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Abstract In the paper we discuss possible applications of the so-called stroboscopic tomog-
raphy (stroboscopic observability) to selected decoherence models of 2-level quantum
systems. The main assumption behind our reasoning claims that the time evolution of the
analyzed system is given by a master equation of the form ρ̇ = Lρ and the macroscopic
information about the system is provided by the mean values mi(tj ) = T r(Qiρ(tj )) of
certain observables {Qi}ri=1 measured at different time instants {tj }pj=1. The goal of the
stroboscopic tomography is to establish the optimal criteria for observability of a quantum
system, i.e. minimal value of r and p as well as the properties of the observables {Qi}ri=1.

Keywords Quantum tomography · State identification · State reconstruction

1 Introduction

According to one of the most fundamental assumptions of quantum theory, the density
matrix carries the achievable information about the quantum state of a physical system.
In recent years the determination of the trajectory of the state based on the results of
measurements has gained new relevance because the ability to create, control and manip-
ulate quantum states has found applications in other areas of science, such as: quantum
information theory, quantum communication and computing.

The identification of an unknown state by appropriate measurements is possible only if
we have a set of identical copies of this state, because each state can be measured only
once due to the fact that every measurement, in general, changes the state. Moreover, in
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order to create a successful model of quantum tomography one needs to find a collection
of observables, such that their mean values provide the complete information about the
state. In the standard approach to quantum tomography of 2-level systems one takes as the
observables the set of Pauli matrices, denoted by {σ1, σ2, σ3}, see for example [1]. The
reconstruction of the initial density matrix is possible due to the decomposition in the basis
{I, σ1, σ2, σ3}, which has the form

ρ(0) = 1

2

(
I +

3∑
i=1

siσi

)
, (1)

where si is the expectation value of σi in state ρ(0). Thus in the standard approach one needs
to measure three different physical quantities in order to reconstruct the density matrix of a
2-level system. In general for an N-level system one would need to measure N2−1 different
observables - more about general approach can be found in [2, 3]. This fact implies that
the standard approach seems rather impracticable as from experimental point of view it is
difficult to find as many different observables.

Therefore, in this paper we follow the stroboscopic approach to quantum tomography
which was proposed in [4] and then developed in [5, 6]. In the stroboscopic approach we
consider a set of observables {Qi}ri=1 (where r < N2 − 1) and each of them can be mea-
sured at time instants {tj }pj=1. Every measurement provides a result that shall be denoted
by mi(tj ) and can be represented as mi(tj ) = T r(Qiρ(tj )). Because in this approach
the measurements are performed at different time instants, it is necessary to assume that
the knowledge about the character of evolution is available, e.g. the Kossakowski-Lindblad
master equation [7] is known or, equivalently, the collection of Kraus operators. Knowledge
about the evolution makes it possible to determine not only the initial density matrix but
also the complete trajectory of the state. To make this issue clearer from now on we assume
the following definition [6].

Definition 1 An N-level open quantum system is said to be (Q1, ..., Qr)-reconstructible
on an interval [0, T ] if there exists at least one set of time instants {tj }pj=1 ordered as 0 ≤
t1 < ... < tp ≤ T such that the trajectory of the state can be uniquely determined by the
correspondence

[0, T ] � tj → mi(tj ) = T r(Qiρ(tj )) (2)

for i = 1, ..., r and j = 1, ..., p.

The outcomes that we obtain from the measurements can be presented in a matrix form
as ⎡

⎢⎢⎢⎣
m1(t1) m1(t2) · · · m1(tp)

m2(t1) m2(t2) ... m2(tp)
...

...
. . .

...

mr(t1) mr(t2) · · · mr(tp)

⎤
⎥⎥⎥⎦ . (3)

The fundamental question that we formulate is: Can we reconstruct the initial density
matrix ρ(0) for a given master equation from the set of measurement results presented in
(3)?

Other questions that arise in this approach concern: the minimal number of observables
for a given master equation and their properties as well as the minimal number of time
instants and their choice. The general conditions for observability have been determined and
will be presented here as theorems and the proofs can be found in papers [4–6].
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Theorem 1 For a quantum system which evolution is given by the Kossakowski-Lindblad
master equation of the form

dρ

dt
= Lρ, (4)

where the operator L is called the generator of evolution, there exists a number (denoted by
η) which is called the index of cyclicity and is interpreted as the minimal number of observ-
ables required to reconstruct the density matrix. The index of cyclicity can be computed
from the equality [4]

η := max
λ∈σ(L)

{dimKer(L − λI)}, (5)

where σ(L) denotes the spectrum of the generator of evolution (i.e. the set of all eigenvalues
of L).

