
International Journal of Parallel Programming (2019) 47:433–450
https://doi.org/10.1007/s10766-018-0614-6

HARE: History-Aware Adaptive Routing Algorithm for
Endpoint Congestion in Networks-on-Chip

Kang Jin1 · Cunlu Li1 · Dezun Dong1 · Binzhang Fu2

Received: 19 September 2018 / Accepted: 16 November 2018 / Published online: 12 December 2018
© The Author(s) 2018

Abstract
Endpoint congestion is one of the most challenging issues when designing low latency
and high bandwidth on-chip interconnection networks. Tree saturation and head-of-
line blocking caused by the endpoint congestion seriously decrease system throughput
and increases network latency, leading to overall performance degradation. Adaptive
routing algorithms utilize dynamic network states to route packets around congestion
areas and potentially mitigate network congestions, but still cannot deal with end-
point congestions. Existing adaptive routing algorithms mainly take the current route
information into account, and rarely use the route information of past packets. In this
paper, we explore the route information of past packets, and led to the following novel
observations that the virtual channel (VC) allocations of prior packets can be collected
as useful information, and the tree saturation can be isolated through better VC selec-
tion strategy based on the past route information. Based on this observation, a novel
history-aware adaptive routing algorithm for endpoint congestion, HARE, is proposed
to improve network performance. We implement HARE based on the state-of-the-art
routing algorithm, Footprint, and conduct extensive simulation experiments to com-
pare it with our algorithm. The evaluation results show that our design alleviate the
impact of tree saturation consistently and achieve high throughput on both synthetic
and trace-driven workloads.

B Dezun Dong
dong@nudt.edu.cn

Kang Jin
jinkang17@nudt.edu.cn

Cunlu Li
cunluli@nudt.edu.cn

Binzhang Fu
fubinzhang@huawei.com

1 National University of Defense Technology, Changsha, China

2 HuaWei, Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0614-6&domain=pdf
http://orcid.org/0000-0003-4422-1756


434 International Journal of Parallel Programming (2019) 47:433–450

Keywords History-aware · Adaptive routing · Endpoint congestion ·
Networks-on-chip

1 Introduction

Due to the scalable and modular feature of Networks-on-Chip (NoCs), it has been
treated as a promising substitute to traditional bus-based architecture for inter-core
communication [13]. The design of an efficient NoCs has become an evolving field of
research. Many topologies [3,20,21] have been proposed to improve the performance
of NoCs. In this study, we prefer two-dimensional (2D) mesh topology because of its
regularity and scalability, and focus on routing optimization to improve the perfor-
mance of NoCs.

Given the topology of the network, routing algorithm is a main factor that affects
network performance (throughput and latency). Generally, routing algorithms can be
divided into two classes: oblivious and adaptive routing algorithms, based on whether
using the network state information or not [8]. In addition, routing algorithms can
also be categorized into minimal and non-minimal based on whether choosing the
shortest paths or not. In this study, we focus on adaptive minimal routing algorithms
as they could distribute traffic across network in case of network congestion while
maintaining low implementation complexity.

Network congestion is a major performance inhibitor in NoCs. Generally, network
congestion can be classified as fabric congestion and endpoint congestion [18]. Fabric
congestion is created when the offered load on a channel is greater than its bandwidth,
while endpoint is created when some network nodes are over-subscribed, forming hot-
spots in the network [2]. Fabric congestion can be efficiently relieved by balancing load
across network channels through adaptive routing algorithm. However, the adaptivity
provided by adaptive routing algorithm can aggravate the impact of endpoint, by
spreading congestion across other ports and channels [7]. Moreover, a single hot-spot
endpoint can spread the congestion through the network and create an effect called
tree saturation [27], which can affect the wAe network performance.

Many congestion control mechanisms have been proposed to resolve network con-
gestion. SRP [17], CRP [24] and SMSRP [18] share the similar strategy that reserving
network resources for each flow transmission to avoid congestion, but their imple-
mentation is too complex. Other class of congestion control is mainly about adaptive
routing algorithm. The CBCM [19] is one of the first work to address the interac-
tion between adaptive routing and endpoint congestion. Based on the observation of
CBCM, Footprint [12] is proposed to relieve the impact of tree saturation caused by
endpoint congestion. Footprint operates on the principle that the next packet follows
the path (footprint) of the current routed packet to the same destination when endpoint
congestion occurs. However, most of these works, including Footprint, do not utilize
the path information of past packets, resulting in bad isolation for tree saturation or
inaccurate recognition of endpoint congestion.

In this work, we propose HARE, a History-aware Adaptive Routing for Endpoint
congestion in Networks-on-Chip. HARE targets to relieve the impact of tree saturation
caused by endpoint congestion. HARE extends routing algorithm in time-series; it

123



International Journal of Parallel Programming (2019) 47:433–450 435

not only takes the current packet information into account but also considers the
information of multiple packets that have been routed in past cycles, while performing
routing decision. We implement HARE based on Footprint and it uses the two-level
routing adaptiveness similar as Footprint. HARE restricts the saturation tree to take
up the least VCs by giving higher priority to the deepest footprint VCs. The depth of
a footprint VC is defined as the total length of packets sent to the destination node
in the most recent period in a VC. During the routing process of HARE, the deepest
footprint VC will be prioritized when congestion occurs, by which the tree saturation
will be isolated more efficiently and consistently.

