Int J Parallel Prog (2018) 46:1063-1093 @ CrossMark
https://doi.org/10.1007/s10766-017-0515-0

Efficient Processing of Large Data Structures on GPUs:
Enumeration Scheme Based Optimisation

Marcin Gorawski! - Michal Lorek!

Received: 8 July 2016 / Accepted: 24 June 2017 / Published online: 4 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract The purpose of this paper is to highlight the performance issues of the matrix
transposition algorithms for large matrices, relating to the Translation Lookaside
Buffer (TLB) cache. The existing optimisation techniques such as coalesced access and
the use of shared memory, regardless of their necessity and benefits, are not sufficient
enough to neutralise the problem. As the data problem size increases, these optimi-
sations do not exploit data locality effectively enough to counteract the detrimental
effects of TLB cache misses. We propose a new optimisation technique that counteracts
the performance degradation of these algorithms and seamlessly complements current
optimisations. Our optimisation is based on detailed analysis of enumeration schemes
that can be applied to either individual matrix entries or blocks (sub-matrices). The
key advantage of these enumeration schemes is that they do not incur matrix storage
format conversion because they operate on canonical matrix layouts. In addition, sev-
eral cache-efficient matrix transposition algorithms based on enumeration schemes
are offered—an improved version of the in-place algorithm for square matrices, out-
of-place algorithm for rectangular matrices and two 3D involutions. We demonstrate
that the choice of the enumeration schemes and their parametrisation can have a direct
and significant impact on the algorithm’s memory access pattern. Our in-place version
of the algorithm delivers up to 100% performance improvement over the existing opti-
misation techniques. Meanwhile, for the out-of-place version we observe up to 300%
performance gain over the NVidia’s algorithm. We also offer improved versions of two
involution transpositions for the 3D matrices that can achieve performance increase

B Marcin Gorawski
marcin.gorawski @polsl.pl

Michal Lorek
michal.lorek @polsl.pl

Faculty of Automatic Control, Electronics, and Computer Science, Institute of Informatics, Silesian
University of Technology, Akademicka 16, 44-100 Gliwice, Poland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0515-0&domain=pdf

1064 Int J Parallel Prog (2018) 46:1063-1093

up 300%. To the best of our knowledge, this is the first effective attempt to control
the logical-to-physical block association through the design of enumeration schemes
in the context of matrix transposition.

Keywords Matrix transposition algorithm - Parallel computing - TLB thrashing -
Pairing function - Enumeration scheme - Block logical reordering

1 Introduction

Matrix transposition is one of the fundamental operations in linear algebra, and is used
in many scientific and engineering applications [9]. Over the past few decades, many
algorithms dedicated to matrix transposition were proposed [1,8,17,30]. The majority
of them have been dedicated to rectangular matrices and were based on a thorough
mathematical analysis of permutation cycles [4].

As computer systems advanced, it was realised that the system architecture can
significantly influence the performance of transposition algorithms. Over many years,
existing algorithms were improved, and new ones were designed from the ground up to
reflect new trends in a computer design [7]. The faster the systems became, the larger
the matrices scientists and engineers wanted to work with. Sometimes, the size of the
matrix was larger than the operational memory capacity, which led to the introduction
of out-of-core algorithms [16]. Transposition algorithms also had difficulty running
fast enough, even with faster CPUs available. With time, multi-CPU solutions were
proposed to tackle the computational deficiencies of the existing solutions. However,
with the advent of GPGPU technology, a new unexplored realm of massively parallel
computing became available, offering both scalability and performance benefits. In
many domains, GPU based algorithms successfully outperformed traditional single or
multi CPU approaches. A new class of transposition algorithms were proposed to take
advantage of this new technology. GPU versions of in-place algorithms for rectangular
matrices were described in [3,26] and the performance considerations of out-of-place
algorithms were explained in [24]. In addition, based on the optimisations techniques
described in [24], a new range of efficient 3D matrix transposition algorithms have
been proposed in [14]. However, since the research on processing large data structures
on GPUs is so scarce, we investigate whether the existing optimisations are adequate
and if the new methods are required.

Recently, a new approach for transposing square matrices in parallel computing
environments was proposed [10]. In our research, we focus on in-place and out-of-
place transposition performed on square matrices. However, some of the presented
concepts can also be applied to rectangular matrices, or even 3D matrices Our main goal
is to design an algorithm that is both computational and resource efficient. We try to
develop a solution that is independent of any specific hardware platform. Nevertheless,
we decided to conduct our initial tests on CUDA capable devices.

The contributions of this paper are as follows:

— We present an extended version of the concept of mapping a rectangular grid
of elements onto a triangular part of a matrix. This mapping is achieved using

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1065

various enumeration schemes and can be applied to both cores [10] or blocks as
Wwe propose.

— We describe in detail how enumeration schemes can be used to mitigate perfor-
mance problems associated with TLB cache misses, and how to control memory
access pattern through them.

— We offer an improved version of a thread-wise algorithm that delivers stable per-
formance and high throughput regardless of matrix size.

— We propose a modified version of NVIDIA’s out-of-place algorithm by applying
an enumeration scheme that delivers sustained high throughput for large matrices.

— We demonstrate that the 3D matrix transposition presented in [14] is also suscepti-
ble to the TLB cache misses. An improved version of the involution transposition
Ty, is suggested.

The rest of the paper is organised as follows: Sect. 3 explains the general concept
of mapping a rectangular grid of elements onto the entries of the triangular part of
the matrix. We extend the analysis of this technique described in [10] and propose an
improved version of the transposition algorithm. Section 4 describes some of general
properties that enumeration schemes can feature. Detailed analysis of the triangular
schemes is presented in Sects. 4.1 and 5. The rectangular schemes are briefly discussed
in Sect. 6. Section 7 shows the results of the performance tests we conducted using our
algorithm and existing approaches. Finally, conclusions are presented in Section 8.

2 Prior Art

Knowledge of complex multi-level memory hierarchies, together with exploiting the
data locality (through tiling and block data layouts) provide the best strategy to design
an efficient matrix transposition algorithm and overcome performance issues related
to the sub-optimal memory access patterns.

In [31], various loop transformations are introduced that subdivide an iteration
space into tiles or blocks. These blocks become units of work for any further parallel
processing. As stated in [31], the iteration space does not have to be rectangular, which
allowed for many other interesting space shapes such as triangular or trapezoidal.

Similarly, Kim et al. [15] explored the concept of tiling a little further and developed
an efficient algorithm that can generate multi-level parametrised tiled loops.

Park et al. [23] demonstrated that tiling and block data layout techniques could
reduce TLB misses. They concluded that these optimisation techniques deliver bet-
ter TLB performance over the other methods. They also highlighted that as the data
problem sizes become larger, the detrimental effect of TLB thrashing becomes more
discernible. Their experiments were validated using a tiled version of matrix multipli-
cation, LU decomposition, and Cholesky factorisation.

The recursive blocked data formats introduced by Gustavson et al. [12] allow for
efficient utilisation of memory hierarchy. They proposed a hybrid technique that, at
the block level, stores matrix entries in either row-major or column-major order. The
size of a block is limited by the size of the cache and it was assumed that only a few
of them will occupy the cache. The blocks are stored recursively, and variants for
rectangular and triangular are described.

@ Springer

1066 Int J Parallel Prog (2018) 46:1063-1093

Another interesting cache oblivious algorithm was described by Bader and Zenger
[2]. They argued that while Morton ordering can provide temporal locality during
matrix multiplication, it may not be sufficient for the spatial locality. Instead, using
the Peano curve, they subdivided the matrix recursively into 3-by-3 blocks. They
demonstrated that their approach can completely avoid jumps in the address space.
However, the utilisation of space filling curves as an element or block ordering scheme
is limited to square matrices.

