
Vol:.(1234567890)

International Journal of Parallel Programming (2020) 48:652–674
https://doi.org/10.1007/s10766-020-00664-0

1 3

Resource‑Aware Data Parallel Array Processing

Clemens Grelck1 · Cédric Blom2

Received: 15 October 2019 / Accepted: 27 May 2020 / Published online: 9 June 2020
© The Author(s) 2020

Abstract
Malleable applications may run with varying numbers of threads, and thus on var-
ying numbers of cores, while the precise number of threads is irrelevant for the
program logic. Malleability is a common property in data-parallel array process-
ing. With ever growing core counts we are increasingly faced with the problem of
how to choose the best number of threads. We propose a compiler-directed, almost
automatic tuning approach for the functional array processing language SaC. Our
approach consists of an offline training phase during which compiler-instrumented
application code systematically explores the design space and accumulates a per-
sistent database of profiling data. When generating production code our compiler
consults this database and augments each data-parallel operation with a recommen-
dation table. Based on these recommendation tables the runtime system chooses the
number of threads individually for each data-parallel operation. With energy/power
efficiency becoming an ever greater concern, we explicitly distinguish between two
application scenarios: aiming at best possible performance or aiming at a beneficial
trade-off between performance and resource investment.

1 Introduction

Single Assignment C (SaC) is a purely functional, data-parallel array language
[17, 19] with a C-like syntax (hence the name). SaC features homogeneous, multi-
dimensional, immutable arrays and supports both shape- and rank-generic program-
ming: SaC functions may not only abstract from the concrete shapes of argument
and result arrays, but even from their ranks (i.e. the number of dimensions). A key
motivation for functional array programming is fully compiler-directed parallelisa-
tion for various architectures. From the very same source code the SaC compiler

 * Clemens Grelck
 C.Grelck@uva.nl

 Cédric Blom
 CedricBlom@outlook.com

1 University of Amsterdam, Amsterdam, Netherlands
2 Delft University of Technology, Delft, Netherlands

http://orcid.org/0000-0003-3003-1388
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-020-00664-0&domain=pdf

653

1 3

International Journal of Parallel Programming (2020) 48:652–674

supports general-purpose multi-processor and multi-core systems [16], CUDA-
enabled GPGPUs [21], heterogeneous combinations thereof [11] and, most recently,
clusters of workstations [26].

One of the advantages of a fully compiler-directed approach to parallel execution
is that compiler and runtime system are technically free to choose any number of
threads for execution, and by design the choice cannot interfere with the program
logic. We call this characteristic property malleability. Malleability raises the central
question of this paper: what would be the best number of threads to choose for the
execution of a data-parallel operation? This choice depends on a number of factors,
including but not limited to

• the number of array elements to compute,
• the computational complexity per array element and
• architecture characteristics of the compute system used.

For a large array of computationally challenging values making use of all available
cores is a rather trivial choice on almost any machine. However, smaller arrays, less
computational complexity or both inevitably lead to the observation illustrated in
Fig. 1. While for a small number of threads/cores we often achieve almost linear
speedup, the additional benefit of using more of them increasingly diminishes until
some (near-)plateau is reached. Beyond this plateau using even more cores often
shows a detrimental effect on performance.

This common behaviour [28–30, 32] can be attributed to essentially two inde-
pendent effects. First, on any given system off-chip memory bandwidth is limited,
and some number of actively working cores is bound to saturate it. Second, organi-
sational overhead typically grows super-linearly.

We can distinguish two scenarios for choosing the number of threads. From a
pure performance perspective we would aim at the number of threads that yield the

S
p

ee
d

u
p

1 4 8 12 2016 24

1

4

12

8

16
top performance

performance equilibrium

Number of threads/cores

Fig. 1 Typical speedup graph observed for multi-core execution

654 International Journal of Parallel Programming (2020) 48:652–674

1 3

highest speedup. In the example of Fig. 1 that would be 16 threads. However, we
typically observe a performance plateau around that optimal number. In the given
example we can observe that from 12 to 20 threads the speedup obtained only mar-
ginally changes. As soon as computing resources are not considered available for
free, it does make a big difference if we use 12 cores or 20 cores to obtain equiva-
lent performance. The 8 additional cores in the example of Fig. 1 could more pro-
ductively be used for other tasks or powered down to save energy. This observation
leaves us with two application scenarios:

• Aiming at best possible performance, the traditional HPC view, or
• aiming at a favourable trade-off between resources and performance.

Outside extreme high performance computing (HPC) the latter policy becomes more
and more relevant. Here, we are looking at the gradient of the speedup curve. If the
additional performance benefit of using one more core/thread drops below a certain
threshold, we constitute that we have reached the optimal (with respect to the chosen
policy) number of threads.

In classical, high performance oriented parallel computing our issues have hardly
been addressed because in this area users have typically strived for solving the larg-
est possible problem size that still fits the constraints of the computing system used.
In today’s ubiquitous parallel computing [4], however, the situation has completely
changed, and problem sizes are much more often determined by problem charac-
teristics than machine constraints. But even in high performance computing some
problem classes inevitably run into the described issues: multi-scale methods. Here,
the same function(s) is/are applied to arrays of systematically varied shape and size
[15].

We illustrate multi-scale methods in Fig. 2 based on the example of the NAS
benchmark MG (multigrid) [3, 15]. In this so-called v-cycle algorithm (A glimpse at
Fig. 2 suffices to understand the motivation of the name.) we start the computational
process with a 3-dimensional array of large size and then systematically reduce the
size by half in each dimension. This process continues until some predefined mini-
mum size is reached, and then the process is sort of inverted and array sizes now
double in each dimension until the original size is reached again. The whole process
is repeated many times until some form of convergence is reached.

Since an array’s size determines the break-even point of parallel execution, the
best number of threads is different on the various levels of the v-cycle. Regardless
of the overall problem size, we always reach problem sizes where using the total
number of threads yields suboptimal performance before purely sequential execu-
tion becomes the best choice.

All the above examples and discussions lead to one insight: in most non-triv-
ial applications we cannot expect to find the one number of threads that is best
across all data-parallel operations. This is the motivation for our proposed smart
decision tool that aims at selecting the right number of threads for execution
on the basis of individual data-parallel operations and user-configurable gen-
eral policy in line with the two usage scenarios sketched out above. The smart
decision tool is meant to replace a much more coarse-grained solution that SaC

655

1 3

International Journal of Parallel Programming (2020) 48:652–674

shares with many other high-level parallel languages: a rather simple heuristic
decides whether to effectively execute a data-parallel operation in parallel or
sequentially.

