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Abstract This study focuses on formulating a procedure
to select effective negative examples for the development
of improved Support Vector Machine (SVM)-based speaker
recognition. Selection of a background dataset, or a collec-
tion of negative examples, is the crucial step for building an
effective decision surface between a target speaker and the
non-target speakers. Previous studies heuristically fixed the
number of negative examples used based on available de-
velopment data for performance evaluation; nevertheless, in
real applications this does not guarantee sustained perfor-
mance for unseen data, as will be shown. In the proposed
model selection framework, a novel ranking method is first
exploited to rank order the negative examples for selecting
a set of background datasets with various population sizes.
Next, an error estimation and model-selection criterion are
proposed and employed to select the most suitable target
model among the model candidates. The experimental val-
idation, conducted on the NIST SRE-2008 and SRE-2010
data, demonstrates that the proposed background data se-
lection slightly but consistently outperforms the fixed-size
background data selection, and achieves a relative improve-
ment of +6 % over the non-selection background framework
in terms of minDCF.
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1 Introduction

Current state-of-the-art speaker recognition (Speaker Iden-
tification or SID) systems use either (i) i-vector system (De-
hak et al. 2010), (ii) GSV-SVM: Gaussian supervector with
a support vector machine backend (Campbell et al. 2006), or
(iii) GMM-UBM: Gaussian mixture model with a universal
background model (Reynolds et al. 2000). Many approaches
also fuse these solutions in combination. So while i-vector
approaches are currently very popular, studies have shown
that fusing diverse systems can provide clear and consis-
tent SID improvement. As such, one core state-of-the-art
solution employs a Support Vector Machine (SVM) using a
high- and fixed-dimensional supervector, which is obtained
by concatenating all of the mean vectors of a Gaussian Mix-
ture Model (GMM), as input feature (Dehak et al. 2010). In
particular, only the adapted mean vectors of the universal
background model (UBM) are exploited, while the covari-
ances and mixing weights are shared among all speakers.
Nevertheless, for a given target speaker, the supervectors
estimated from different training utterances are subject to
inter-session variability especially when these training sam-
ples come from different channels. As a result, they may
not be properly scored against the trained speaker model.
The factor analysis technique, particularly joint factor anal-
ysis (JFA), has been proposed to compensate for the vari-
ability of a Gaussian supervector as a linear combination
of speaker and variability (i.e., channel traits/properties),
where the SVM uses both knowledge sources as the SVM
input features (Dehak et al. 2010; Kenny et al. 2007). Re-
cently, such JFA compensation and Gaussian supervector
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Fig. 1 A hypothetical
illustration of background data
selection for effective SVM
boundary

SVM approaches have dominated the speaker recognition
evaluation in NIST-SRE (Evaluation NSR 2008, 2010).

In general, for each target speaker, the SVM builds a hy-
perplane as the decision boundary between positive exam-
ples belonging to the target speaker and negative examples
drawn from the impostor or background speakers (Joachims
1999). Here, the collection of negative examples is called
the background dataset. The limited amount of positive ex-
amples for each target speaker requires effective selection to
exploit the negatives examples, since in general there is an
unlimited amount of the negative examples available. How-
ever, depending on microphones, handsets, communication
channels, and other factors, not all impostor-speaker data is
equally useful in building the best SVM. Hence, it is im-
portant to develop a framework that is capable of identify-
ing those impostor speakers that are the closer cohorts to
the target speaker, since employing too many speakers that
are acoustically far from the target speaker does not con-
tribute as much to an effective SVM hyperplane decision
surface. Previous studies (McLaren et al. 2009, 2010) have
shown that a flexible-size background dataset can improve
performance of the SVM-based speaker recognition system,
while classification actually degrades when using all avail-
able negative examples.

One of the drawbacks of employing an SVM background
model is that it requires a specific number of negative exam-
ples to construct an effective hyperplane decision surface.
Selecting an appropriate number of speakers in the back-
ground dataset is important since using too many negative
examples introduces problems where the SVM will have
a too narrow hyperplane, thus increasing the miss-rate for
the overall system performance. On the contrary, selecting

too small a number of negative examples makes the hyper-
plane excessively wide which would result in an increase in
the false-alarm rate. Therefore, selecting the right amount of
negative examples to build a proper hyperplane is important
for training an effective speaker model using an SVM. Fig-
ure 1 hypothetically illustrates the idea of background data
selection for a more effective (e.g., tighter) hyperplane deci-
sion surface.

