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Abstract Let S be a set of states of a physical system. The probabilities p(s) of the occur-
rence of an event when the system is in different states s ∈ S define a function from S to
[0, 1] called a numerical event or, more precisely, an S-probability. If one orders a set P

of S-probabilities in respect to the order of functions, further includes the constant func-
tions 0 and 1 and defines p′ = 1 − p for every p ∈ P , then one obtains a bounded poset
of S-probabilities with an antitone involution. We study these posets in respect to various
conditions about the existence of the sum of certain functions within the posets and derive
properties from these conditions. In particular, questions of relations between different
classes of S-probabilities arising this way are settled, algebraic representations are provided
and the property that two S-probabilities commute is characterized which is essential for
recognizing a classical physical system.

Keywords Poset with an antitone involution · Quantum measurement · Multidimensional
probability · Boolean orthoposet · Orthomodularity · Commutativity

1 Introduction

A characteristic feature of measurements in quantum mechanics is that one only deals with
probabilities.
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Let S be set of states of a physical system and p(s) the probability of the occurrence of an
event when the system is in state s ∈ S. Taking into account p(s) for all s ∈ S we obtain a
function from S to [0, 1], which is called a multidimensional probability or, more precisely,
an S-probability, or sometimes, more generally, a numerical event (cf. [1, 2] and [10]).

S-probabilities are related to Mackey’s approach to axiomatic quantum mechanics (cf.
[9]). Mackey considers a function p : O × S × B → [0, 1] (where O denotes the set of
observables, S the set of states and B the set of Borel sets of the real line) satisfying certain
axioms. If one fixes some (A, E) ∈ O × B then one obtains a function p(A, ., E) : S →
[0, 1] which assigns to each state s ∈ S the probability of the event that the measurement
of A lies in E.

A set P of S-probabilities can be ordered in a natural way by the order ≤ of functions.
Further, one may expect that with every p(s) also the counter-probability p′(s) := 1 −p(s)

will be in P , which we find formalized in the following (general)

Definition 1.1 An antitone involution on a poset P is a mapping ′ : P → P satisfying the
following conditions:

• if p, q ∈ P and p ≤ q then p′ ≥ q ′;
• if p ∈ P then (p′)′ = p.

Taking into account further properties of quantum mechanical or classical physical sys-
tems, in this paper more features are added to a set P of S-probabilities resulting in various
classes of multidimensional probabilities. Our goal is to show how these classes are related,
study their structures and give answers to the question whether two S-probabilities commute
and, in the course of that, whether one might assume to deal with a classical physical system.
A classical physical system can be identified by the fact that the poset of S-probabilities is
a Boolean algebra (cf. [1]).

In particular, we will prove a representation theorem for a class of posets with an antitone
involution analogous to the Theorem by Ma̧czyński and Traczyk (cf. [10]) who character-
ized orthomodular posets with a full set of states by so-called algebras of S-probabilities.
(For the definition see below.)

Algebras of S-probabilities and hence orthomodular posets with a full set of states have
been thoroughly studied in respect to algebraic properties and physical interpretations (cf.
[1–4] and [6–10]) and there are also some results about a generalization of these structures
(cf. [5]), namely so-called generalized fields of events. (The definition will also be given
below.)

In this paper the focus is on weakening and modifying the axioms of algebras of S-
probabilities motivated by possible outcomes of experimental data which would not fit into
the forementioned concepts.

2 Classes of S-Probabilities

We start with some algebraic notions and considerations.
Let P be a poset with an antitone involution ′. If the infimum of two elements p, q of P

exists we will denote it by p∧q, and if the supremum of p, q ∈ P exists we will denote it by
p∨q. Moreover, elements p, q of P are called disjoint if p∧q = 0 and orthogonal, denoted
by p ⊥ q, if p ≤ q ′. Further, P is called Boolean if disjointness implies orthogonality. If P
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is bounded, p ∈ P is called complemented if p∧p′ = 0, and P is called complemented if all
of its elements are complemented. If p is complemented one can conclude that p ∨ p′ = 1.

Lemma 2.1 A bounded poset with an antitone involution is complemented if and only if
orthogonality implies disjointness.

