems, images are retrieved in a nearest-neighbor-
like manner, following the continuous approach to CBIR. Other systems following this
approach include SIMBA (Siggelkow et al. 2001), CIRES (Igbal and Aggarwal 2002),
SIMPLIcity (Wang et al. 2001), IRMA (Lehmann et al. 2005), and our own system FIRE
(Deselaers et al. 2005; Deselaers et al. 2004). The Moving Picture Experts Group (MPEG)
defines a standard for content-based access to multimedia data in their MPEG-7 standard.
In this standard, a set of descriptors for images is defined. A reference implementation for
these descriptors is given in the XM Software.* A system that uses MPEG-7 features in
combination with semantic web ontologies is presented in Bloehdorn et al. (2005). In Di
et al. (2002) a method starting from low-level features and creating a semantic represen-
tation of the images is presented and in Meghini et al. (2001) an approach to consistently
fuse the efforts in various fields of multimedia information retrieval is presented.

In (Squire et al. 1999), the VIPER system is presented which follows the discrete
approach. VIPER is now publicly available as the GNU Image Finding Tool (GIFT) and
several enhancements have been implemented during the last years. An advantage of the
discrete approach is that methods from textual information retrieval can easily be trans-
ferred as e.g., user interaction and storage handling. Nonetheless, most image retrieval
systems follow the continuous approach often using some optimization, for example pre-
filtering and pre-classification (Smeulders et al. 2000; Wang et al. 2001; Park et al. 2002),
to achieve better runtime performance, e.g., (Faloutsos et al. 1994; Pentland et al. 1996;
Carson et al. 2002; Siggelkow et al. 2001).

We can clearly observe that many different image description features have been
developed. However, only few works have quantitatively compared different features.
Interesting insights can also be gained from the outcomes of the ImageCLEF image
retrieval evaluations (Clough et al. 2004; Clough et al. 2006) in which different systems
are compared on the same task. The comparison is not easy because all groups use different
retrieval systems and text-based information retrieval is an important part of these eval-
uations. Due to the lack of standard tasks, in many papers on image retrieval, new
benchmark sets are defined to allow for quantitative comparison of the proposed methods
to a baseline system. A problem with this approach is that it is simple to create a
benchmark for which you can show improved results (Miiller et al. 2002).

Recently, local image descriptors are getting more attention within the computer vision
community. The underlying idea is that objects in images consist of parts that can be
modelled with varying degrees of independence. These approaches are successfully used for
object recognition and detection (Dorké 2006; Fei-Fei and Perona 2005; Fergus et al. 2003;
Opelt et al. 2006; Marée et al. 2005; Deselaers et al. 2005) and CBIR (Deselaers et al. 2004;
Jain 2004; Schmid and Mohr 1997; van Gool et al. 2001). For the representation of local
image parts, SIFT features (Lowe 2004) and raw image patches are commonly used and
a bag-of-features approach, similar to the bag-of-words approach in natural language

4 http://www_lis.ei.tum.de/research/bv/topics/mmdb/e_mpeg7.html
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processing, is commonly taken. The features described in Section 3.7 also follow this
approach and are strongly related to the modern approaches in object recognition. In contrast
to the methods described above, the image is not modelled as a whole but rather image parts
are modelled individually. Most approaches found in the literature on part-based object
recognition learn (often complicated) models from a large set of training data. This approach
is impractical for CBIR applications since it would require an enormous amount of training
data on the one hand and would lead to tremendous computing times to create these models
on the other hand. However, some of these approaches are applicable for limited domain
retrieval, e.g., on the IRMA database (cf. Section 5.3) (Deselaers et al. 2006).

Overview. The remainder of this paper is structured as follows. The next section
describes the retrieval metric used to rank images given a feature and a distance measure
and the performance measures used to compare different settings. Section 3 gives an
overview of 19 different image descriptors and distance measures which are used for the
experiments. Section 4 presents a method to analyze the correlation of different image
descriptor/distance combinations. In Section 5, five different benchmark databases are
described that are used for the experiments presented in Section 6. The experimental
section is subdivided into three parts: Section 6.1 directly compares the performance of the
different methods for the different tasks, Section 6.2 describes the results of the correlation
analysis, and Section 6.3 analyzes the connection between the error rate and the mean
average precision. The paper concludes with answers to the questions posed above.

2 Retrieval metric

The CBIR framework used to conduct the experiments described here follows the con-
tinuous approach: images are represented by vectors that are compared using distance
measures. For the experiments we use our CBIR system FIRE.? FIRE was designed as a
research system with extensibility and flexibility in mind. For the evaluation of features,
only one feature and one query image is used at a time, as described in the following.

Retrieval Metric. Let the database {xi,...x,,...,xy} be a set of images represented by
features. To retrieve images similar to a query image ¢, each database image x,, is com-
pared with the query image using an appropriate distance function d(g, x,). Then, the
database images are sorted according to the distances such that d(g, x,,,) <d(q, x,,,,) holds
for each pair of images x,, and x,,,, in the sequence (x,. . ., Xy, . . .X,, ). If a combination of
different features is used, the distances are normalized to be in the same value range and
then a linear combination of the distances is used to create the ranking.

To evaluate CBIR, several performance evaluation measures have been proposed
(Miiller et al. 2001) based on the precision P and the recall R:

_ Number of relevant images retrieved
" Total number of images retrieved

~ Number of relevant images retrieved

Total number of relevant images

Precision and recall values are usually represented in a precision-recall-graph R — P(R)
summarizing (R, P(R)) pairs for varying numbers of retrieved images. The most common

> freely available under the terms of the GNU General Public Licencse at http://www-i6.informatik.
rwth-aachen.de/ ~ deselaers/fire.htm
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way to summarize this graph into one value is the mean average precision that is also used
e.g., in the TREC and CLEF evaluations. The average precision AP for a single query ¢ is
the mean over the precision scores after each retrieved relevant item:

1 &
AP(q) :]TRZP"(R")7
n=1

where R, is the recall after the nth relevant image was retrieved. Ny is the total number of
relevant documents for the query. The mean average precision MAP is the mean of the
average precision scores over all queries:

MAP = LZAP(q),
191 &5

where Q is the set of queries q.

An advantage of the mean average precision is that it contains both precision and recall
oriented aspects and is sensitive to the entire ranking.