To summarize, the main contributions of this paper are as follows:

1. We propose to utilize history information of past packets to alleviate the impact
of endpoint congestion, which extends the routing algorithm in time dimension.

2. We propose a new VC selection strategy that prioritizes the deepest VC to isolate
the congestion tree efficiently.

3. Based the strategy above, we propose a novel adaptive routing algorithm, HARE,
to address endpoint congestion.

The rest of the paper is organized as follows. In Sect. 2 we describe tree saturation,
HoL blocking and the previously studied Footprint routing algorithm in detail. The
theory and implementation of HARE are described in detail in Sect. 3. Network sim-
ulator configuration used for evaluation is described in Sect. 4. In Sect. 5, we present
the performance comparison of the routing algorithms. More in-depth studies relating
to the implementation and scalability of HARE are presented in Sect. 6. Other works
relating to network congestion management are discussed in Sect. 7. We conclude the
study in Sect. 8.

2 Motivation

2.1 Congestion Analysis

Endpoint congestion usually occurs when multiple source nodes send packets to the
same destination node. Traffic that can not be handled opportunely will occupy the
router buffer, causing endpoint congestion. More seriously, the congestion in the over-
subscribed destination node will propagate back to upstream routers, creating tree
saturation. Figure 1 shows simple tree saturation scenario with different routing algo-
rithm. They use the same traffic pattern: { f1, f2} = {n0 → n14, n13 → n14}. The
topology of the network is a 4×4 2D mesh with 3 VCs per physical channel.

With deterministic routing, node n0 and node n13 are contending for the hot-spot
destination n14. Initially, the adjacent nodes of n14 are congested because buffers are
occupied by blocked packets. Then, such congestion effect continuously spreads up-
stream until it reaches the source nodes n0 and n13. The resulting congestion tree is
shown in Fig. 1a with red arrow. In the second example shown in Fig. 1b, minimal
adaptive routing is adopted. However, the network condition becomes even worse.
This is because adaptive routing spreads congestion to other alternative paths, which
resulting in a much larger congestion tree.

123



436 International Journal of Parallel Programming (2019) 47:433–450

(a) (b)

Fig. 1 Examples of tree saturation with dimension order routing and minimal adaptive routing. a DOR. b
Adaptive (Color figure online)

Fig. 2 An example of HoL
blocking

Input

2

11

12

Output

1

2

1

Another unexpected impact of endpoint congestion is head-of-line (HoL) blocking.
Endpoint congestion associated with adaptive routing can result in more serious HoL
blocking. The packets contributing to the saturation tree will be congested in the head
of VC, which makes other uncongested packets cannot be routed to the down-stream
router. Figure 2 shows an example to demonstrate the impact of HoL blocking in
an on-chip router. In this example, the first and second input ports of the router are
contending to send packets to a congested output port. The packets at the head of Input
1 and Input 2 are all congested due to endpoint congestion because they contain the
same destination. In this case, the uniform packets that are not at the head of VCs will
also experience congestion.

2.2 Existing Routing Algorithm Solving Endpoint Congestion

Prior works (e.g., XORDET [5], DBAR [23], CBCM [19], etc.) propose to utilize
a dedicated resource to isolate the impact of tree saturation. The recently proposed
routing algorithm, Footprint, shares similar idea, but it takes virtual channels (VCs)
adaptiveness into consideration to avoid the spreading of congestion through multiple
VCs. Footprint has threemain steps, including determining available outputs, selecting
output port, selecting VC. In the first step, it generates a set of alternative output ports
and records the number of idle VCs, footprint VCs respectively. In the second step,
Footprint selects the port with more idle VCs. If equal, the number of footprint VCs is
compared then. If still equal, port will be selected randomly. In the third step, different
class of VC are assigned different priority when congestion occurs. Congestion is
estimated by comparing the number of idle VCs with a predefined threshold. If the

123



International Journal of Parallel Programming (2019) 47:433–450 437

(a)

(b)

Fig. 3 An overview of different routing design for footprint which uses current VC info and HARE which
uses all previous info about VC allocation. a Footprint. b HARE

network is congested, idle VC are requested with highest priority. Then footprint
VCs are requested with relative low priority. Lastly, others are requested with lowest
priority. Else, all adaptive VCs are requested.

Footprint is able to relieve the impact of tree saturation to some extent through lim-
iting the available VCs during routing computing. However, Footprint only considers
the path information of current packet for a VC which is not sufficient to efficiently
isolate congestion tree caused by endpoint congestion. It should be noted that the
HoL blocking shown in Fig. 2 still can exist when adopting Footprint routing. This is
because different footprint VCs have the same priority in Footprint routing, and con-
gestion can spread between footprint VCs. Hence, Footprint routing algorithm does
not actually achieve expected performance-minimizing the impact of tree saturation.
Since all footprint VCs are requested with equal probability, tree saturation will still
significantly degrade the network performance. Such impact will be even worse if the
majority of VCs are footprint VCs. To better isolate the saturation tree, it is needed to
distinguish between different footprint VCs.