Proof Let P be a bounded poset with an antitone involution and p, q ∈ P . If we assume
P to be complemented and p ⊥ q then p ≤ q ′ and q ′ ∧ q = 0 and hence p ∧ q = 0.
Conversely, if orthogonality implies disjointness then p ∧ p′ = 0 since p ⊥ p′.

An orthomodular poset is a complemented bounded poset P in which the join of two
orthogonal elements exists and in which q = p ∨ (q ∧ p′) for all p, q ∈ P with p ≤ q.
A state on an orthomodular poset P is a mapping s : P → [0, 1] satisfying the following
conditions:

• s(0) = 0 and s(1) = 1;
• if p, q ∈ P and p ⊥ q then s(p ∨ q) = s(p) + s(q).

A set T of states on P is called full if for p, q ∈ Ps(p) ≤ s(q) for all s ∈ T implies
p ≤ q.

Next we turn our attention to definitions motivated by the outcome of physical measure-
ments.

Let P be a set of multidimensional probabilities associated with an experiment. First we
suppose that the functions 1 and 0 representing the constant probabilities 1 and 0 for every
s ∈ S are always among P . Then we will add some properties known from orthomodular
structures (like Hilbert-space quantum mechanical systems) or Boolean algebras (which
characterize classical physical systems).

Definition 2.2 A generalized field of S-probabilities (cf. [5]) is a subset P of [0, 1]S
satisfying the following conditions:

(P1) 0, 1 ∈ P ;
(P2) if p ∈ P then p′ = 1 − p ∈ P ;
(P3) if p, q ∈ P and p ⊥ q then p + q ∈ P .

We will denote the class of generalized fields of S-probabilities by GF .
An algebra of S-probabilities (cf. [1] and [10]) is a subset P of [0, 1]S satisfying (P1),

(P2) and (P4):

(P4) If p, q, r ∈ P and p ⊥ q ⊥ r ⊥ p then p + q + r ∈ P .

The class of algebras of S-probabilities will be denoted by AL.

The members of GF are bounded posets with an antitone involution. As for elementary
properties of members of GF cf. [5]. With Boolean algebras of events axiom (P3) is a
translation of A ⊆ B ′ for events A and the complement of B into p ≤ 1 − q.

Obviously, AL ⊆ GF .
Axiom (P4) is motivated by classical event fields for which pairwise orthogonality of a

triple A,B, C of events implies A ⊆ B ′ ∩C′ = (B∪C)′, which in terms of functions means
p ≤ 1 − (q + r).
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As shown in [10], up to isomorphism the members of AL are exactly the orthomodular
posets having a full set of states. These structures have been intensely studied, in particular
from the point of quantum structures (cf. [1–10]).

It turns out that Definition 2.2 is somewhat too strong: No non-trivial element of a
member of AL can be ≤ 1/2 or ≥ 1/2 for all s ∈ S. This gives rise to the following
definitions:

Definition 2.3 A weakly structured poset of S-probabilities is a subset P of [0, 1]S
satisfying (P1), (P2) and (P5):

(P5) If p, q, r ∈ P , p ⊥ q ⊥ r and p ∧ r = 0 then p + q + r ≤ 1.

Let WS denote the class of weakly structured posets of S-probabilities.

It is evident that every member of WS is Boolean.
Now we assume that the addition of functions should be considered as a partial operation

within a weakly structured poset of S-probabilities. This leads to

Definition 2.4 A structured poset of S-probabilities is a subset P of [0, 1]S satisfying (P1),
(P2) and (P6):

(P6) If p, q, r ∈ P , p ⊥ q ⊥ r and p ∧ r = 0 then p + q + r ∈ P .

Let SP denote the class of structured posets of S-probabilities.

Obviously, SP ⊆ GF ∩ WS .

Remark 2.5 SP � WS since P := {0, 1/8, 1/2, 7/8, 1} ⊆ [0, 1]{1} belongs to WS \SP .
This can be seen as follows: If p, q, r ∈ P , p ⊥ q ⊥ r and p ∧ r = 0 then 0 ∈ {p, r} and
hence p + q + r ∈ {q + r, p + q} which shows p + q + r ≤ 1, i.e. P ∈ WS . On the other
hand, 0 ⊥ 1/8 ⊥ 1/2 and 0 ∧ 1/2 = 0, but 0 + 1/8 + 1/2 = 5/8 /∈ P proving P /∈ SP .