Training an effective target speaker model from available
background dataset requires the following three steps: First,
it is necessary to rank order the negative examples in or-
der to select the most suitable background dataset. Second,
the target speaker model is trained using the positive exam-
ples against the negative examples belonging to the selected
background dataset. It is possible that the target speaker
models will have various sizes (i.e., number of SVM’s sup-
port vectors) depending on the selected size of the back-
ground dataset. Third, an optimal model is selected among
the potential target speaker models based on the estimated
performance errors using a small amount of development
data. In this study, we will focus on formulating effective
and systematic ways to approach the first and third steps:
ranking the background speakers and model selection.

Effective and efficient data ranking methods have been
drawing broad attention in the research community recently.
The training process for a ranking function plays a crucial
role in extracting various types of information such as audio-
based spoken dialogs, text documents, images, and video
streams (Hansen et al. 2005; Joachims 2002; Cao et al. 2007;
Lee et al. 2004). Various learning functions have also been
proposed for information retrieval based on kernel classi-
fiers (e.g., SVM) such as Pairwise (Joachims 2002) and List-
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wise (Cao et al. 2007) methods. Each method uses a dis-
tinct learning function to rank order the objects in the set;
the Pairwise approach considers object pairs as instances in
learning, while the Listwise approach uses lists of objects as
instances in its learning. In this current study, both Pairwise
and Listwise approaches are introduced to rank order nega-
tive examples for training speaker SVMs. A discussion and
comparison of both methods will be presented in the follow-
ing sections.

After obtaining a collection of target model candidates
using the selected background datasets, different error es-
timation and model-selection criteria are employed to se-
lect the most suitable model as a target model. Vapnik and
Chapelle (2000) derived the expectation of the error bound-
ary for the hyperplane using an SVM (Vapnik and Chapelle
2000; Duan et al. 2003), and these error estimation methods
were used to tune the kernel parameters (Duan et al. 2003;
Tuda et al. 2001; Chapelle et al. 2002). In this study, we
study these error estimation methods and then propose a new
error measurement to estimate errors of each trained speaker
model, namely modified validation method, by splitting the
development data into two distinct subsets and then estimat-
ing errors using the left-out subset from training. We will
discuss and compare our proposed method with two previ-
ously proposed methods for error estimation, support vector
count and radius margin, in the following sections.

For a new or unseen-data evaluation of speaker recog-
nition systems, researchers generally fix the overall system
parameters which include: (i) the entry number of the back-
ground dataset, (ii) the feature dimension, and (iii) the num-
ber of Gaussian mixtures (i.e., by using the available pre-
evaluation data such as NIST SRE 2008 (Evaluation NSR
2008) for a new evaluation of NIST SRE 2010 (Evalua-
tion NSR 2010)). It is clearly a challenging problem to find
an optimal number of negative background entries of the
dataset when the final speaker recognition system is de-
ployed in a range of unknown conditions. Therefore, here we
propose a system that employs an error estimation scheme
to select the background evaluation dataset without tuning
to a specific entry number for the dataset.

This paper is organized as follows. Section 2 describes
the problem background and our motivation for selection of
the background dataset. The methods of ranking background
speakers are discussed in Sect. 3. Section 4 describes er-
ror measurement and model selection. The system descrip-
tion and specific parameter setting are included in Sect. 5.
An extensive performance assessment along with results are
presented in Sect. 6. Finally, conclusions are presented in
Sect. 7.

Fig. 2 MinDCFs of NIST-SRE 2008 and 2010 evaluation sets as the
selected size of background dataset varies from 100 to 2000