We also indicate the classification error rate ER for all experiments. To do so we
consider only the most similar image according to the applied distance function. We
consider a query image to be classified correctly, if the first retrieved image is relevant.
Otherwise the query is misclassified:

ER — LZ 0 if the most similar image is relevant/from the correct class
Y] =% 1 otherwise.

This is in particular interesting if the database for retrieval consists of images labelled
with classes, which is the case for some of the databases considered in this paper. For
databases without defined classes but with selected query images and corresponding rel-
evant images, the classes to be distinguished are “relevant” and “irrelevant” only.

This is in accordance with precision at document X being used as an additional per-
formance measure in many information retrieval evaluations. The ER used here is equal to
1 — P(1), where P(1) is the precision after one document retrieved. In (Deselaers et al.
2004) it was experimentally shown that the error rate and P(50), the precision after 50
documents, are correlated with a coefficient of 0.96 and thus they essentially describe the
same property. The precision oriented evaluation is interesting, because most search
engines, both for images and text, return between 10 and 50 results, given a query.

Using the ER, the image retrieval system can be viewed as a nearest neighbor classifier
using the same features and the same distance function as the image retrieval system. The
decision rule of this classifier can be written in the form

q—r(g)=arg min { min d(g,xu)}-

The query image ¢ is predicted to be from the same class as the database image that has

the smallest distance to it. Here, x,,; denotes the n-th image of class k.

3 Features for CBIR
In this section we give an overview of the features tested, with the intention to include as

many features as possible. Obviously we cannot cover all features that have been proposed
in the literature. For example, we have left out the Blobworld features (Carson et al. 2002)
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because for comparing images based on these features, user interaction to select the rel-
evant regions in the query image is required. Furthermore, a variety of texture
representations have not been included and we have not investigated different color spaces.

However, we have tried to make the selection of features as representative and at the
state-of-the-art as possible. Roughly speaking, the features can be grouped into the fol-
lowing types: (a) color representation, (b) texture representation, (c) local features, and (d)
shape representation.6 The features that are presented in the following are grouped
according to these four categories in Table 1. Table 1 also gives the timing information on
feature extraction and retrieval time for a database consisting of 10 images.’

The distance function used to compare the features representing an image obviously
also has a big influence on the performance of the system. Therefore, we refer to the used
distance functions for each feature in the particular sections. We have chosen distance
functions that are known to work well for the features used as the discussion of their
influence is beyond the scope of this paper. Different comparison measures for histograms
are presented e.g., in (Puzicha et al. 1999; Nolle 2003) and dissimilarity metrics for direct
image comparison are presented in Keysers et al. (2007).

3.1 Appearance-based image features

The most straight-forward approach is to directly use the pixel values of the images as
features: the images are scaled to a common size and compared using the Euclidean
distance. In this work, we have used a 32 x 32 down-sampled representation of the images
and these have been compared using the Euclidean distance. It has been observed that for
classification and retrieval of medical radiographs, this method serves as a reasonable
baseline (Keysers et al. 2007).

In Keysers et al. (2007) different methods were proposed to directly compare images
accounting for local deformations. The proposed image distortion model (IDM) is shown to
be a very effective means of comparing images with reasonable computing time. IDM
clearly outperforms the Euclidean distance for optical character recognition and medical
radiographs. The IDM is a non-linear deformation model, it was also successfully used to
compare general photographs (Deselaers 2003) and for sign language and gesture recog-
nition (Zahedi et al. 2005). In this work it is used as a second comparison measure to
compare images directly. Therefore the images are scaled to have a common width of 32
pixels while keeping the aspect ratio constant, i.e., the images may be of different heights.

© Note that no features that fully cover the shapes in the images are included since therefore an algorithm
segmenting the images into meaningful regions is required, but since fully-automatic segmentation for
general images is an unsolved problem, it is not covered here. The features that we mark to represent shape
only represent shape in a local (for the SIFT features) and very rough global context (for appearance-based
image features). There are however, overview papers on the shape features defined in MPEG7 which use
databases consisting of segmented images for benchmarks (Bober 2001).

7 These experiments have been carried out on a 1.8 GHz machine with our standard C++ implementation of
the software. The SIFT feature extraction was done with the software from Gyuri Dorko
(http://www.lear.inrialpes.fr/people/dorko/downloads.html), the MPEG7 experiments were performed with
the MPEG7 XM reference implementation (http://www.lis.ei.tum.de/research/bv/topics/mmdb/mpeg7.
html), and the downscaling of images was performed using the ImageMagick library
(http://www.imagemagick.org/). The timings include the time to load all data and initialize the system.
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Table 1 Grouping of the features into different types

Feature name Section Comp. measure Type Extr.[s] Retr.[s]

Appearance-based image features

32 x 32 image 3.1 Euclidean abed 0.25 0.19

X x 32 image 3.1 IDM abed 0.25 9.72
Color histograms 32 JSD a 0.77 0.16
Tamura features 33 JSD b 14.24 0.13
Global texture descriptor 34 Euclidean b 3.51 0.16
Gabor histogram 35 JSD b 8.01 0.12
Gabor vector 35 Euclidean b 8.68 0.17

Invariant feature histograms

w. monomial kernel 3.6 JSD ab 28.93 0.16

w. relational kernel 3.6 JSD ab 18.23 0.14
LF patches

Global search 3.7 - ac 4.69 7.13

Histograms 3.7 JSD ac 4.69 + 5.17 0.27

Signatures 3.7 EMD ac 4.69 + 3.37 0.55
LF SIFT

Global search 3.7 - cd 11.91 9.23

Histograms 3.7 JSD cd 1191 + 6.23 0.27

Signatures 3.7 EMD cd 11.91 + 4.50 1.03
MPEG 7: scalable color 3.8.1 MPEG7-internal a 0.48 0.42
MPEG 7: color layout 3.8.2 MPEGT7-internal ad 0.20 0.33
MPEG 7: edge histogram 3.8.3 MPEG7-internal b 0.16 0.43

(a) color representation, (b) texture representation, (c) local features, (d) shape representation. The table also
gives the time to extract the features from 10 images and to query 10 images in a 10 image database to give
an impression of the computational costs of the different features (experiments were performed on a
1.8 GHz machine)

3.2 Color histograms

Color histograms are among the most basic approaches and widely used in image retrieval
(Smeulders et al. 2000; Faloutsos et al. 1994; Deselaers 2003; Puzicha et al. 1999; Swain
and Ballard 1991). To show performance improvements in image retrieval systems, sys-
tems using only color histograms are often used as a baseline. The color space is
partitioned and for each partition the pixels with a color within its range are counted,
resulting in a representation of the relative frequencies of the occurring colors. We use the
RGB color space for the histograms. We observed only minor differences with other color
spaces which was also observed in (Smith and Chang 1996). In accordance with (Puzicha
et al. 1999), we use the Jeffrey divergence or Jensen-Shannon divergence (JSD) to
compare histograms:

!