Lemma 2.6

(i) A member of SP belongs toAL if and only if it is complemented.
(ii) A member ofAL belongs to SP if and only if it is Boolean.

Proof

(i) Let P ∈ SP . If P ∈ AL then it is complemented because, as mentioned above,
every member of AL is an orthomodular poset. If, conversely, P is complemented,
p, q, r ∈ P and p ⊥ q ⊥ r ⊥ p then r ≤ p′ and p′ ∧ p = 0 imply r ∧ p = 0 and
hence (P6) implies p + q + r ∈ P showing P ∈ AL.

(ii) Let P ∈ AL. If P ∈ SP then it is Boolean. If, conversely, P is Boolean then (P6)
follows from (P4) from which we infer P ∈ SP .

Example 2.7 For every integer n > 1 the subset Bn := {0, 1/n, 2/n, . . . , 1} of [0, 1]{1}
belongs to SP \ AL. We have:

• k/n ∧ m/n = 0 if and only if 0 ∈ {k,m};
• k/n ⊥ m/n if and only if k + m ≤ n.
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Example 2.8 For positive integers n and k with k|n put Ank := {IA | A ⊆ N, k||A|}, where
N := {1, . . . , n} and IA denotes the function from N to [0, 1] defined by IA(x) := 1 if
x ∈ A and IA(x) := 0 if x ∈ N \ A. Then Ank ∈ AL. Moreover, Ank ∈ SP if and only if
k ∈ {1, n}.

Proof We have

• IA ∧ IB = 0 if and only if |A ∩ B| < k;
• IA ⊥ IB if and only if A ∩ B = ∅.

Making use of Lemma 2.6 we obtain: If k ∈ {1, n} then Ank is Boolean. If 1 < k < n

then (P5) is violated by I{1,...,k}, I∅ and I{2,...,k+1} and hence Ank /∈ WS and therefore
Ank /∈ SP in this case.

Theorem 2.9

• AL ∩ SP consists of all Boolean members ofAL.
• AL \ SP consists of all non-Boolean members ofAL.
• SP ∩ AL consists of all complemented members of SP .
• SP \ AL consists of all non-complemented members of SP .

Hence, the algebras of S-probabilities which are Boolean are exactly the structured
posets of S-probabilities which are complemented. Moreover, every structured poset of
S-probabilities assuming only the values 0 and 1 belongs to AL.

Proof This follows from Lemma 2.6 and the fact that structured posets of S-probabilities
assuming only the values 0 and 1 are complemented.

As already pointed out, members of AL are orthomodular posets admitting a full set
of states. Since every arbitrary Boolean orthomodular poset admits a full set of states (cf.
[10]) all Boolean orthomodular posets and in particular all Boolean algebras are among the
posets representing members of AL. (For a characterization of those posets by properties
of S-probabilities cf. [1, 7] and [10]).

All sets of S-probabilities specified in Theorem 2.9 give rise to interpretations as quan-
tum structures. If such a quantum structure turns out to be a Boolean algebra this will
indicate that one deals with a classical situation (cf. e.g. [1]).

3 An Algebraic Representation of Weakly Structured Posets of
S-Probabilities

We start by extending the notion of states to a class of bounded posets with an antitone
involution.

Definition 3.1 A pseudostate on a bounded poset P with an antitone involution in which
the join of two disjoint elements exists is a mapping s : P → [0, 1] satisfying the following
conditions:

• s(0) = 0 and s(1) = 1;
• if p ∈ P then s(p′) = 1 − s(p);
• if p, q ∈ P and p ≤ q then s(p) ≤ s(q);
• if p, q ∈ P and p ∧ q = 0 then s(p ∨ q) = s(p) + s(q).
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A set T of pseudostates on P is called full if for p, q ∈ P , s(p) ≤ s(q) for all s ∈ T

implies p ≤ q.

We first prove a lemma which will often be used in the sequel.

Lemma 3.2 Assume p, q ∈ P ∈ WS and p ∧ q = 0. Then p + q = p ∨ q.