2 Selection of background data

The idea of background dataset refinement for an SVM was
previously introduced by McLaren et al. (2009, 2010). In
their approach, the selection of the SVM background dataset
was performed by ranking the candidate examples using
a suitability metric called the Support Vector Frequency,
which is the total number of instances a particular vector is
selected as a support vector when training a set of develop-
ment target models. Subsequently, a collection of datasets,
each containing different sizes of examples with the high-
est support vector frequency, is used to determine the best
number of examples. However, a fixed number of negative
examples does not always guarantee a consistent best per-
formance with a new evaluation data. To illustrate this point,
we evaluated a speaker recognition system using the NIST
SRE-08 and SRE-10 data (i.e., male 5 min), where the back-
ground data was drawn from the NIST SRE-04 and SRE-
05. More details regarding this speaker recognition system
will be further discussed in the following sections. Figure 2
shows the results of this evaluation in terms of minDCF (i.e.,
minimum Detection Cost Function (Evaluation NSR 2008,
2010) for both evaluation sets when the size of the back-
ground dataset varies from 100 to 2000, as well as using all
available background data. It is obvious that exploiting all
available background data does not guarantee the best per-
formance. Furthermore, we can observe that the background
dataset with 500 negative examples gives the best perfor-
mance when using the SRE-08 evaluation set. However, this
same size of negative examples does not give the best perfor-
mance when testing with the SRE-10 evaluation set, which
can be achieved when only 300 negative samples are se-
lected instead. As the size of negative samples increases,
the performance of both evaluation sets tends to converge to
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Fig. 3 Overall block diagram
of the proposed system

the baseline performance that uses all available background
datasets. These variation of performances across different
datasets suggests that an SVM speaker recognition system
needs an improved method for finding the optimal size and
content of the effective background datasets.

The following sections introduce the proposed back-
ground dataset selection method. The main objective of our
method is to provide a unified, data-driven approach to auto-
matically select the optimal size of the background dataset
for different evaluation sets without pre-assigning a speci-
fied size for background data. To accomplish this, a ranking
method is introduced for finding the most informative nega-
tive examples. Next, an error measurement and model selec-
tion procedure for the background dataset are employed to
select the best set. These steps represent the proposed SVM
speaker selection process, and are summarized in the flow
diagram in Fig. 3. In the following sections, we will describe
these two steps in details.

3 Ranking the background speakers

The procedure for effective background dataset selection
starts by identifying the best negative examples from a virtu-
ally unlimited amount of data. A structured selection method
can be applied to the selection of a set of negative examples.
In this study, we considered two ranking methods: Pairwise
and Listwise, where the learning methods are based on ob-
ject pairs and lists of objects, respectively.

3.1 Pairwise approach

The pairwise method is similar to a general binary classi-
fication process between two categories, where a ranking

function is formulated to minimize the empirical risk func-
tion (Joachims 2002) of a binary ordering relation, not a
class label. The Pairwise method focuses on the relevance
of each object (i.e., target speaker) to build the best overall
SVM speaker model that rejects the non-target speakers. The
ranked results are sorted in a descending order, which are
arranged from the most relevant to the least relevant target
objects. Here, we utilized the SVMLight toolkit which has a
ranking function that scores the relevance of the negative ex-
amples compared to each target object (Joachims 1999). The
pairwise approach can be applied straightforwardly and the
object pairs can be easily obtained in most scenarios. How-
ever, the pairwise approach is formulated to minimize the
classification errors of object pairs, rather than minimizing
the ranking errors of target speakers.

3.2 Listwise approach

The Listwise loss function incorporates the scores or fre-
quency of occurrence information into the results of the Pair-
wise method, and the ranking function is trained so as to
maximize the Listwise loss function (Cao et al. 2007). In
this study, the Listwise loss function uses the frequency of
occurrence from the most relevant to least relevant negative
examples that have appeared at least twice across all the tar-
get speakers, and the results of this function are used for the
background dataset.

Figure 4 pictorially illustrates the concept of both rank-
ing methods, where the target speakers are represented
by triangles (A, B , and C), and the small numeric cir-
cles (1,2,3, . . .) represent the background speakers. Subse-
quently, dA−1 is the distance between target speaker A and
background speaker 1, and the dABC−1 represent the List-
wise distance between all target speakers and background
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Fig. 4 Pictorial illustration of
the Pairwise and Listwise
ranking methods

speaker 1. Similar annotation is applied to other distance
pairs between target and background speakers. As a result,
employing the Pairwise approach to the target speaker A

will rank the top-3 background speakers as 1 → 2 → 3.
For the Listwise approach, the highest ranked background
speaker considering all target speakers is the background
speaker 6, since it ranks in the top-2 for the target speak-
ers B and C with the total distance lower than the back-
ground speaker 5, which also ranks in the top-2 for both
target speakers B and C.