According to theorem 1 for every generator of evolution there always exists a set of η

observables such that the system is (Q1, ...Qη)-reconstructible. Moreover if the system is
also (Q1, ...Qη′)-reconstructible, then η′ ≥ η. The index of cyclicity seems the most impor-
tant factor when one is considering the usefulness of the stroboscopic approach to quantum
tomography. This figure indicates how many distinct experimental setups one would have
to prepare to reconstruct the initial density matrix in an experiment. The index of cyclicity
is a natural number from the set {1, 2, . . . , N2 − 1} (where N = dimH) and the lower the
number the more advantageous it is to employ the stroboscopic approach instead of the stan-
dard tomography. Moreover one can notice that the index of cyclicity can be understood as
the greatest geometric multiplicity of eigenvalues of the generator of evolution. Thus, one
can conclude that the index of cyclicity has physical interpretation, which is important from
experimental point of view, but its value depends on the algebraic properties of the gen-
erator of evolution. Therefore, the question whether the stroboscopic tomography is worth
employing or not depends primarily on the character of evolution of the quantum system.

Another problem that we are interested in relates to the necessary condition that the
observables (Q1, ...Qr) need to fulfill so that the system with dynamics given by (4) will be
(Q1, ...Qr)-reconstructible. First, we introduce a denotation B(H) which shall relate to the
vector space of all linear operators on H. Then by 〈A|B〉 we shall denote the inner product
in this space, which is defined as

〈A|B〉 = T r(A∗B). (6)

Furthermore, one can notice that assuming the dynamics given by (4) the formula for
ρ(t) at an arbitrary time instant can be expressed in terms of a semigroup

ρ(t) = exp(Lt)ρ(0) =
μ−1∑
k=0

αk(t)L
kρ(0), (7)

where μ stands for the degree of the minimal polynomial of L.
This observation enables us to expand the formula for results of measurements (see (2))

in the following way

mi(tj ) = 〈Qi |ρ(tj )〉 =
μ−1∑
k=0

αk(tj )〈Qi |Lkρ(0)〉 =
μ−1∑
k=0

αk(tj )〈(L∗)kQi |ρ(0)〉, (8)

where L
∗ is the dual operator to L or, in other words, L in the Heisenberg representation.

It can be proved that the functions αk(t) are mutually linearly independent and can be
computed from a system of differential equations [6]. Therefore, the data provided by the
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experiment allows us to calculate the projections 〈(L∗)kQi |ρ(0)〉 for k = 0, 1, · · · , μ − 1
and i = 1, 2, · · · , r . It can be observed that the initial state ρ(0) (and consequently the
trajectory exp(Lt)ρ(0)) can be uniquely determined if and only if the operators (L∗)kQi

span the vector space of all self-adjoint operators on H. This space shall be denoted by
B∗(H) and will be referred to as the Hilbert-Schmidt space. Now, if the evolution of the
system is given by (4) the conclusion can be presented as a formal theorem.

Theorem 2 The quantum system is (Q1, ...Qr)-reconstructible if and only if the operators
{Q1, . . . , Qr } fulfill the condition [4, 5]

r⊕
i=0

Kμ(L,Qi) = B∗(H), (9)

where
⊕

denotes the Minkowski sum of subspaces, μ is the degree of the minimal
polynomial of L and Kμ(L,Qi) denotes Krylov subspace, which is defined as

Kμ(L,Qi) := Span{Qi,L
∗Qi, (L

∗)2Qi, ..., (L
∗)μ−1Qi}. (10)

Remark 1 In the Theorem 2 we denote by Q0 an identity matrix of the appropriate
dimension. One can notice that for any generator of evolution L we have Kμ(L, I) = I.