M
2H, 2H
d HH’:§ H,l i H'1 m
ol HHE) = 0 Hhnloe g =gy Hosy Ry

where H and H' are the histograms to be compared and H,, is the mth bin of H.
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3.3 Tamura features

In Tamura et al. (1978) the authors propose six texture features corresponding to human
visual perception: coarseness, contrast, directionality, line-likeness, regularity, and
roughness. From experiments testing the significance of these features with respect to
human perception, it was concluded that the first three features are very important. Thus, in
our experiments we use coarseness, contrast, and directionality to create a histogram
describing the texture (Deselaers 2003) and compare these histograms using the Jeffrey
divergence (Puzicha et al. 1999). In the QBIC system (Faloutsos et al. 1994) histograms of
these features are used as well.

3.4 Global texture descriptor

In Deselaers (2003) a texture feature consisting of several parts is described: Fractal
dimension measures the roughness of a surface. The fractal dimension is calculated using
the reticular cell counting method (Haberdcker 1995). Coarseness characterizes the grain
size of an image. It is calculated depending on the variance of the image. Entropy of pixel
values is used as a measure of disorderedness in an image. The spatial gray-level differ-
ence statistics describe the brightness relationship of pixels within neighborhoods. It is also
known as co-occurrence matrix analysis (Haralick et al. 1973). The circular Moran
autocorrelation function measures the roughness of the texture. For the calculation a set of
autocorrelation functions is used (Gu et al. 1989). From these, we obtain a 43 dimensional
vector consisting of one value for the fractal dimension, one value for the coarseness, one
value for the entropy and 32 values for the difference statistics, and 8 values for the circular
Moran autocorrelation function. This descriptor has been successfully used for medical
images in Lehmann et al. (2005).

3.5 Gabor features

Gabor features have been widely used for Texture analysis (Park et al. 2002; Squire et al.
1999). Here we use two different descriptors derived from Gabor features:

e Mean and standard deviation: Gabor features are extracted at different scales and
directions from the images and the mean and standard deviation of the filter responses
is calculated. We extract Gabor features in five different orientations and five different
scales leading to a 50 dimensional vector.

e A bank of 12 different circularly symmetric Gabor filters is applied to the image, the
energy for each filter on the bank is quantized into 10 bands and a histogram of
the mean filter outputs over image regions is computed to give a global measure of the
texture characteristics of the image (Squire et al. 1999). These histograms are
compared using the JSD.

3.6 Invariant feature histograms

A feature is called invariant with respect to certain transformations if it does not change
when these transformations are applied to the image. The transformations considered here
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are translation, rotation, and scaling. In this work, invariant feature histograms as presented
in (Siggelkow 2002) are used. These features are based on the idea of constructing
invariant features by integration, i.e., a certain feature function is integrated over the set of
all considered transformations. The feature functions we have considered are monomial
and relational functions (Siggelkow et al. 2001) over the pixel intensities. Instead of
summing over translation and rotation, we only sum over rotation and create a histogram
over translation. This histogram is still invariant with respect to rotation and translation.
The resulting histograms are compared using the JSD. Previous experiments have shown
that the characteristics of invariant feature histograms and color histograms are very
similar and that invariant feature histograms can sometimes outperform color histograms
(Deselaers et al. 2004).

3.7 Local image descriptors

Image patches, i.e., small subimages of images, or features derived thereof currently are a
very promising approach for object recognition, e.g., (Deselaers et al. 2005; Fergus et al.
2005; Paredes et al. 2001). Obviously, object recognition and CBIR are closely related
fields (Vailaya et al. 2001; Antani et al. 2002) and for some clearly defined retrieval tasks,
object recognition methods might actually be the only possible solution: e.g., looking for
all images showing a certain person, clearly a face detection and recognition system would
deliver the best results (Pentland et al. 1996; Deselaers et al. 2005).

We consider two different types of local image descriptors or local features (LF): (a)
patches that are extracted from the images at salient points and dimensionality reduced
using PCA transformation (Deselaers et al. 2005) and (b) SIFT descriptors (Lowe 2004)
extracted at Harris interest points (Dork6 2006, chapters 3, 4).

We employ three methods to incorporate local features into our image retrieval system.
The methods are evaluated for both types of local features described above:

LF histograms. The first method follows (Deselaers et al. 2005): local features are
extracted from all database images and jointly clustered to form 2,048 clusters. Then for
each of the local features all information except the identifier of the most similar cluster
center is discarded and for each image a histogram of the occurring patch-cluster identifiers
is created, resulting in a 2,048 dimensional histogram per image. These histograms are then
used as features in the retrieval process and are compared using the Jeffrey divergence.
This method was shown to produce good performance in object recognition and detection
tasks (Deselaers et al. 2005). Note that the timing information in Table 1 does not give the
time to create the cluster model, since this is only done once for a database and can be
computed offline.

LF signatures. The second method is derived from the method proposed in
(Mikolajczyk et al. 2005). Local features are extracted from each database image and
clustered for each image separately to form 32 clusters per image. Then for each image, the
parameters of the clusters, i.e., the mean and the variance, are saved and the according
cluster-identifier histogram of the extracted features is created. These “local feature sig-
natures” are then used as features in the retrieval process and are compared using the Earth
Mover’s Distance (EMD) (Rubner et al. 1998). This method was shown to produce good
performance in object recognition and detection tasks (Mikolajczyk et al. 2005).

LF global search. The third method is based on global patch search and derived from
the method presented in (Paredes et al. 2001). Here, local features are extracted from all
database images and stored in a KD tree to allow for efficient nearest neighbor searching.
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Given a query image, we extract local features from the image in the same way as we did
for the database images and search for the k nearest neighbors for each of the query-patches
in the set of database-patches. Then, we count how many patches from each of the database
image were found for the query patches and the database images with the highest number
of patch-hits are returned. Note that the timing information in Table 1 does not include the
time to create the KD tree, since this is only done once for a database and can be computed
offline.