3.3 Comparison of ranking approaches

The advantage of employing a ranking method for back-
ground data selection is shown in Fig. 5, where we com-
pare two methodical selection approaches, Pairwise Method
and Listwise Method. For completeness, we also compare
their results with randomly selected background speakers of
the same population size (e.g., Random). The experiments
were conducted using data from the SRE-08 evaluation set.
Both ranking methods show a better system performance
than that of the Random Selection when less than 1200
negative examples were utilized, and the Listwise Method
showed superior performance over the Pairwise Method as
the background dataset is reduced. Further analysis reveals
that the Pairwise Method ranking system does not construct
the speaker model effectively, since the most relevant back-
ground speakers for each target speaker contribute only to
building the hyperplane. That is, a hyperplane built by the
Pairwise Method is so narrow that it will not only reject all
impostor speakers, but also reject many of the correct test
examples. The key finding here is that any further amount

Fig. 5 Comparison of Pairwise and Listwise ranking methods for
background data selection, as well as random selection, using
NIST-SRE 08 evaluation set

of background speakers do not provide improved discrim-
inative power for a target speaker in an SVM framework.
The Pairwise Method, therefore, does not provide as use-
ful information for constructing the effective SVM hyper-
plane when the negative examples exceed 200. Alterna-
tively, the Listwise Method provides more consistent per-
formance, since the various background speakers that are
close to all the target speakers would provide more effective
discriminating information in building an effective decision
hyperplane.
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4 Error measurement and model selection

For an SVM-based speaker model, a hyperplane is trained as
a decision boundary between a target speaker and a pool of
ranked background speakers. In order to assess the effect of
the size of the selected background population, a collection
of candidate sizes of ranked background speakers is used to
construct different SVMs. In this study, we varied the size of
the background dataset, p, with an increment of 100, (i.e.,
p ∈ {100,200,300, . . . ,900}).

For each background dataset p, the trained model con-
sists of the support vectors, xi , a norm vector, wp , and a
bias, b, that satisfies the following inequality:

yi(xi · wp + b) − 1 ≥ 0 ∀ i ∈ yi = ±1, (1)

where yi is either 1 or −1 indicating the class labels (target
speaker versus background speakers), i = 1, . . . ,K , and K

is a total number of training entries. The norm vector, wp , is
formulated to maximize the space between both the positive
and negative classes (Burges 1998), as

wp =
∑

i

αiyixi . (2)

The output function for the kth example of the dataset p is
therefore expressed as,

Op,k = wp · xk − b. (3)

Having briefly presented the basic SVM framework, we now
discuss the error measurement for assessing speaker models.

4.1 Error measurement

Here, the error is assessed by using three alternate schemes.
The first two methods are derived from a mathematical anal-
ysis by Vapnik for obtaining an upper error bound using
a Leave-One-Out (LOO) estimation (Vapnik and Chapelle
2000; Chapelle et al. 2002),1 and the last method is our pro-
posed method, termed the “modified validation method.”

4.1.1 Support vector (SV) count method

This method directly exploits support vectors which is a
subset of both positive and negative examples that are used
to define the separating hyperplane in the SVM training
stage. These support vectors, therefore, are the most infor-
mative examples that are employed in the evaluation stage

1The leave-one-out (LOO) procedure consists of excluding one exam-
ple from the training data, constructing the decision rule from the re-
maining training data, and then testing on the removed example. The
process can be applied to every example of training data.

(Chapelle et al. 2002). The upper error bound for the LOO
is given as:

ErrSV ≤ NSV

l
, (4)

where NSV is the total number of support vectors and l is
the total number for the background dataset.

4.1.2 Radius-margin method

This method estimates the upper bound on the amount of
error for the LOO scheme (Vapnik and Chapelle 2000) as,

ErrRM ≤ 1

l

R2

γ 2
,

where the margin γ and the radius R are defined by

R = min
a,xi

‖xi + a‖

γ = min
xi ,yi

yi(xi · wp + b)

‖wp‖ ,

such that R is the radius of the smallest sphere that contains
all wp vectors. In this study, the denominator of both error
estimation methods is removed, since the increment of 100
negative examples makes comparisons between the models
intractable.

