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Abstract We have investigated Bianchi type-IX dust filled universe for ideal fluid distribu-
tion in creation field in which creation field is a function of time t only. To get deterministic
cosmological model, we have assumed a supplementary condition a = bn, where a and
b are metric potential and n is constant. Also, we have study the physical and geometrical
parameters of the said cosmological model.
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1 Introduction

The study of Bianchi type-IX cosmological models are interesting because these models
allow not only expansion but also rotation and shear and in general are anisotropic. Many
of the authors have been taken keen interest in studying Bianchi type-IX universes because
we have a familiar solution like Robertson-Walker universe with positive curvature, the de-
sitter universe, the Taub-NUT solution etc. Raj Bali et al. [1] have obtained Bianchi type-IX
cosmological model with viscous fluid in general relativity. The phenomena of expand-
ing universe, primordial nucleo-synthesis, the observed isotropy of the cosmic background
radiations were supposed to be successfully explained by big-bang cosmology based on
Einstein field equation. However, the big-bang model is known to have the short coming in
the following aspects:

i) The model has singularity in the past and possible one in future,
ii) The conservation of energy is violated,
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iii) It leads to a very small particle horizon,
iv) No consistent scenario exists that explained the origin, evolution and characteristic of

structures in the universe at small scale,
v) It has flatness problems.

Therefore, to overcome the singularities of big-bang cosmology, the alternative theories
were proposed from time to time; the best well known theory was steady state theory of
Bondi and Gold [2]. In this theory, the steady state model does not have any singular begin-
ning or an end on the cosmic time scale and the statistical properties of the large scale
features of the universe do not change. Further, the constancy of the mass density has been
accounted by continuous creation of matter going on in contrast to the one time infinite and
explosive creation of matter at t = 0 as in the earlier standard model, the principle of
conservation of matter was violated in this formalism. To overcome this difficulty, Hoyle
and Narlikar [3] adopted a field theoretical approach by introducing a massless and charge
less scalar field C in the Einstein-Hilbert action to account for matter creation. According
to Hoyle and Narlikar [3], in the C-field theory there is no big-bang type of singularity as
in the steady state theory of Bondi and Gold [2, 16]. Narlikar et al. [4] pointed out that
the matter creation is accomplished at the expense of negative energy C-field. A solution
of Einstein field equation admitting radiation with negative energy massless scalar creation
matter was obtained by Narlikar and Padmanabhan [5]. This solution is free from singu-
larity and provides a natural explanation to the particle horizon and flatness problem. The
study of Hoyle and Narlikar theory for the higher dimensional space-time of was carried out
by Chaterjee and Banerjee [6]. Bali and Tikekar [7], Bali et al. [8, 13–15] have investigated
C-field cosmological models for dust distribution with variable gravitational constant in
FRW space-time. The solution of Einstein’s field equation in the presence of creation field
has been obtained for Bianchi type space-time by Singh and Chaubey [9]. Recently, Adhav
et al. [10, 11] has been studied LRS Bianchi type-I, V universe in C-field cosmology. Bali
and Saraf [1] have also examined Bianchi type-I dust universe with decaying vacuum energy
in C-field.

In the present paper, we have considered a Bianchi type-IX space-time for ideal fluid dust
distribution in Hoyle and Narlikar C-field cosmology. We have assumed that the creation
field is a function of time t only i.e. C(x, t) = C(t) and investigate Bianchi type-IX
dust filled universe and also study the physical and geometrical parameters of the model in
detailed.

2 The Metric and Field Equation

We have consider Bianchi type-IX metric,

ds2 = −dt2 + a2dx2 + b2dy2 +
(
b2 sin2 y + a2 cos2 y

)
dz2 − 2a2 cos y dxdz, (1)

in which, a and b are the function of t alone.
Hoyle and Narlikar [4, 12] modifies the Einstein’s field equation by introducing C-field

as,
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The energy momentum tensor T j

i(m) for ideal fluid and T
j

i(c) for creation field is,

T
j

i(m) = (p + ρ) uiu
j + pg

j
i , (3)
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where, f >0 is a coupling constant between matter and creation field and Ci = dC
dxi

.
The field (2) and the energy momentum tensors (3), (4) for the metric (1) lead to,
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3 Solution of Field Equation

According to Hoyle and Narlikar [3], we have taken zero pressure matter field. From
Bianchi identity, we have (

GT
j
i

)
; j = 0 (8)

Further solving (8) we obtain,
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ȧ

a
+ 2

ḃ
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ḃ

b

)}
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which yields Ċ = 1, using source equation, Ci
;i = n

f
.

For zero pressure matter i.e. p = 0, Ċ = 1, the field (5), (6) and (7) leads to,
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ȧḃ

ab
+ ḃ2
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+ ḃ2

b2
+ 1

b2
− 3

4

a2

b4
= 4πGf, (11)

ä
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From (11) and (12) we have,
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ab
− ḃ2
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From (10) and (12) we obtain,
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To get the deterministic solution of the (12), (13) and (14), we assume a condition between
metric potentials a and b as,

a = bn (15)
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Using condition (15) in (13) we obtain,

2b̈+ 2 (n+ 1)
ḃ2

b2
= 2

b (n− 1)
− 2b2n−3

n− 1
(16)

We assume that,

ḃ = f (b) (17)

ḃ = ff I (18)

in which f I = df
db

Therefore, (16), (17) and (18) yields,
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(19) implies that,

f 2 = 1

n2 − 1
− b2(n−1)

2n (n− 1)
+Db−2(n+1), (20)

where D is integration constant.
From (17) and (18), we obtain,
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(21) leads to,
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2

db = ± (t − t0) , (22)

where t0 is constant of integration.
Using condition (15) in (14), yields,
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The space-time (1) reduce the form

ds2 = −
{

1
n2−1

− T 2(n−1)
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dT 2 + T 2ndX2 + T 2dY 2+(
T 2 sin2 Y + T 2n cos2 Y

)
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(24)

in which, b = T , x = X, y = Y , z = Z.

4 Physical and Geometrical Features

The energy density of matter is obtained as,

ρ = 1

8πG
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and the spatial volume is given by,

V = √−g = ab2 sin y = T 2(n+1) sinY (26)
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For the flow vector ui , the scalar of expansion (θ) obtained as,
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The non-vanishing component of shear σij are obtained as,
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Hence,
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From (25) and (33), it is observed that initially when T →0 then ρ → ∞, σ → ∞and
V =0. Also for large values ofT , ρ, σandV are infinite.It implies that the inverse expanding.

5 Conclusion

From (27), it is clear that the scalar expansion (θ) decreases as time increases and its stop at

T = ∞ and n = −2. Also, we have observed that the ratio limT→∞
(
σ
θ

)2 = 1
2 �=

0, it implies that the model does not approach isotropy for large value of T . However, for
n = −2 the cosmological model (24) is not isotropized. The expansion in the model
starts with big-bang at T = 0 and n = 1, for n =0, 1 the expansion in the model start
with big-bang. Also for n =-2 scalar expansion (θ) decreases as time increases and vice-
versa. The model (24) is expanding, the expansion in the model starts with big-bang T =
0 andn =1. The spatial volume increases with time. The creation field increases with time
which supports the result obtained by Hoyle and Narlikar [4, 16].
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