Performance tests conducted on various multi-core platforms and presented by
Heinecke and Bader [13] confirmed that the space filling curves are computationally
viable. In particular, they showed that the Peano-curve based matrix multiplication
algorithm offers better scalability than the other parallel implementations and exhibit
strong data locality properties. The majority of matrix transposition optimisation
research studies dedicated to tiling, block data layouts and TLB performance were
mainly focused on single or multi-CPU environments [5,11,29].

For instance, Chatterjee and Sen [5] proposed several in-place transposition
algorithms for square matrices. They investigated various memory models and exper-
imentally validated their performance. They demonstrated that by using a Morton
layout their cache efficient transposition algorithm offered better performance than
other canonical layouts. Thanks to two level tiling they were able to reduce the num-
ber of TLB misses, because virtual memory pages were holding sub-matrices instead
of rows or columns.

The algorithms using block structures (tiles) and utilising element ordering based on
space filling curves subdivide the matrices recursively into smaller matrices [2,5, 13].
Usually, the recursion terminates when tile size matches architecture specific cache
size [5]. In most cases, the order of the elements within a single tile is architecture
dependent and typically row-major or column-major layouts are used. The use of
Peano-curve or Morton order to enumerate blocks is restricted to certain matrix sizes.
One way to overcome such a limitations is to normalise the size of a matrix with
zero-padding [13].

Gustavson et al. [11] presented an efficient parallel algorithm for in-place transpo-
sition. They also described standard and blocked matrix storage conversion techniques
and emphasised that blocked data layouts can reduce number of the TLB misses.

Recently, based on the work presented in [15], Wei and Mellor-Crummey [29]
exploited data locality to avoid cache and TLB misses. Their framework for optimised
parallel out-of-place tensor transposition achieved high throughput in single and multi-
socket systems.

In massively parallel computational environments such as GPUs, the impact of
the TLB cache is not yet well researched, especially when large data sets are being
processed, i.e., during the matrix transposition. To date, there are few notable studies
that explain the internal cache and memory structures on GPUs [28,32]. However,
these papers do not target TLB related issues which arise when large data structures are
processed by the memory bound algorithms. Matrix transposition solutions presented
in [3,24,26] include many GPU specific optimisations, yet they also do not consider
the impact of the TLB on algorithm performance.

The in-place and out-of-place transposition of the 3D matrices described in [14]
utilises the performance optimisations proposed in [24]. We will demonstrate that these

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1067

optimisations are not sufficient to achieve high and stable throughput when large 3D
matrices are transposed.

The data layout transformations on GPUs have been also proposed for structured
grid applications operating on multidimensional dense arrays [25]. This work identifies
a flattening function FF that defines a linearization of coordinates of elements in a
grid. Depending on its definition different memory layouts can be achieved. In contrast,
the pairing function I7 we introduce is used to translate element coordinates without
changing the data physical layout. In other words, we manage the logical relation
between the elements and the given data layout.

In addition, we realise that as the GPU’s global memory increases with new hard-
ware, it is certain that many of the existing GPU-specific optimisations will not be
sufficient to mitigate the detrimental effects that TLB thrashing incurs. NVIDIA’s plan
to launch a 32GB GPU with Pascal architecture and the introduction of a technology
called NVLink [19] that offers data transfers at much higher rate than the traditional
PCI Express interconnect, will stress all the existing algorithms even more. Neverthe-
less, we suspect that once all the issues are overcome, the GPU based solutions will
be favoured over their CPU counterparts.

3 Background

Matrix transposition is one of the simplest yet important algebraic operations that can
be applied to matrices. When performed on a computer system, hardware specific
limitations such as memory bandwidth or cache size are factors resulting in poor
overall performance. In our research we try to tackle these problems and propose an
algorithm that offers both stable and high performance regardless of the input matrix’s
size. Although we primarily concentrate on the in-place (IP) transposition of square
matrices performed in parallel computing environments, the idea presented below
can be also be used to improve the out-of-place (OOP) transposition of rectangular
matrices or even 3D matrices [14].

Usually the techniques described in [24] are extensively exploited to improve mem-
ory operations during the matrix transpose. Because the whole matrix occupies global
memory, aligned and coalesced access are used to maximise read and write throughput.
Otherwise, thread block accessing range of addresses can cause multiple load/store
operations to be issued.

Shared memory has the benefit of lower latency and higher bandwidth than global
memory. It can only be accessed by device code and depending on the GPU archi-
tecture it can offer up to 96KB of memory per Streaming Multiprocessor (SM). This
size limit affects the number of thread blocks that can occupy any single SM. Poor
allocation of shared memory resources can result in low occupancy or suboptimal pipe
utilisation.

Shared memory is especially helpful during matrix transposition. Each thread block
maps onto the relevant block of entries within a matrix. Threads within a block
cooperatively read matrix entries row-wise and store them in shared memory (tile)
column-wise. Once the whole block of entries is copied to shared memory, the same
thread block reads it row-wise from the tile and stores in the destination location. List-

@ Springer

1068 Int J Parallel Prog (2018) 46:1063-1093

ing 1 presents the pseud-code for the out-ouf-place kernel. The index of the source
and destination elements is based on the thread and block coordinates within a grid.

Listing 1 Out-of-place kernel

void out_of_place_block_wise_kernel (float xodata,

1

2 const float =xidata , uint3 matrixDim){

3

4 __shared__ float tile [TILE_SIZE][TILE_SIZE];

5 int src_ix = get_src_ix (threadldx , blockIdx , matrixDim);
6 int dst_ix = get_dst_ix (threadIdx , blockldx , matrixDim);
7 tile [threadIdx .y][threadldx .x] = idata[src_ix];

8

9 __syncthreads ();

10

11 odata[dst_ix] = tile[threadldx .x][threadlIdx .y];

12}

As was shown in [24] this approach delivers the best performance of the out-of-
place transposition of square matrices. In order to transpose square matrix in place the
above mentioned optimisation techniques still apply. However, minor modification of
the kernel are required. During the in-place transposition, two tiles are maintained and
exchanged by a single thread block. As before, the source and destination index of
the matrix elements is obtained from the thread and block coordinates. For example,
the Listing 2 shows a simplified version of the in-place transposition kernel. The if
statement ensures that only blocks below or on the main diagonal participate in the
transposition. The use of branching is not advised in CUDA parallel programming
as it can cause thread divergence. However, since the if statement does only affect
the execution path of all threads in a block, this does not introduce any branching at
a single thread level. Nevertheless, its presence can have some impact on algorithm
performance.

Listing 2 In-place block-wise kernel

1 __device__ void transpose (float M, uint3 matrixDim ,
2 uint3 blockIx){

3

4 int src_ix = get_src_ix (threadldx , blockIx , matrixDim.x);
5 int dst_ix = get_dst_ix (threadldx , blockIx , matrixDim.x);
6 __shared__ float upper_tile [TILE_SIZE][TILE_SIZE];
7 __shared__ float lower_tile [TILE_SIZE][TILE_SIZE |;
8

9 upper_tile[threadIdx .y][threadIdx .x] = M[src_ix];
10 lower_tile [threadldx .y][threadldx .x] = M[dst_ix];
11

12 __syncthreads ();

13

14 M[src_ix] = lower_tile[threadldx .x][threadIdx .y];
15 M[dst_ix] = upper_tile[threadldx .x][threadldx .y];
16 1}

17

18 __global__ void in_place_block_wise_kernel (float =M,
19 uint3 matrixDim) {

20

21 if (blockIdx .x <= blockIdx .y){

22 transpose (M, matrixDim , blockIdx);

23 }

24}

The above mentioned optimisations are regularly employed in memory-bound algo-
rithms. So far they have been sufficient to improve performance of matrix transposition

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1069

algorithms. But their limitations arise from the fact they were introduced to tackle spe-
cific performance issues. As the new generations of the GPUs feature an increased
amount of global memory the ineffectiveness of these optimisations becomes more
evident. Matrix transposition is good example of an algorithm that lacks both temporal
and spatial locality [5]. When transposing large matrices the corresponding pairs of
transposed elements can be located close to each other or far apart. This potentially
leads to a situation where virtual memory pages are excessively used, causing TLB
thrashing. We will discuss this issue furhter in the following section.