4.1.3 Modified validation method (MVM)

This method is used to estimate the errors by splitting the de-
velopment data into two distinct subsets (Duan et al. 2003),
and then estimating errors using the left-out subset from
training as a test set. In particular, the proposed method uses
the top 900 ranked negative examples as a training subset
and the remaining as the test subset. Note that the test sub-
set is less relevant to all the target speakers than the training
subset since all the negative examples are ranked in order by
the employed ranking method. The modified validation error
measurement counts the errors of the target speaker model
using the same threshold and the same test subset data. The
error measurement of the target speaker of population size n

with the background dataset of size p is then defined as:

Errn,p = 1

m
card{j : Op,j − θ < 0}, (5)

where m is the total number of test subset examples, and
card{} is the cardinality of the set. The test subset example,
j , is evaluated using Eq. (3). When the output of example
j is less than a pre-defined threshold, the number of exam-
ples is counted as error. The size of the background dataset
is varied from 200 to 900. The decision threshold θ is ob-
tained by using the first p = 100 background dataset, since
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Fig. 6 Idea of selection of
target-speaker model using the
proposed modified validation
method. The impostor
development data represented as
stars are moved from solid
black entries, incorrectly
labelled as target speakers, to
above the decision plane,
resulting in correctly rejected
impostors as white stars

it contains the most relevant negative examples compared
with the positive examples, as

θ = 1

100

100∑

k=1

Op,k. (6)

The overall idea of the modified validation method is picto-
rially illustrated in Fig. 6. The upper row of plots show the
boundary hyperplanes obtained by training different sizes of
background dataset (i.e., p = 100, 200, 300, 400). As the
background population increases, the decision space margin
between the positive (shown as circles) and the negative ex-
amples (shown as triangles) is expected to decrease. In the
corresponding lower row of plots, the first 100 negative ex-
amples (i.e., development data) are used to set a threshold
θ such that these 100 negative examples are initially cate-
gorized as errors. However, as the decision hyperplanes be-
comes tighter with increasing p count, the more data (e.g.,
negative data as stars) are correctly classified.

For completeness, Fig. 7 shows plots of the average er-
ror measure for speaker recognition evaluation employing
the three error measurement strategies versus an increas-
ing background dataset size from 200 to 900. The results
are shown for both SRE-08 and SRE-10 datasets, with
background datasets drawn from the SRE-04 and SRE-05
datasets. As can be seen, the error profiles all decrease with
an increase in background population size. In the next sec-
tion, a procedure is developed to select the best model for
each set of target speakers.

4.2 Model selection using error difference

The difference between two errors (defined in Eq. (5)) gen-
erated by two speaker models trained from different back-

ground datasets is called the Error Difference (ErrDiff ), and
is defined as follows,

ErrDiff n,p = |Errn,p − Errn,p+�|, (7)

where p represents the size of the background dataset, and
the increment � is set to 100 in this phase of the study.
This difference of estimated errors reflects the intrinsic mi-
gration of the SVM decision hyperplane as the size of nega-
tive dataset is increased. The averages of ErrDiff employing
three different error measurements are shown in Fig. 8. The
optimal number of background speakers resulting in the best
performance previously seen in Fig. 2 is correlated with the
slope of the ErrDiff plot in Fig. 8(C). Here, the best perfor-
mance for SRE-08 can be achieved using a set of 500 back-
ground speakers, where the steepest slope also occurs at the
dataset of size 500. A similar trend is also observed for the
SRE-10 evaluation. The background dataset selection is per-
formed based on the steepest slope of the ErrDiff for each
of the target speakers, as

p∗ = arg max
p

{ErrDiff n,p − ErrDiff n,p+�},

p = 200, . . . ,800,

(8)

where ErrDiff n,p is the model to predict the least ErrDiff
between the two models; therefore the p + � background
dataset is selected to train the SVM for the target speakers.
Again, the error is decreasing with an increment of dataset
size in a similar manner to that shown in Fig. 7.

5 System description

In this section, the system description for experimental eval-
uations using the SVM data selection solutions is presented.
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Fig. 7 Average error measure
obtained from three different
error measurements
((A) Support Vector Count,
(B) Radius Margin,
(C) Modified Validation Method
(MVM)) with increasing
number of background dataset
size from 200 to 900 speakers

Fig. 8 Average Error
Difference (ErrDiff ) of three
different error measurements as
the size of background dataset
increases
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The evaluation results will be discussed in the following sec-
tion.