3.8 MPEG-7 features

The Moving Picture Experts Group (MPEG) has defined several visual descriptors in their
standard referred to as MPEG-7 standard.® An overview of these features can be found in
(Eidenberger 2003; Manjunath et al. 2001; Ohm 2001; Yang and Kuo 1999). The MPEG
initiative focuses strongly on features that are computationally inexpensive to obtain and to
compare and also strongly optimizes the features with respect to the required memory for
storage.

Coordinated by the MPEG, a reference implementation of this standard has been
developed.9 This reference implementation was used in our framework for experiments
with these features. Unfortunately, the software is not yet in a fully functional state and
thus only three MPEG7 features could be used in the experiments. For each of these
features, we use the comparison measures proposed by the MPEG standard and imple-
mented in the reference implementation. The feature types are briefly described in the
following:

3.8.1 MPEG 7: scalable color descriptor

The scalable color descriptor is a color histogram in the HSV color space that is encoded
by a Haar transform. Its binary representation is scalable in terms of bin numbers and bit
representation accuracy over a broad range of data rates. Retrieval accuracy increases with
the number of bits used in the representation. We use the default setting of 64 coefficients.

3.8.2 MPEG 7: color layout descriptor

This descriptor effectively represents the spatial distribution of the color of visual signals
in a very compact form. This compactness allows visual signal matching functionality with
high retrieval efficiency at very small computational costs. It allows for query-by-sketch
queries because the descriptor captures the layout information of color features. This is a
clear advantage over other color descriptors. This approach closely resembles the use of
very small thumbnails of the images with a quantization of the colors used.

3.8.3 MPEG 7: edge histogram

The edge histogram descriptor represents the spatial distribution of five types of edges,
namely four directional edges and one non-directional edge. According to the MPEG-7

8 http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.html

® http://www lis.e-technik.tu-muenchen.de/research/bv/topics/mmdb/e_mpeg7.html
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standard, the image retrieval performance can be significantly improved if the edge his-
togram descriptor is combined with other descriptors such as the color histogram
descriptor. The descriptor is scale invariant and supports rotation invariant and rotation
sensitive matching operations.

4 Correlation analysis of features for CBIR

After discussing various features, now let us assume that a set of features is given, some of
which account for color, others accounting for texture, and maybe others accounting for
shape. A very interesting question then is, how features that can be used in combination
can be chosen. Automatic methods for feature selection have e.g., been proposed in
(Vasconcelos and Vasconcelos 2004; Najjar et al. 2003). These automatic methods,
however do not directly explain why features are chosen, are difficult to manipulate from a
user’s perspective, and normally require labelled training data.

The method proposed here does not require training data but only analyzes the corre-
lations between the features themselves, and instead of automatically selecting a set of
features it provides the user with information helping to select an appropriate set of features.

To analyze the correlation between different features, we analyze the correlation
between the distances d(g, X) obtained for each feature of each of the images X from the
database given a query ¢g. For each pair of query image ¢ and database image X we create a
vector (d(q, X), d»(q, X),...d,(q, X),....dy(q, X)) where d,,(g, X) is the distance of the
query image ¢ to the database image X for the mth feature. Then we calculate the corre-
lation between the d,, over all g € {qi,...,q;,...q.} and all X € {X1,.. ., X, ..., Xn}

The M x M covariance matrix X of the d,, is calculated over all N database images and
all L query images as:

| ML
NLI= =
with g = 57 30y 2oy dilars Xa).

Given the covariance matrix X, we calculate the correlation matrix R as R; =
2;/+/2i2;. The entries of this correlation matrix can be interpreted as similarities of
different features. A high value R; means a high similarity between features i and j. This
similarity matrix can then be analyzed to find out which features have similar properties
and which do not. One way to do this is to visualize it using multi-dimensional scaling
(Hand et al. 2001, p. 84ff). Multi-dimensional scaling (MDS) seeks a representation of data
points in a lower dimensional space while preserving the distances between data points as
well as possible. To visualize this data by multi-dimensional scaling, we convert the
similarity matrix R into a dissimilarity matrix D by setting Dy = 1 — |R;j|. For visuali-
zation purposes, we choose a two-dimensional space for MDS.

L= (di(qn, Xn) — ;) - (dj(LIth) - #j) (1)

5 Benchmark databases for CBIR

To cover a wide range of different applications in which CBIR is used, we propose
benchmark databases from different domains. In the ImageCLEF evaluations large image
retrieval benchmark databases have been collected. However, these are not suitable for the
comparison of image features as for most of the tasks textual information is supplied and
necessary for an appropriate solution of the task. Table 2 gives an overview of the
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Table 2 Summary of the databases used for the evaluation with database name, number of images in the
database, number of query images, average number of relevant images per query, and a description how the
queries are evaluated

Database Images Queries Avg. rel Query mode

WANG 1,000 1,000 99.0 Leaving-one-out

Uw 1,109 1,109 59.3 Leaving-one-out

IRMA 10000 10,000 1,000 520.2 Test & database images are disjoint
ZuBuD 1,005 105 5.0 Test & database images are disjoint
UCID 1,338 262 3.5 Leaving-one-out

databases used in the evaluations. Although the databases presented here are small in
comparison to other CBIR tasks, they represent a wide variety of tasks and allow for a
meaningful comparison of feature performances.

The WANG database (Section 5.1), as a subset from the Corel stock photo collection,
can be considered similar to stock photo searches. The UW database (Section 5.2) and the
UCID database (Section 5.5) mainly consist of personal images and represent the home
user domain. The ZuBuD database (Section 5.4) and the IRMA database (Section 5.3) are
limited domain tasks for touristic/building retrieval and medical applications, respectively.

5.1 WANG database

The WANG database is a subset of 1,000 images of the Corel stock photo database which
have been manually selected and which form 10 classes of 100 images each. One example
of each class is shown in Fig. 1. The WANG database can be considered similar to
common stock photo retrieval tasks with several images from each category and a potential
user having an image from a particular category and looking for similar images which have
e.g. cheaper royalties or which have not been used by other media. The 10 classes are used
for relevance estimation: given a query image, it is assumed that the user is searching for
images from the same class, and therefore the remaining 99 images from the same class are
considered relevant and the images from all other classes are considered irrelevant.

5.2 UW database

The database created at the University of Washington consists of a roughly categorized
collection of 1,109 images. These images are partly annotated using keywords. The
remaining images were annotated by our group to allow the annotation to be used for
relevance estimation; our annotations are publicly available.'”