3.1 Problem Definition

Based on our tests, both of the presented kernels deliver high throughput. However,
we observed that as the size of the matrix increases the performance of these solutions
gradually deteriorates.

In Fig. 2, we can clearly see that for matrices of an order 24 and beyond the
throughput starts to decline. Since we know that the access to global memory is
optimised, there has to be another reason for this behaviour.

From the matrix transposition definition, the location of two entries situated at
x +my and y + xm is swapped. We can realise that the larger the matrix is, the bigger
the address difference between corresponding elements becomes.

Because there is usually one specific type of cache used during the virtual address
translation, we suspected that the TLB cache was responsible for the performance
degradation. Unfortunately, the TLB’s structure and size remains NVIDIA’s well-kept
secret. TLB structures on GPUs can be more complex than their CPU counterparts [6].
Furthermore, on multi-core platforms, only a few threads access the main memory,
while on GPUs there can be thousands of threads accessing the global memory [6].
The heuristic nature of cache eviction algorithms makes the TLB less predictable and
harder to control programmatically.

There are only a few published works that focus on the TLB’s structure and size on
GPUs [28,32]. Through specially crafted micro-benchmarking, it is possible to reveal
some of its properties such as size or type. However, it is more difficult to determine
how it behaves when the data problem size is increased and the spatial locality is
not maintained. Usually in this situation, the original logic needs to be revised and
adjusted using smaller kernels [27]. Thus, the matrix is further divided into separate,
independent grids—square regions. Each region becomes part of a super grid, spanning
over the entire matrix. Figure 1 presents this concepts. Such an approach, although
well studied [18] and commonly practised in heterogeneous computing environments,
introduces strong interdependence between host and device code. Hence, we argue
that it is more feasible to design efficient “pure” GPU algorithms without the need to
employ hybrid solutions.

Since CUDA does not allow natively creating super grids, the host code is respon-
sible for splitting the matrix into regions and maintaining their respective sizes and
indexes. In addition, the host code needs to supply the kernel with the region’s index
so that it was possible to obtain the absolute thread block index within the matrix
element’s space. The revised version of the region-based IP kernel and the fragment

@ Springer

1070 Int J Parallel Prog (2018) 46:1063-1093

m=8 m,=4 m=2
0 0] BO
! 0 RO
HHH HE -
4 | V| 2 [V AVl
§ 1
: 3
01 2 3 4 5 6 7 0 1 2 3 0 1

Fig. 1 Logical decomposition of matrix M into blocks and regions

of the host application are presented in the Listings 3 and 4 below. The order of a
region (r) is a multiple of block size b. This time the if statement ensures not only that
the block is located below or on the main diagonal, but also that it remains within the
matrix element’s space.

Listing 3 Region-wise In-place kernel - host code

1 for (unsigned int ry = 0; ry < superGridDim.x; ry++){

2 for (unsigned int rx = 0; rx <= ry; rx++){

3 regionldx .x = rx;

4 regionldx .y = ry;

5 in_place_region_kernel <<<grid , block >>>M, n, regionldx);
6 }

70}

Listing 4 Region-wise In-place kernel - device code

1 __constant__ uint2 regionDim;

2

3 __global__ voeid in_place_region_kernel (

4 float «M, uint3 matrixDim ,

5 uint2 regionldx){

6

7 uint3 blockIx ;

8 blockIx .x = regionldx .x * regionDim.x + blockIdx .x;
9 blockIx .y = regionldx .y % regionDim.y + blockIdx .y;
10

11 if (blockIx.x % TILE_SIZE < matrixDim.x &&

12 blockIx .y % TILE_SIZE < matrixDim.x &&

13 blockIx .x <= blockIx .y){

14

15 transpose (M, matrixDim , blockIx);

16 }

17)

Figure 2 compares the performance of the original IP and OOP kernels with the
super grid (SG) version of the IP kernel. It is evident that the multi-kernel approach can
eliminate the effects of TLB thrashing. Specifically, the GPU kernel is invoked by the
host application "%42'"’ times, where n, = [“27. The smaller the region size, the lower
the chance that the TLB misses will occur, but this also means that more smaller grids
will need to be spawned by the host code. Larger region size decreases the number of
kernels to run, but it also increases the risk that the TLB starts affecting performance.
Lastly, the n, regions located on the main diagonal of the M, matrix are defined as

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1071

250

. ——1IP ——00P SG
!".,vl
».'- -
200 - ¥ *H'—‘-"MM.
5
bl *
ZJ
)
\ *
© 150 A ' —
‘é. \ 'v-““
—
£ \ R
2 100 - A T ———
..E \
-
o et
(O e o o o 0 B N H) H LA I B o e o o LA e e |

1 35 7 9 11131517192123252729313335373941434547495153
Matrix order [x1024]

Fig. 2 Performance comparison of IP and OOP algorithms with Super Grid version of the IP algorithm

. . 2 . .
a square grid comprised of r blocks. However, only ~ ; L of them participate in the
transposition. The remaining idle blocks can be regarded as computational resource

overhead that can have some impact on the kernels’ performance.

3.2 Transparent Block Reordering

Naturally, for square matrices, it would be simpler to define a triangular grid of blocks,
but CUDA does not support such a concept. It is possible, however to do so at code level
by mapping a rectangular grid of threads onto triangular part of the matrix [10]. They
showed that the in-place transposition of the square matrix can be accomplished in a
parallel environment using only mzz_ ™ threads. As opposed to “killing” the redundant
blocks programmatically after the necessary resources have been allocated [14]. The
algorithm was very flexible in terms how the size of grid could be selected. Its biggest
flaw was scatter memory access, resulting in a serious performance degradation. The
main principal of their method was to enumerate all the entries below the matrix
main diagonal. Using a pairing function, an entry’s x and y coordinates are uniquely
encoded into a natural number k and assigned to it. During the actual transposition,
each thread obtains the & value from its coordinates within a block and a grid. Once
the & is known, its value is decoded using the pairing function inverse and the x and
y coordinates are obtained.

In order to maintain optimised access to global memory, we apply the idea presented
in [10] at the block level, instead of single threads. As before, we divide a square matrix
M of order m into (mainly) square sub-matrices of order b and let m; = L%J. Now,
we create a new square matrix M, whose entries are sub-matrices of M. In general,
we can encounter two situations.

1. b is a divisor of m. Then each sub-matrix is a square one of order b and there are
m% such sub-matrices, which means that M, is of order m;y,.

2. b is not a divisor of m. Then there are mi square sub-matrices of order b, one of
order less than b and 2m;, non-square ones, which occupy the bottom and the right
part of the matrix M. This means that M}, is of order mp + 1.

@ Springer

1072 Int J Parallel Prog (2018) 46:1063-1093

m=9 b=2
et—
0 0
B
1 1]
2 2| g
3 | 3 n
: \ : Vi
5 VAL 5
6 6
7 7
8 8| Be B
01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8

Fig. 3 Matrix M and idea of M}, with highlighted various entries types

In addition, the entries in the lower-triangular part of M}, can be of 4 types:

1.

2.

those lying on the main diagonal and being square sub-matrices of M of order
b—there are m, of them, called type B, (diagonal)

those situated under the main diagonal and being square sub-matrices of M of
order b—there are t = W=D of them, called type B; (lower-triangular)

those lying on the main diagonal and being a square sub-matrix of M of order less
than b—appears only if b is not a divisor of m, called type B, (corner)

those located under the main diagonal and being non-square sub-matrices of B—
appear only when b is not a divisor of m, there are m;, of them, called type B,

(edge)

The idea is presented in Fig. 3.
As with the thread-wise algorithm, we can use decoding functions (which we

describe below) to map individual sub-matrices B; onto corresponding blocks within
a grid G;. The mapping is achieved through finding an inverse of an enumeration
scheme’s pairing function that encodes the entries of a matrix. The grid G, consists
of ¢ blocks, each containing b* cores. Another grid Gy is required to handle the sub-
matrices By from the diagonal. This time we can apply a decoding function within a
block to locate individual entries.