3 History-Aware Adaptive Routing Design

Based on the analysis of shortcomings of Footprint, we develop HARE to isolate the
impact of tree saturation and HoL blocking more effectively.

3.1 History-Aware Adaptive Routing Theory

HARE exploits a novel history-aware adaptive routing theory that uses history routing
information to optimize the current routing operation. Different from prior routing
theories, it extends packets routing in time-series. Figure 3 illustrates the contradis-
tinction of fundamental ideas of Footprint and our work. PVS means VC allocations
of all packets in the VC. CVS means VC allocation of first packet in the VC. NVS
means VC allocation of the coming packet. According to the idea of Footprint that
packets follow the path of previous packet to the same destination, it only utilizes CVS
info for the NVS operation as shown in Fig. 3a. With HARE, however, VC path info
for all previous packets in a router is used to optimize the VC selecting for the next
packet as depicted in Fig. 3b.

123



438 International Journal of Parallel Programming (2019) 47:433–450

3.2 History-Aware Adaptive Routing Implementation

To actually constrain the spreading of congestion, we need to limit the number of
available footprint VCs. How to differentiate the VCs and make the optimal selection
is one of the keys of the paper, since the selection strategy in adaptive routing algorithm
has a significant impact on network performance. An efficient selection strategy could
realize high adaptivity when fabric congestion occurs and dynamic isolation when
endpoint congestion occurs. In this work, we present a new VC selection strategy
that implements history-aware adaptive routing theory. The full routing algorithm is
summarized in Algorithm 1.

Algorithm 1 HARE Routing Algorithm
1: Determine legal output ports and compute the number of idle VCs, footprint VCs and its depth;
2: Determine output port. Select the port with more idle VCs. If equal, compare the number of footprint

VCs then. If still equal, randomly select a port;
3: Determine VC requests. If no congestion, randomly select a VC. Else prefer idle VC, then deepest

footprint VC, then other footprint VC, and finally other busy VC.

Our implementation creatively exploits the VC depth to minimize the congestion
tree and maximize buffer utilization. To compute the VC depth, we need additional
bits to store the destinations of all packets and the number of packets to the same
destination for each VC. This only introduces little buffer overhead to the control
plane of a router (see Sect. 5.3), and their is no additional buffer overhead in datapath.
Whats more, since we use similar port selection strategy as Footprint, the only change
is adding a priority for deepest footprint VC between idle VCs and common footprint
VCs in the process of determining VC requests. In addition, HARE is deadlock free,
since it is based on Footprint and the we just limit the number of available footprint
VCs as mentioned above.

3.3 History-Aware Adaptive Routing Example

The detailed VC selection strategy is shown in Fig. 4. R0 and R1 are two independent
routers in congestion tree caused by endpoint congestion. Packets with different color
means they belong to different flows. In the first case as shown in Fig. 4a, there are
three footprint VCs (VC0, VC1, VC3) and one busy VC (VC2) for packets to R0 with
red color. With HARE, we calculate the depth for each VC. Then we compare the
depth of footprint VC to select the deepest footprint VC. The reason why we select the
deepest footprint VC rather other footprint VC is that packets to the same destination
are allocated to the same VC as much as possible so as to reduce HOL blocking. In
contrast to Footprint, which selects among all footprint VCs with equal possibility,
HARE always selects the deepest VC. This improvement of selection strategy makes
the isolation of tree saturation more thorough.

In another case as shown in Fig. 4b, since there is one idle VC (VC3) in R1, HARE
will choose the idle VC, like Footprint, to keep high adaptivity. However, the key
difference with Footprint is how to route afterwards. Assuming that in the next clock

123



International Journal of Parallel Programming (2019) 47:433–450 439

(a) (b) (c)

Fig. 4 VC selection strategy of HARE in different situations

cycle the VC occupancy condition of R1 is illustrated as Fig. 4c. For the subsequent
packet to R1, HARE will still select the deepest footprint VC (VC0) no matter how
many footprint VCs, while Footprint equally requests all three footprint VCs with one
footprint VC (VC3) newly generated in the previous step. Hence, Footprint not only
doesnt constrain the impact of tree saturation, but also expands the size of congestion
tree in this situation.

3.4 History-Aware Adaptive Routing Effect

Figure 5 shows the effect comparison of Footprint and our work, using the same traffic
pattern as Fig. 1: { f1, f2} = {n0 → n14, n13 → n14}. We assume node n14 is oversub-
scribed and becomes a hot-spot. With ordinary adaptive routing that does not consider
endpoint congestion, the resulting congestion tree is depicted in Fig. 1b. The size of
congestion tree becomes a little bit small with Footprint, which is because Footprint
restricts the congestion to footprint VCs. Figure 5a shows a possible resulting conges-
tion tree, and the number of congested VCs between nodes could be different. This
is because Footprint does not limit the number of footprint VCs. In contrast, HARE
limits the congested packets to one footprint VC, minimizing the size of congestion
tree. Figure 5b is a possible congestion tree with HARE. Noting that the deepest foot-
print VC could be VC0, VC1 or VC2, this ensure that load is balanced across all VCs.
In a word, Footprint could isolate the congestion tree to some degree, while HARE
achieves the ideal goal of Footprint that minimize the impact of congestion tree.