When discussing the usefulness of the stroboscopic tomography, it can be observed that
if one takes a hermitian operator Q̃ which belongs to the invariant subspace of the Heisen-
berg generator L

∗, then Kμ(L, Q̃) = Q̃. Therefore, multiple measurement of the same
observable leads to projections of ρ(0) into distinct operators only if the observable does
not belong to the invariant subspace of L∗. Thus if one considers the implementation of the
stroboscopic tomography in an experiment, its effectiveness depends on whether one can
measure such a quantity that the corresponding hermitian operator does not belong to the
invariant subspace of the Heisenberg generator.

The last theorem which will be presented in this section gives the condition for the choice
of time instants.

Theorem 3 The determination of the initial state of the quantum system with evolution
given by (4) and which is (Q1, ...Qr)-reconstructible is possible if the time instants {tj }μj=1
satisfy the condition [6]

det
[
αk(tj )

] �= 0, (11)
where k = 0, 1, ..., μ − 1. In the above relation αk(tj ) denotes the functions that appear in
the polynomial representation of the semigroup �(t) = exp(Lt).

Having summarized the most important general results concerning the stroboscopic
tomography, we can proceed to analyzing specific examples. In the main part of this arti-
cle there are three different decoherence models of 2-level quantum systems, to which the
stroboscopic approach has been applied. Section 2 is devoted to the problem of dephas-
ing, in which the stroboscopic approach allows us to give the concrete formula for the
initial density matrix. In Section 3 we discuss the usefulness of the stroboscopic approach
in case of depolarization, which is another model of decoherence. Finally, in Section 4 we
tackle a more general problem, where the stroboscopic approach seems to have the greatest
advantage. In that section we introduce a parametric-dependent family of Kraus operators
for which the generator of evolution has no degenerate eigenvalues, i.e. in that case there
exists one observable the measurement of which performed at three different instants is
sufficient to reconstruct the initial density matrix.
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2 Quantum Tomography Model for Dephasing

In this section we are analyzing a decoherence model which is called dephasing. It is a model
of two-level atoms subject to fluctuating external magnetic or laser fields. In geometric
language it refers to shrinking of the Bloch ball in x and y directions, and z being left intact.

The canonical Kraus operators have the following forms [8]:

K0(t) =
√

1 + κ(t)

2
I , K1(t) =

√
1 − κ(t)

2
σ3, (12)

where κ(t) is a function which depends on time and can be expressed as κ(t) = e−γ t , where
γ ∈ R+ is a dephasing parameter.

The collection of Kraus operators constitutes a completely positive and trace-preserving
map (i.e. it is a quantum channel). Therefore, ρ(t) at any time can be obtained from the
formula

ρ(t) =
1∑

i=0

Ki(t)ρ(0)K∗
i (t) = 1 + κ(t)

2
ρ(0) + 1 − κ(t)

2
σ3ρ(0)σ3. (13)

Having the specific form of Kraus operators one can obtain the Kossakowski-Lindblad
equation for evolution of such a system by differentiating the (13). It has the following form:

dρ

dt
= γ

2

(
σ3ρσ3 − 1

2
{σ 2

3 , ρ}
)

. (14)

Here, since σ3 is a self-adjoint operator, it can also be presented in terms of a double
commutator

dρ

dt
= −γ

4
[σ3, [σ3, ρ]]. (15)

The explicit form of the generator of evolution can be obtained by using the relation from
vectorization theory [9]

vec(ABC) = (CT ⊗ A)vecB, (16)

where it is assumed that the matrices A,B, C are selected in such a way that the matrix
product ABC is computable, i.e. the corresponding sizes of A, B,C are s1 × s2, s2 × s3 and
s3 × s4, where s1, s2, s3, s4 ∈ N.

Taking into account this property one can get the generator of evolution for this system
in the matrix form

L = −γ

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ . (17)

Calculating the characteristic polynomial of this operator one obtains

det (L − λI) = λ2(λ + γ )2, (18)

from which one can observe that the index of cyclicity of the system with such a generator is
equal 2. According to the Theorem 1 it means that there exist two observables the mean val-
ues of which enable us to reconstruct the initial density operator and, as a result, the whole
trajectory of the state. We can instantly notice the benefit of the stroboscopic approach in
comparison with the standard model - here we measure two different quantities instead of
three.

Furthermore, it can be noticed that operator L fulfills an equality

L
2 + γL = 0, (19)
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which means that deg μ(λ,L) = 2, where by μ(λ,L) one should understand the minimal
polynomial of L.