To describe decoding functions, we first introduce the notation which will be used

throughout this section.

1.
2.

n denotes the order of a (sub-)matrix in question, N
X,y denotes the number of a column and row of N, respectively, where x, y €
{0,1,...,n—1}

.k = ks(x,y) is a function assigning a unique natural number to each entry

of N below the main diagonal (called an encoding function). So k;(x,y) €
{0,1,..., 5% 1} forall x, y such that x < y,ork,(x, y) € {0, 1, ..., 3% —1}
for all x, y such that x <= y.

guw 1s the width of a corresponding grid, G, and gy, - its height

¢;, ¢j denotes the number of a column and a row of G (starting from 0), where
¢ €{0,1,...,g0—1}, ¢; €{0,1,..., g, — 1}

kr = ky(c;i, cj) is a function (called an encoding function) enumerating all ele-
ments of G row-by-row, from left to right, that is &, (¢;, ¢;) = ¢; + gw - ¢

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1073

The idea is as follows: from the definitions of k; and k., it follows that both functions
have exactly the same range. When the blocks from the main diagonal are included,
the range is Ry, = Ry, = {0, 1, ..., ”2% — 1}. So, for a given n, we first choose g,
and gj (where k, is given) and they satisfy the following equality:

2
n“+n
5 T 8w & ey
When the blocks from the main diagonal are excluded, the range is Ry, = Ry, =
{0,1,..., ”22_ % — 1} and the following equality needs to be satisfied:
n*—n
5 = 8w 8 2)

Next, k; is chosen using a predefined enumeration scheme. Some candidate schemes
are described in Sect. 4. Now, if k is a value of k, (for given ¢;, c;) itis also the value
for k; (for given x, y). The point is to recover x, y such that k = k;(x, y), which helps
to find the inverse of k,. Note however, that x and y are not independent—the formula
for x can also involve y or vice-versa.

The important thing here is that this approach does not increase the number of
cores needed. Indeed, as was mentioned above, for each sub-matrix below the main
diagonal (type B; or B,) we perform the actions using as many cores as entries. But
for sub-matrices lying along the main diagonal (type By or B.), we only use as many
cores as entries in the lower-triangular part of the matrix. That means that we use
exactly as many cores as the entries in the lower-triangular part of the original matrix
M —as in the naive (thread-wise) algorithm.

For completeness, Listing 5 presents the pseudo-code of a general scheme-based
IP kernel.

Listing 5 Scheme-based in-place kernel

__global__ void scheme_based_in_place_kernel (float =M,
unsigned int n){

int k = getK(blockIdx , gridDim);
uint3 blockIx ;

blockIx .y = decode(k);

blockIx .x = decode(k, y);

transpose (M, n, blockIx);

— O 000 JON W B W -

_ =

}

The idea of enumerating individual blocks according to a predefined scheme can
be also applied to rectangular matrices, as presented in Sect. 6.

3.3 Involution Transposition Optimisation

The optimisation technique described above can be also used to improve the 3D matrix
transposition. For the purpose of our demonstration, we assume that these matrices are

@ Springer

1074 Int J Parallel Prog (2018) 46:1063-1093

stored in memory row-wise and that each separate plane occupies contiguous block
of memory. In principal, the involution transpositions can be reduced to the 2D trans-
positions [14]. For instance, transposition 7y,, can be regarded as z transpositions of
the xy planes. Meanwhile, the involution transpositions 7%y, and T\, can be simplified
as a transposition of matrix consisting of column-elements and row-elements respec-
tively. Regardless of the involution transposition orientation, to achieve high and stable
throughput yield, the two basic optimisation techniques are not sufficient and the same
performance degradation can be observed for larger matrix dimensions. Even if the
involution kernels are more complex than the 2D transpose, our optimisation technique
can be applied seamlessly without changing the kernel’s logic. To illustrate this, List-
ing 6 presents the unoptimised version of the in-place involution transposition 7y, of
a 3D matrix M for which xy plane is a square. Here, the T_yxz_kernel kernel invokes
transpose_3d_yxz device function for blocks located on and below the main diagonal.
The other blocks although allocated are idle and eventually terminated. The actual
logic responsible for the 7y, transpose is defined within transpose_3d_yxz function.
Its actual implementation is not pertinent as we merely demonstrate how enumeration
scheme based technique can be applied.

Listing 6 in-place involution transposition 7y, kernel

1 __global__ void T_yxz_kernel(float xM, uint3 matrixDim){
2

3 if (matrixDim.x <= matrixDim.y){

4 transpose_3d_yxz (M, matrixDim , blockldx);

5 }

6

Listing 7 show optimised version of the involution transposition 7y,,. We can note that
the same transpose_3d_yxz function is invoked as before. However, this time blocklx
variable is passed to the device function. The blocklx variable holds the necessary
information about the block’s logical mapping, obtained through the thread block
coordinates flattening and k value decoding.

Listing 7 Scheme-based in-place involution transposition 7y, kernel
__global__ void T_yxz_kernel (float %M, uint3 matrixDim){
int k = getK(blockldx , gridDim);

uint3 blockIx ;

blockIx .y = decode(k);

blockIx .x decode (k, y);

blockIx .z = blockIdx .z;
transpose_3d_yxz (M, matrixDim , blockIx);

— O 000NN B W -

— =

}

We mentioned before that the redundant thread blocks above the main diagonal can
also have some impact on the algorithm’s performance. In situation where 3D matrices
are transposed the impact of this effect is amplified as the matrix’s third dimension

. . L 2_
increases. While for the 2D square matrices just 5 blocks are redundant, the unop-

. . - Sy 2_
timised version of the 3D transposition defines a grid with n*5" blocks that are
unneeded when cubes are transposed. The other 3D matrix transposition types, such

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1075

a rotation transposition, are more involving, yet it is still possible to optimise them as
well.

4 Enumeration Schemes

This section provides a general overview of some enumeration schemes and explores
their key properties. We focus only on schemes applied to the triangular part of a
matrix. Schemes that can be applied to the entire matrix (e.g., in order to improve out-
of-place algorithms) are presented in Sect. 6. In our analysis we assume that the entries
below the main diagonal are enumerated. In order to enumerate entries in the upper
triangular part of the matrix, coordinates of a particular entry need to be swapped.

Each scheme features a pairing function /7 and an inverse of I7. While T encodes
each entry’s coordinates and uniquely generates a single natural number k, the inverse
is used to find entry’s coordinates by decoding k. Although the pairing function is
not directly used by our algorithm, we include its definition for some of the schemes.
We do so because in many cases obtaining an inverse of I7 depends on the pairing
function analysis results.

Since the pairing function generates unique values, we know that every enumeration
scheme, regardless of its complexity, has got only one starting point (location with
value 0 assigned to it). The location of the starting point can be chosen arbitrarily,
however, all the schemes we present have their starting points located in one of the
three corners of the triangular part of the matrix, e.g., top-left (TL), bottom-left (BL)
or bottom-right (BR) corner.

Once the starting point is selected, the remaining entries are enumerated according
to a predefined traversal strategy. The key traversal directions (alignments) that any
scheme can use are: along the x (horizontal), y (vertical) axis, or the main diagonal
(diagonal). Although the enumeration along the anti-diagonal can be also defined, we
do not describe in detail any scheme utilising such an alignment in this paper.