4 EvaluationMethodology

We evaluate the proposed HARE routing algorithm using a cycle accurate simulator
Booksim [16]. We compare the performance of HARE with an adaptive routing algo-
rithm,Footprint, and an oblivious routing algorithm, dimension order routing (DOR).

The baseline network topology, unless otherwise specifically stated, is a 8 × 8 2D
mesh. The baselineVC number per physical channel is presumed to be 10.Meanwhile,
4, 8, 16 VCs are also appraised to study the impact of different VC number.

The simulated router uses credit-based virtual channel flow control with input-
queued,wormhole switchingmicroarchitecture. Network data packets comprise single
flit as baseline but different packet sizes are also evaluated to examine the impact. The

123



440 International Journal of Parallel Programming (2019) 47:433–450

(a) (b) 

Fig. 5 Impact of endpoint congestion with footprint and HARE. a Footpirnt. b HARE

Table 1 Network simulation parameters

Parameters Values

Traffic pattern Uniform, shuffle, bitrev, transpose, hotspot, trace-driven workloads

Flow control mechanism Virtual channel, credit-based

Packet size single-flit packets, 1-6-flits uniform packets

Allocator Priority-based

Speedup Internal_speedup=2

Routing algorithm HARE, footprint, DOR

VC 4, 8, 10, 16 VCs per physical channel

The default values are marked in bold

input buffer size per VC is 4 flits. The router has 2× internal speedup to guarantee
nearly 100% router throughput for any traffic. VC and switch allocation are performed
using priority-based allocator.

Four representative types of synthetic traffic patterns, uniform random (UR), shuf-
fle, bitrev and transpose, are used in the experiments. In addition, hotspot traffic is
used to generate endpoint congestion to evaluate the ability of routing algorithm in
restricting congestion tree. Besides synthetic workload, we use traces from PARSEC
[4] workloads to evaluate the performance. The detailed configurations are listed in
Table 1.

5 Evaluation

5.1 SyntheticWorkload Result

5.1.1 Fixed Packet Size

Figure 6 shows the average latency of different routing algorithms with UR, shuf-
fle, bitrev and transpose traffic pattern respectively. For UR traffic pattern (Fig. 6a),

123



International Journal of Parallel Programming (2019) 47:433–450 441

10

20

30

40

50

60

70

80

90

100

0.01

0.07

0.13

0.19

0.25

0.31

0.37

0.43

0.49

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

H

Footprint

DOR

(a)

10

20

30

40

50

60

70

80

90

100

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.4
0.41

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)
(b)

10

20

30

40

50

60

70

80

90

100

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.4
0.41
0.42
0.43

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

(c)

10

20

30

40

50

60

70

80

90

100

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.4
0.43
0.46

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

(d)

Fig. 6 Latency-throughput comparison with single-flit packet size. a Uniform. b Shuffle. c Bitrev. d Trans-
pose

DOR provides the best performance since the load is already balanced. Adaptive
routing introduces additional latency because of path selection function, non-minimal
routing and increasing HoL blocking discussed in Sect. 2.1. Since HARE and Foot-
print are minimal adaptive routing, the reduction in saturation throughput is marginal.
For non-uniform traffic patterns such as shuffle, bitrev and transpose traffic pat-
terns, adaptive routing algorithms (HARE and Footprint) achieve higher saturation
throughput compared to deterministic routing (DOR). This is because the load is
serious imbalance and adaptive routing would distribute traffic across the entire
network.

At low load, the latency of HARE is nearly identical to that of Footprint, which is
because all adaptiveVCs are requested under benign traffic.As network load increases,
the occurrence of endpoint congestion among the network results in tree saturation.
Footprint can somehow relieve the impact of tree saturation by prioritizing footprint
VCs.However,HAREoutperformsFootprint under all traffic pattern as shown in Fig. 6
since our method prefers to select the deepest footprint VC instead of all footprint VCs
when endpoint congestion occurs so as to restrict the congestion tree and reduce HoL
blocking further.

123



442 International Journal of Parallel Programming (2019) 47:433–450

10

20

30

40

50

60

70

80

90

100

0.01

0.04

0.07

0.1

0.11

0.12

0.13

0.14

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

HARE

Footprint

DOR

(a)

10

20

30

40

50

60

70

80

90

100

0.01

0.04

0.07

0.08

0.09

0.1

0.11

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

(b)

10

20

30

40

50

60

70

80

90

100

0.01

0.04

0.07

0.08

0.09

0.1

0.11

0.12

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

(c)

10

20

30

40

50

60

70

80

90

100

0.01

0.04

0.07

0.08

0.09

0.1

0.11

0.12

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

(d)

Fig. 7 Latency-throughput comparisonwith variable packet size. aUniform.bShuffle. cBitrev.dTranspose

