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Abstract

Bioinformatics workflows require large amounts of resources and are commonly exe-
cuted in clusters. Determining the adequate amount of resources for bioinformatics
applications is a tricky matter, since the resource usage of a single application might
vary substantially from one execution to the next. Resource management systems
in clusters don’t consider these variations and subsequent needs. As a result, the
computing power offered by clusters is not harnessed properly, compromising both
application performance and resource efficiency. To tackle these issues, we propose
a History-Based Resource Manager for bioinformatics workflows applications run-
ning on clusters with heterogeneous nodes. The proposed resource manager features a
prediction model that generates multiple performance predictions for each job under
different combinations of cluster resources. Furthermore, the proposed resource man-
ager includes a scheduling algorithm that considers the degree of multiprogramming of
the nodes, scheduling combinations of applications for simultaneous same-node exe-
cution upon their compatibility. To test the proposed resource manager, we process
two workloads formed by different amounts of workflows made up by common bioin-
formatics applications. Results prove that for the given cases, the proposed resource
manager improves the performance obtained with SLURM, using First Come First
Served policy. The proposal shows an average workflow makespan improvement
range between 28 and 35%, averaging 32%, an average workflow efficiency improve-
ment range between 75 and 83%, averaging 79%, and an average resource usage
improvement range between 96 and 101%, averaging 99%. Furthermore, the pro-
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posed scheduling algorithm can improve the average workflow makespan by a range
of values between 26 and 36%, averaging 31%, compared to Max—Min and Min—Min
algorithms.

Keywords Resource manager - Bioinformatics workflows - Multivariate regression
prediction - Scheduling algorithm - Resource sharing - Slowdown - Makespan

1 Introduction

Biologists and data analysts mainly employ bioinformatics applications to analyze
genomic data. Many kinds of bioinformatics applications exist, performing different
tasks involved in genome analysis, such as genome alignment, variant calling or anno-
tation, among others. Genome aligners find the location of a sample sequence in the
whole reference genome, by aligning the former to the latter. Variant callers look for
differences between the aligned sample genome and the reference genome. Annotation
applications review the differences or variants presented by the sample with respect
to the reference in order to determine its biological significance. Some variants may
convey valuable information about the analyzed organism, such as the development
of certain diseases or response to drugs.

Users may choose among different applications conduct each of the multiple stages
of genome analysis. Depending on the case of study, some applications provide bet-
ter outcomes than others. To determine the most suitable ones for each case, past
experiments performed by the bioinformatic community may be reviewed. Users
rarely intervene in the development of bioinformatics applications. However, they
may integrate multiple applications to carry out data analysis, building bioinformatics
workflows. Galaxy [1] and Taverna [2] are two of the most popular frameworks for
building and executing workflows [3]. Users may design workflows as they see fit for
their analyses, combining multiple applications in parallel or sequentially. An exam-
ple of a short bioinformatics workflow [4], with a single input dataset file, is depicted
in Fig. 1. When workflows applications are executed in cluster nodes, they generate
intermediate data files which may become the input of the next workflow application.
Eventually, the output file containing the analyses results is generated.

In the present work, a list of popular Bioinformatics applications commonly found
within workflows has been characterized. Many of these applications use complex
algorithms that perform memory-intensive operations, such as memory requests. Usu-
ally, the amount of memory requests grows as larger amounts of execution threads are
selected. For a relatively big number of threads, memory bandwidth may become
a performance-limiting factor, for large amounts of memory accesses must be dealt
with, while also keeping latencies low. Among the numerous genomics applications
characterized in this work, focus has been cast on sequence mappers, which have been
categorized as memory-bound.

One example of a memory-bound application is Blast, which compares pairs of
sequences by resorting to the Needleman-Wunsch algorithm [5]. Blast compares each
sequence in the reads file (containing fragments of the genome to be analyzed), with
each sequence in the reference genome file of the same species (used as a template). For
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Fig. 1 Representation of a bioinformatics workflow used for genomic data analysis, with applications
arranged sequentially and in parallel

each single pair of sequences, the algorithm must generate and fill a matrix of as many
rows as the length of read sequence, and as many columns as the length of the reference
sequence. Due to the reading and storing of matrices generated when comparing every
reference-read pair of sequences, Needleman-Wunsch algorithm shows both time and
space quadratic complexity [6].

From the point of view of the resources, multi-core CPU node clusters, have
become popular platforms to execute bioinformatics workflows applications and per-
form genomic data analysis. When executing workflows, different performance goals
may be sought by multiple parties, such as applications users and platform admin-
istrators. Users’ performance criteria generally involves minimizing the execution
makespan or cost, with the purpose of meeting deadlines or budget constraints. Con-
versely, platform administrators usually focus on a much different criteria, such as
maximizing resource efficiency and usage. Users and platform criteria are detrimental
to one another and usually conflict. To meet users’ and platform’s conditions in so as
far as possible, cluster resources must be properly allocated, accounting for the char-
acteristics and resource usage of applications. Allocation of applications to resources
is a NP-hard problem, which has been long-analyzed in previous research [7,8]. Prior
insight on the resources to be used by applications may become crucial to maximize
performance.

The vast majority of HPC applications running in clusters are programmed in a
distributed-memory paradigm, and executed in multiple processors of different nodes.
To facilitate the communication between processes, external libraries such as MPI,
are employed. In these cases, users are prompted to provide explicit description of
the resources needed by the application. Thus, it is implied that before submission,
previous knowledge of the resources to be used exists, and has been acquired by users.
Hence, applications usually come along with at least an estimation of the amount of
resources needed by applications.

Conversely, most bioinformatics applications are programmed in a shared-memory
paradigm. Execution is carried out in a single node at a time, exploiting thread-level
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Fig.2 Execution time variation of bioinformatics applications experienced when parameter values or data
characteristics are modified. a Execution time variation of Hisat with different reads sizes. b Execution time
variation of Bowtie with different seed length parameter values

parallelism. In these cases, before execution, it is convenient but not strictly necessary
to provide description of the resources needed by the application. Entailing that, in most
scenarios, little or no prior insight on the resources required by the application is avail-
able before execution. Furthermore, biologists or genomic data analysts, tend to choose
resources based on the quality of the output or the kind of complexity of data analysis.
As a result, resources are rarely selected based on applications’ resource needs.