The observables that are needed to perform quantum tomography have to satisfy the
necessary condition, which is

2⊕
i=0

K2(L,Qi) = B∗(H), (20)

where K2(L,Qi) denotes a Krylow subspace and can be rewritten as

K2(L,Qi) = Span{Qi,L
∗Qi}. (21)

If we take Q1 = σ1 and Q2 = σ2 + σ3, it can be observed that L∗Q1 = −γQ1 = −γ σ1
and L

∗Q2 = −γ σ2 . Then as I, Q1, Q2 and L
∗Q2 are linearly independent the condition

(20) is fulfilled.
Therefore, in order to reconstruct the density matrix ρ(0) for the system which evolution

is given by (15) it is enough to measure Q1 once and Q2 twice for different time instants t1
and t2.

To obtain a specific formula for the density matrix we have to analyze the polyno-
mial representation of the completely positive map �(t) = exp(Lt). It has already been
mentioned that deg μ(λ,L) = 2, thus the polynomial representation takes form

exp(Lt) = α0(t)I + α1(t)L. (22)

Coefficients αi(t) that appear in this equation can be easily computed because they sat-
isfy a set of differential equations [6], which has been mentioned in the introductory section.
One can easily get

α0 = 1 and α1(t) = 1

γ
(1 − e−γ t ). (23)

Bearing in mind the general representation of a result of measurement (see (8)) we shall
write the formula for m2(t1)

m2(t1) = 〈Q2|ρ(t1)〉 = 〈Q2|exp(Lt1)ρ(0)〉 =
1∑

k=0

αk(t1)〈(L∗)kQ2|ρ(0)〉. (24)

As the observable Q2 is going to be measured twice, we obtain two similar equations for
the two results. They can be combined into a matrix equation[

m2(t1)

m2(t2)

]
=

[
1 1

γ
(1 − e−γ t1)

1 1
γ
(1 − e−γ t2)

][ 〈Q2|ρ(0)〉
〈L∗Q2|ρ(0)〉

]
, (25)

where m2(t1) and m2(t2) are results obtained from measurement, i.e. mean values of the
observable Q2 in two different time instants: m2(ti ) = T r(Q2ρ(ti)). It is evident that if
t1 �= t2,

det

[
1 1

γ
(1 − e−γ t1)

1 1
γ
(1 − e−γ t2)

]
�= 0. (26)

Therefore, from (25) we can calculate projections of ρ(0) into the operators Q2 and
L

∗Q2. We obtain the following results

〈Q2|ρ(0)〉 = m2(t1)(1 − e−γ t2) − m2(t2)(1 − e−γ t1)

e−γ t1 − e−γ t2
, (27)

〈L∗Q2|ρ(0)〉 = γ (m2(t2) − m2(t1))

e−γ t1 − e−γ t2
. (28)
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For observable Q1 it is sufficient to write one equation and transform it in the appropriate
way

m1(t1) = 〈Q1|ρ(0)〉 + 1

γ
(1 − e−γ t1)〈L∗Q1|ρ(0)〉

= 〈Q1|ρ(0)〉 + 1

γ
(1 − e−γ t1)(−γ )〈Q1|ρ(0)〉

= (1 + (e−γ t1 − 1))〈Q1|ρ(0)〉 = e−γ t1〈Q1|ρ(0)〉, (29)

from which we get the projection of ρ(0) into operator Q1

〈Q1|ρ(0)〉 = m1(t1)e
γ t1 . (30)

In order to obtain an explicit formula for the density matrix we will use the theorem that
any two-dimensional density matrix can be expanded using the identity operator I and the
traceless Pauli matrices {σ1, σ2, σ3}. The decomposition takes the from

ρ(0) = 1

2

(
I +

3∑
i=1

siσi

)
, (31)

where si = T r(σiρ(0)) = 〈σi |ρ(0)〉.
We can notice that

〈Q2|ρ(0)〉 = 〈σ2 + σ3|ρ(0)〉 = 〈σ2|ρ(0)〉 + 〈σ3|ρ(0)〉, (32)

〈L∗Q2|ρ(0)〉 = −γ 〈σ2|ρ(0)〉. (33)

Taking these equations into account we get the projections we need to reconstruct the
density matrix

〈σ2|ρ(0)〉 = m2(t1) − m2(t2)

e−γ t1 − e−γ t2
(34)

and

〈σ3|ρ(0)〉 = m2(t2)e
−γ t1 − m2(t1)e

−γ t2

e−γ t1 − e−γ t2
(35)

Having found all the projections of ρ(0) one can write an explicit formula for the density
matrix

ρ(0) = 1

2

(
I + m1(t1)e

γ t1σ1 + m2(t1) − m2(t2)

e−γ t1 − e−γ t2
σ2 + m2(t2)e

−γ t1 − m2(t1)e
−γ t2

e−γ t1 − e−γ t2
σ3

)
,

(36)
which is the final result of this analysis.