5.1.2 Varied Packet Size

In addition to fixed packet size, we also evaluate the proposed routing algorithm
with different packet sizes. In this experiment, packets with size ranging from 1 to
6 flits are randomly generated in source node. For uniform traffic, DOR still pro-
vides slightly higher throughput than Footprint, while HARE achieves almost the
same throughput as DOR. This is because adaptive routing would degrade net-
work performance further when it comes to endpoint congestion as discussed in
Sect. 2.1 and the adaptiveness is limited by restricting available VCs with HARE.
For non-uniform traffic (shuffle, bitrev and transpose), adaptive routing algorithms
(HARE and Footprint) outperform obvious routing (DOR), since load is extreme
imbalance and the locality of DOR makes it worse. For all four traffic patterns,
HARE provides higher throughput than Footprint as shown in Fig. 7. This demon-
strates that HARE is able to isolate the impact of endpoint congestion more
effectively.

123



International Journal of Parallel Programming (2019) 47:433–450 443

10

20

30

40

50

60

70

80

90

100

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.4
0.43
0.46
0.49
0.5

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injection Rate (flits/cycle/node)

HARE_4VC

Footprint_4VC

HARE_8VC

Footprint_8VC

HARE_16VC

Footprint_16VC

(a)

10

20

30

40

50

60

70

80

90

100

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.4
0.43

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injection Rate (flits/cycle/node)
(b)

10

20

30

40

50

60

70

80

90

100

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.4
0.43

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injection Rate (flits/cycle/node)
(c)

10

20

30

40

50

60

70

80

90

100

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.4
0.43
0.44
0.45

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injection Rate (flits/cycle/node)
(d)

Fig. 8 Latency-throughput comparison with different number of VCs. a Uniform. b Shuffle. c Bitrev. d
Transpose

5.1.3 Impact of Number of VCs

In this experiment, we evaluate the impact of number of VCs on Footprint and HARE.
Since Duatos theory [9] is adapted to avoid deadlock, the number of required VCs is
no less than 2. We perform experiment with 4 VCs, 8 VCs and 16 VCs respectively
and the results are shown in Fig. 8.

For Footprint, the throughput increases as the number of VCs increases, as it
is designed to take up as much resources as possible. In contrast, the through-
put of HARE is nearly unchanged for different number of VCs, which is because
increasing the number of VCs engages slight throughput improvement if there
are already too many VCs. In addition, increasing the number of VCs means
increasing the router delay due to complex VC allocation. An interesting insight
offered by the graphs in Fig. 8 is that with the same number of VCs, HARE
always offers higher saturation throughput and lower latency. Similarly, this is the
result of the usage of history VC Allocation information and better VC selection
strategy.

123



444 International Journal of Parallel Programming (2019) 47:433–450

Fig. 9 Latency-throughput
comparison with hotspot traffic

35

40

45

50

55

60

65

70

75

80

0.01

0.04

0.07

0.1

0.13

0.16

0.19

0.22

0.25

0.28

0.31

0.34

0.37

0.46

0.47

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injection Rate (flits/cycle/node)

HARE

Footprint

5.1.4 Hotspot Traffic

We evaluate the performance of HARE using a 16:12 hotspot traffic pattern. Under
this traffic pattern, we select 16 nodes in the network to send traffic to 12 destination
nodes, while other nodes run background uniform traffic with constant injection rate
of 0.35. Figure 9 shows average latency of background traffic as the hotspot traffic
injection rate increases. As illustrated in the figure, endpoint congestion created by
hotspot traffic will damage the the background traffic. The performance of HARE is
compared with Footprint and the results show that HARE achieves lower latency and
higher saturation throughput. This is because we use VC allocation information of
past packets and require packets to follow the deepest footprint VC, hence isolating
the congestion tree and reducing HoL blocking.

5.2 Application Traces

In this section, we compare the performance of HARE and Footprint using traces from
PARSEC 2.0 workloads. The results are shown in Fig. 10 where the improvement
percentage is depicted. Similarly, HARE achieves better performance for all cases
except for ferret and swaptions. Among all the network traces, HARE outperforms
Footprint by up to 18% and the average improvement is 1.8%. For some traces with
low traffic, the benefit is small. While for traces that generate heavy network traffic
(i.e., multiregion), the improvement is significantly higher. This is because endpoint
congestion is more likely to occur in heavy traffic and there is more room for HARE
to improve. In this experiment, we can see that HARE is more effective in isolating
the hotspot congestion.

5.3 Cost

There is little overhead for HARE compared with Footprint as only the statistical data
of past packets is added for each VC. Beyond that, the improvement of VC selection

123



International Journal of Parallel Programming (2019) 47:433–450 445

0.51%

0.86%

0.01%

0.05%

0.58%

-0.17%

0.09%

0.81%

0.35%

1.61%

18.10%

0.00%

1.80%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

blackscholes

fluidanim
ate

bodytrack

canneal

ferret

sw
ap�ons

vips

x264

exam
ple

lngrex

m
ul�region

shrtex

Average
Im

pr
ov

em
en

t o
f p

ac
ke

t l
at

en
cy

Fig. 10 Improvement of packet latency using traces from PARSEC workloads

strategy does not introduce any expend. To prioritize the deepest Footprint VC over
usual Footprint VC, we need add a log2 n bits of register for each VC to record the
corresponding depth, Where n is number of packets to the same destination packets as
the current routing packet for a VC, namely depth of VC. Usually, n remains in single
digits and we assume the value of n is 8 for simplicity. For a 8× 8 2D mesh topology
with 8VCs per physical channel, the corresponding overhead is 24 bits per port which
is negligible considering general flit size (e.g., 128 or 256 bits).