The images are of various sizes and mainly include vacation pictures from various
locations. There are 18 categories, for example “spring flowers”, “Barcelona”, and “Iran”.
Some example images with annotations are shown in Fig. 2. The complete annotation
consists of 6,383 words with a vocabulary of 352 unique words. On the average, each
image has about 6 words of annotation. The maximum number of keywords per image is
22 and the minimum is 1. The database is freely available.'' The relevance assessment for

10 hitp://www-i6.informatik.rwth-aachen.de/ ~ deselaers/uwdb/index.html

' http://www.cs.washington.edu/research/imagedatabase/groundtruth/
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monuments

flowers horses mountains

Fig. 1 One example image from each of the 10 classes of the WANG database together with their class
labels

the experiments with this database were performed using the annotation: an image is
considered to be relevant w.r.t. a given query image if the two images have a common
keyword in the annotation. On the average, 59.3 relevant images correspond to each image.
The keywords are rather general; thus for example images showing sky are relevant w.r.t.
each other, which makes it quite easy to find relevant images (high precision is likely easy)
but it can be extremely difficult to obtain a high recall since some images showing sky
might have hardly any visual similarity with a given query.

This task can be considered a personal photo retrieval task, e.g., a user with a collection
of personal vacation pictures is looking for images from the same vacation, or showing the
same type of building.

5.3 IRMA-10000 database
The IRMA database consists of 10,000 fully annotated radiographs taken randomly from

medical routine at the RWTH Aachen University Hospital. The images are split into 9,000
training and 1,000 test images. The images are subdivided into 57 classes. The IRMA
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buildings clouds mountain people bench, car, house, lantern, trees, trees, bushes, overcast sky,

sand sky window building, post

buildings, fountain, grass, lantern, overcast sky, house, car, sidewalk,

sky struct, bushes, flowers, people

partially cloudy sky, hills, trees, Husky Stadium, north stands, sailboats, ice, water, buildings
grasses, ground, houses people, football, field,...

Fig. 2 Examples from the UW database with annotation

database was used in the ImageCLEF 2005 image retrieval evaluation for the automatic
annotation task. For CBIR, the relevances are defined by the classes, given a query image
from a certain class, all database images from the same class are considered relevant.
Example images along with their class numbers and textual descriptions of the classes are
given in Fig. 3. This task is a medical image retrieval task and is in practical use at the
Department for Diagnostic Radiology of the RWTH Aachen University Hospital.

As all images from this database are gray value images, we evaluate neither the color
histograms nor the MPEG?7 scalable color descriptor since they only account for color
information.

5.4 ZuBuD database

The “Zurich Buildings Database for Image Based Recognition” (ZuBuD) is a database
which has been created by the Swiss Federal Institute of Technology in Zurich and is
described in more detail in (Shao et al. 2003a, 2003b).

The database consists of two parts, a training part of 1,005 images of 201 buildings, 5 of
each building and a query part of 115 images. Each of the query images contains one of the
buildings from the main part of the database. The pictures of each building are taken from
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plain radiography plain radiography plain radiography

coronal coronal coronal
facial cranium lower leg knee
musculosceletal musculosceletal musculosceletal
31 48
;’ plain radiography plain radiography plain radiography
sagittal other orientation other orientation
handforearm right breast left breast
'k musculosceletal reproductive reproductive
50 56
plain radiography ! fluoroscopy angiography
other orientation coronal coronal
foot upper leg pelvis
musculosceletal cardiovascular cardiovascular

Fig. 3 Example images of the IRMA 10000 database along with their class and annotation

different viewpoints and some of them are also taken under different weather conditions
and with two different cameras. Given a query image, only images showing exactly the
same building are considered relevant. To give a more precise idea of this database, some
example images are shown in Fig. 4.

This database can be considered as an example for a mobile travel guide task, which
attempts to identify buildings in pictures taken with a mobile phone camera and then

(b)

Fig. 4 (a) A query image and the 5 images from the same building in the ZuBuD-database (b) 6 images of
different buildings in the ZuBuD-database
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obtains certain information about the building (Shao et al. 2003). The ZuBuD database is
freely available.'”

5.5 UCID database

The UCID database'® was created as a benchmark database for CBIR and image com-
pression applications (Schaefer and Stich 2004). In Schaefer (2004) this database was used
to measure the performance of a CBIR system using compressed domain features. This
database is similar to the UW database as it consists of vacation images and thus poses a
similar task.

For 264 images, manual relevance assessments among all database images were created,
allowing for performance evaluation. The images that are judged to be relevant are images
which are very clearly relevant, e.g., for an image showing a particular person, images
showing the same person are searched and for an image showing a football game, images
showing football games are considered to be relevant. The used relevance assumption
makes the task easy on one hand, because relevant images are very likely quite similar, but
on the other hand, it makes the task difficult, because there are likely images in the
database which have a high visual similarity but which are not considered relevant. Thus, it
can be difficult to have high precision results using the given relevance assessment, but
since only few images are considered relevant, high recall values might be rather easy to
obtain. Example images are given in Fig. 5.

6 Evaluation of the features considered

In this section we report the results of the experimental evaluation of the features. To
evaluate all features on the given databases, we extracted the features from the images and
executed experiments to test the particular features. For all experiments, we report the
mean average precision and the classification error rate. The connection between the
classification error rate and mean average precision shows the strong relation between
CBIR and classification. Both performance measures have advantages. The error rate is
very precision oriented and thus it is best if relevant images are retrieved early. On the
contrary, the mean average precision accounts for the average performance over the
complete PR graph. Furthermore, we calculated the distance vectors mentioned in Sec-
tion 4 for each of the queries performed to obtain a global correlation analysis of all
features.

6.1 Performance evaluation of features

The results from the single feature experiments are given in Figs. 6 and 7 and in Tables 3
and 4. The results are sorted by the average of the classification error rates. The results
from the correlation analysis are given in Fig. 9. Note that the features ‘color histogram’
and ‘MPEGT7 scalable color’ were not evaluated for the IRMA database because pure color
descriptors are not suitable for this gray-scale database.