5.1 Baseline SVM system

For parameterization, a 60-dimensional feature set (19
MFCC with log energy +� + ��) was used, where fea-
tures were extracted using a 25 ms analysis window with
a 10 ms skip rate, filtered by feature warping with a 3-s
sliding window. The system also employed Factor Analy-
sis (Kenny et al. 2007), followed by Linear Discriminative
Analysis (LDA) and Within Class Covariance Normaliza-
tion (WCCN) (Dehak et al. 2010) for the SVM system.
Similar SVM processing have also been employed in pre-
vious studies (Dehak et al. 2010) which represents our base-
line here. Next, the NIST SRE-2004, 2005, 2006 enroll-
ment data were used to train gender-dependent UBMs with
1024 mixtures. The total variability matrix was trained on
the Switchboard II Phase 2 and 3, Switchboard Cellular Part
1 and 2, and the NIST SRE-2004, SRE-2005, and SRE-2006
male enrollment data with 5 or more recording sessions per
speaker. A total of 400 factors were used. The LDA matrix
was trained on the same data as that we used for construction
of the total variability matrix. In our experiments, the dimen-
sion of the LDA matrix was set to 140. Finally, the within
class covariance matrix was trained using NIST SRE-2004,
and SRE-2005 data, and a cosine kernel was used to build
the SVM systems.

5.2 Evaluation dataset

The proposed algorithm was evaluated on the 5 min-5 min
telephone-telephone condition of the NIST 2008 and 2010
speaker recognition evaluation (SRE) corpora (Evaluation
NSR 2008, 2010), (i.e., SRE-08 and SRE-10). The evalua-
tion dataset was limited to male speakers.

5.3 Background dataset

The background dataset consists of NIST SRE-04, and SRE-
05 with a total of 2718 utterances. Each of the utterances is
parameterized as previously discussed and then is exploited
as a negative example. The Listwise method is employed
to rank all 2718 negative examples, and the top 100 negative
examples are used to set the decision rule. The target speaker
models are built from 200 to 900 negative examples, and the
remaining 1718 examples are used as development data for
error estimation.

6 Experimental results

In current investigations, the speaker-recognition commu-
nity has exploited the detection cost function (DCF) and

Table 1 The number of target speakers employing each background
dataset

Background
Dataset Size

300 400 500 600 700 800 900

SRE-08 175 144 129 69 57 45 29

SRE-10 347 265 182 187 91 69 62

Table 2 Results of SRE-08 and SRE-10 evaluation employing three
different error measurements: SV Count, Radius-Margin, and Modified
Validation, compared with the baseline system without background se-
lection

SRE-08 SRE-10

Min. DCF EER Min. DCF EER

Baseline 0.656 6.01 0.614 6.14

SV Count 0.617 5.67 0.582 5.83

Radius-Margin 0.587 5.38 0.585 5.84

Modified Validation 0.542 4.98 0.547 5.50

Equal Error Rate (EER) as standard measurements to as-
sess overall system performance. Therefore, our primary
goal here is that the proposed background dataset selection
method should achieve an equivalent or improved system
performance in terms of both DCF and EER, compared with
the previous studies (McLaren et al. 2009, 2010) without
presetting the dataset size with a fixed number. Hence, the
criterion of success should be no major change in perfor-
mance between the expected level of performance and what
is actually achieved with the unseen test data.

6.1 Background dataset selection analysis

A diverse background dataset is selected for each target
speaker using the proposed ErrDiff method. Table 1 sum-
marizes the number of target speakers sharing the same size
of selected background dataset for both NIST SRE-08 and
SRE-10 evaluation datasets using the modified validation er-
ror method. As can be seen, most target speakers require a
smaller sized background dataset with the majority around
300–400 negative examples. Flexible selection of the back-
ground dataset size helps the system focusing on the hyper-
plane near the target speaker and thereby improves the ef-
fectiveness of the background dataset.

6.2 Evaluation of different error estimation schemes

Table 2 summarized the results of SRE-08 and SRE-10 eval-
uations with the ErrDiff computed from three different er-
ror measurements discussed earlier: (i) SV count, (ii) Ra-
dius Margin, and (iii) Modified Validation. For compari-
son, the baseline represents a system which employs all
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Table 3 The proposed method result comparing the best 500 entries
of background dataset set for SRE-08