Determining the adequate resources for bioinformatics applications is a hard task,
since the resource usage of a single application might vary substantially from one
execution to the next. Variation depends on two factors: the values given to the con-
figuration parameters of each application and the input dataset characteristics. The
parameters determine the specifics of each experiment. Some analyses are intended
to solely report high-quality similarities between the reference and the observed sam-
ples or fragments. These analyses call for deeper, more-thorough observations of the
genomes than those others seeking lower-quality similarities. Finding high-quality
similarities requires more exhaustive searches and more-complex algorithmic heuris-
tics. Usually, these cases are much more-resource consuming, prompting execution
times to lengthen substantially. The characteristics of the input datasets also have a
great impact on resource usage and execution time, such as the files sizes or the number
or length of the sequences.

Figure 2 shows the extent of execution time variation of two read mappers, Hisat and
Bowtie, when modifying a single parameter or data characteristics. In Fig. 2a, Hisat is
executed with different reads file sizes, ranging from 1 GB to 40 GB, each of which is
mapped against the same human reference genome. In Fig. 2b, Bowtie is executed with
identical input files, but different values of one of its parameters, the seed length. That
is, the length of the subsequence within the target sequence. The seed length can be used
to balance the commitment between sensitivity and speed. Shorter seed lengths yield
high-quality alignments, but also require large execution times. As the seed length
increases, lower-quality alignments are found, resulting in shorter execution times.
Modifying the seed length parameter causes non-linear execution time variations.

Most clusters are shared among many jobs, which may have to wait in admission
queues before being granted resources. As jobs run, chances are their performance
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is affected by a dynamic, varying-over-time workload. Unlike in the exclusive case,
applications don’t have full-node resources available, which generally ensure fast
execution. Instead, they are likely to be allocated logical processing units of a node,
referred to in this work as processing units (PUs), i.e. a node containing 8 cores
with hyper-threading accounts for 16 PUs. In these cases, the number of applications
simultaneously running in a node, referred to as Degree of Multiprogramming (DP),
is greater than one. Sharing resources may significantly improve the efficiency and
resource usage of applications. Nonetheless, it may have consequences on applica-
tions’ makespans.

Applications running in the same node compete for the same resources and interfere
on each other’s execution, slowing execution times down compared with the exclusive
cases. Applications’ slowdown can be measured by comparing applications’ makespan
times when using node resources exclusively with those obtained when node resources
are shared. The extent of slowdown depends not only on the DP of each node, but also
on resource usage and characteristics of applications sharing the node. Applications
bound by different resources that are running in the same node, such as memory-bound
and CPU-bound, are more likely yield lower slowdown than applications bounded by
the same resource.

When users of bioinformatics workflows submit their jobs to the cluster, face the
challenge of determining which combination resources is more suitable for application
performance (turnaround, cost), given the parameter values, dataset characteristics, and
time-varying resource availability. Finding the proper combination of resources for
each case is a hard and critical task, since it strongly affects the resulting performance.

The main goal of this work is to maximize the performance of bioinformatics
workflow applications running on clusters with heterogeneous nodes. Given a series
of submitted workflows, the objective is to determine the resources needed by each
workflow application, so that average workflow makespan or computational cost are
minimized, and average efficiency and resource usage maximized. To do so, focus is
cast on two major lines. On one hand, exclusive-mode predictions of the resources
needed to minimize makespan or cost while also maximizing efficiency and resource
usage. On the other hand, minimization of slowdown spawned when multiple appli-
cations share the same node resources.

Current Resource Management Systems (RMS) in clusters, discussed in Sect. 2
don’t account for the particularities of bioinformatics applications. These partic-
ularities cause them to have significantly different execution times or resource
consumptions depending on the combination of parameter values and data charac-
teristics. As a result, resource allocation doesn’t adjust to the actual requirements of
the applications, compromising application performance, resource efficiency, and the
capacity of the cluster to analyze data. To adapt resource allocation of RMS to the par-
ticularities of bioinformatics applications, we introduce in this work a History-Based
Resource Manager (RM) for bioinformatics workflows applications on clusters.

The proposed RM can be applied to many other kinds of applications with similar
resource requirements. However, for the present study we have chosen to focus on the
well-known context of bioinformatics applications with large datasets volumes, which
represent a compelling example of a real data-processing domain.
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The several steps followed to build the proposed RM are explained in Sect. 3.
First, we characterized a set of relevant applications and analyzed its performance
in a cluster, formed by 4 nodes described in Sect. 4. Second, based on performance
information, we developed a Multivariate Regression Predictor. Given parameters
and data of applications, the predictor generates multiple performance predictions
with different resources. Third, we developed scheduling algorithm which is fed with
performance predictions and slowdown information. The algorithm determines how
to allocate resources maximizing average workflow makespan or cost, efficiency and
resource usage. Moreover, the algorithm considers the DP of the nodes, determining
which combinations of applications make best-possible candidates for same-node
execution so that slowdown is minimized. In Sect. 4, the proposed RM is tested by
processing two queues of workflows. In Sect. 4.1, testing and validation are carried out
in a real-environment scenario. In Sect. 4.2, further testing is conducted in a simulated-
environment scenario. Finally, the improvements achieved with the proposed RM are
discussed.

2 Related Work

Bioinformatics workflows applications usually require large amounts of resources in
order to perform complex and multi-step data analysis. Users must build sometimes-
complex pipelines, which may include the processing of large datasets. To make the
most of the resources and successfully run their experiments, users must properly con-
figure the working environment. E.g., arranging necessary data or installing analysis
tools. Several tools have been developed in order to facilitate users’ creation and exe-
cution of workflows in large environments. Among the most relevant ones, web-based
Galaxy, or GenePattern [9] can be found. Galaxy provides a framework for assisting
users through the analysis steps that must be followed, and guidance to process the
necessary data. Similarly, GenePattern provides access to over 150 tools for genomic
analysis, emphasizing on reproducibility. In turn, OnlineHPC [10], provides access to
HPC resources and uses Taverna as workflow engine, carrying along its wide range
of functionalities. Although these tools are designed to run jobs on local systems by
default, they can also be configured to run jobs on clusters nodes.