6 Discussion

6.1 VC Selection StrategyVariants

The VC selection strategy we use to implement the history-aware adaptive routing is
to select the deepest footprint VC when endpoint congestion occurs and experiment
results show that it works well. However, there are many other implementations of
the history-aware routing theory, such as prioritizing the first two, three, or even n
deepest footprint VC, where n is an integer no more than the number of VCs per
physical channel. We have implemented a variant of HARE that prefers to select the
first two deepest footprint VC and name it HARE2. Then, we evaluate the performance
of HARE2 with uniform and non-uniform traffic pattern. The network configuration
is the same as that of evaluations in Sect. 5.1.2. With HARE used as baseline, the
performance comparison is shown in Fig. 11. The throughput of HARE2 is nearly
identical to that of HARE with uniform traffic pattern, while HARE2 achieves higher
saturation throughput with shuffle traffic pattern. This is because the load is extremely
unbalanced and allowing two VCs for a flow distributes the load in some extend.
Apparently, there is a tradeoff between congestion isolation and load balancing. There
may be an optimal digit that we should limit the number of footprint VCs to, and we
leave it as a future work. In addition, we evaluate the performance of HARE2 with
hotspot traffic pattern, using the same configuration as that of evaluation in Sect. 5.1.4.
The result is shown in Fig. 12. HARE2 achieves the same throughput as HARE, which
is because the impact of endpoint congestion is effectively minimized through limiting
congestion to a few VCs.

123



446 International Journal of Parallel Programming (2019) 47:433–450

10

20

30

40

50

60

70

80

90

100

0.01

0.04

0.07

0.1

0.11

0.12

0.13

0.14

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

HARE

HARE2

(a)

10

20

30

40

50

60

70

80

90

100

0.01

0.04

0.07

0.08

0.09

0.1

0.11

0.12

Av
er

ag
e 

La
te

nc
y 

(C
yc

le
s)

Injec�on Rate (flits/cycle/node)

HARE

HARE2

(b)

Fig. 11 Latency-throughput comparison with uniform and non-uniform traffic pattern. aUniform. b Shuffle

Fig. 12 Latency-throughput
comparison with hotspot traffic

35

45

55

65

75

85

95

0.01
0.04
0.07
0.1
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34
0.37
0.38
0.4
0.41
0.43
0.47
0.48

A
ve

ra
ge

 L
at

en
cy

 (C
yc

le
s)

Injec�on Rate (flits/cycle/node)

HARE

HARE2

6.2 Scalability

HARE is more than an adaptive routing algorithm, but an effective adaptive routing
theory for endpoint congestion. It can be combined with most routing algorithms
previously proposed, since the only change is better VC selection strategy. In addition,
the theory is topology-agnostic. It can be applied to any topologies theoretically.
However, the implementation for specific topology might be a little different and we
leave it as a future work.

6.3 Fabric Congestion

HARE is designed for endpoint congestion, which does not mean it can not deal with
fabric congestion. Adaptive routing algorithms are born to tackle fabric congestion,
but make it worse when the network is suffered from endpoint congestion. Hence, we
propose a novel history-aware adaptive routing algorithm, HARE, to address fabric
congestion and endpoint congestion simultaneously. Specifically, HARE prioritizes

123



International Journal of Parallel Programming (2019) 47:433–450 447

the port with more idle VCs in the port selection stage and prioritizes idle VC in the
VC selection stage, so as to route around fabric congestion.

7 RelatedWork

The development of HARE is in part motivated by the Footprint routing algorithm pro-
posed in [12]. Together they share many similar operating principles such as two level
adaptivity and VC limitation. However, as stated in the original Footprint study and
demonstrated in our experiments, Footprint doesnt effectively isolate the congestion
tree due to insufficient information. We have shown that by considering the history
information in the same work, we can create a more efficient solution that works well
for endpoint congestion in Networks-on-Chip.

There are many other endpoint congestion control mechanisms based on the idea
of congestion isolation besides Footprint. VOQnet [6] requires as many VCs as des-
tinations in the network for each input queue. Though it is effective to eliminate HoL
blocking, it is not scalable to large network. However, VOQsw [1]uses as many VCs
as output ports in a router to reduce cost. So, this technique is able to eliminate router-
wideHoLblocking, but it doesnt completely removeHoLblocking.Destination-Based
Buffer Management (DBBM) [25] argues that VCs are assigned to different destina-
tions evenly. XORDET [5] shares similar principle as DBBM but improved for direct
topologies. However, their buffer utilization is very low, as VCs are statically assigned
to different end-points in the network. In addition, RECN [10] uses dynamically cre-
ated set aside queues (SAQs) to eliminate HOL blocking in an efficient way. However,
RECN mechanism is limited to source deterministic routing. Whats more, FBICM
[11], which can be applied to networks that use distributed deterministic routing, has
been proposed, achieving the same effect as RECN, but its implementation is too
costly and complex.