Fixed Number
Background
Dataset

Proposed ErrDiff
Selection
Method

Fixed Number Min. DCF EER Min. DCF EER

SRE-08 500 0.543 4.98 0.542 4.97

SRE-10 500 0.583 5.83 0.547 5.49

SRE-10 300 0.575 5.79

Fig. 9 DET curves of SRE-08 evaluation using the proposed Modified
Validation, compared with the SV count and the baseline system

available background speakers. All background data se-
lection approaches resulted in better performance than the
baseline system in terms of both EER and minDCF. The
Radius-Margin and Modified Validation methods provided
a consistent performance gain for both SRE-08 and SRE-
10 evaluations, but the SV count method did not perform
well on the SRE-08 data. The proposed Modified Valida-
tion method consistently outperformed the other two er-
ror measurements. Therefore, this method is used for esti-
mating errors of background data selection. For complete-
ness, Fig. 9 compares the Detection Error Tradeoff (DET)
curves of the SRE-08 results for the Modified Validation
and SV count error measurements, compared with the base-
line system. The SV count and Modified Validation schemes
both out perform the baseline especially near the EER
point.

6.3 Background dataset selection evaluation

In this section, we compare performance of the proposed
ErrDiff , where the optimal size of the background dataset
varies from speaker-to-speaker, with the fixed-size back-
ground selection. For the fixed-number background dataset,

we used the best result of the background dataset selected
by the ListWise ranking method (i.e., 500 negative exam-
ples for SRE-08, 300 negative examples for SRE-10). Ta-
ble 3 shows the results of the best background dataset se-
lected by the Listwise Ranking method and our proposed
ErrDiff selection method. Again, 2718 utterances from the
SRE-04 and SRE-05 are used as the background dataset, and
subsequently 15 candidate background datasets are evalu-
ated as potential background datasets for the baseline sys-
tem. For each background dataset, the background size is in-
cremented by 100 until it reaches 1000, and then by 200 un-
til it reaches 2000 to represent the negative examples in the
dataset, as previously shown in Fig. 2. The proposed ErrDiff
selection method uses 8 distinct background datasets, incre-
mentally by 100 from 200 up until 900, and separate exam-
ples are used for the error estimation calculation. For SRE-
08, a fixed-size background dataset of 500 gave the best re-
sult of minDCF equal to 0.543, while the proposed ErrDiff
selection method gave a slightly better level of performance
with minDCF equals 0.542. Subsequently, the background
dataset of size 500 is also applied to the SRE-10 evaluation,
and the proposed method also shows an improve minDCF
performance of 0.547, resulting in a +6 % relative improve-
ment from the best result. The best performance for SRE-10
data with a fixed background number of 300 is a minDCF
of 0.575, while the proposed method outperforms this with
a minDCF of 0.547. This highlights the consistency of the
proposed ErrDiff selection process in ensuring performance
for unseen test data.

7 Discussion and conclusions

There is consensus in the speaker ID community that
a fusion of sub-systems such as: (i) i-vector, (ii) GSV-
SVM (Gaussian Supportvector with SVM backend), and
(iii) GMM-UBM can provide complimentary strengths and
improve overall system performance. Therefore, effective
data selection for SVM speaker ID remains an important
research challenge. In this study, a new method was pro-
posed to find the best background dataset for SVM con-
struction without fixing a number of negative examples for
every speaker model. The use of a novel ranking method
to rank the candidate negative examples, and the criterion
of the most ErrDiff difference is used to select the most
suitable background dataset for each target speaker. This
background dataset is then used as the negative examples
for training the target speaker model. In this manner, target
speakers are trained with the most effective informative and
flexible size of negative speaker examples.

Experimental validations with a pool of background
speakers drawn from the NIST SRE-04 and SRE-05 datasets
showed that the selection of the background dataset using
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the ErrDiff method resulted in the best performance in terms
of both minDCF and EER. The selection of the background
dataset using ErrDiff is also more robust for new unseen
data than selecting a prior fixed number dataset. The pro-
posed method also enables the resulting system to reach the
minDCF for a new background dataset or evaluation data.

For future work, a range of alternative kernels could be
studied to project the support vectors into higher dimen-
sions. Alternative ranking methods and accurate expectation
of the error bound of the SVM can also be studied to select
an even more effective background dataset, perhaps condi-
tioned on fixed computing resources. An automatic mea-
surement of the percentage used for the bottom test evalu-
ation dataset could also help in further establishing a fully
automatic system configuration. This work has therefore es-
tablished a speaker model selection and score normalization
process that provides both effective and consistent perfor-
mance for speaker recognition.
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