Depending on the scheme complexity, the traversal signature can utilise many dif-
ferent traversal alignments. Each scheme also features at least two traversal directions
which we refer to as primary and secondary. The primary direction defines the align-
ment along which the individual entries are enumerated. The secondary direction
determines the main path for subsequent enumeration iterations. Both the primary
and/or the secondary directions can be reversed creating additional variants of the
initial scheme. In Fig. 4a various traversal directions and orientations are shown. Thin
arrows denote primary enumeration direction, while the bold arrows show secondary
traversal direction.

The simplest schemes enumerate entries by moving along one of three orientations.
Some of the advanced schemes can combine many traversal alignments together,
resulting in a traversal pattern that changes enumeration direction during single pass
(Fig. 4b).

The last group of schemes we explore arranges matrix entries into clusters. Within
a single cluster we can still distinguish primary and secondary traversal directions.
However, in order to move from one group to another, a third (tertiary) traversal
direction is required. As before, by changing any of the three different directions

@ Springer

1076 Int J Parallel Prog (2018) 46:1063-1093

- (c)

(b) =

v
\
"

=
v

Fig. 4 Example traversal orientations (a), traversal direction configurations (b) and enumeration scheme
with multiple traversal directions (c)

we generate new schemes. Figure 4c presents an example enumeration scheme that
organises entries into vertically aligned bands.

In general, the multitude of starting point locations and the fact that many traversal
alignments can be combined together allow us to define many variants of the enu-
meration schemes. Since we know how many entries need to be enumerated, we can
easily obtain a reversed version of any scheme through the k value adjustment. Thus,
the location of the starting point, and the definition of a traversal layout are considered
the two fundamental properties of any enumeration scheme.

We want to emphasise that in many cases functions defining the enumeration
schemes also depend on the matrix order or other scheme parameters. For exam-
ple, the band width defined in Sect. 5 is one such parameter. Since these parameters
are constant within the given scheme we decided not to point out this dependence
explicitly in the notation.

4.1 Basic Schemes

Basic schemes exhibit only primary and secondary traversal directions. Usually,
throughout the entire enumeration process, both the primary and secondary direc-
tions remain unchanged. However, when a certain degree of divergence is applied
only to the primary direction, new variants of the original scheme are created.

In the following subsections we present a formal definition of two fundamental
enumeration schemes and some of their variants. The definition of basic scheme vari-
ants is obtained through transformations of the x and y axes or, as mentioned earlier,
by changing the location of the starting point, for example, swapping x and y axes
together without changing the enumeration order or shifting the entries along one
of the axes towards the opposite edge of the matrix. We will demonstrate how indi-
vidual schemes can be combined together using a technique that can be applied to
more advanced schemes. We also provide a definition of a pairing function I7 and its
inverse.

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1077

4.2 Basic Pairing Functions

Before we analyse the individual schemes we have to define the fundamental pairing
function that will serve as a template for the other schemes.

Proposition 1 For any given square matrix M, a function
-y
2

MHigp(x,y) = +x 3)

enumerates all the entries below the main diagonal row-by-row, from left to right and

y+y
— X

IRr(x,y) = —1 “

enumerates row-by-row from right to left.

Proof Observe first that below the main diagonal, numbers of entries in rows form an
arithmetic sequence with difference 1. Therefore 1z (0, y) is the number of elements
lying in all preceding rows. In other words it is the sum of the arithmetic sequence
with difference 1, which is

¥ =y

M0, y) = 5

For a given y, ITrg and x increases or decreases simultaneously, which gives the first
formula.

To obtain (4) observe that now ITgz (0, y) is one less than the number of elements
in all rows including the y-th, which gives

y+y
2

g0, y) = -1

For any given y, as x increases [1g; decreases which gives the second formula and
finishes the proof. O

4.3 Vi Scheme

The analysis presented in [10] includes a single enumeration scheme, which we refer
to as V7. Vj offers the simplest mapping between the core’s coordinates and the matrix
element’s location and it can be used as a base for many other schemes. V; can decode
k; values, generated by the pairing function, and assigned to the elements below the
main diagonal.

Starting at the (0,1)-entry and moving along the x axis towards the main diagonal,
V assigns values of the pairing function I7 to the elements in a row. Once the elements
of one row are numbered, the same process continues in the next row. By Proposition
1, the pairing function in this scheme is given by formula (3) and shown in Fig. 5a.

@ Springer

1078 Int J Parallel Prog (2018) 46:1063-1093

(a) (b)
0 0
»> 110 -« 110
—_— y 2|1|2 - y 2|2|1
> 313(4]5 « 3|156(4]3
> 461|789 - 419|876
01 2 4 01 2 4
X X

Fig. 5 Enumeration layout of scheme V| (a) and its reversed version V| g (b)

Thus, V1 can be described as a scheme with 7L starting point in the lower triangular
part of the matrix and its primary and secondary directions are: row- and column-wise,
respectively.

From now on we shall denote the value k; (x, y) by k for short.

So we have

y -y
k =
5 +x
From that we get
2
y -y
=k — 5
x 5)
Now, to obtain y we first denote
2 _
PR
2
Then
V8t +1+1
yz—y—2t=0=>y=f (6)
Moreover, by our assumptions of x and y we have
t<k=t+x<t+y (7)
From (6), (7) it follows that
_¢8t+1+1)
BT+l Bk TT+1 \/8<’+ ey
y= = <
2 2 2
VB D +HABF T4+ VBT +22+1 B+ 1+3
B 2 B 2 B 2

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1079

Since y is natural we get by definition
V8k+1+41
y=|—"7"—7 @)

4.4 V1 Scheme: Reversed

When we invert V’s primary traversal direction while keeping the same starting point,
we obtain new scheme—V| g. As is the case with Vi, the V| scheme first enumerates
elements row-wise then moves to the next row (y + 1). The main difference between
V1 and Vig is that the latter moves “backwards” over the elements. Thus, by Propo-
sition 1 the pairing function in this case is given by formula (4). Figure 5b shows the
enumeration pattern of the Vg scheme.

2

x:y;y—l—k 9)
JREFO— 1

y=[+] (10)

5 Banded Schemes

Another group of schemes that can be used to enumerate the entries below the main
diagonal, features a set of bands (of width w) laid out along the traversal direction.
Within each band, single entries can be enumerated arbitrarily. For example in Fig. 6,
row-wise enumeration is used for two different banded schemes. As was discussed in
Sect. 4, introducing groups of entries requires specifying tertiary traversal direction,
which determines the path between the bands.

To simplify our analysis of banded schemes the following symbols are introduced:

1. &% (t), & (¢) is a number of entries below the main diagonal in a square matrix
of order ¢, including or excluding entries from the diagonal,
2. m is the order of the matrix,

>

= . w I .

> — []

>|>| > >

>|—>| N >|

> > > >
—¥ | > >|

N >] > []

band 0 band 1 iband 2 band 2 band 1 band 0

Fig. 6 Example banded schemes

@ Springer

1080 Int J Parallel Prog (2018) 46:1063-1093

w is a width of a band, while r denotes width of the shortest band,

B denotes the number of bands,

i denotes the index of a band,

I}, denotes the pairing function of a banded scheme,

B; is a set of consecutive values generated by IT, for the i-th band, and B; denotes
its cardinality,

b; denotes the smallest element in the set B;,

9. Iy (k) is a function used to obtain band’s index (i) from &,

N AEw

*

In addition, based of the above mentioned definitions, we can define the main
properties of banded schemes that will be referenced throughout this section.