Proof If r ∈ P is an upper bound of p and q then p ⊥ r ′ ⊥ q and hence p + q + r ′ ≤ 1
according to (P5), i.e. p+q ≤ r . Together with p, q ≤ p+q this shows p+q = p∨q.

Theorem 3.3 Up to isomorphism, the members ofWS are exactly the bounded posets with
an antitone involution in which the join of two disjoint elements exists and which have a full
set of pseudostates.

Proof Let P ∈ WS with P ⊆ [0, 1]S . Then clearly P is a bounded poset with an antitone
involution.

Now we define sx(p) := p(x) for all x ∈ S and p ∈ P .
For a ∈ S and p, q ∈ P we have sa(0) = 0(a) = 0, sa(1) = 1(a) = 1, sa(p′) = p′(a) =

1 − p(a) = 1 − sa(p) and in case p ≤ q, sa(p) = p(a) ≤ q(a) = sa(q). Moreover, if
p ∧ q = 0 then

sa(p ∨ q) = sa(p + q) = (p + q)(a) = p(a) + q(a) = sa(p) + sa(q).

If sx(p) ≤ sx(q) for all x ∈ S then p ≤ q, proving that {sx | x ∈ S} is a full set of
pseudostates on P . Hence P is a bounded poset with an antitone involution in which the
join of two disjoint elements exists and which has a full set of pseudostates.

Conversely, let P be a bounded poset with an antitone involution in which the join of two
disjoint elements exists and which has a full set S of pseudostates. We define a mapping
f : P → [0, 1]S by (f (p))(s) := s(p) for all p ∈ P and all s ∈ S. Then we have for
arbitrary p, q ∈ P :

• (f (0))(s) = s(0) = 0 for all s ∈ S and hence f (0) = 0.
• (f (1))(s) = s(1) = 1 for all s ∈ S and hence f (1) = 1.
• (f (p′))(s) = s(p′) = 1 − s(p) = 1 − (f (p))(s) = (f (p))′(s) for all s ∈ S and hence

f (p′) = (f (p))′.
• The following are equivalent: f (p) ≤ f (q), (f (p))(s) ≤ (f (q))(s) for all s ∈ S,

s(p) ≤ s(q) for all s ∈ S, p ≤ q.

From the last two properties of f it follows for arbitrary p, q ∈ P :

• f (p) = f (q) if and only if p = q;
• f (p) ⊥ f (q) if and only if p ⊥ q.

Now we prove f (P ) ∈ WS .

(P1) 0 = f (0) ∈ f (P ) and 1 = f (1) ∈ f (P ).
(P2) If p ∈ P then (f (p))′ = f (p′) ∈ f (P ).
(P5) Assume p, q, r, t ∈ P , f (p) ⊥ f (q) ⊥ f (r) and f (p) ∧ f (r) = f (0). Then

p ⊥ q ⊥ r . If t ≤ p, r then f (t) ≤ f (p), f (r), from which we infer f (t) = f (0), i.e.
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t = 0, showing p ∧ r = 0. Hence p ∨ r exists. Since p, r ≤ q ′ we have p ∨ r ≤ q ′ and
therefore

(f (p) + f (r))(s) = (f (p))(s) + (f (r))(s) = s(p) + s(r) = s(p ∨ r) =
= (f (p ∨ r))(s) ≤ (f (q ′))(s) = (f (q))′(s) = 1 − (f (q))(s)

for all s ∈ S, i.e. f (p)+f (r) ≤ 1−f (q) which is equivalent to f (p)+f (q)+f (r) ≤ 1.

So f (P ) ∈ WS and f is an isomorphism from P onto f (P ). Hence P is isomorphic to
a member of WS .

This theorem is analogous to the theorem that up to isomorphism the algebras of S-
probabilities are exactly the orthomodular posets having a full set of states.

4 Characterizing Lattices and Boolean Algebras Among Structured
Posets of S-Probabilities

Having in mind that two disjoint elements of a member of WS and hence of SP have a join
which is their sum (cf. Lemma 3.2) the question arises under which circumstances members
of SP are lattices, all the more as the classicality of a physical system will correspond to
members of SP that are Boolean lattices.