RMS allocate jobs to cluster resources, monitor the status of the system, and manage
the submission queues, among other things. MAUI, Sun Grid Engine or SLURM,
which features in approximately 60% of top 500 supercomputers, are among the most
popular RMS. SLURM is composed multiple daemons such as slurmctld or slurmd.
Slurmectld runs on the management node, acting as a central entity that monitors system
status. It has numerous commands: squeue, sinfo or sacct, among others. Slurmd
daemons run on computing nodes and carry out slurmd commands, such as launching,
killing or monitoring jobs. SLURM also provides multiple plug-ins. Some of them
are general-purpose and allow for basic functionalities, whereas others are optional,
and provide extra features that adapt to platforms’ needs. Examples are node selection
plug-ins, used to determine the resources used for a job, or scheduler plug-ins, which
decide how and when SLURM schedules jobs [11]. Among the optional features,
one may find the SLURM-SPANK package for the development of such plug-ins.
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However, despite all the numerous functionalities included in SLURM, we haven’t
found any accounting for the particular needs of bioinformatics applications. That
is, their variable behavior, which yields highly different resource consumptions or
execution times depending on parameter values and data characteristics.

Sharing resources may have consequences on jobs’ performance, prompting them
to wait in admission queues and subjecting them to a dynamic workload. Chances are
multiple applications attempt to use the same resources, whose availability varies over
time. Using prior knowledge of bioinformatics applications behavior with different
parameters, data and resources, may help predict which resources best suit applica-
tions’ performance and efficiency under different scenarios of cluster availability. With
that previous knowledge, RMS may adjust scheduling decisions to both applications’
needs and current resource status. The History-Based RM proposed in this work is
aware of the resource needs of bioinformatics applications, and uses such awareness
to improve their overall performance and efficiency. The RM developed in this work
is able to operate alongside SLURM, and can act as an auxiliary block of it. The
proposed RM assists SLURM in taking scheduling decisions, which are based on a
performance Prediction Model and a scheduling algorithm.

Different prediction approaches exist in order to estimate the performance of jobs
running in clusters. Previous research analyses have focused on predicting execution
time of jobs [12,13], waiting time [14,15] and slowdown time of applications spawned
when resources are shared [16].

Prediction techniques can be further classified into several categories: benchmarks,
application code analysis techniques, parameter prediction techniques or simulation,
among others. Benchmarks are employed to estimate the performance of a system,
given a parameter of reference. Application code analysis techniques are used to pre-
dict the performance of applications. They require deep knowledge of the code of the
application. Acquiring it becomes inefficient when dealing with various applications
due to cost-effort issues. Moreover, they fail to consider the system’s characteristics.
Finally, parameter prediction techniques, predict the execution times of applications by
using estimation models. These techniques account for the characteristics of applica-
tions, such as the parameters that have an impact on performance. Parameter prediction
techniques are adequate for bioinformatics applications, since they are able to capture
their variable behavior, highly influenced by parameters and datasets.

Parameter prediction techniques can apply analytical or statistical models. Analyt-
ical models [17,18] provide performance metrics like execution time. However, they
predict these metrics by assuming the cluster has a determined, non-dynamic status.
Statistical models employ time-series methods. They resort to the high time-correlation
presented usually by systems’ loads [19,20], and can be suitable to model workloads
and waiting times of shared systems [21,22]. History-based learning approaches may
also be used by statistical methods. These approaches consider both applications’
characteristics and current status of the system [23] to predict the execution time. Sta-
tistical models can be further divided into two techniques. Categorization techniques,
which account for the characteristics of applications, and instant-based learning tech-
niques (IBL), which also take into account the status of resources. On one hand, IBL
methods can be divided into meta-heuristics, such as data mining techniques or genetic
algorithms. On the other hand, IBL methods can be divided into correlation models,
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Fig. 3 Proposed RM (red), and its disposition with respect to the cluster’s default RMS and nodes (Color
figure online)

such as univariate or multivariate regression models. The RM developed in this work
is based in a prediction model that generates predictions accounting for the dynamic
characteristics of bioinformatics applications (parameters, data), and also resources.
To do so, we considered appropriate to employ Multivariate Regression.

The proposed RM features a scheduling algorithm that schedules jobs based on
performance predictions generated by a predictor. Moreover, it takes into consideration
the fact that clusters have their own RMS, and is able to operate in compliance the
cluster’s default RMS, SLURM. In other words, the RM can be thought of as an extra
module assisting SLURM to take improved scheduling decisions when dealing with
bioinformatics workflow jobs.

3 Proposed Resource Manager

To improve the performance of bioinformatics applications, we developed a resource
manager compatible with the cluster’s default RMS, SLURM. The proposed RM
is composed of three blocks or phases: Application Analysis and Characterization,
Multivariate Regression Prediction, and Scheduling Multicriteria. The main blocks
of the proposed RM can be seen in Fig. 3, as well as disposition with respect to the
cluster’s nodes and default RMS. Description of the mentioned blocks is provided in
this section.

3.1 Application Performance Analysis

The purpose is for the resource manager to work with a wide range of bioinformatics
applications, commonly featuring in workflows running in large platforms such as
clusters. The first step to develop the resource manager consisted in building a repre-
sentative set of bioinformatics applications to characterize and analyze. In order to pick
the applications, several research articles focused on comparing multiple applications
were reviewed [24-29]. As a result, a set of well-known applications with outstanding
performance and different resource usage, shown in Table 1 was obtained.

Next, the main performance-determining characteristics of bioinformatics applica-
tions were listed, and broadly classified in four categories. The first category is formed
by the configuration parameters of each application (P = Pj,__x). One example is
Blast’s hits parameter, which adjusts the desired quality of similarities to be found
between the reference and the reads sequences. Another example is Blast’s word size
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Table 1 Set of representative workflows applications, built upon relevance criteria

Memory-bound CPU-bound
Blast Bwa-mem Bwa-aling Bowtie Hisat Soap Star ~ Phyml  Mrbayes Fasttree Raxml

2.6.0 0.7.5a 0.7.5a 2.2.6 205 221 242a 245par 3.1.2h 2.1.3.c 829

parameter, which states the length of the region of a sequence from which an exact
match is searched (and later on extended). The second category is formed by the
characteristics of the input datasets (d = dj,...,y) to be analyzed. The third one is the
performance criteria of the application user (p: makespan, cost). The fourth and last
one, are the resources used (res). The execution of bioinformatics applications on
clusters is depicted in Eq. 1.

X de,PU,
Jobip = App'y , = Applp 4 " M

Once the set of applications and its main characteristics were defined, the perfor-
mance analysis experiments were designed. With these experiments, performance
information of applications under different conditions P, d, res, was obtained, and
subsequently used to generate the prediction model.