12 hitp://www.vision.ee.ethz.ch/ZuBuD
13 http://www.vision.doc.ntu.ac.uk/datasets/UCID/ucid.html

@ Springer


http://www.vision.ee.ethz.ch/ZuBuD
http://www.vision.doc.ntu.ac.uk/datasets/UCID/ucid.html

94 Inf Retrieval (2008) 11:77-107

Fig. 5 Example images from the UCID database

m wang I
B uw B q N i
80 — E irma 1
O ucid O M L
O zubud - M
60 . n T I
40
20

32x32 image |
Xx32 image |
Gabor vector |

o
L
color histogram _
| —

LF SIFT global search
Gabor histogram

LF patches histogram |
LF SIFT histogram |
inv. feature histogram (monomial) ——
MPEG?7: scalable color
LF patches signature |
MPEG?7: color layout
Tamura texture histogram |
LF SIFT signature |
gray value histogram |
LF patches global |
MPEG7: edge histogram |
inv. feature histogram (relational) |
global texture feature |

Fig. 6 Classification error rate [%] for each of the features for each of the databases (sorted by average
error rate over the databases). The different shades of gray denote different databases and the blocks of bars
denote different features

It can clearly be seen that different features perform differently on the databases.
Grouping the features by performance results in three groups, one group of five features
clearly outperforms the other features (average error rate < 30%, average mean average
precision ~50%). A second group has average error rates of approximately 40%
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Fig. 7 Mean average precision for each of the features for each of the databases (sorted in the same order as
Fig. 6 to allow for easy comparison)

(respectively average mean average precision 40%) and a last group performs clearly
worse.

The top group is led by the color histogram which performs very well for all color tasks
and has not been evaluated on the IRMA data. When all databases are considered, the
global feature search (cf. Section 3.7) of SIFT features extracted at Harris points (Dork6
2006, chapters 3, 4) performs best on the average. This good performance is probably
partly due to the big success on the ZuBuD database, where features of similar type were
observed to perform exceedingly well (Obdrzalek and Matas 2003). They also perform
well on the UCID database, where relevant images, in contrast to the UW task, are very
close neighbors. The possible high dissimilarity between relevant images in the UW
database, thus explains the bad performance there. However, the patch histograms out-
perform the SIFT features on all other tasks as they include color information which
obviously is very important for most of the tasks. They also obtain a good performance for
the IRMA data. It can be observed that the error rates for the UCID database are very high
in comparison to the other databases, so the UCID task can be considered to be harder than
e.g., the UW task.

A similar result to the one obtained using color histogram is obtained by the invariant
feature histogram with monomial kernel. This is not surprising, as it is very similar to a color
histogram, except that it also partly accounts for local texture. It can be observed that the
performance for the color databases is nearly identical to the color histogram. The relatively
bad ranking of these features in the tables is due to the bad performance on the IRMA task.
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Table 3 Error rate [%] for each of the features for each of the databases (sorted by average error rate over
the databases)

Feature WANG uw IRMA UCID ZuBuD Average
Color histogram 16.9 12.3 - 51.5 7.8 22.1
LF SIFT global search 37.2 31.4 27.7 31.7 7.0 27.0
LF patches histogram 17.9 14.6 249 58.0 24.4 28.0
LF SIFT histogram 25.6 21.4 30.8 50.4 18.3 29.3
Inv. feature histogram (monomial) 19.2 12.9 55.80 53.8 7.8 29.9
MPEG?7: scalable color 25.1 13.0 - 60.7 32.2 32.7
LF patches signature 243 17.6 42.7 68.7 36.5 38.0
Gabor histogram 30.5 20.5 44.9 74.1 24.4 38.9
32 x 32 Image 47.2 26.4 22.8 82.8 27.0 412
MPEGT7: color layout 354 21.2 47.7 75.2 27.0 412
X x 32 image 559 26.7 21.4 83.2 20.9 41.6
Tamura texture histogram 28.4 16.8 33.0 63.7 84.4 45.2
LF SIFT signature 35.1 20.9 99.3 58.4 20.0 46.7
Gray value histogram 453 23.0 42.6 86.64 47.0 48.9
LF patches global 429 42.7 48.2 63.4 47.8 49.0
MPEGT7: edge histogram 32.8 229 99.3 69.9 235 49.7
Inv. feature histogram (relational) 38.3 23.6 39.2 83.2 93.9 55.6
Gabor vector 65.5 379 425 95.8 73.0 62.9
Global texture feature 514 324 67.7 95.4 98.3 69.0

Leaving out the IRMA task for this feature, it would be ranked second in the entire ranking.
The high similarity of color histograms and invariant feature histograms with monomial
kernel can also directly be observed in Fig. 9 where it can be seen that color histograms
(point 1) and invariant feature histograms with monomial kernel (point 11) have very
similar properties.

The second group of features consists of four features: signatures of SIFT features,
appearance-based image features, and the MPEG 7 color layout descriptor.

Although the image thumbnails compared with the image distortion model perform
quite poorly for the WANG, the UW, and the UCID tasks, they perform extremely well
for the IRMA task and reasonably well for the ZuBuD task. A major difference between
these tasks is that the first three databases contain general color photographs of
completely unconstrained scenes, whereas the latter ones contain images from limited
domains only.

The simpler appearance-based feature of 32 x 32 thumbnails of the images, compared
using Euclidean distance, is the next best feature, and again it can be observed that it
performs well for the ZuBuD and IRMA tasks only.

As expected, the MPEG7 color layout descriptor and 32 x 32 image thumbnails obtain
similar results because they both encode the spatial distribution of colors or gray values in
the images.

Among the texture features (Tamura texture histogram, Gabor features, global texture
descriptor, relational invariant feature histogram, and MPEG-7 edge histogram), the
Tamura texture histogram and the Gabor histogram outperform the others.
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Table 4 Mean average precision [%] for each of the features for each of the databases (sorted in the same
order as Table 3 to allow for easy comparison)

Feature WANG uw IRMA UCID ZuBuD Average
color histogram 16.9 12.3 - 51.5 7.8 22.1
LF SIFT global search 37.2 31.4 27.7 31.7 7.0 27.0
LF patches histogram 17.9 14.6 249 58.0 24.4 28.0
LF SIFT histogram 25.6 21.4 30.8 50.4 18.3 29.3
Inv. feature histogram (monomial) 19.2 12.9 55.80 53.8 7.8 29.9
MPEG?7: scalable color 25.1 13.0 - 60.7 32.2 32.7
LF patches signature 243 17.6 42.7 68.7 36.5 38.0
Gabor histogram 30.5 20.5 44.9 74.1 24.4 38.9
32 x 32 image 47.2 26.4 22.8 82.8 27.0 412
MPEGT7: color layout 354 21.2 47.7 75.2 27.0 412
X x 32 image 559 26.7 21.4 83.2 20.9 41.6
Tamura texture histogram 28.4 16.8 33.0 63.7 84.4 45.2
LF SIFT signature 35.1 20.9 99.3 58.4 20.0 46.7
Gray value histogram 453 23.0 42.6 86.64 47.0 48.9
LF patches global 429 42.7 48.2 63.4 47.8 49.0
MPEGT7: edge histogram 32.8 229 99.3 69.9 235 49.7
Inv. feature histogram (relational) 38.3 23.6 39.2 83.2 93.9 55.6
Gabor vector 65.5 379 425 95.8 73.0 62.9
Global texture feature 514 324 67.7 95.4 98.3 69.0