As for the example of Ank (Example 2.8) we have

Lemma 4.1 Ank is a lattice if and only if k ∈ {1, n/2, n} and hence every Ank belonging
to SP is a lattice.

Proof It is easy to see that Ank is a lattice if k ∈ {1, n/2, n}. Otherwise, I{1,...,k} ∨ I{2,...,k+1}
does not exist.

Assume p, q ∈ P ∈ SP . We point out that p + q = p ∨ q in case p ∧ q = 0 (cf.
Lemma 3.2). Further, the De Morgan laws hold if the respective join or meet exists (since ′
is an antitone involution). Moreover, it is easy to see that if one of p and q is complemented
then p ⊥ q implies p∧q = 0. So p ⊥ q is equivalent to p∧q = 0 in case one of p and q is
complemented. Finally, if one of p and q is complemented and p ≥ q then p − q = p ∧ q ′.
This can be seen as follows: One of p′ and q is complemented and p′ ⊥ q which implies
p′ ∧ q = 0, showing that p′ ∨ q exists and p′ ∨ q = p′ + q. Therefore p ∧ q ′ exists and
p ∧ q ′ = (p′ ∨ q)′ = (p′ + q)′ = 1 − (1 − p + q) = p − q.

As usual with orthomodular lattices we say for p, q ∈ P that p commutes with q if p∧q,
p ∧ q ′ and (p ∧ q) ∨ (p ∧ q ′) exist in P and (p ∧ q) ∨ (p ∧ q ′) = p.

Theorem 4.2 Let P be a complemented member of SP . Then the following hold:

(i) P is an orthomodular lattice if and only if for all p, q ∈ P there exists a unique r ∈ P

with r ≥ p, q and r − p ≤ r ′ + q.
(ii) P is a Boolean algebra if and only if for all p, q ∈ P there exists an s ∈ P with

s ≤ p ≤ s + q ≤ 1.
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Proof By Lemma 2.6, P ∈ AL.

(i) In [7] it was shown that P is an orthomodular lattice if and only if for all p, q ∈ P there
exists a unique r ∈ P with r ≥ p, q and (r ∧ p′) ∧ (r ∧ q ′) = 0. Now for p, q, r ∈ P

with r ≥ p, q the following are equivalent: r − p ≤ r ′ + q, r ∧ p′ ≤ (r ∧ q ′)′,
(r ∧ p′) ⊥ (r ∧ q ′), (r ∧ p′) ∧ (r ∧ q ′) = 0.

(ii) In [8] it was proved that {p, q} generates a Boolean algebra if and only there exists an
s ∈ P with s ≤ p ≤ s + q ≤ 1. If any two elements of P generate a Boolean algebra
then P is a lattice and hence (since every member of AL is an orthomodular poset) an
orthomodular lattice. It is well-known that an orthomodular lattice in which any two
elements generate a Boolean algebra is itself a Boolean algebra.

Let P ∈ SP with P ⊆ {0, 1}S . Then, as stated in Lemma 2.6, P ∈ AL and, as shown
in [6], P is a so-called concrete quantum logic. For the reader’s convenience we recall the
definition of a concrete logic.

Definition 4.3 (cf. e.g. [11]) A concrete quantum logic is a subset E of the power set of
some set M satisfying the following conditions:

• ∅ ∈ E;
• if A ∈ E then A′ := M \ A ∈ E;
• if A, B ∈ E and A ∩ B = ∅ then A ∪ B ∈ E.

(E,⊆,′ ,∅,M) is an orthomodular poset.
From Theorem 4.2 we obtain the following

Corollary 4.4 Let P ∈ SP with P ⊆ {0, 1}S . Then
(i) P is a lattice if and only if max(p, q) ∈ P for all p, q ∈ P .

(ii) P is a Boolean algebra if and only if min(p, q ′) ∈ P for all p, q ∈ P .

Proof For p, q, r, s ∈ P the assertion that r ≥ p, q and r − p ≤ r ′ + q is equivalent to
r = max(p, q) whereas s ≤ p ≤ s + q ≤ 1 is equivalent to s = min(p, q ′).