Bioinformatics applications may be executed in up to millions of different combi-
nations of P, d, res values. Applications may have tens of parameters with a range of
values each, and can be fed with datasets of many different characteristics. The num-
ber of possible combinations of P, d, res values form a huge parametric space that is
unfeasible to analyze or include in the experiments. However, the scientific community
mainly focuses on a relevant subset of parameter values. Due to that, our approach
doesn’t evaluate all combinations, but follows a look-up table strategy instead. The
results of previous executions are stored, since similar ones with resembling input
parameter values and data are very likely to be submitted again in future workflow
instances. When a new submission is received, similar past executions are looked up
and used to predict the result of the new one. To deal with the immensity of the para-
metric space, we focused on the relevant parameters of the bioinformatics workflows
applications. That is, parameters commonly used for the bioinformatics experiments
published by the scientific community [30-32].

The performance experiments were carried out as follows: each application of the set
was given ranges of P,d values. Next, for each combination of values P,d, applications
were executed in all cluster nodes, with a range of PUs. As each experiment ran,
the performance was monitored and stored in a historical database. The following
metrics were tracked: makespan, cost, efficiency, memory (peak, average, accesses,
page faults), CPU (instructions, cycles, user and kernel time), disk (data written/read
per unit of time), and cache (last-level and all-level misses, and hit-rates).

3.2 Multivariate Regression Prediction Model

Even when repeating the same exact job execution with identical parameters, data
characteristics, and resources, performance data such as makespan or cost may vary.
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Prediction is only viable if performance data is inferential. Before building the predic-
tion model, makespan data variation was analyzed to determine whether it is inferential
or not. To do so, multiple makespan data samples were generated. Since the same con-
clusions were extracted from all the samples, and the same explanation applies for
all of them, only one sample case is shown. Sample data was generated by execut-
ing 12 identical instances of Hisat application, with identical parameter values, data
characteristics and resources. Sample values obtained are represented within squares
in Fig. 4, ranging between 2673 and 2782, and averaging 2712.9.

The first analysis step consisted in determining whether makespan data is paramet-
ric. That is, whether it follows a normal distribution. To that end, the Shapiro—Wilk
Normality Test was applied. A p value of 0.037, greater than 0.05, was obtained,
implying that data is indeed Normally Distributed. Once proven so, the confidence
interval was calculated with the One-Sample T-Test. For the given sample, lower and
upper limits equaling 2691 and 2734 s were obtained, respectively. The width of the
confidence interval (43s), represents a tiny percentage (1.65%) of the sample mean,
thus proving that makespan data is inferential, and the prediction model viable.

Application performance information, obtained as explained in Sect. 3.1, and stored
in the historical database, was used to develop the prediction model. Thanks to predic-
tion, when users submit news job to the cluster, represented as in Eq. 1, don’t need to
provide description of the resources node =?, mem =?, PU =7 to be used. Instead,
the proposed RM searches through the historical database for identical executions
(same Appp 4., values) that may have been previously executed in the cluster. In case
no matches are found, which is likely since up to millions of combinations of Appp 4.,
exist, similar executions are searched for. The predictor generates performance pre-
dictions (makespan, cost, efficiency, memory) and estimates the best combinations of
resources to maximize application performance.

To develop the prediction model, the historical data stored in the database is sta-
tistically analyzed. Historical data includes many input variables. That is, different
parameters and data characteristics. Some of these input variables have a stronger
influence on the predicted variables. To determine which of the input variables have to
be included in the predicted model, the Pearson Correlation Coefficients, stating the
amount of linear correlation between variables, were calculated.
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When building the prediction equations, little prediction error is obviously sought.
However, obtaining lesser prediction error when increasing the number of variables of
a predictor doesn’t always imply the prediction is better. Sometimes this phenomenon
is due to the over-fitting of the model, which is the undesired modeling of the noise of
data samples. Although little prediction error may be obtained on a sample, chances
are the behavior of the sample doesn’t represent that of the overall population of real
observations. To prevent over-fitting, and evaluate the quality of the prediction model,
the Adjusted R? coefficient has been calculated, as well as the relative prediction error.

Based on makespan predictions, cost predictions and resource efficiency predictions
can be calculated. The execution cost was calculated by assigning fees to both the
CPU model and peak memory consumed, by the hour of usage. Fares were estimated
following the scale of Amazon’s public EC2 instance pricing.

Figure 5, provides graphical representation of real and multivariate regression pre-
diction results obtained for two execution scenarios. Figure 5a, shows the real and
the predicted makespans of Star application in function of both the PUs and the reads
file size, generating a mean relative error of 8.5%, and an Adjusted R>=0.92. Figure
5b, shows the real and the predicted makespans of Bwa-mem application, in function
of both the Parameter 1 (seed length) and the PUs. A mean relative error of 12%,
and an Adjusted R?=0.9, were obtained. As it can be observed from both graphi-
cal representations and assessment results, the prediction results remain close to the
real results. For Star’s case, the prediction Eq. 2 was generated, where: o =3.6* 1077,
B=1.03%10"8, and y=219.4. For Bwa-mem’s case, the prediction Eq. 3 was generated,
where: « = —0.88, § = 0.016, y = —3.3 % 1073, and § = 8.6.

PredTime = a % (Size/PUs) + B x Size + y 2)

2
PredTime = e¥*nPUS)FTPxP1+y*Pi+8 3)

In shared environments, multiple applications simultaneously attempt to use the
same resources. Some of them may be allocated resources, as others wait for them to
be released. Cluster efficiency has to be taken into account to prevent, among other
things, over-allocation of resources, which would cause them go wasted as other jobs
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wait. Furthermore, chances are jobs aren’t able to reserve all the desired resources,
such as the whole node. On top of that, jobs may not even get to run with as many
PUs as the scalability threshold marks, PUpax Speed as they would in exclusive mode.
Instead, they may have to be executed with less PU, i.e. PULowspeed» yielding longer
makespans (makespan penalty).

To properly deal with the trade-off between performance and the amount of
resources used, speed up predictions and efficiency predictions are calculated. The
speed ups and the efficiencies can be obtained from time predictions generated with
multiple resources, such as a wide range of PUs in each node. Figure 6, shows the
speed up and the efficiency predictions of Star, obtained from Fig. 5a. The scalability
thresholds for these two applications with the given conditions and sets of reads file
sizes is around 16 PUs. A range of efficiencies between 0.31 and 0.62, averaging 0.5,
is obtained. Nonetheless, results show that by allocating them 12 PUs, little makespan
penalty is inflicted and efficiency increased, whereas also leaving more resources
available for other applications.