6.2 Correlation analysis of features

Figure 8 shows the average correlation of different features over all databases. The darker
a field in this image is, the lower the correlation between the corresponding features, bright
fields denote high correlations. Figure 9 shows the visualizations of the outcomes of multi-
dimensional scaling of the correlation analysis. We applied the correlation analysis for the
different tasks individually (4 top plots) and for all tasks jointly (bottom plot). Multi-
dimensional scaling was used to translate the similarities of the different features into
distances in a two-dimensional space. The further away two points are in the graph, the less
similar the corresponding features are for CBIR, and conversely the closer together they
appear, the higher the similarity between these features.

For each of these plots the according distance vectors obtained from all queries with all
database images have been used (WANG database: 1,000,000 distance vectors, UW&UCID
database: 194,482+350,557 distance vectors, IRMA database: 9,000,000 distance vectors,
ZuBuD database: 115,575 distance vectors, all databases: 10,660,614 distance vectors).

The figures show a very strong correlation between color histograms (point 1) and
invariant feature histograms with monomial kernel (point 11). In fact, they lead to hardly
any differences in the experiments. For the databases consisting of color photographs they
outperform most other features. A high similarity is also observed between the patch
signatures (point 14) and the MPEG7 color layout (point 2) for all tasks.

Two other features that are highly correlated are the two methods that use local feature
search for the two different types of local features (points 5 and 12). The different
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inv. feature histogram (monomial)

LF patches global
inv. feature histogram (relational)

MPEG?7: scalable color
Tamura texture histogram

MPEG?7: edge histogram
32x32 image

color histogram
MPEG?7: color layout
LF SIFT histogram
LF SIFT signature

LF SIFT global search
Gabor vector

Gabor histogram
gray value histogram
global texture feature
LF patches histogram
LF patches signature

Xx32 image

color histogram

MPEG?7: color layout

LF SIFT histogram

LF SIFT signature

LF SIFT global search

MPEG?7: edge histogram

Gabor vector

Gabor histogram

gray value histogram

global texture feature

inv. feature histogram (monomial)
LF patches global

LF patches histogram

LF patches signature

inv. feature histogram (relational)
MPEG?7: scalable color

Tamura texture histogram

32x32 image

Xx32 image

Fig. 8 Correlation of the different features. Bright fields denote high and dark fields denote low correlation.
Another representation of this information is given in Fig. 9

comparison methods for local feature histograms/signature have similar performances (3, 4
and 13, 14, respectively).

Another strong correlation can be observed between 32 x 32 image thumbnails (point
18) and the MPEGT7 color layout representation (point 2), which was to be expected as both
of these have a rough representation of the spatial distribution of colors (resp. gray values)
of the images.

Interestingly, the correlation between 32 x 32 images compared using Euclidean
distance (point 18) and the X x 32 images compared using the image distortion model
(point 18) is low, with only some similarity for the IRMA and the ZuBuD task. This is
partly due to the exceedingly good performance of the image distortion model for the
IRMA task and partly due to the missing invariance with respect to slight deformations in
the images for the Euclidean distance. For example in the ZuBuD task, the image dis-
tortion model can partly compensate for the changes in the viewpoints which leads to a
much better performance.

Another interesting aspect is that the various texture features (MPEG7 edge histogram
(6), global texture feature (10), Gabor features (8, 7), relational invariant feature histogram
(15), and Tamura texture histogram (17)) are not correlated strongly. We conclude that
none of the texture features is sufficient to completely describe the textural properties of an
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Fig. 9 Correlation of the
different features visualized
using multi-dimensional scaling.
Features that lie close together
have similar properties. Top 4
plots: database-wise
visualization, bottom plot: all
databases jointly. The numbers in
the plots denote the individual
features: 1: color histogram,

2: MPEGT7: color layout,

3: LF SIFT histogram,

4: LF SIFT signature, 5: LF SIFT
global search, 6: MPEG7: edge
histogram, 7: Gabor vector,

8: Gabor histograms, 9: gray
value histogram, 10: global
texture feature, 11: inv. feature
histogram (monomial), 12: LF
patches global, 13: LF patches
histogram, 14: LF patches
signature, 15: inv. feature
histogram (relational),

16: MPEGT7: scalable color,

17: Tamura texture histogram,
18: 32 x 32 image,

19: X x 32 image
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image. The Tamura texture histogram and the Gabor histogram outperform the other
texture features, Tamura features being better in three and Gabor histograms being clearly
better in two of the five tasks, both of them are a good choice for texture representation.
To give a little insight into how these plots can be used to select sets of features for a
given task, we discuss how features for the WANG database could be chosen in the
following paragraph. Combined features are linearly combined as described in Section 2.
Here, all features are weighted equally, but some improvement of the retrieval results can
be achieved by choosing different weights for the individual features. In Deselaers et al.
(2007) we present an approach to automatically learning a feature combination from a set
of queries with known relevant images using a discriminative maximum entropy model.
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Table 5 Combining features

using the results from the Features ER [%] MAP [%]
E(())rrr;l:tl\;r:;\r;él}(fisattsagz:ecrlbed Color histograms 16.9 50.5
+ Global texture 15.7 49.5
+ Tamura histograms 13.7 51.2
+ Thumbnails 13.7 539
+ Patch histograms 11.6 55.7

Finding a suitable set of features. Assume we are about to create a CBIR system for a
new database consisting of general photographs. We extract features from the data and
create the according MDS plot (Fig. 9, top left). Since we know that we are dealing with
general photographs, we start with a simple color histogram (point 1). The plot now tells us
that invariant feature histograms with monomial kernel (11) would not give us much
additional information. Next, we consider the various texture descriptors (points 6, 10, 15,
17, 7, 8) and choose one of these, say global texture features (10) and maybe another:
Tamura texture histograms (17). Now we have covered color and texture and can consider
a global descriptor such as the image thumbnails (18) or a local descriptor such as one of
(12, 13, or 14) or (3, 4, or 5). After adding a feature, the performance of the CBIR system
can be evaluated by the user. In Table 5 we quantitatively show the influence of adding
these features for the WANG database. It can be seen that the performance is incrementally
improved by adding more and more features.