Our smart decision tool is based on the assumption that for many data-par-
allel operations the best choice in either of our two usage scenario neither is
to use all cores for parallel execution nor to only use a single core for com-
pletely sequential execution. We follow a two-phase approach that distinguishes
between offline training runs and online production runs of an application. In
training mode compilation we instrument the generated code to produce an indi-
vidual performance profile for each data-parallel operation. In production mode
compilation we associate each data-parallel operation with an oracle that based
on the performance profiles gathered offline chooses the number of threads
based on the array sizes encountered at production runtime.

The distinction between training and production modes has the disadvan-
tage that users need to explicitly and consciously use the smart decision tool.
One could think of a more seamless and transparent integration where applica-
tions silently store profiling data in a database all the time. We rejected such an
approach due to its inevitable adverse effects on production mode performance.

The remainder of the paper is organised as follows. Section 2 provides some
background information on SaC and its compilation into multithreaded code. In
Sects. 3 and 4 we describe our proposed smart decision tool in detail: training
mode and production mode, respectively. In Sect. 5 we outline necessary modi-
fications of SaC’s runtime system. Some preliminary experimental evaluation
is discussed in Sect. 6. Finally, we sketch out related work in Sect. 7 before we
draw conclusions in Sect. 8.

k

P

0 1 V−cycles

Fine2Coarse

2 x
k

2
k

x2

Smooth

Fine2Coarse

Fine2Coarse

Resid
A

P

k = 2

k = 1

k = 3

k = 4

grid size

Coarse2Fine

Resid
A

Smooth
S

Q Coarse2Fine

A S A
ResidSmoothResid

Smooth

Coarse2Fine

Resid
A S

Q

S
QP

Fig. 2 Algorithmic v-cycle structure of NAS benchmark MG as a representative of multi-scale methods,
reproduced from [15]

656 International Journal of Parallel Programming (2020) 48:652–674

1 3

2 SAC: Language and Compiler

As the name “Single Assignment C” suggests, SaC combines a purely functional
semantics based context-free substitution of expressions with a C-like syntax and over-
all look-and-feel. This design is meant to facilitate adoption in compute-intensive appli-
cation domains, where imperative concepts prevail. We interpret assignment sequences
as nested let-expressions, branches as conditional expressions and loops as syntactic
sugar for tail-recursive functions; details can be found in [19]. All syntactic constructs
adopted from C show precisely the same operational behaviour as in C proper. This
allows programmers to choose their favourite interpretation of SaC code while the SaC
compiler exploits the absence of side-effects for advanced optimisation and automatic
parallelisation.

SaC provides genuine support for truly multidimensional and truly stateless/func-
tional arrays using a shape-generic style of programming: any SaC expression evalu-
ates to an array, and arrays are passed to and from functions call-by-value. Array types
include arrays of fixed shape, e.g. int[3,7], arrays of fixed rank, e.g. int[.,.],
and arrays of any rank, e.g. int[*]. The latter include scalars, which we consider
rank-0 arrays with an empty shape vector.

SaC only features a very small set of built-in array operations, among others to
query for rank and shape or to select array elements. Aggregate array operations are
specified in SaC itself using with-loop array comprehensions:

Here, the keyword genarray characterises the with-loop as an array comprehen-
sion that defines an array of shape shape. The default element value is default, but we
may deviate from this default by defining one or more index partitions between the
keywords with and genarray.

Here, lower_bound and upper_bound denote expressions that must evaluate to inte-
ger vectors of equal length. They define a rectangular (generally multidimensional)
index set. The identifier idxvec represents elements of this set, similar to induction vari-
ables in for-loops. In contrast to for-loops, we deliberately do not define any order on
these index sets. We call the specification of such an index set a generator and associate
it with some potentially complex SaC expression that is in the scope of idxvec and thus
may access the current index location. As an example, consider the with-loop

657

1 3

International Journal of Parallel Programming (2020) 48:652–674

with-loops are extremely versatile. In addition to the dense rectangular index parti-
tions, as shown above, SaC supports also strided generators. In addition to the genar-
ray-variant, SaC features further variants, among others for reduction operations.
Furthermore, a single with-loop may define multiple arrays or combine multiple array
comprehensions with further reduction operations, etc. For a complete, tutorial-style
introduction to SaC as a programming language we refer the interested reader to [17].

Compiling SaC programs into efficiently executable code for a variety of parallel
architectures is a challenge, where with-loops play a vital role. Many of our optimisa-
tions are geared towards the composition of multiple with-loops into one [20]. These
compiler transformations systematically improve the ratio between productive com-
puting and organisational overhead. Consequently, when it comes to generating mul-
tithreaded code for parallel execution on multi-core systems, we focus on individual
with-loops. with-loops are data-parallel by design: any with-loop can be executed in
parallel. The subject of our current work is: should it?

So far, the SaC compiler has generated two alternative codes for each with-loop: a
sequential and a multithreaded implementation. The choice which route to take is made
at runtime based on two criteria:

• If the size of an index set is below a configurable threshold, we evaluate the with-
loop sequentially.

• If program execution is already in parallel mode, we evaluate nested with-loops
sequentially.

Multithreaded program execution follows an offload (or fork/join) model. Program exe-
cution always starts in single-threaded mode. Only when execution reaches a with-loop
for which both above criteria for parallel execution are met, worker threads are created.
These worker threads join the master thread in the data-parallel execution of the with-
loop. A with-loop-scheduler assigns index space indices to worker threads according to
one of several scheduling policies. At last, the master thread resumes single-threaded
execution following a barrier synchronisation. We refer the interested reader to [16] for
all details.

658 International Journal of Parallel Programming (2020) 48:652–674

1 3

3 Smart Decision Tool Training Mode Compilation

The proposed smart decision tool consists of two modes: we first describe the train-
ing mode in this section and then focus on the production mode in the following
section. When compiling for smart decision training mode, the SaC compiler instru-
ments the generated multithreaded code in such a way that

• For each with-loop and each problem size found in the code we systematically
explore the entire design space regarding the number of threads;

• We repeat each experiment sufficiently many times to ensure a meaningful tim-
ing granularity while avoiding excessive training times;

• Profiling data is stored in a custom binary database.