3.3 Scheduling Multicriteria

Read mappers like the ones of Table 1 manage huge amounts of genomic file sizes,
calling for large memory requirements. Mappers mainly have two kinds of input files:
the indexed genome reference files, usually of a size that fits into memory and the
genomic sequence reads files, generally of a much greater size. Most read mappers
follow the principles of Bwa’s algorithm. That is: dividing reads files into chunks,
and implementing a double buffer scheme. The scheme is implemented to hide chunk
read latencies while distributing sequences within a chunk among threads for analysis
(mapping) [33]. After studying genome mapping applications, it has been observed
that the main bottleneck of their performance is caused by the saturation of the mem-
ory bandwidth, which becomes more and more noticeable as the number of threads
is increased [34]. Read mapping applications are memory-bound, and performance
limitations shown when increasing the number of concurrent execution threads cause
them to have a low scalability [35-37]. As a result of the memory bandwidth satu-
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ration, mappers may be prompted to wait for memory requests to be solved. While
waiting for memory, processing units remain low utilized, whereas other jobs can’t
access them. Thus, there is margin to improve application performance and resource
efficiency by increasing the DP of the nodes. That is, increasing CPU usage. Due to
that, we have focused on improving the resource management of these applications’
main bottlenecks.

Multiple applications can be executed simultaneously in the same node (DP > 1) in
order to increase resource efficiency. However, node sharing alters job performance,
slowing makespans down compared with the exclusive-mode case. In this work, slow-
down is quantified as the percentage of makespan increase of applications sharing the
node, compared with their respective exclusive-mode makespans.

Slowdown depends not only on the node specifications, but also on the characteris-
tics and resource usage carried out by applications. Applications with the same limiting
resources are much more likely to increase resource competition and interfere on each
other’s performance than applications limited by different resources (i.e. memory-
bound and CPU-bound). Different applications produce much lesser slowdown and
are more suitable to share the same nodes.

In order to determine the amount of slowdown, a series of experiments were
designed and conducted. Multiple combinations of applications were executed in the
same node. The makespan of each application was tracked and compared with the
exclusive makespan of the same application (with same parameters and data). Table 2,
shows a sample of the slowdown information obtained among pairs of applications. To
simplify, applications are executed with an amount of PUs matching their maximum
speed up, numPU 14y speed-

When increasing the DP of the nodes, the average slowdown increases too. Aug-
menting the DP is beneficial as long as the slowdown increase remains low, since it
improves overall performance of applications, resource efficiency, and usage. How-
ever, nodes have a maximum DP, a point from which augmenting the number of
applications is no longer efficient or reasonable, bringing about an abrupt slowdown
increase.

The maximum DP supported by a node depends on the applications, the PUs
selected, and node characteristics. Finding the maximum DP for each execution case
is a complex issue beyond the scope of this work. For the present study, a DP = 2 has
been chosen, since it allows us to show the improvements of the proposal. In order
to reflect the complexity of calculating the maximum DP, a summarized example,
which can be extrapolated to any other case, is provided below. The example has been
conducted by selecting 8 applications of Table 1, a specific number of PUs for each
application (numPU p14x speeq), and a cluster node. The first step consists in simultane-
ously executing all possible combinations of 2 applications (DP = 2) and calculating
the average slowdowns. Next, the same average slowdown calculation is conducted
with all combinations of some other amounts of applications. E.g.: 3 applications
(DP = 3), 4 applications (DP = 4), and all 8 applications (DP = 8). Figure 7 shows
the slowdown evolution as the number of applications (DP =2, DP =3, DP =4 and
DP = 8) increased. For the given example (Appsp 4 and resources), increasing the
DP from 2 to 3, and 3 to 4, augments the slowdown by 1.4% and 4%, respectively.
Results indicate that for this particular example, 4 applications can be simultaneously
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Fig.7 Average slowdowns when increasing the DP, for a given set of applications and resources

executed in the same node with little consequences on performance. Conversely, when
increasing the DP from 4 to 8, slowdown sharply rises up to 65%.

As previously mentioned, for the experiments of Sect. 4, involving more applica-
tions and nodes, DP = 2 has been chosen. This way, a clearer explanation on how the
DP affects slowdown and overall performance can be provided.

To maximize application performance and resource efficiency, a scheduling algo-
rithm, shown in Algorithm 1, has been developed. It is important to point out that the
algorithm doesn’t dismiss the dependencies of applications but receives ready ones.
That is, applications whose dependencies have been previously analyzed and solved.

When submitting a list of applications to a cluster featuring the proposed RM,
applications go through the prediction and scheduling steps. Detailed explanation
of these steps is provided with an example. To generate the example, a sample
of 6 jobs from Table 3 has been extracted and scheduled in a cluster, using a
single node to simplify. Graphical representation of the explanation is provided
in Fig. 8, and followed from left to right. The submitted list of applications to
schedule (LApps:JIrg:ﬁ“ﬁ, where each JI’eDs:? = Appp.a,p) is sent to the pre-
dictor, which takes the following inputs: the application (App), relevant parameter
values (P), data characteristics (d), and user criteria (p, time). E.g.: App=Blast,
P =< Hits, Word Size, Allow Gaps, MisMatch Penalty, Match Reward, ... >, d =<
File Size, Num Sequences, Length, format, ... >, p = time. The predictor goes
through the historical database, looking for past executions with similar inputs. Based
on the similar past executions, the predictor generates time predictions with different
combinations of resources, res = 1, ..., 3. Resource usage predictions, stemming
from the classification of applications into CPU-bound and memory-bound, are also
generated to consider the slowdown when the DP>1. As a result, a list of time pre-
dictions (LPred) and list of compatibility slowdowns (LCompat), are obtained. LPred
and LCompat are in turn the input data of the scheduling Algorithm 1. With these
inputs, the algorithm sorts jobs by descending time (top black row). In turn, for each
time-sorted job, the algorithm sorts other jobs by ascending slowdown (gray rows),
generating a list of priority-sorted jobs (LPrio). Once LPrio is generated, jobs are
allocated. At the right hand side of Fig. 8, the algorithm steps are provided. At the
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Fig. 8 Steps followed by a sample queue of jobs processed by the proposed RM, from submission to
scheduling, focusing in one node