In this section we were capable of creating a successful model of quantum tomog-
raphy by using the stroboscopic approach. The advantage over the standard model is
the fact that here one needs to measure only two different observables instead of three.
The number of pairs of observables that fulfill the necessary conditions of observability
for the system in question is infinite. Nevertheless, it has been shown for the selected
two observables that it is possible to obtain the explicit formula for the initial density
operator.
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3 An Attempt to Apply the Stroboscopic Tomography to Depolarization

Depolarization is another model of decoherence that is being analyzed in this paper. Geo-
metrically speaking, this model refers to squeezing the Bloch ball uniformly in the three
directions. The Kraus operators for depolarization have the forms [8]

K0(t) =
√

1 + 3κ(t)

4
I,

{
Ki(t) =

√
1 − κ(t)

4
σi

}
i=1,2,3

, (37)

where κ(t) depends on time and can be expressed as κ(t) = e−γ t , where γ ∈ R+ is called
depolarizing parameter.

Having the collection of Kraus operators for this case one can calculate the derivative of ρ

analogously as in Section 2. It leads to the evolution equation in the Kossakowski-Lindblad
form. One can obtain

dρ

dt
= γ

4

(
3∑

i=1

σiρσi − 3ρ

)
. (38)

As in this case the operators {σi}i=1,2,3 that govern the evolution are hermitian, the
master equation can be represented as a sum of double commutators

dρ

dt
= −γ

8

3∑
i=1

[σi, [σi, ρ]]. (39)

Applying the relation from vectorization theory (16), one can get the explicit form of the
generator of evolution

L = γ

4

(
σ1 ⊗ σ1 + σT

2 ⊗ σ2 + σ3 ⊗ σ3 − 3I4

)
, (40)

which can also be presented in the matrix form

L = −γ

2

⎡
⎢⎢⎣

1 0 0 −1
0 2 0 0
0 0 2 0

−1 0 0 1

⎤
⎥⎥⎦ . (41)

Now one can find the eigenvalues of the operator L

λ1 = −γ and λ2 = 0, (42)

and their corresponding multiplicities which are

n1 = 3 and n2 = 1. (43)

One can quickly check that there are three linearly independent eigenvectors of L that corre-
spond to the eigenvalue λ1. It means that the index of cyclicity for the generator of evolution
given by (41) is equal 3, which implies that we need 3 different observables to perform quan-
tum tomography on the system. Therefore, in case of depolarization stroboscopic approach
to tomography has no advantage over the standard tomography model for a 2-level system.

4 One-Parametric Non-Degenerate Family of Kraus Operators

In this section, before we introduce the main result, we shall assume two definitions. One
concerns a collection of Kraus operators that can be associated with any completely positive
map. The other one relates to a family of Kraus operators which should be understood as
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parametric-dependent and, therefore, more general case. To illustrate the difference between
these two terms we shall first revise the theorem on completely positive maps [10].

Theorem 4 A linear map �(t) : B(H) → B(H) is completely positive if and only if it is
of the form

�(t)(X) =
ζ∑

i=1

Ki(t)XK∗
i (t), (44)

where Ki(t) ∈ B(H).

Now we can make a distinction between a collection of Kraus operators and a family of
Kraus operators.

Definition 2 A set of operators {Ki(t)}ζi=1 that appear in the above decomposition of a
completely positive map is called a collection of Kraus operators.

Definition 3 If we have a completely positive map �(t, a), where t stands for time and
a ∈< amin, amax > is a real parameter that influences the structure of the generator of
evolution L associated with the map, and we denote the sum representation of �(t, a) as

�(t, a)(X) =
ζ∑

i=1

Ki(t, a)XK∗
i (t, a), (45)

then we shall call the set of operators {Ki(t, a)}ζi=1 a one-parametric family of Kraus
operators on the interval < amin, amax >.