At the same time we aim at keeping the smart decision training code as orthogo-
nal to the existing implementation of multithreading as possible, mainly for gen-
eral software engineering concerns. Figure 3 shows pseudo code that illustrates the
structure of the generated code. To make the pseudo code as concrete as possible,
we pick up the example with-loop introduced in Sect. 2.

The core addition to our standard code generation scheme is a do-while-
loop plus a timing facility wrapped around the original code generated from our
with-loop. Let us briefly explain the latter first. The pseudo function Start-
Threads is meant to lift the start barrier for num_threads worker threads.
They subsequently execute the generated function spmd_fun that contains most

size = 5 * 5;

A = allocate_memory(size * sizeof(int));

spmd_frame.A = A;
num_threads = 1;
repetitions = 1;

do {
start = get_real_time ();

for (int i=0; i<repetitions; i++) {
StartThreads(num_threads , spmd_fun , spmd_frame);
spmd_fun(0, num_threads , spmd_frame);

}

stop = get_real_time ();

repetitions , num_threads
= TrainingOracle (unique_id , size , num_threads , max_threads ,

repetitions , start , stop);
}
while (repetitions > 0);

Fig. 3 Compiled pseudo code of the example with-loop from Sect. 2 in smart decision training mode.
The variable max_threads denotes a user- or system-controlled upper limit for the number of threads
used

659

1 3

International Journal of Parallel Programming (2020) 48:652–674

of the code generated from the with-loop, among others the resulting nesting of
C for-loops, the with-loop-scheduler and the stop barrier. The record spmd_
frame serves as a parameter passing mechanism for spmd_fun. In our concrete
example, it merely contains the memory address of the result array, but in general
all values referred to in the body of the with-loop are made available to all worker
threads via spmd_frame. After lifting the start barrier, the master thread tem-
porarily turns itself into a worker thread by calling spmd_fun directly via a con-
ventional function call. Note that the first argument given to spmd_fun denotes
the thread ID. All worker threads require the number of active threads (num_
threads) as input for the with-loop-scheduler.

Coming back to the specific code for smart decision training mode, we imme-
diately identify the timing facility, which obviously is meant to profile the code,
but why do we wrap the whole code within another loop? Firstly, the functional
semantics of SaC and thus the guaranteed absence of side-effects allow us to
actually execute the compiled code multiple times without affecting semantics.
In a non-functional context this would immediately raise a plethora of concerns
whether running some piece of code repeatedly may have an impact on applica-
tion logic.

However, the reason for actually running a single with-loop multiple times is
to obtain more reliable timing data. A-priori we have no insight into how long the
with-loop is going to run. Shorter runtimes often result in greater relative vari-
ety of measurements. To counter such effects, we first run the with-loop once to
obtain an estimate of its execution time. Following this initial execution a train-
ing oracle decides about the number of repetitions to follow in order to obtain
meaningful timings while keeping overall execution time at acceptable levels.

In addition to controlling the number of repetitions our training oracle sys-
tematically varies the effective number of threads employed. More precisely, the
training oracle implements a three step process:

Step 1: Dynamically adjust the time spent on a single measurement iteration to
match a certain pre-configured time range. During this step the with-loop is exe-
cuted once by a single thread, and the execution time is measured. Based on this
time the training oracle determines how often the with-loop could be executed
without exceeding a configurable time limit, by default 500 ms.

Step 2: Measure the execution time of the with-loop while systematically varying
the number of threads used. This step consists of many cycles, each running the
with-loop as many times as determined in step 1. After each cycle the execution
time of the previous cycle is stored, and the number of threads used during the
next cycle is increased by one.

Step 3: Collect measurement data to create a performance profile that is stored on
disk. During this step all time measurements collected in step 2 are packaged
together with three characteristic numbers of the profile: a unique identifier of the
with-loop, the size of the index set (problem size) and the number of repetitions
in step 1. The packaged data is stored in the application-specific binary smart
decision database file on disk.

660 International Journal of Parallel Programming (2020) 48:652–674

1 3

Let us have a closer look into the third step. In training mode the SaC compiler
determines the unique identifier of each with-loop by simply counting all with-
loops in a SaC module. The resulting identifier is compiled into the generated
code as one argument of the training oracle. Here, it is important to understand
that we do not count the with-loops in the original source code written by the
user, but those in the intermediate representation after substantial program trans-
formations by the compiler.

Possibly in contrast to readers’ expectations we do not systematically vary the
problem size, although quite obviously the problem size has a major impact on
execution time as well as on the optimal number of threads to be used. Our ration-
ale is twofold: firstly, it is quite possible (and hard to rule out for a compiler) that
the problem size does affect the program logic (not so in our simplistic running
example, of course). For example, the NAS benchmark MG, that we referred to
in Sect. 1, assumes 3-dimensional argument arrays whose extents along each of
the three axes are powers of two. Silently running the code for problem sizes
other than the ones prescribed by the application, may lead to unexpected and
undesired behaviour, including runtime errors. Secondly, only the user applica-
tion knows the relevant problem sizes. Unlike the number of threads, whose alter-
native choices are reasonably restricted by the hardware under test, the number
of potential problem sizes is theoretically unbounded and practically too large to
systematically explore.

The organisation of the binary database file in rows of data is illustrated in
Fig. 4. Each row starts with the three integer numbers that characterise the meas-
urement: with-loop id, problem size (index set size) and number of repetitions,
each in 64-bit representation. What follows in the row are the time measurements
with different numbers of threads. Thus, the length of the row is determined by
the preset maximum number of threads. For instance, the first row in Fig. 4 con-
tains a total of seven numbers: the three characteristic numbers followed by pro-
filing data for one, two, three and four threads, respectively. The second row in
Fig. 4 accordingly stems from a training of the same application with the maxi-
mum number of threads set to two.

The smart decision tool recognises a database file by its name. We use the fol-
lowing naming convention:

Both name and architecture are set by the user through corresponding com-
piler options when compiling for training mode. Otherwise, we use suitable default
values. The field #threads is the preset maximum number of threads.

����.name.architecture.#threads.��.