beginning of the simulation, (, the node is assumed to be idle. Thus, as the algorithm
dictates, the longest application in Lapps (ApLong), plus ApLong’s most compatible
application (ApComp), are scheduled together. At 71, the node is not idle but loaded,
since J» is running. At this point, the algorithm selects the load’s most compatible
application (LoadsMostCompat, J;1), and compares RunAvailRes (line 27 of Algo-
rithm 1), with Wait&RunMaxRes (line 26 of Algorithm 1). Where RunAvailRes is
J1’s predicted time running at once with the resources currently available (AvailRes).
And Wait&RunMaxRes is the sum of J;’s predicted waiting time in order for the
J1’s maximum resources (that is, J1’s num PU pyax speea) t0 be released (WaitMaxRes-
Release), plus J;’s predicted running time with the so-called maximum resources
(MaxRes). For the given example, the fastest option is assumed to be running with at
once with AvailRes. At 5, the node is also loaded with J,, and the same comparison
is conducted. Conversely, in this case, waiting for MaxRes release plus waiting with
MaxRes (Wait&RunMaxRes) is assumed to be faster and thus the preferred option.

4 Experiments

The performance of the proposed RM is evaluated by conducting a series of experi-
ments. In Sect. 4.1, the experiments are carried out in a real environment and compared
with SLURM’s FCFS (First Come First Served). The steps followed by the workflows
applications under the proposed RM are covered in depth. Once the performance of the
RM is validated in a real environment, simulated-environment experiments follow in
Sect. 4.2. In the simulator, the proposed RM is tested once more, and its performance
is compared with those of Max—Min and Min—-Min scheduling algorithms [38].

4.1 Real-Environment Experiments
The proposed RM is tested by simultaneously processing two different sets of bioinfor-

matics workflows applications in a cluster featuring SLURM as a default RMS. Each
set of workflows (WFs 4 for case A, and WFsp for case B) is processed in two different
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Algorithm 1: Scheduling Algorithm

Inputs : LApps: List of Applications to Schedule;

LPred: List of Time Predictions of Applications in Exclusive Mode, for PUs in node, for app in LApps;
LCompat: List of Compatibility Slowdowns of Applications, for app in LApps;

Output: LPrio: List of Applications Sorted by Priority;

1 Read LApps; // Read predictions of apps in LApps with different PUs, nodes,
from LPred

2 while apps in LApps do

Sort List of Applications to Schedule (LApps) by Time Descending; // Longest to Shortest
ApLong = First in LApps;

Sort List of Compatibility Slowdowns of Applications (LCompat) for ApLong by Slowdown Descending;
// Compat apps of each app

21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36

38
39

41
42

end

ApComp = First in LCompat for ApLong ;

// ApLong’s most compat app

SelectedApps = ApLong & ApComp;

MaxRes = PUs for Max SpeedUp for app in SelectedApps ;

// Obtained from LPred

Read Resource Status;

if

IdleNodes in cluster then
if AvailRes > MaxRes then
\ SelectResources = MaxRes for SelectedApps;
end
else
‘ SelectResources = Combination of PUs for Selected Apps minimizing sum of LPred times;
end
UpdateLists(Selected Apps);

end

LoadedNodes in cluster then
SelectedApps = LoadsMostCompatApp (for app in LApps) ; // Get app in LApps most
Compat with node’s Load
if AvailRes > MaxRes(SelectedApps) then
\ SelectResources = MaxRes for Selected Apps;

end
else
WaitMaxResRelease = (PredTime App — CurrentTimeApp) for App in Load;
Wait&RunMaxRes = WaitMaxResRelease + PredTime running with MaxRes; // Wait
MaxResRelease, run with MaxRes
RunAvailRes = PredTime running with AvailRes; // Run at once with AvailRes

if RunAvailRes < Wait&RunMaxRes then

\ SelectResources = AvailRes for Selected Apps;
end
else

‘ SelectResources = MaxRes for Selected Apps;
end

end
UpdateLists(Selected Apps);

end

return List of Applications sorted by Priority (LPrio);
Function UpdateLists (SelectedApps)

Remove Selected Apps from LApps;

Add SelectedApps to LPrio;

Go to Next App;

ways. First, by using both the proposed RM and SLURM. That is, with applications
going through the prediction and scheduling phases described in Sect. 3. Second, by
using only SLURM with FCFS policy. At the end, the makespan, the efficiency and
the resource usage of the two different methods are reviewed and compared.

The performance results obtained when scheduling applications with the proposed

RM vary upon the workload processed. The number of applications, their character-
istics, and their compatibilities, play a major role in the ensuing makespan, efficiency,
and resource usage. To consider that fact, two different workloads (WFs4 and WFsp)
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are processed. The main purposes of this section are to assess how the proposed RM
processes jobs, as well as to prove that it can improve SLURM’s average workflow
makespan, efficiency, and resource usage, under different workloads.

The efficiency of applications in exclusive mode has been calculated as the speed up
divided by the number of processors, as in Eq. 4. Similarly, the efficiency of multiple
applications in shared mode, i.e. App, and Appp executed simultaneously, has been
calculated as in Eq. 5. The resource usage has been calculated as the ratio between:
the number of node PUs used by an application (or aggregated number of PUs used
by multiple applications, if in shared mode) and the number of PUs of the node.

Makespan(App'FY)
.. nPU _
Efficiency(ApPYExclusive = Makespan(App"PU) x n )
Efficiency (AppZPU, App%’PU)
Shared
_ Makespan(App"Y) pxer. + Makespan(App V) pxe, )

Makespan(App""Y, App's*) sharea * (n +m)

Clusters may be shared among many kinds of applications, such as MPI, MapRe-
duce, or multithread. Thus, it is convenient to define partitions upon applications’
resource needs. For data-intensive, shared-memory bioinformatics workflows appli-
cations, a partition of 4 heterogeneous nodes with large memory capacities has been
defined: AMD 10-6376 (2.3GHz, 64PU, 128GB), Intel Xeon E5-4620 (2.2GHz, 64PU,
128GB), and 2 Intel Xeon E5-2620 (2.1GHz, 24PU, 64GB).

Each case-experiment begins by submitting multiple workflows to the cluster
partition. For each workflow application, the predictor generates multiple perfor-
mance predictions, such as makespans and costs, in all nodes with a wide range
of PUs. Based on this information multiple metrics can be calculated: the fastest
resources for each application (regardless of the resources available), the scalabil-
ity threshold (num PUpaxspeea), the time penalties obtained when using less PU
(num PULowspeed), OF the resource efficiency. With this information, the makespan-
efficiency trade-off may be balanced.