L&t = 5, 6 () = 55,

.m>1,meN,

w e {l,...,m —1},w € N; if w is a divisor of m — 1 then the triangular part
of each band contains exactly the same number of entries: & (w) and r = w;
otherwise, » = (m — 1) mod w and the shortest band contains &% (r) entries,
4. p =121,

5.i€{0,...,8—1},

6. the range of I} is Uf};ol B;

7

8

9

w N

- Bi ={bi,...,bit1 — 1} and B; = |B;| = b1 — b;
. Hb,' EB,’,VL],’ GIB%j\{bi} : b,‘ < gi
ci=Lk),keB;

5.1 Vip Scheme

The simplest form of a banded scheme labelled V) is presented in Fig. 7. It divides
the triangular part of a matrix into vertically oriented bands, indexed from left to right.
Within each band, starting from the top-left corner, individual entries are enumerated
row-wise, from left to right. Once all the entries in a band are numbered, the process
starts over in the next adjacent band.

We can obtain the inverse of the V) p pairing function by finding the number of all
entries in a single band as well as the minimum value of an entry in a band.

0 L] L]

1o | of | of |

22— 12 [l—= 1 2 [

dEREN 0E 3[4]5

ale|7|8]21 6|7[8]o of1[2]o |

5|9 [10[11]22[23] | 9 (10[11f1 |2 | 3la|s|1]|2

6 [12(13|14] 24| 25| 26| 12(13{14] 3[4 |5 6|7(8|3|a|[5]

7 |15]16[17]27] 28] 29] 33| 15/16[17]6 [78] o[| 9 [10{11]o[1]2]o|

8 |18[19(20]30(31|32| 34|35 | [18[19|20] 9 [10[11] 1|2 | [12[13|1a]3[4|5] 1|2 |
band 0 | band 1 iband 2 band 0 | band 1 iband 2| band 0 | band 1 iband 2|

Fig.7 Scheme V| p enumeration layout and two stages of its logical decomposition

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1081

Proposition 2 Number of entries in the i-th band of the width w is

2
we + w
Bi = wm —iw’> — &t (w) = wm — iw? — 5

(11)
and the minimum value k that the pairing function generates within i-th band is
b = iwm — ST (iw)

Proof The proof is by induction on i, the number of a band. Since By consists of first
w columns we have

Bop=(m—-1D)+m-2)+---+m—-—w)=wm—(1+2+---4+w)

2
w”+w
=wm—0-w?—

which means that the formula is valid for i = 0. Suppose now it is valid for i = [.
Then each column (there are w of them) within B,y has w elements less than the
corresponding column within B; which gives

so the formula is valid for / 4 1. By the induction principle, the formula is valid for
every natural i > 0.

Using the formula for B; we can now obtain a minimum value of k that V1p
generates for a particular band. For example, we can observe that

min(k) = 0
bo
min(k) = By
by

min(k) = By + By
by

Therefore, in general, we get

Tfll)i_n(k)= Bo+ Bi+ -+ Bi_1 (12)

Thus, from (11) and (12), the minimum value o k in the i-th band is

1
bi=) Bj=iwm—&"(iw) (13)
j

Il
=}

Which finishes the proof. O

@ Springer

1082 Int J Parallel Prog (2018) 46:1063-1093

Having determined the number of entries in the i-th band, as well as the minimum
value assigned to one of the entries comprised by the band, we can obtain the inverse
of the scheme V|p. From (12) we can conclude that within a single band, numbers
generated by the [1;p satisfy the following system of inequalities.

bi <k <biyi (14)

Proposition 3 The index i of a band of width w is

2m —1—+/(Q2m — 1) — 8k
i=1b(k)={ “ (@ — 1) J (15)
2w
Proof From (14), we obtain the following system of inequalities
22,2 : : 1 2,2 : 1
fum — 2 g Dy — DTG F D
2 2
Solving the first inequality for
w?i? + (w — 2wm)i + 2k >0 (16)
) @2m—1)F/2m — 1) — 8k
i12= a17)
2w
i<irandi > ip (18)
Solving the second inequality and substituting ¢ for i + 1 we get
w2t + (w — 2wm)t + 2k < 0 (19)
1 <t<ip (20)
i1—l<i<ip—1 (21)
From (18) and (21), the common solution is
i1—1<i<iy (22)
Solving (22) gives us
i<ip<i+l (23)
Since i is natural, from the definition of the floor function we get
. . 2n—1—+/@2m— 1)z — 8k
i=lil] =
2w
This completes the proof O

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1083

Being able to obtain the index of a band from k allows us to determine the number of
entries in that band. As a result, we can perform logical decomposition of a scheme as
presented in Fig. 7. During the first stage, we normalise the values generated for each
band so that each one is numbered from 0, as per the centrally position matrix in Fig.
7. We achieve this by subtracting the minimum value in a band b; from k, and we get
ko as follows

ko =k — b; (24)

Next, we separate the triangular and rectangular part of the band so that the numbers
generated for each of these regions can be further normalised, as the right-most matrix
in Fig. 7 depicts. We know that the triangular part of the band consists of & (w)
entries. Consequently, the numbering of entries located in the rectangular region is
normalised as well, and achieved using the following formula

k3 = ky — &1 (w) (25)

Since the shortest band does not have the rectangular region, its normalisation is limited
to the triangular region.

We are now presented with two cases. When k; is less than & (w), the inverse
decodes the values assigned to the triangular regions. Otherwise, values assigned to
entries occupying the rectangular region are decoded.

The definition of an inverse for the triangular region can be obtained from the V;
inverse—(8), (5). However, since there are y bands in total, i-th region is shifted by
iw entries along the y-axis. In general, the y coordinate for the entries located in the
triangular part is defined as follows

VS Fi+1
yi = {%J +iw, ifk < &t(w). (26)

Similarly, the rectangular part of the subsequent bands is also shifted by w entries
along the y-axis against the the previous band. Besides that, each row contains w
entries, hence in order to determine the relative value of its y coordinate we can use
Lk3/w]. In addition, considering the relative location between both regions, and taking
into account the result of the second stage normalisation, we get

k
y2=(i+1)w+{—3J+1, if ky > 6™ (w) (27)
w
Thus, the Vi p inverse to obtain the entry’s y coordinate is

: +
yz{yl, 1fk2<6 (w) (28)

y2, ifka > & (w).

As indicated earlier, the part of the Vip inverse that calculates the value of the x
coordinate within the triangular region of the band can be obtained from (5). As
before, the value of x needs to be adjusted with respect to the index of the band.

@ Springer

1084 Int J Parallel Prog (2018) 46:1063-1093

However, the x is not only shifted by w positions along the x-axis, but it also depends
on y; which is shifted as well.

The same horizontal shift by w entries applies to the consecutive bands in the
rectangular region. Within each band, respective positions of the entries in a row can
be calculated using the modulo operation. The final version of the Vjp inverse for the
x coordinate is presented below

[P . " +(w).
x:ikz G (i —iw)+iw, ifky < 6™ (w) (29)

k3 mod w4+ iw, ifky > G (w).

A closer look at the enumeration layout of the scheme presented in Fig. 7 allowed
us to realise that the V| p can generate other schemes that depend on the w parameter.
In particular, for terminal values of w, either 1 or m — 1, we get schemes V; or V|
respectively. Meaning that two basic schemes are just specific versions of the broader
group of schemes that V;p can instantiate.