Fig. 4 Illustration of training database rows: ID: unique with-loop identifier, PS: problem size (index set
size), NI: number of repetitions, Tn: measured time using n threads

661

1 3

International Journal of Parallel Programming (2020) 48:652–674

The name option is primarily meant for experimenting with different compiler
options and/or code variants and, thus, allows us to keep different smart decision
databases at the same time. The architecture option reflects the fact that the
system on which we run our experiments and later the production code crucially
affects our measurements. Profiling data obtained on different systems are usually
incomparable.

4 Smart Decision Tool Production Mode Compilation

Continuous training leads to a collection of database files. In an online approach
running applications would consult these database files in deciding about the num-
ber of threads to use for each and every instance of a with-loop encountered during
program execution. However, locating the right database in the file system, read-
ing and interpreting its contents and then making a non-trivial decision would incur
considerable runtime overhead. Therefore, we decided to consult the database files
created by training mode binaries when compiling production binaries. This way we
can move almost all overhead to production mode compile time while keeping the
actual production runtime overhead minimal. In production mode the SaC compiler
does three things with respect to the smart decision tool:

1. It reads the relevant database files;
2. It merges information from several database files;
3. It creates a recommendation table for each with-loop.

These recommendation tables are compiled into the SaC code. They are used by the
compiled code at runtime to determine the number of threads to execute each indi-
vidual with-loop.

The combination of name and architecture must match with at least one
database file, but it is well possible that a specific combination matches with several
files, for example if the training is first done with a maximum of two threads and
later repeated with a maximum of four threads. In such cases we read all matching
database files for any maximum number of threads and merge them. The merge pro-
cess is executed for each with-loop individually.

Database rows are merged pairwise, as illustrated in Fig. 5. First, a mini-database
is created in memory to store the merged rows. Second, the rows from the subselec-
tion are read one by one and prepared for merging: The number of repetitions (NI)
of the row is copied in front of each time measurement (Fig. 5b). Rows are padded
with empty entries where needed to make all rows as long as the one resulting from
running the largest number of threads (Fig. 5c). Third, the position of each row in
the mini-database is determined using rank sort. The problem size (PS) of each row
is used as index for the rank sort algorithm. Rows with the same index become new
rows in the mini-database. If two or more rows have the same index (e.g. they have
the same problem size), they are merged by simply adding the repetition numbers
and time measurements of the corresponding columns (Fig. 5d). Finally, all time

662 International Journal of Parallel Programming (2020) 48:652–674

1 3

measurements are divided by the corresponding problem sizes to compute the aver-
age execution time of the with-loop, which is likewise stored in the mini-database.

Following the merge process, the compiler creates a recommendation table for
each with-loop, based on the in-memory mini-database. This recommendation
table consists of two columns. The first column contains the different problem
sizes encountered during training. The second column holds the corresponding
recommended number of threads. Recommendations are computed based on the
average execution times in relation to the problem sizes. Average execution times
are turned into a performance graph by taking the inverse of each measurement
and normalising it to the range zero to one.

To diminish the effect of outliers we use fourth-order polynomial interpolation of
the measurement results. Then, we determine the gradient between any two adjacent
numbers of threads and compare it with a configurable threshold gradient (default:
10◦). The recommended number of threads is the highest number of threads for
which the gradient towards using one more thread is above the gradient threshold.
The gradient threshold is the crucial knob whether to tune for performance alone or
for performance/energy trade-offs. At last, the entire recommendation table is com-
piled into the production SaC code, just in front of the corresponding with-loop.

(a)

(b)

(c)

(d)

Fig. 5 Illustration of database row merging

663

1 3

International Journal of Parallel Programming (2020) 48:652–674

The runtime component of the smart decision production code is kept as lean
and as efficient as possible. When reaching some with-loop during execution, we
compare the actual problem size encountered with the problem sizes in the recom-
mendation table. If we find a direct match, the recommended number of threads is
taken from the recommendation table. If the problem size is in between two problem
sizes in the recommendation table, we use linear interpolation to estimate the opti-
mal number of threads. If the actual problem size is smaller than any one in the rec-
ommendation table, the recommended number of threads for the smallest available
problem size used. In case the actual problem size exceeds the largest problem size
in the recommendation table, the recommended number of threads for the largest
problem size in the table is used. So, we do interpolation, but refrain from extrapola-
tion beyond both the smallest and the largest problem size in the recommendation
table.

5 Smart Decision Tool Runtime System Support

In this section we describe the extensions necessary to actually implement the deci-
sions made by the smart decision tool at runtime. SaC programs compiled for mul-
tithreaded execution alternate between sequential single-threaded and data-parallel
multithreaded execution modes. Switching from one mode to the other is the main
source of runtime overhead, namely for synchronisation of threads and communica-
tion of data among them. As illustrated in Fig. 6, start and stop barriers are respon-
sible for the necessary synchronisation and communication, but likewise for the cor-
responding overhead. Hence, their efficient implementation is crucial.

SaC’s standard implementations of start and stop barriers are based on active
waiting, or spinning. More precisely, a waiting thread continuously polls a certain
memory location until that value is changed by another thread. This choice is moti-
vated by the low latency of spinning barriers in conjunction with the expectation
that SaC applications typically spend most execution time in multithreaded execu-
tion mode [16]. Thus, threads are expected to never wait long at a start barrier for
their next activation while load balancing scheduling techniques ensure low waiting
times at stop barriers.

In addition to the runtime constant max_threads that denotes the number of
threads that exist for execution we introduce the runtime variable num_threads
that denotes the actual number of threads to be used as determined by our oracle,
as illustrated in Fig. 6. We modify start and stop barriers to limit their effectiveness
to the first num_threads threads from the the thread pool. with-loop-schedulers
do not assign any work to threads with ID beyond num_threads. These threads
immediately hit the stop barrier and proceed to the subsequent start barrier.

Spinning barriers are of little use for the performance/energy trade-off scenario
of our work. From the operating system perspective, it is indistinguishable whether
some thread productively computes or whether it waits at a spinning barrier. While
spinning a thread consumes as much energy as during productive computing.
Therefore, we experiment with three non-spinning barrier implementations that
suspend and re-activate threads as needed: the built-in PThread barrier, a custom

664 International Journal of Parallel Programming (2020) 48:652–674

1 3

implementation based on condition variables and one that is solely based on mutex
locks; for details see [18].