6.3 Connection between mean average precision and error rate

In Figs. 10 and 11 the correlation between mean average precision and error rate is
visualized database-wise and feature-wise, respectively. The correlation of error rate and
mean average precision over all experiments presented in this paper is 0.87. In the keys of
the figures, the correlations per database and per feature are given, respectively.
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Fig. 11 Analysis of the correlation between classification error rate and mean average precision for the
features. The numbers in the legend give the correlation for the experiments performed using the individual
features

From Fig. 10 it can be seen that this correlation varies between the tasks between 0.99
and 0.67. For the UCID task, this correlation is markedly strong with 0.99. The correlation
is lowest for the UW task which has a correlation of 0.67 and which is the only task with a
correlation below 0.8.

In Fig. 11, the same correlation is analyzed feature-wise. Here, the correlation values
vary strongly between 0.4 and 1.0. The LF SIFT signature descriptor has the lowest cor-
relation and the LF patches histogram descriptor also has a low correlation of only 0.6. The
two different image thumbnail descriptors have a correlation of 0.7. All other features have
correlation values greater than 0.8, thus it can be said that an image representation that
works well for classification will generally work well for CBIR as well and vice versa.
Exemplarily, this effect can be observed when looking at the results for the WANG and
IRMA database for the color histograms and the X x 32 thumbnails. On the one hand, for
the WANG database, the color histograms perform very well for error rate and mean
average precision; in contrast, the image thumbnails perform poorly. On the other hand, the
effect is reversed for the IRMA database: here, the color histograms perform poorly and the
image thumbnails outstandingly well. It can be observed that the performance increase
(resp. decrease) is in the same magnitude for mean average precision and error rate. Thus, it
can be seen that a feature that performs well for the task of classification on a certain dataset,
it will most probably be a good choice for retrieval of images from that dataset, too.
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7 Conclusion

We have discussed a large variety of features for image retrieval and a setup of five freely
available databases that can be used to quantitatively compare these features. From the
experiments conducted it can be deduced, which features perform well on which kind of
task and which do not. In contrast to other papers, we consider tasks from different
domains jointly and directly compare and analyze which features are suitable for which
task.

Which features are suitable for which task in CBIR? The main question addressed in
this paper, which features are suitable for which task in image retrieval, has been thor-
oughly investigated:

One clear finding is that color histograms, often cited as a baseline in CBIR, clearly are
a reasonably good baseline for general color photographs. However, approaches using
local image descriptors outperform color histograms in various tasks but usually at the cost
of much higher computational costs. If the images are from a restricted domain, as they are
in the IRMA and in the ZuBuD task, other methods should be considered as a baseline,
e.g., a simple nearest neighbor classifier using thumbnails of the images.

Furthermore, it has been shown that, despite more than 30 years in research on texture
descriptors, still none of the texture features presented can convey a complete description
of the texture properties of an image. Therefore a combination of different texture features
will usually lead to best results.

It should be noted that for specialized tasks, such as finding images that show certain
objects, better methods exist today that can learn models of particular objects from a set of
training data. However, these approaches are computationally far more expensive and
always require relatively large amounts of training data.

Although the selection of features tested was not completely exhaustive, the selection
was wide and the methods presented can easily be applied to other features to compare
them to the features presented here. On one hand, the presented descriptors were selected
such that features presented many years ago, such as color histograms (Swain and Ballard
1991), Tamura texture features (Tamura et al. 1978), Gabor features, and spatial auto-
correlation features (Haralick et al. 1973), as well as very recent features such as SIFT
descriptors (Lowe 2004) and patches (Deselaers et al. 2005) were compared. On the other
hand, the features were selected such that descriptors accounting for color, texture, and
(partly) shape, as well as local and global descriptors were covered. We also included a
subset of the standardized MPEG7 features.

All features have been thoroughly examined experimentally on a set of five databases.
All of these databases are freely available and pointers to their location are given in this
paper. This allows researchers to compare the findings from this work with other features
that were not covered here or which will be presented in future. The databases chosen are
representative for four different tasks in which CBIR plays an important role.

Which features are correlated and how can features be combined? We conducted a
correlation analysis of the features considered showing which features have similar prop-
erties and which do not. The outcomes of this method can be used as an intuitive help to
finding suitable combinations of features for certain tasks. In contrast to other methods for
feature combination, the method presented here does not rely on training data/relevance
judgements to find a suitable set of features. In particular, it will tell you which features are
not worth combining because they produce correlated distance results. The method is not a
fully automatic feature selection method but the process of selecting features is demon-
strated for one of the tasks with promising results. However, the focus of this paper is not to
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combine several features as this would exceed the scope and a variety of known methods
have covered this aspect, e.g., (Yavlinski et al. 2004; Kittler 1998; Heesch and Riiger 2002).

Another conclusion we have drawn from this work is that the intuitive assumption that
classification of images and CBIR are strongly connected is justified. Both tasks are
strongly related to the concept of similarity which can be measured best if suitable features
are available. In this paper, we have evaluated this assumption quantitatively by consid-
ering four different domains and analyzing the classification error rate for classification and
the mean average precision for CBIR. It was clearly shown empirically that features that
perform well for classification also perform well for CBIR and vice versa. This strong
connection allows us to take advantage of knowledge obtained in either classification or
CBIR for the other respective task. For example, in the medical domain much research has
been done to classify whether an image shows a pathological case or not, likely some of the
knowledge obtained in these studies can be transferred to the CBIR domain to help
retrieving images from a picture archiving system.

Future Work. Future work in CBIR certainly includes finding new and better image
descriptors and methods to combine these appropriately. Furthermore, the achievements in
object detection and recognition will certainly find their way into the CBIR domain and a
shift towards methods that automatically learn about the semantics of images is imagin-
able. First steps into this direction can be seen in (Nowak et al. 2007) where a method is
presented that learns how to compare never seen objects and presents an image similarity
measurement which works on the object level. Methods for automatic image annotation are
also related to CBIR and the automatic generation of textual labels for images allows to use
textual information retrieval techniques to retrieve images.
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