Workflows may be submitted dynamically to the cluster. The submission rate and
computing requirements of the jobs may exceed the capacity of the cluster, saturating it.
In some of these cases, the cluster load may surpass by far the cluster capacity, prompt-
ing waiting times to grow unreasonably long. To prevent that, the cluster submission
queue is divided into processing batches, and some of them are granted admission.
To define the batch size, the aggregated capacities of the main resources of the cluster
used by applications, memory and PUs, are taken as reference. To determine how many
applications fit in each batch, performance predictions are consulted. Thus, a batch
is going to be formed by as many applications whose predicted aggregated memory
and PUpqx speea can be attended to with the cluster’s: PUs (ZI}VOdezl numPUSNode)
and memory (Z’;\, ode—1 Mempoqe), given a cluster of n nodes. Next, a certain amount
of batches are selected for admission. The present experiments involve two different
workloads which are processed independently. For cases A and B, 2 and 4 batches
have been selected, respectively. These amounts have been chosen since they contain
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Fig. 9 From top to bottom (case A): (i) dynamically-submitted workflows, (ii) list of ready applications
(admitted ones within blue-dashed rectangle), (iii) applying the scheduling algorithm that mixes up appli-
cations based on predictions and slowdowns, (iv) list of scheduled applications, sorted by priority (Color
figure online)

enough load to explain how the proposal works, recreating different, real-like sce-
narios where load’s computational requirements surpass the capacity of the cluster.
Different sets of bioinformatics workflows are extracted from the admitted batches.
For case A, the WFs4 set is obtained. For case B, the WFsp set is obtained. In turn,
from each workflow, a list of applications is obtained. Figure 9, upper part, shows
case-A, admitted workflows (WF4 1, WF4 2, WF4 3 and WF,4 4), and the resulting
set of admitted applications (within blue-dashed rectangle). For the present work, the
dependencies have been ruled out. The proposed RM comes into action assuming
applications to be in ready state. So has been done to focus on the main point of
this section, which is to expose the details on how scheduling based on predictions
and compatibilities has been carried out, and how performance has been improved.
Furthermore, this stand has been taken since SLURM, the RMS compatible with the
proposed RM, already includes a dependency-solving flag —dependency, -d. This flag
delays dependent jobs’ execution start until their dependencies are solved, based on
different criteria. Dependent jobs can start execution after specific jobs have begun -d
after, terminated -d afterany or terminated in a failed state -d afternotok, among other
options [11].

Once predictions are generated and the list of admitted applications is defined, the
processing of applications continues, as shown in the lower part of Fig. 9, for case
A. The performance predictions and slowdown information of each application in the
list are sent to the Scheduler Multicriteria, and a list of priority-sorted applications is
obtained: (App, + Appg), (App,, + Apps), and so on.

The prediction information generated from the lists of applications (cases A and
B), is provided in Table 3. To simplify the explanation, only the average predicted
makespan (in seconds) of each application in all cluster nodes with PUpsaxspeed 18
shown.

For cases A and B, the scheduling algorithm receives makespans predictions, sum-
marized in Table 3 and slowdown information, summarized in Table 2. Predictions
reveal the amount of resources for both fast and efficient execution. Compatibility
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Table 4 Workflows makespans (in seconds), efficiencies and resource usages obtained when processing
the 4 workflows of case A, with the proposed RM alongside SLURM, and only SLURM

Makespans case A Efficiencies case A Resource usages A
RM SLURM Improv. RM SLURM Improv. (%) RM (%) SLURM (%) Improv. (%)

WF; 17,959 23,057 22 043 0.25 73 99 49 102
WF, 18,243 23,589 23 0.52 0.30 75 88 46 91
WF3 18,175 25,963 30 0.52 0.28 85 80 44 82
WF4 17,959 27,958 36 0.52 0.31 68 87 36 138
Av. 18,084 25,141 28 0.50 0.29 75 88 43 101

slowdown information is employed to manage the DP of the nodes. This way, appli-
cations can be combined for same-node execution in such a way that slowdown is
reduced as much as possible.

As mentioned before, cases A and B are processed in the cluster in two different
ways: by using the proposed RM alongside SLURM, and by using only SLURM.
The experiments are performed in the following order. First, case A, which contains
4 workflows or 30 applications, is processed in both ways. Once case A finishes, case
B, involving 6 workflows or 52 applications, is processed in both ways too.

Based on applications’ performance information in both shared and exclusive mode,
the proposed RM outputs a list of applications and resources sorted by priority, which
is sent to the cluster’s default RMS, SLURM. The proposed RM acts then as an
auxiliary module of SLURM, providing resource scheduling information that is based
on a thorough study and knowledge of applications’ characteristics. Assisted by the
information sent by the proposed RM, and based on its own implemented policies,
SLURM eventually schedules applications.

Results obtained after processing the 4 workflows of case A, in both ways described,
are provided in Table 4. Three performance metrics: makespan, efficiency and resource
usage, have been calculated. For the given case, employing the proposed RM (pre-
diction, scheduling), improves average workflow makespan by up to 28%, average
workflow efficiency by up to 75%, and average resource usage of workflows by up to
101%, compared to solely using SLURM.

Once case A finishes, the 6 workflows of case B are processed in the same both
ways. Case-B results are provided in Table 5. For the given case, the proposed RM
improves average workflow makespan by 35%, average workflow efficiency by 83%,
and average resource usage of workflows by 95%, compared with SLURM.