6 Experimental Evaluation

We evaluate our approach with a series of experiments using two different machines.
The smaller one is equipped with two Intel Xeon quad-core E5620 processors with
hyperthreading enabled. These eight hyperthreaded cores run at 2.4 GHz; the entire
system has 24 GB of memory. Our larger machine features four AMD Opteron 6168
12-core processors running at 1.9 GHz and has 128 GB of memory. Both systems
are operated in batch mode giving us exclusive access for the duration of our experi-
ments. We refer to these systems as the Intel and as the AMD system from here on.

Before exploring the actual smart decision tool, we investigate the runtime behav-
iour of the four barrier implementations sketched out in the previous section. In
Fig. 7 we show results obtained with a synthetic micro benchmark that puts maxi-
mum stress on the barrier implementations. We systematically vary the number of
cores and show actual wall clock execution times.

Two insights can be gained from this initial experiment. Firstly, from our three
non-spinning barrier implementations the one based on condition variables clearly
performs best across all thread counts. Therefore, we restrict all further experiments

0

21 3 4 5 6 7

0

21 3 4 5 6 7

Single−threaded startup

Program termination

Thread termination

Thread creation

Stop barrier

Start barrier

Start barrier

Stop barrier

Start barrier

Stop barrier

Fig. 6 Multithreaded execution: start/stop barrier model with fixed number of threads (left) and proposed
model with fixed thread pool but tailor-made activations on a per with-loop basis (right)

665

1 3

International Journal of Parallel Programming (2020) 48:652–674

to this implementation as the representative of thread-suspending barriers and
relate its performance to that of the spinning barrier implementation. Secondly, we
observe a substantial performance difference between the spinning barrier on the
one hand side and all three non-spinning barriers on the other hand side. This exper-
iment demonstrates how well tuned the SaC synchronisation primitives are. Never-
theless, the experiment also shows that the performance/energy trade-off scenario
we sketched out earlier is not easy to address.

Before exploring the effect of the smart decision tool on any complex application
programs, we need to better understand the basic properties of our approach. There-
fore we use a very simple, almost synthetic benchmark throughout the remainder of
this section: repeated element-wise addition of two matrices. We explore two differ-
ent problem sizes, 50 × 50 and 400 × 400 , that have proven to yield representative
results for both spinning and non-spinning barriers. We first present experimental
results obtained on the AMD system with spinning barriers in Fig. 8.

For the larger problem size of 400 × 400 the human eye easily identifies that no
fundamental speedup limit is reached up to the 48 cores available. Nonetheless, an
intermediate plateau around 26 cores makes the smart (or not so smart) decision
tool choose to limit parallel activities at this level. For the smaller problem size of
50 × 50 we indeed observe the expected performance plateau, and the smart deci-
sion tool decides to limit parallelisation to 24 cores. Subjectively, this appears to to
be on the high side as 12 cores already achieve a speedup of 2.5, which is very close
to the maximum.

Trouble is we cannot realise the expected performance for higher thread num-
bers. Our expectation would be to keep a speedup of about 2.5 even if the maximum
number of threads is chosen at program start to be higher. We attribute this to the
fact that our implementations of the start barrier always activate all threads, regard-
less of what the smart decision tool suggests. Its recommendation merely affects the

Fig. 7 Scalability of our four barrier implementations on the 48-core AMD system; our results for the
Intel system are nearly identical

666 International Journal of Parallel Programming (2020) 48:652–674

1 3

with-loop-scheduler, which divides the available work evenly among a smaller num-
ber of active threads. We presume that this implementation choice inflicts too much
overhead in relation to the fairly small problem size, and synchronisation cost domi-
nate our observations.

We repeat the same experiments on the Intel system and show the results in
Fig. 9. In the 400 × 400 experiments we can clearly identify the hyperthreaded
nature of the architecture. For example in the 400 × 400 experiment with spinning
barriers speedups continuously grow up to eight threads, dramatically diminish for
9 threads and then again continuously grow up to 16 threads. What strikes us on the
Intel architecure is that for the 400 × 400 experiment we observe a substantial over-
head due to the smart decision tool. This is not the case on the AMD architecture,
and we have no tangible explanation for this observation. At the same time we can
observe for the 50 × 50 experiment that the smart decision tool leads to generally
improved performance, for which we likewise lack a convincing explanation.

In the 400 × 400 experiment in Fig. 9, however, we must observe that our tool
does not properly detect the obvious sweet spot of using 8 cores. This must be
attributed to our fourth-order polynomial interpolation (see Sect. 4) of the dis-
crete measurements. The choice of fourth-order polynomial interpolation was

Fig. 8 Performance on AMD 48-core system with and without the proposed smart decision tool for two
different problem sizes and spinning barrier implementation; smart decision tool recommendations: 26
and 24

Fig. 9 Performance on Intel 8-core hyperthreaded system with and without the proposed smart decision
tool for two different problem sizes and spinning barrier implementation; smart decision tool recommen-
dations: 9 and 9

667

1 3

International Journal of Parallel Programming (2020) 48:652–674

made in anticipation of speedup curves like the one shown in Fig. 1, but not as
the one actually observed in Fig. 9. The interpolation suggests a speedup when
going from 8 cores to 9 cores that we (unsurprisingly) cannot observe in practice.
Knowing the architecture of the Intel system it is of little comfort that the pre-
diction for the 50 × 50 experiment turns out to be spot-on, at least based on the
default figures without using the smart decision tool.

We repeat all experiments using suspending barriers instead of spinning barriers
and report the results in Fig. 10 for the AMD system and in Fig. 11 for the Intel sys-
tem, respectively. We can immediately recognise the considerably higher overhead
of suspending barriers (see Fig. 7) that makes the 400 × 400 graph for suspending
barriers resemble the 50 × 50 graph for spinning barriers. Again, the fourth-order
polynomial interpolation leads to a slight misprediction of the optimal thread count.

Running the 50 × 50 experiment with suspending barriers even results in a
severe slowdown. Still, we can observe that our original, motivating assumption
indeed holds: the best possible performance is neither achieved with one core nor
with 48 cores, but in this particular case with two cores.