The other main class of congestion management is based on reservation such as
Speculative reservation protocol (SRP) [17], channel reservation protocol (CRP) [24],
Small-Message SRP (SMSRP) and Last-Hop Reservation Protocol (LHRP) [18]. SRP
proposed by Jiang, et al. is designed to avoid hot-spot congestion, but the traffic
schedule based on network status information is not always available. CRP done by
Michelogiannakis et al. is proposed to deal with both fabric and endpoint congestion.
However, the reservation scheduling is too complex due to the consistency of multiple
network resource.

An alternative technique for congestion control is based on congestion notification,
such as explicit congestion notification ECN [28]. ECN sends congestion alarm to the
source nodes contributing to its appearance to throttle its injection rate, if the occupancy
of queues in the router exceeds a predefined threshold. However, many works have
shown that ECN is slow to response and is potentially unstable [17,18,26]. Since
our work is orthogonal to these reservation-based and notification-based congestion
control mechanisms, the approach of HARE can be combined with these state-of-art
solutions and the existing advantages can be retained together.

123



448 International Journal of Parallel Programming (2019) 47:433–450

Furthermore, various adaptive routing algorithms have been proposed to tackle con-
gestion. Both DyAD [15] and DyXY [22] use local network state information, which
will lead to non-optimal routing decision. RCA [14] proposed by Gratz et al. is the
first work utilizing global information to improve load balancing. However, this algo-
rithm introduces redundant information that may degrade the congestion estimation.
To overcome this problem, a technique proposed by Ramanujam et al. uses a dedi-
cated network to sequentially transmit delay information for each network node [29].
However, this technique may be not efficient due to the high delay, for each router, of
calculating the estimate for all other nodes in the network.

8 Conclusion

Network endpoint congestion is difficult to address as tree saturation andHoLblocking
it creates degrade the whole network performance further. In this study we introduced
HARE, a history-aware adaptive routing algorithm, to resolve endpoint congestion.
HARE utilizes the past route information of packets to count the depth of the footprint
VC. Specifically, HARE favors the deepest footprint VC when congestion occurs. In
contrast, Footprint only uses current path info to mark the footprint VCs and select
these VCs with equal probability. By prioritizing the deepest footprint VC instead of
all footprint VCs, HARE is effective in resolving endpoint congestion. Experiments
show thatHAREachieves latency reduction and throughput improvement for synthetic
and trace-driven workloads. This demonstrates that HARE is able to excel at isolating
endpoint congestion and outperform exiting adaptive routing algorithm.

Acknowledgements The work was supported by Core-electronics, High-end-general-Chips, and
Infrastructural-software Project of China (2018ZX01028101), National Key Research and Development
Program of China under Grant No. 2016YFB0200401, Innovation Platform and Talents Program of Hunan
Province under Grant No. 2017RS3047 and FANEDD under Grant No. 201450.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Anderson, T.E., Owicki, S.S., Saxe, J.B., Thacker, C.P.: High-speed switch scheduling for local-area
networks. ACM Trans. Comput. Syst. (TOCS) 11(4), 319–352 (1993)

2. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic characteristics. In:
Proceedings of the 1st ACMWorkshop onResearch onEnterpriseNetworking, pp. 65–72.ACM (2009)

3. Besta, M., Hoefler, T.: Slim fly: a cost effective low-diameter network topology. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, pp.
348–359. IEEE Press (2014)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization and archi-
tectural implications. In: Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques, pp. 72–81. ACM (2008)

5. Cebrian, R.P., Requena, C.G., Requena, M.E.G., Rodrguez, P.L., Marn, J.D.: HoL-blocking avoidance
routing algorithms in direct topologies. In: 2014 IEEE International Conference on High Performance

123

http://creativecommons.org/licenses/by/4.0/


International Journal of Parallel Programming (2019) 47:433–450 449

Computing and Communications, 2014 IEEE 6th International Symposium on Cyberspace Safety and
Security, 2014 IEEE 11th International Conference on Embedded Software and System (HPCC, CSS,
ICESS), pp. 11–18. IEEE (2014)

6. Dally, W., Carvey, P., Dennison, L.: Architecture of the Avici terabit switch/router. pp. 41–50 (1998)
7. Dally,W.J.,Aoki,H.:Deadlock-free adaptive routing inmulticomputer networks usingvirtual channels.