Remark 2 According to the definition of the one-parametric family of Kraus operators, the
parameter has to influence the structure of the generator L and, consequently, the positive
constant γ from the two previous sections does not create a family of Kraus operators as the
generator L is proportional do γ (see (17) and (41)).

Remark 3 In a similar way we could introduce the definition of k-parametric family of
Kraus operators for k = 2, 3, · · · .

One can notice that according to these definitions a family of Kraus operators comprises
an infinite number of collections of Kraus operators.

Now we can proceed to the main part of this section. As the third model of decoherence
we are analyzing the case when the evolution of the open quantum system is given by a
one-parametric family of Kraus operators

K0(t) =
√

1 + 2κ(t)

3
I, K1(t) =

√
a(1 − κ(t))

3
σ1 and K2(t) =

√
(2 − a)(1 − κ(t))

3
σ2,

(46)
where κ(t) depends on time according to κ(t) = e−γ t , where γ ∈ R+ is a decoher-
ence parameter, and a is a real parameter that influences the structure of the generator of
evolution.

Let us observe that it is a family of Kraus operators for a ∈ R. Nevertheless, some con-
straints need to be found concerning a because the family of Kraus operators from (46) have
to constitute a completely positive map which is strictly trace-preserving as the evolution
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should retain all the properties of the density operator. One can notice that the sufficient and
necessary conditions for this are

a ≥ 0 and 2 − a ≥ 0. (47)

It is easy to check that under these two condition the following equality holds

2∑
i=0

K∗
i (t)Ki(t) = I, (48)

thus any collection of Kraus operators taken from the family (46) with a ∈< 0; 2 >

constitutes a quantum channel and can be treated as a model of decoherence.
In this section we propose the following theorem concerning the introduced family of

Kraus operators.

Theorem 5 If the evolution of an open quantum system is given by a collection of Kraus
operators from the family defined in (46) for any a ∈ (0; 2)\{1}, then the eigenvalues of the
generator of evolution L are non-degenerate.

Proof Kraus operators allow us to find the equation for evolution of the system, which
takes the following form

dρ

dt
= −2

3
γρ + a

3
γ σ1ρσ1 + 2 − a

3
γ σ2ρσ2. (49)

Using again the idea of vectorization (16) the explicit form of the generator L can be
written as

L = γ

3

(
−2I4 + aσ1 ⊗ σ1 + (2 − a)σT

2 ⊗ σ2

)
. (50)

Consequently its spectrum can be computed

σ(L) =
{
−4

3
γ, 0,

2

3
(a − 2)γ,−2

3
aγ

}
. (51)

Now it can be observed that for any a ∈ (0; 2) \{1} the spectrum of the generator L
consists of four different eigenvalues, which completes the proof.

The theorem presented in this section shows that there exists a one-parametric family of
Kraus operators for which eigenvalues of the generator of evolution L are non-degenerate,
which means that the index of cyclicity is equal 1. Henceforth a family that possesses this
property shall be called a one-parametric non-degenerate family of Kraus operators.

The result means that for any evolution given by (46) with a ∈ (0; 2)\{1} there exists
one observable the measurement of which performed at three different instants allows us to
reconstruct the initial density matrix and, as a result, the trajectory of the state. From experi-
mental point of view the stroboscopic approach seems to have a considerable advantage over
the standard tomography as in this case an experimentalist needs to prepare only one kind of
measurement and repeat it three times instead of performing three different measurements.

5 Summary

This paper gives a brief insight into the possible applications of the stroboscopic tomogra-
phy to 2-level decoherence models. It has been shown that the usefulness of this approach
differs depending on the kind of evolution. The most promising result is described in
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Section 4. In that part it has been proved that there exists a one-parametric non-degenerate
family of Kraus operators, which means that for an infinite number of generators of evolu-
tion the index of cyclicity is equal 1, i.e. for any a ∈ (0; 2)\{1} there exists one observable
the measurement of which performed at three different time instants provides sufficient data
to determine the trajectory of the state with dynamics given by (46). Further research into
the problem of non-degenerate families of Kraus operators is planned for the foreseeable
future.
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