On the Intel system (Fig. 11) we observe variations of similar behaviour as
in our previous experiments. The use of suspending barriers instead of spinning

Fig. 10 Performance on AMD 48-core system with and without the proposed smart decision tool for two
different problem sizes and suspending barrier implementation; smart decision tool recommendations: 24
and 1

Fig. 11 Performance on Intel 8-core hyperthreaded system with and without the proposed smart decision
tool for two different problem sizes and suspending barrier implementation; smart decision tool recom-
mendations: 9 and 1

668 International Journal of Parallel Programming (2020) 48:652–674

1 3

barriers induces major overhead, and the unanticipated speedup curve on the
hyperthreaded architecture irritates our smart decision tool such that it is again
off by one core or thread for the larger problem size 400 × 400.

Although the observation is more pronounced on the Intel system, we see a
similar unanticipated speedup curve on the AMD system: linear speedup up to four
threads followed by a sharp performance drop and more speedups when increasing
the thread count further. While this again can be explained by the underlying sys-
tem configuration of the AMD system with four processors with 12 cores each, this
unanticipated behaviour irritates our tool.

7 Related Work

Many parallel programming approaches provide basic means to switch off parallel
execution of otherwise parallel loops. For example, Chapel[5] provides the com-
mand line option –dataParMinGranularity to set a minimum problem size
for parallel execution of implicitly data-parallel operations on a per program basis.
Prior to our current work, the SaC compiler adopted a similar strategy: at compile
time users may set a minimum index set size for parallel execution of with-loops,
and the generated code decides at runtime between sequential and parallel execution
based on the given threshold [16].

The if-clause of openMp[9] allows programmers to toggle the execution of par-
allel code regions between sequential execution by the master thread and fully par-
allel execution by all threads based on the runtime values of variables specifically
for individual parallel regions. openMp 2.0 introduced the num_threads-clause,
which allows programmers to precisely specify the number of threads to be used for
each parallelised loop. Like in the if-clause, the num_threads-clause contains
an arbitrary C or fortran expression that may access all program variables in scope.
However, programmers are completely on their own when using these features of
openMp.

This gap is filled by a multitude of performance analysis and tuning tools as
for example Intel’s VTune [22]. Corresponding guidelines [13] explain the issues
involved. These tools and methodologies allow performance engineers to manu-
ally tune effective parallelism in individual data-parallel operations to data set sizes
and machine characteristics, but the process is highly labour-intensive if not to say
painful.

In contrast, our approach is automatic with the sole exception that users must
explicitly compile their source for training and for production mode and run train-
ing codes on representative input data. Furthermore, our approach works on inter-
mediate code after far-reaching code restructuring through compiler optimisation,
whereas manual tuning operates on source code, which restricts the effectiveness of
compiler transformations and suffers from decoupling between source and binary
code.

With respect to automation, feedback-driven threading [32] proposed by Suleman
et al. even goes a step further than we do and advocates a completely implicit solu-
tion: In an openMp-parallelised loop they peel off up to 1% of the initial iterations.

669

1 3

International Journal of Parallel Programming (2020) 48:652–674

These initial iterations are executed by a single thread while hardware performance
monitoring counters collect information regarding off-chip memory bandwidth and
cycles spent in critical sections. Following this initial training phase the generated
code evaluates the hardware counters and predicts the optimal number of threads to
be used for the remaining bulk of iterations based on a simple analytical model.

Despite the beauty of being completely transparent to users, the approach of feed-
back-driven threading has some disadvantages. Considerable overhead is introduced
at production runtime for choosing the (presumably) best number of threads. This
needs to be offset by more efficient parallel execution before any total performance
gain can be realised. Peeling off and sequential execution of up to 1% of the loop
iterations restricts potential gains of parallelisation according to Amdahl’s law. This
is a (high) price to be paid for every data-parallel operation, including all those that
would otherwise perfectly scale when simply using all available threads.

In contrast to our approach, Suleman et al. do not carry over any information
from one program run to the next and, thus, cannot reduce the overhead of feedback-
driven threading. Moreover, they rely on the assumption that the initial iterations of
a parallelised loop are representative for all remaining iterations, whereas we always
measure the entire data-parallel operation.

Cytowski and Szpindler [8] pursue a similar approach as Suleman et al. with their
SOMPARlib. Restricted to a specific application design with a central, identifiable
simulation loop they run and profile the first N iterations of that loop with differ-
ent numbers of threads, starting with the maximum number and then systematically
reducing the number dividing by two. All remaining iterations are then run with the
best performing number of threads. This approach has about the same drawbacks as
that of Suleman et al. Moreover, we understand that thread counts are not individu-
ally determined per OpenMP parallel code region.

Pusukuri et al. proposed ThreadReinforcer [29]. While their motivation is similar
to ours, their proposed solution differs in many aspects. Most importantly, they treat
any application as a black box and determine one single number of threads to be
used consistently throughout the application’s life time. Similar to feedback-driven
threading by Suleman et al. ThreadReinforcer integrates learning and analysis into
application execution. This choice creates overhead, that only pays off for long-run-
ning applications. At the same time, having the analysis on the critical path of appli-
cation performance immediately creates a performance/accuracy trade-off dilemma.
In contrast, we deliberately distinguish between training mode and production mode
in order to train an application as long as needed and to accumulate statistical infor-
mation in persistent storage without affecting application production performance.

Another approach in this area is ThreadTailor [24]. Here, the emphasis lies on
weaving threads together to reduce synchronisation and communication overhead
where available concurrency cannot efficiently be exploited. This scenario differs
from our setting in that we explicitly look into malleable data-parallel applications.
Therefore, we are able to set the number of active threads to our liking and even dif-
ferently from one data-parallel operation to another.

Much work on determining optimal thread numbers on multi-core processors,
such as [23] or [1], stems from the early days of multi-core computing and are lim-
ited to the small core counts of that time. Furthermore, there is a significant body

670 International Journal of Parallel Programming (2020) 48:652–674

1 3

of literature studying power-performance trade-offs, e.g. [7, 25]. In a sense we also
propose such a trade-off, but for us performance and energy consumption are not
competing goals. Instead, we aim at achieving runtime performance within a margin
of the best performance observable with the least number of threads.

Specifically in the context of OpenMP Sreenivasan et al. [31] propose an autotun-
ing framework. This work goes beyond thread counts and includes scheduling tech-
nique and granularity (chunk size) in the parameter set, all on the basis of individual
parallel loops. Combining a compact parameter space description with model-based
search Sreenivasan et al. demonstrate the performance impact of (auto-)tuning.