IEEE Trans. Parallel Distrib. Syst. 4(4), 466–475 (1993)
8. Dally, W.J., Towles, B.P.: Principles and Practices of Interconnection Networks. Elsevier, Amsteredam

(2004)
9. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Trans. Parallel

Distrib. Syst. 4(12), 1320–1331 (1993)
10. Duato, J., Johnson, I., Flich, J., Naven, F., Nachiondo, T.: A new scalable and cost-effective congestion

management strategy for lossless multistage interconnection networks. In: Null, pp. 108–119. IEEE
(2005)

11. Escudero-Sahuquillo, J., Garca, P., Quiles, F., Flich, J., Duato, J.: FBICM: Efficient congestion man-
agement for high-performance networks using distributed deterministic routing. In: International
Conference on High-Performance Computing, pp. 503–517. Springer, Berlin (2008)

12. Fu, B., Kim, J.: Footprint: regulating routing adaptiveness in networks-on-chip. In: 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA) pp. 691–702 (2017)

13. Gaur, M.S., Laxmi, V., Zwolinski, M., Kumar, M., Gupta, N.: Network-on-chip: current issues and
challenges. In: 2015 19th International Symposium on VLSI Design and Test (VDAT), pp. 1–3. IEEE
(2015)

14. Gratz, P., Grot, B., Keckler, S.W.: Regional congestion awareness for load balance in networks-on-chip.
In: IEEE 14th International Symposium on High Performance Computer Architecture, 2008. HPCA
2008, pp. 203–214. IEEE (2008)

15. Hu, J., Marculescu, R.: DyAD: smart routing for networks-on-chip. In: Proceedings of the 41st Annual
Design Automation Conference, pp. 260–263. ACM (2004)

16. Jiang, N., Balfour, J., Becker, D.U., Towles, B., Dally, W.J., Michelogiannakis, G., Kim, J.: A detailed
and flexible cycle-accurate network-on-chip simulator. In: 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 86–96. IEEE (2013)

17. Jiang, N., Becker, D.U., Michelogiannakis, G., Dally, W.J.: Network congestion avoidance through
speculative reservation. In: 2012 IEEE 18th International Symposium on High Performance Computer
Architecture (HPCA), pp. 1–12. IEEE (2012)

18. Jiang, N., Dennison, L., Dally, W.J.: Network endpoint congestion control for fine-grained communi-
cation. In: 2015 SC-International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–12. IEEE (2015)

19. Kim, G., Kim, C., Jeong, J., Parker, M., Kim, J.: Contention-based congestion management in large-
scale networks. In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–13. IEEE (2016)

20. Kim, J., Dally, W.J., Abts, D.: Flattened butterfly: a cost-efficient topology for high-radix networks.
In: ACM SIGARCH Computer Architecture News, vol. 35, pp. 126–137. ACM (2007)

21. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable dragonfly topology. In:
ISCA’08. 35th International Symposium on Computer Architecture, 2008, pp. 77–88. IEEE (2008)

22. Li, M., Zeng, Q.A., Jone, W.B.: DyXY: a proximity congestion-aware deadlock-free dynamic routing
method for network on chip. In: Proceedings of the 43rd Annual Design Automation Conference, pp.
849–852. ACM (2006)

23. Ma, S., Enright Jerger, N., Wang, Z.: DBAR: an efficient routing algorithm to support multiple con-
current applications in networks-on-chip. ACM SIGARCH Comput. Archit. News 39(3), 413–424
(2011)

24. Michelogiannakis, G., Jiang, N., Becker, D., Dally, W.J.: Channel reservation protocol for over-
subscribed channels and destinations. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, p. 52. ACM (2013)

25. Nachiondo, T., Flich, J., Duato, J.: Buffer management strategies to reduce hol blocking. IEEE Trans.
Parallel Distrib. Syst. 21(6), 739–753 (2010)

26. Pfister, G., Gusat, M., Denzel, W., Craddock, D., Ni, N., Rooney, W., Engbersen, T., Luijten, R.,
Krishnamurthy, R., Duato, J.: Solving hot spot contention using infiniband architecture congestion
control. Proc. HP-IPC 2005, 6 (2005)

123



450 International Journal of Parallel Programming (2019) 47:433–450

27. Pfister, G.F., Norton, V.A.: Hot spot contention and combining in multistage interconnection networks.
IEEE Trans. Comput. 100(10), 943–948 (1985)

28. Ramakrishnan, K., Floyd, S., Black, D.: The addition of explicit congestion notification (ECN) to IP.
Tech. rep. (2001)

29. Ramanujam, R.S., Lin, B.: Destination-based adaptive routing on 2d mesh networks. In: Proceedings
of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, p.
19. ACM (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	HARE: History-Aware Adaptive Routing Algorithm for Endpoint Congestion in Networks-on-Chip
	Abstract
	1 Introduction
	2 Motivation
	2.1 Congestion Analysis
	2.2 Existing Routing Algorithm Solving Endpoint Congestion

	3 History-Aware Adaptive Routing Design
	3.1 History-Aware Adaptive Routing Theory
	3.2 History-Aware Adaptive Routing Implementation
	3.3 History-Aware Adaptive Routing Example
	3.4 History-Aware Adaptive Routing Effect

	4 Evaluation Methodology
	5 Evaluation
	5.1 Synthetic Workload Result
	5.1.1 Fixed Packet Size
	5.1.2 Varied Packet Size
	5.1.3 Impact of Number of VCs
	5.1.4 Hotspot Traffic

	5.2 Application Traces
	5.3 Cost

	6 Discussion
	6.1 VC Selection Strategy Variants
	6.2 Scalability
	6.3 Fabric Congestion

	7 Related Work
	8 Conclusion
	Acknowledgements
	References