A further possibility to detect whether one deals with a classical physical situation,
i.e. with commuting S-probabilities, is to try to adapt a relevant result best-known for
orthomodular lattices.

Theorem 4.5 For P ∈ SP the following hold:

(i) If p, q ∈ P and there exist three pairwise disjoint complemented elements x1, x2, x12
of P with x1 + x12 = p and x2 + x12 = q then p and q commute with each other.

(ii) P is a Boolean algebra if and only if it is complemented and for every p, q ∈ P there
exist pairwise disjoint x1, x2, x12 ∈ P with x1 + x12 = p and x2 + x12 = q.

Proof

(i) We start with pointing out that because P is Boolean, x1, x2 and x12 are pairwise
orthogonal. Next we show x12 = p ∧ q. Obviously, x12 ≤ p, q. If s ∈ P and s ≤ p, q

then s ≤ q = x2 ∨x12 ≤ x′
1 from which we conclude s ≤ p ∧x′

1 = (x1 +x12)−x1 =
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x12. We proceed by proving that x1 = p ∧ q ′. We have x1 ≤ p and x1 ≤ x′
2 ∧ x′

12 =
(x2 ∨ x12)

′ = q ′. If t ∈ P and t ≤ p, q ′ then t ≤ q ′ ≤ x′
12 and hence t ≤ p ∧ x′

12 =
(x1 +x12)−x12 = x1. This way we obtain p = x1 ∨x12 = (p∧q ′)∨ (p∧q) showing
that p commutes with q. A symmetry argument shows that q also commutes with p.

(ii) The necessity of the condition becomes obvious if one defines for the elements p and
q of a Boolean algebra x1 := p ∧ q ′, x12 := p ∧ q and x2 := p′ ∧ q. That it is also
sufficient can be seen as follows: Assume the condition to hold. Then according to
Lemma 2.6, P ∈ AL and, as shown in [1], if for every p, q ∈ P ∈ AL there exist
pairwise orthogonal elements x1, x2, x12 with x1 + x12 = p and x2 + x12 = q, then
P is a Boolean algebra. Since x1, x2, x12 are pairwise disjoint they are also pairwise
orthogonal.

Theorem 4.5 is analogous to the well-known theorem characterizing Boolean algebras
among orthomodular lattices and to the generalization of this theorem to orthomodular
posets.
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1. Beltrametti, E.G., Ma̧czyński, M.J.: On a characterization of classical and nonclassical probabilities. J.
Math. Phys. 32, 1280–1286 (1991)

2. Chajda, I., Länger, H.: Spaces of abstract events. Intern. J. Theor. Phys. 52, 1818–1824 (2013)
3. Dorfer, G., Dorninger, D., Länger, H.: On algebras of multidimensional probabilities. Math. Slovaca 60,

571–582 (2010)
4. Dorfer, G., Dorninger, D., Länger, H.: On the structure of numerical event spaces. Kybernetica 46, 971–

981 (2010)
5. Dorninger, D.: On the structure of generalized fields of events. Contr. General Algebra 20, 29–34 (2012)
6. Dorninger, D., Länger, H.: On a characterization of physical systems by spaces of numerical events.

ARGESIM Report 35, 601–607 (2009)
7. Dorninger, D., Länger, H.: Testing for classicality of a physical system. Intern. J. Theor. Phys. 52, 1141–

1147 (2013)
8. Dorninger, D., Länger, H.: Probability measurements characterizing the classicality of a physical system.

Rep. Math. Phys. 73, 127–135 (2014)
9. Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. Dover, Mineola, New York (2004)

10. Ma̧czyński, M.J., Traczyk, T.: A characterization of orthomodular partially ordered sets admitting a full
set of states. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21, 3–8 (1973)

11. Pták, P.: Concrete quantum logics. Intern. J. Theor. Phys. 39, 827–837 (2000)

http://creativecommons.org/licenses/by/4.0/

	On Bounded Posets Arising from Quantum Mechanical Measurements
	Abstract
	Introduction
	Classes of S-Probabilities
	An Algebraic Representation of Weakly Structured Posets of S-Probabilities
	Characterizing Lattices and Boolean Algebras Among Structured Posets of S-Probabilities
	Acknowledgments
	Open Access
	References