In the area of parallel code skeletons Collins et al. [6] use machine learning tech-
niques to find near-optimal solutions in very large parallelisation parameter search
spaces. They demonstrate their tool MaSiF both on Intel TBB and on FastFlow [2].
Like with Sreenivasan et al.’s autotuning framework, MaSiF is designed to facilitate
application tuning for expert programmers, whereas our approach in the context of
SaC is explicitly geared at the casual user who expects decent performance (almost)
without extra effort.

Another parallel skeleton library is SkePU [12]. SkePU exploits the C++ tem-
plate mechanism to provide a number of data-parallel skeletons with implementa-
tions for sequential execution, multi-core execution using OpenMP as well as sin-
gle- and multi-GPU execution based on either CUDA or OpenCL. SkePU applies a
similar offline/online approach as we do for auto-tuning a range of execution param-
eters from OpenMP thread count for CPU-computing to grid size and block size for
GPU-computing to automatic selection of the best-suited hardware in relation to the
problem size [10]. SkePU does this on a per skeleton basis for the selected hardware,
but does not take application-specific argument functions into account.

Wang and O’Boyle apply machine learning techniques, namely artificial neural
networks, to find near-optimal openMp thread counts and scheduling techniques
[33]. Their approach is based on extracting a number of characteristic code features
at IR-level. They extract these feature vectors for a variety of representative bench-
marks to train the neural network following a supervised learning approach. Train-
ing is based on potential thread counts and scheduling policies on one side and on
their corresponding experimentally determined performance on the other side. The
resulting performance model can be integrated into a compiler to make static deci-
sions regarding thread count and scheduling policy based on the extracted features
of compiled programs and the trained neural network.

Highly optimising compilers work with numerous heuristics and thresholds that
are hard, if not impossible, to statically determine in any near-optimal way across
target architectures and applications. A comprehensive survey of machine learning
applied to compilation technology can be found in [34].

Coming back to SaC we mention the work by Gordon and Scholz [14]. They
aim at adapting the number of active threads in a data-parallel operation to vary-
ing levels of competing computational workload in a multi-core system that is not
in exclusive use of a single application. The goal is to avoid context switches and
thread migration and instead to vacate oversubscribed cores. For this purpose they
continuously monitor execution times of data-parallel operations. When observing
significant performance changes Gordon and Scholz adapt the number of threads of

671

1 3

International Journal of Parallel Programming (2020) 48:652–674

the running SaC application. Their work differs from ours not only in the underlying
motivation, but likewise in the pure online approach.

Moore and Childers [27] similarly address the problem of multiple multi-threaded
applications running the same multi-core system, but they use machine learning
techniques. Based on offline profiling data they build application utility models
using multi-dimensional linear regression. These application utility models are used
online to determine the distribution of compute resources among independently run-
ning and scheduled applications, including dynamic reconfiguration of applications
to change the number of threads.

8 Conclusions and Future Work

Malleability of data-parallel programs offer interesting opportunities for compilers
and runtime systems to adapt the effective number of threads separately for each
data-parallel operation. This could be exploited to achieve best possible runtime per-
formance or a good trade-off between runtime performance and resource investment.

We explore this opportunity in the context of the functional data-parallel array
language SaC, for which we propose a combination of instrumentation for offline
training, generation of production code with thread count oracles and runtime sys-
tem support. Offline training runs with instrumented code create persistent profiling
databases. Profiling data is incorporated into production code through recommenda-
tion tables. Last not least, the runtime system consults these recommendation tables
to effectively employ the recommended number of threads individually for each
data-parallel operation.

Following our experimental evaluation in Sect. 6, additional research is needed.
We must make our approach more robust to training data that does not expose a
shape as characteristic as in Fig. 1 and develop robust methods against outliers.
Here, the use of fourth-order polynomial interpolation is in particular critique.

Furthermore, we must refine our barrier implementations to activate worker
threads more selectively instead of merely not assigning worker threads actual work
to do by mean of with-loop-scheduling. And we plan to explore how we can speed
up suspension barriers in comparison to spinning barriers. A likely option to this
effect would be to use hybrid barriers that spin for some configurable time interval
before they suspend.

A particular problem that we initially underestimated is the by nature short exe-
cution time of those data-parallel operations for which our work is particularly rel-
evant. Consequently, overall performance is disproportionately affected by synchro-
nisation and communication overhead. Short parallel execution times likewise incur
large relative variation.

For the time being, our work is geared at SaC’s shared memory code generation
backend. While our technical solutions do not directly carry over to other backends,
both the problem addressed as well as the principle approach of automated offline
training and online database consultation do very well. For example, in our latest
distributed memory backend for cluster systems [26] the problem we investigate in

672 International Journal of Parallel Programming (2020) 48:652–674

1 3

this paper aggravates to two questions: how many nodes in a cluster to use and how
many cores per node to use.

In our CUDA-based GPGPU backend [21] the question boils down to when to
effectively use the GPU and when it would be beneficial to rather use the host CPU
cores only. Last not least, our heterogeneous systems backend [11] would strongly
benefit from automated support as to how many GPGPUs and how many CPU cores
to use for optimal execution time or performance/energy trade-off. In other words,
the work described in this paper could spawn a plethora of further research projects.

Acknowledgements This work received partial funding from the Erasmus+ Strategic Partnership for
Higher Education FE3CWS (Focusing Education on Composability, Comprehensibility and Correct-
ness of Working Software), under Grant Number 2017-1-SK01-KA203-035402. We thank the Advanced
School for Computing and Imaging (ASCI) for access to their compute infrastructure and the anonymous
reviewers for their valuable comments, suggestions and pointers to additional related work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Agrawal, K., He, Y., Hsu, W., Leiserson, C.: Adaptive task scheduling with parallelism feedback.
In: 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Processing (PPoPP’06).
ACM (2006)

 2. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: FastFlow: high-level and efficient stream-
ing on multi-core. In: Pllana, S., Xhafa, F. (eds.) Programming Multi-core and Many-Core Comput-
ing Systems. Wiley, New York (2014)

 3. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3), 63–73 (1991)
 4. Catanzaro, B., et al.: Ubiquitous parallel computing from Berkeley, Illinois, and Stanford. IEEE

Micro 30(2), 41–55 (2010)
 5. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language. Int. J.