The average makespan of the proposed RM increases from case A (18084 seconds)
to case B (27,752 s) due to the saturation of the resources. However, RM’s efficiency
improves (from 0.5 in case A to 0.68 in case B), and so does RM’s resource usage
(from 88% in case A to 93% in case B). As it can be seen, the resource usage starts
approaching its maximum as more and more applications are scheduled on the same
amount of resources. This situation may overwhelm the resource capacity, increas-
ing makespan. However, new applications included for the experiments of case B
may generate new combinations of applications leading to improved slowdown and
efficiency.
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Table 5 Workflows makespans (in seconds), efficiencies and resource usages obtained when processing
the 6 workflows of case B, with the proposed RM alongside SLURM, and only SLURM

Makespans case B Efficiencies case B Resource usages B
RM SLURM Improv. RM SLURM Improv. (%) RM (%) SLURM (%) Improv. (%)

WF; 24,762 39,005 37 0.64 0.31 108 99.5 52 91
WF, 26,401 37,589 30 0.83 0.45 84 92 50 84
WF3 27,125 40,212 33 0.61 0.33 87 82 47 76
WF4 27,603 39,616 30 0.47 0.33 41 89 40 126
WFs 31,011 52,546 41 0.78 0.43 81 95 49 94
WFg 29,611 50,223 41 0.77 0.39 94 99.8 49 102
Av. 27,752 43,198 35 0.68 0.37 83 93 48 95.7

4.2 Simulated-Environment Experiments

The performance of the proposed RM is tested in a simulated environment and com-
pared with that of Min—-Min and Max—Min algorithms. To do so, the same sets work-
flows of the real-environment experiments of Sect. 4.1 are processed in a cluster. That
is, WFsy4 for case A, and WFsp for case B. The simulation is conducted with Work-
flowSim [39] simulator, an open-source tool widely accepted by the scientific commu-
nity. WorkflowSim processes workflows defined within XML files and includes mul-
tiple scheduling policies, out of which relevant Max—Min and Min—Min, are chosen.

The mentioned sets of workflows are processed under three different schedul-
ing algorithms (proposed RM, Max—Min and Min—Min). Since the three scheduling
approaches require time predictions, they all have been equipped with the predic-
tion model of the proposed RM. However, after going through the prediction phase,
workflows are scheduled in different ways. First, with the proposed RM, that is, with
applications going through the prediction and scheduling phases described in Sect. 3.
Second, with the Min—Min algorithm, which calculates the overall completion time
of all tasks and prioritizes the shortest one by assigning it to the node yielding mini-
mum completion time. Third, with the Max—Min algorithm, which proceeds similarly
to Min—Min, but sorting the tasks from maximum to minimum overall time. At the
end, the average workflows makespans obtained with the three different methods are
reviewed and compared.

The resource specifications of the simulated cluster designed for the experiments
have been adjusted to be identical to those of the real cluster used for the previous
experiments.

Similarly to the real-environment case exposed in Sect. 4.1, the simulation of the
four workflows of the case A was firstly conducted. Table 6 shows the workflows’
makespans obtained in seconds with the three methods once the simulation was ter-
minated. Results show that applying the proposed scheduling algorithm to a list of
workflows applications, considering the predicted makespans and the slowdown when
the DP>1, can reduce by 26% the average workflow makespan obtained with both
Min-Min and Min—Min algorithms.
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Table 6 Workflows makespans

Mak A
(in seconds) obtained when axcspans case

simulating the processing the 4 RM Max-Min Min-Min Mean impr. (%)
workflows of case A, with the
proposed scheduling algorithm, WE 19,754 23,113 23,182 15
Max—Min algorithm and WF, 18,790 23,342 29,356 29
Min-Min algorithm WF3 19,083 23,884 29,146 28
WEF4 19,395 26,850 30,853 33
Av. 19,256 24,297 28,134 26

Table 7 Workflows makespans

Mak B
(in seconds) obtained when axespans case

simulating the processing the 6 RM Max-Min Min-Min Mean impr. (%)
workflows of case B, with the
proposed scheduling algorithm, WF, 26,991 41,740 20,933 14
Max-Min algorithm, and WF, 27,985 43,855 41,209 34
Min-Min algorithm WF3 29837 46,196 48,071 37
WEF4 29,673 41,258 50,922 36
WFs 33,147 41,348 51,684 29
WFg 32,139 39,230 53,288 31
Av. 29,963 42,271 44,351 36

Finally, the execution of the 6 workflows of the case B was simulated too. The
workflow makespans obtained can be seen in Table 7. For this second case, with
a nearly-doubled amount of applications (from 30 in case A to 52 in case B), the
proposed scheduling algorithm achieved an average workflow makespan reduction of
36% compared to Min—-Min and Max—Min algorithms. The makespan improvement
achieved in case B is 10% greater than that of case A.

The average workflow makespans obtained with the proposed RM in both real
and simulated environments have been compared in order to verify that it is indeed
feasible to convey the proposal into a simulated environment for further testing. By
comparing the results, the time spent by the proposed RM in the pre-processing phase
can also be determined. For case A, the pre-processing time accounts for 1172 s, which
represents a 6% of the total processing time. For case B, involving more applications,
the pre-processing time accounts for 2210s. That is, a 7.4% of the processing time.
As it can be observed, the amount of time spent in this phase depends on the number
and complexity of the input applications, and the amount of available resources. In a
context with many applications and limited amount of resources, finding a scheduling
solution becomes more complex and thus more time-consuming than in contexts with
many applications but scarce resources.

5 Conclusions and Future Work
In this work we developed a History-Based Resource Manager for bioinformatics
workflows applications running in clusters with heterogeneous nodes. The RM is

made up of three blocks: application performance analysis, prediction and scheduling.
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The proposed RM becomes aware of the particular characteristics of bioinformatics
workflows applications, which cause them to show variable performance depending
on parameter values and data characteristics. By considering the characteristics of
bioinformatics applications, we managed to adjust resource allocation to the actual
needs of these applications. Also, we tested the performance of the proposed RM, by
processing two sets of workflows applications, referred to as case A (4 workflows,
30 applications) and case B (6 workflows, 52 applications). First, we developed the
experiments in a real cluster, and concluded that for the two workloads processed,
attaching the proposed RM to SLURM improved makespan, efficiency and resource
usage. Namely, in a real environment, average workflow makespan was improved by
up to 36%, average workflow efficiency was improved by up to 83%, and average
resource usage was improved by up to 101%, compared with solely using SLURM.
Second, we tested the proposed RM in a simulated environment with WorkflowSim
simulator. The obtained results showed that for both cases, the proposed scheduling
algorithm achieved an average workflow makespan of 26% (case A), and 36% (case
B), compared to Min—Min and Max—Min algorithms.

As future steps we consider conducting further tests with WorkflowSim simulator in
order to enhance the functionalities of the proposed RM. Testing is to be carried out in
larger environments and with workloads, which could open the door for the algorithm
to be tested under greater DP and workloads. These testing conditions could help us
extend or add new functionalities to the developed scheduling algorithm. Other future
actions may involve adapting the current proposal so that it can be adapted to popular
workflows managers such Galaxy or Taverna. Hence assisting towards to the resource
managing stage, usually performed by SLURM, alongside which the proposed RM
has proven beneficial.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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