6 Rectangular Schemes

The schemes presented so far can only be applied to the triangular (upper or lower)
part of the matrix. However, schemes that can enumerate all matrix entries can be also
defined. In this section we present a banded scheme (V| pF) that enumerates rectangular
matrices. Similar to triangular schemes, we introduce the following symbols:

1. m and n are the horizontal and vertical dimensions of the matrix,

2. w is the width of a band, while r denotes the width of the narrowest band when n
is not a multiple of w,

B denotes the number of bands,

i denotes the index of a band,

ITpr denotes the pairing function of a banded scheme,

B; is a set of consecutive values generated by ITgr for the i-th band,

b; denotes the smallest element in the set B;,

Ipr(k) is a function used to obtain band’s index (i) from k,

NN kW

Based of the above mentioned definitions, we can define the main properties of
banded schemes that will be referenced throughout this section.

l.m>1,n>1,meN,nelN,

2. wefl,...,m—1},w € N;if wis adivisor of m then each band contains exactly
the same number of entries: wn and r = w; otherwise, r = m mod w and the
narrowest band contains r» entries,

B=T31,

ief{0,...,8—1},

the range of [T}, is Uf:ol B;

B; = {bi,...,bi+1 — 1} and |B;| = b; 1 — b;

. bo=0,b; =Y \(Bx

i = Igpk), k € B;

%N LW

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1085

ﬁ

band 0 band 1 band 1
A e e e

v
v
v

5|15|16(17)26|27

7|8 |18|19(20)28|29

—p— | A | 10 11]21]22|23}30(31
W r W r

v
v
v

OO |lw|lo

Fig. 8 Rectangular scheme enumeration layout

In order to find the inverse of the pairing function, we need to obtain band’s index i
from k. We omit the proofs for B; and b;, because they can be straightforwardly derived
by following the steps presented in Sect. 5. The complete definition of the pairing
function inverse is presented below. Meanwhile, Fig. 8 presents the enumeration layout
of the rectangular banded scheme.

(k—iwn) mod w—+iw, ifr=0
x =1k —iwn) modw+iw, ifr£0Ai<y—1 30)
(k—iwn) modr+iw, ifr#0Ai=y —1.

|t | ifr = 0.
y=1{|5m], ifr#0Ai<y -1 31)

| &m0 ifr £0Ai =y — 1.

7 Performance Evaluation

In order to compare the performance of our solution with the other algorithms, we
prepared a series of test runs to measure their effective throughput. Each of the enu-
meration schemes mentioned in Sect. 4 was tested separately against the naive version
of the in-place (IP) and NVIDIA’s out-of-place (NVI) algorithms. For completeness,
we also included throughput measured for the thread-wise (TW) algorithm [10]. All
algorithms were implemented using CUDA. In addition, each algorithm (except TW)
was optimised using the same techniques described in [24]. This was to ensure that
various well known hardware specific issues, such as non-coalesced access or shared
memory bank conflicts, did not affect the test results and could be ruled out from the
further analysis. We also include test results obtained for the original and optimised
version of two involution transpositions of 3D matrices: Tyy; and Ty, [14].

We carried out our tests on three different NVIDIA GPU architectures, known as
Fermi [21] (GeForce GTX 580), Kepler [22] (GeForce Titan Black) and Maxwell
[20] (GeForce Titan X). In order to compare original and banded version of the 3D
transpositions, we used only Maxwell device as it had the largest global memory
capacity among the chosen GPUs. We tested various configurations of the thread
block sizes and present only some of the best results obtained. Depending on the

@ Springer

1086 Int J Parallel Prog (2018) 46:1063-1093

——V1l ——VIM ——V2.1 ——V2_1IM
160

oA A

v

V1B(32) ——IP NVI

00PB(8) ~-=-- TW e $G(128)

100

80 4

60 1+

Throughput [GB/s]

40 L

20

1 2 3 4 S5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Matrix order [x1024]

Fig. 9 Throughput comparison between various enumeration schemes and IP and OOP algorithms—
measured on Fermi device using a block 32 x 8 threads

thread block size, each individual thread was responsible for transposition of up to 32
elements.

Since each of the tested devices is configured with a different amount of global
memory and because OOP algorithms require twice as much memory than IP algo-
rithms, we divided our tests into three groups, one per device. We examined square
matrices of order n, where n was a multiple of 1024. The largest order of a matrix we
could transpose on a Maxwell device was 54 x 21, allowing us to transpose 12GB of
raw data in-place. In terms of the 3D transposition 7y,;, we selected narrow range of
matrix dimensions for the x, y plane with z = 3 and z = 2 so that we could demon-
strate stability of the banded version of the involution transposition. Similarly, the 3D
transposition Ty, was tested with y = 2 and y = 3, while keeping the range of x, z
plane relatively narrow.

The following groups of graphs present the experimental results obtained for the
three selected GPUs. Figures 9, 10 and 11 show the throughput measured on the
individual devices for the tested schemes, against the results obtained for the IP and
OOP algorithms. Figures 9, 10 and 11 present the results for the Fermi, Kepler and
Maxwell devices respectively.

In addition, we prepared performance heat maps of the Super Grid (SG) and Banded
algorithms obtained on the Maxwell device. For the in-place algorithms, each heat
graph shows the performance fluctuations for different values of the w parameter.
The heat maps of the out-of-place algorithms for rectangular matrices present the
performance distribution by the range of matrix sizes collected by the NVIDIA’s
and the Banded algorithm. The OOP results gathered for the Banded algorithm were
measured for w = 8 and follow the series of graph prepared for the IP algorithm.

In Fig. 9, we can see that only V;p scheme and SG offer relatively stable perfor-
mance across matrix size range. The other schemes together with the IP and NVI
algorithms exhibit gradual performance decrease above 24K mark. However, it still

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1087

——V1 ——VIM ——V21 ——V2IM ——V1B8(8 ——IP ——NVI ——OOPB(8) ----- TW oo $G(40)
250

Throughput [GB/s]

) - —— e e e

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Matrix order [x1024]

Fig. 10 Throughput comparison between various enumeration schemes and IP and OOP algorithms—
measured on Kepler device using a block 32 x 8 threads

——V1 ——VIM ——V21 ——V21IM ——V18(8 —~—IP ——NVI ———OOPB(8) --=—--TW --em $G(40)
250

200

150

100

Throughput (GB/s]

50

. e e s 00 0 i i s s s s S

12345678 9101112131415161718192021222324252627 282930313233 34353637 383940414243 44454647 48495051525354
Matrix order [x1024]

Fig. 11 Throughput comparison between tested enumeration schemes and IP and OOP algorithms—
measured on Maxwell device using a block 32 x 8 threads

clear that banded scheme and SG outperform other methods. Comparing only the V5
to SG, it can be observed that the V| p kernel yields higher performance than SG.

In Fig. 10, we can see similar performance pattern for all tested schemes together
with IP and OOP algorithms. Unlike Fermi device, the banded version of the OOP
algorithm (OOPB) dominates first half of the tested matrix size. Nevertheless, the V5
and SG algorithms still deliver higher and stable throughput, regardless of matrix size.
However, the V| p scheme clearly outperforms SG performance on Kepler device.

In Fig. 11, we can observe again that in spite of their complexity, Vi 5 and OOPB
outperform other algorithms. However, only the Vip and SG deliver similar stabil-
ity, but the former yields the highest throughput. It is evident that banded approach

@ Springer

1088 Int J Parallel Prog (2018) 46:1063-1093

improves both the IP and OOP algorithms. The other schemes together with IP and
NVI algorithms continue to decline above 24K mark.

The heat maps in Figs. 12 and 13 present results collected on Kepler and Maxwell
GPUs while testing two OOP algorithms for rectangular matrices. The first algorithm
is the NVIDIA’s matrix_transpose kernel available with the CUDA SDK. It was tested
against our version of the banded OOP algorithm, with a band of width w = 8.
Due to global memory size limits, the “extremely” cold region in the top right corner
represents O throughput. The region of the heat maps with throughput levels below
150 GB/s represents the performance decrease caused by TLB misses. Based on the
maps obtained for the banded algorithm, we can confirm that this “seashore” effect
is eliminated. It is evident that the performance of our algorithm remains relatively
stable, regardless of the matrix dimensions. Apart from uniform stability, the banded
algorithm also delivers higher throughput than the original NVIDIA’s kernel. Lastly, in
Figs. 14 and 15, we can notice that similarly to 2D matrix transposition the performance
of the original version of the 3D transposition algorithm decreases starting at the 24K
mark. We can also see that the algorithm utilising the enumeration scheme based
optimisation is not affected by the TLB cache misses and maintains its stability. Due
to global memory capacity limitations we can only offer limited set of the results.
Nevertheless, we can clearly show that our optimisation technique allows improving
performance of the 3D transposition algorithm.