High Perform. Comput. Appl. 21(3), 291–312 (2007)
 6. Collins, A., Fensch, C., Leather, H., Cole, M.: MaSiF: machine learning guided auto-tuning of

parallel skeletons. In: 20th International Conference on High Performance Computing (HiPC’13).
IEEE (2013)

 7. Curtis-Maury, M., Dzierwa, J., Antonopoulos, C., Nikolopoulos, D.: Online power-performance
adaptation of multithreaded programs using hardware event-based prediction. In: International Con-
ference on Supercomputing (ICS’06) (2006)

 8. Cytowski, M., Szpindler, M.: Auto-tuning of OpenMP Applications on the IBM Blue Gene/Q.
PRACE (2014)

 9. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory programming. IEEE
Trans. Comput. Sci. Eng. 5(1), 46–55 (1998)

 10. Dastgeer, U., Enmyren, J., Kessler, C.: Auto-tuning SkePU: a multi-backend skeleton programming
framework for multi-GPU systems. In: 4th International Workshop on Multicore Software Engineer-
ing (IWMSE’11). ACM (2011)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

673

1 3

International Journal of Parallel Programming (2020) 48:652–674

 11. Diogo, M., Grelck, C.:. Towards heterogeneous computing without heterogeneous programming. In:
13th Symposium on Trends in Functional Programming (TFP’12). LNCS 7829. Springer (2013)

 12. Enmyren, J., Kessler, C.: SkePU: a multi-backend skeleton programming framework for multi-GPU
systems. In: 4th International Workshop on High-Level Parallel Programming and Applications
(HLPP’10). ACM (2010)

 13. Gillespie, M., Breshears, C.: Achieving Threading Success. Intel Corporation, Santa Clara (2005)
 14. Gordon, S., Scholz, S.: Dynamic adaptation of functional runtime systems through external con-

trol. In: 27th International Symposium on Implementation and Application of Functional Languages
(IFL’15). ACM (2015)

 15. Grelck, C.: Implementing the NAS benchmark MG in SAC. In: 16th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’02). IEEE (2002)

 16. Grelck, C.: Shared memory multiprocessor support for functional array processing in SAC. J. Funct.
Program. 15(3), 353–401 (2005)

 17. Grelck, C.: Single Assignment C (SAC): high productivity meets high performance. In: 4th Central
European Functional Programming Summer School (CEFP’11). LNCS 7241. Springer (2012)

 18. Grelck, C., Blom, C.: Resource-aware data parallel array processing. In: 35th GI Workshop on Pro-
gramming Languages and Computing Concepts, Research Report 482, pp. 70–97. University of
Oslo (2019)

 19. Grelck, C., Scholz, S.-B.: SAC: a functional array language for efficient multithreaded execution.
Int. J. Parallel Program. 34(4), 383–427 (2006)

 20. Grelck, C., Scholz, S.-B.: Merging compositions of array skeletons in SAC. J. Parallel Comput.
32(7+8), 507–522 (2006)

 21. Guo, J., Thiyagalingam, J., Scholz, S.-B.: Breaking the GPU programming barrier with the auto-
parallelising SAC compiler. In: 6th Workshop on Declarative Aspects of Multicore Programming
(DAMP’11). ACM (2011)

 22. Intel: Threading Methodology: Principles and Practices. Intel Corporation, Santa Clara (2003)
 23. Jung, C., Lim, D., Lee, J., Han, S.: Adaptive execution techniques for SMT multiprocessor archi-

tectures. In: 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Processing
(PPoPP’05). ACM (2005)

 24. Lee, J., Wu, H., Ravichandram, M., Clark, N.: Thread tailor: dynamically weaving threads together
for efficient, adaptive parallel applications. In: 37th International Symposium on Computer Archi-
tecture (ISCA’10) (2010)

 25. Li, J., Martinez, J.: Dynamic power-performance adaptation of parallel computation on chip mul-
tiprocessors. In: 12th IEEE Symposium on High Performance Computer Architecture (HPCA’06).
ACM (2006)

 26. Macht, T., Grelck, C.: SAC goes cluster: fully implicit distributed computing. In: 33rd IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’19). IEEE (2019)

 27. Moore, R., Childers, B.: Building and using application utility models to dynamically choose thread
counts. J. Supercomput. 68(3), 1184–1213 (2014)

 28. Nieplosha, J., et al.: Evaluating the potential of multithreaded platforms for irregular scientific com-
putations. In: ACM International Conference on Computing Frontiers. ACM (2007)

 29. Pusukuri, K., Gupta, R., Bhuyan, L.: Thread reinforcer: dynamically determining number of threads
via OS level monitoring. In: International Symposium on Workload Characterization (IISWC’11).
IEEE (2011)

 30. Saini, S., et al.: A scalability study of Columbia using the NAS parallel benchmarks. J. Comput.
Methods Sci. Eng. (2006). https ://doi.org/10.12921 /cmst.2006.SI.01.33-45

 31. Sreenivasan, V., Javali, R., Hall, M., Balaprakash, P., Scogland, T., de Supinski, B.: A frame-
work for enabling OpenMP auto-tuning. In: OpenMP: Conquering the Full Hardware Spectrum
(IWOMP’19). LNCS 11718. Springer (2019)

 32. Suleman, M., Qureshi, M., Patt, Y.: Feedback-driven threading: power-efficient and high-per-
formance execution of multi-threaded workloads on CMPs. In: 13th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-XIII). ACM
(2008)

 33. Wang, Z., O’Boyle, M.: Mapping parallelism to multi-cores: a machine learning based approach. In:
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’09).
ACM (2009)

 34. Wang, Z., O’Boyle, M.: Machine learning in compiler optimization. Proc. IEEE 106(11), 1879–
1901 (2018)

https://doi.org/10.12921/cmst.2006.SI.01.33-45

674 International Journal of Parallel Programming (2020) 48:652–674

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Resource-Aware Data Parallel Array Processing
	Abstract
	1 Introduction
	2 SAC: Language and Compiler
	3 Smart Decision Tool Training Mode Compilation
	4 Smart Decision Tool Production Mode Compilation
	5 Smart Decision Tool Runtime System Support
	6 Experimental Evaluation
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgements
	References