8 Conclusion

This paper presents an improved version of two matrix transposition algorithms. We
demonstrated that the original concept of mapping the matrix elements onto the com-
putational cores can be extended and applied to segments. In addition, we showed that
it was possible to control the algorithm’s performance by using different enumeration
schemes. Through scheme design we were able to change the logical-to-physical block
association and subsequently minimise the impact of the TLB misses. Furthermore,
thanks to the parametrised version of the banded scheme it was possible to adapt our
algorithm to three different CUDA architectures so that its performance is substantially
improved. In fact, the banded version of our algorithm proved that it is possible to
eliminate performance degradation caused by the TLB cache misses for both in-place
and out-place algorithms, as well as the 3D transpositions we optimised. Although the
Super Grid approach delivers similar throughput, it significantly increases the com-
plexity of the overall solution and in turn results in GPU kernel’s deep dependence on
the host code.

As expected, the experimental results confirmed that the additional computational
effort required to decode scheme’s pairing function did not affect solution’s per-
formance. This was mainly due to the memory-bound nature of the in-place and
out-of-place transposition algorithms for square and rectangular matrices respectively.
Moreover, even the 3D transpositions, in spite of their different memory access pat-
tern, could benefit from the banded scheme based optimisation and deliver high and
stable throughput. In fact, we were able to use exactly the same banded scheme Vp
and apply it to both in-place 2D and 3D involution transposition 7y,,. On the other

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1089

NVI [32x02] RB1K [32x02] 230

220

210

m [x1024]
m [x1024]

200

190

180

20
n [x1024] n [x1024]

NVI [32x04] RB1K [32x04] 170

160

r 150

m [x1024]
m [x1024]

140

r 130

r 120
10 20 30 40

n [x1024) n [x1024]
NVI [32x08] RB1K [32x08]

GB/s

r 110

100

r 90

m [x1024]
m [x1024]

- 80

70

60

20
n [x1024] n [x1024]

NVI [64x16] RB1K [64x16]

50

m [x1024]
m [x1024]

40 10 20 40
n [x1024] n [x1024]

Fig. 12 Comparison of throughput heat maps obtained on Kepler device between Nvidia and Banded
out-of-place algorithms

@ Springer

1090 Int J Parallel Prog (2018) 46:1063-1093

NVI [32x04] RB1K [32x04]
230
220
_ - 210
T T
3 3
S 1
X X
E E 200
190
180
20 30
n [x1024] n [x1024]
NVI [32x08] RB1K [32x08]
r 170
50
r 160
40
= - r 150
3 3 30
S S
X k3
£ e I 140
20
10 r 130
r 120
10 20 30 40 50 “*
n [x1024] n [x1024] o
NVI [64x04] RB1K [64x04] ©
r 110
50
r 100
40
= - r 90
3 I 30
] 3
X &
13 £ 80
20
10 70
60
20 30
n [x1024] n [x1024]
NVI [64x08] RB1K [64x08]
50
50 50
40
40 40
- - 30
B 3 30
2 S
X X
£ E 20
20 20
10 10 10
0
20 30
n [x1024] n [x1024]

Fig. 13 Comparison of throughput heat maps obtained on Maxwell device between Nvidia and Banded
out-of-place algorithms

@ Springer

Int J Parallel Prog (2018) 46:1063-1093 1091

@ T(z=4) --®--T(2=8) —4—T(z=2) @ TB(z=4) --®--TB(z=3) —+—TB(z=2)

230 7
220 A
210 A
200 -
190 A
180 A

170 A

Throughput [GB/s)

160

150 A

B0 o e e L S S B S B S B B B S B B B B S S S S S e S
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

x,y dimension [x1024]

Fig. 14 Throughput comparison between original and optimised version of the in-place involution trans-
position 7yy;—measured on Maxwell device using various thread block sizes (z = 2,3,4, w = 8)

co@ee T(y=4) --®=-T(y=3) —4—T(y=2) ---®- TB(y=4) --m--TB(y=3) —=+—TB(y=2)
230
210
190 1
170 4
150
130 4

110 4

Throughput [GB/s]

S0 A

70 1

o+—T—"""""""T"TT"T T

10 11 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

x,z dimension [x1024]

Fig. 15 Throughput comparison between original and optimised version of the in-place involution trans-
position Tzyy—measured on Maxwell device using various thread block sizes (y = 2,3, 4, w = 8)

hand, the other involution transposition Ty, required slightly modified version of the
Vip. However, in general, the scheme based optimisation proved to be very flexible
and seamlessly applicable and adjustable.

Encouraged by the results of the performance tests conducted on different NVIDIA
GPUs, we plan to extend our research to explore the capabilities of the AMD devices.
We also consider utilisation of the banded enumeration schemes to improve the per-
formance of the in-place transposition of the rectangular matrices. Apart from the 2D
transpositions, we also intend to study more the in-place 3D rotation transpositions
and propose new enumeration schemes that could improve their performance.

Acknowledgements The authors would like to thank Dr. Beata Bajorska from the Institute of Mathematics
of Silesian University of Technology, Poland for the support and cooperation with the analysis of the
enumeration schemes.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

@ Springer

http://creativecommons.org/licenses/by/4.0/

1092 Int J Parallel Prog (2018) 46:1063-1093

References

—_

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Andersen, N.: A general transposition method for a matrix on auxiliary store. BIT 30(1), 2-16 (1990)
. Bader, M., Zenger, C.: Cache oblivious matrix multiplication using an element ordering based on a

Peano curve. Linear Algebra Appl. 417(2-3), 301-313 (2006). doi:10.1016/j.1aa.2006.03.018

. Catanzaro, B., Keller, A., Garland, M.: A decomposition for in-place matrix transposition. In: The

19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP *14,
pp. 193-206. ACM, New York. doi:10.1145/2555243.2555253

. Cate, E.G., Twigg, D.W.: Algorithm 513: analysis of in-situ transposition. ACM Trans. Math. Softw.:

TOMS 3(1), 104-110 (1977). doi:10.1145/355719.355729

. Chatterjee, S., Sandeep, S.: Cache-efficient matrix transposition. In: Sixth International Symposium

on High-Performance Computer Architecture, HPCA-6, pp. 195-205. IEEE, Touluse (2000). doi:10.
1109/HPCA.2000.824350

. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Programming. Wrox, Birmingham

(2014)

. Choi, J., Dongarra, J.J., Walker, D.W.: Parallel matrix transpose algorithms on distributed memory

concurrent computers. Parallel Comput. 21(9), 1387-1405 (1995)

. Eklundh, J.O.: A fast computer method for matrix transposing. IEEE Trans. Comput. 21(7), 801-803

(1972)

. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216-231

(2005)

Gorawski, M., Lorek, M.: General in-situ matrix transposition algorithm for massively parallel envi-
ronments. In: International Conference on Data Science and Advanced Analytics, DSAA 2014, pp.
379-384. IEEE, Shanghai (2014). doi:10.1109/DSAA.2014.7058100

Gustavson, F., Karlsson, L., Kagstrom, B.: Parallel and cache-efficient in-place matrix storage format
conversion. ACM Trans. Math. Softw: TOMS 38(3), 1-32 (2012)

Gustavson, F,, etal.: Recursive blocked data formats and BLAS’s for dense linear algebra algorithms. In:
International Workshop on Applied Parallel Computing, Large Scale Scientific and Industrial Problems,
PARA 98, pp. 195-206. Springer, London (1998)

Heinecke, A., Bader, M.: Parallel matrix multiplication based on space-filling curves on shared memory
multicore platforms. In: Proceedings of the 2008 Workshop on Memory Access on Future Processors:
A Solved Problem? MAW °08, pp. 385-392. ACM, New York (2008). doi:10.1145/1366219.1366223
Jodra, J.L., Gurrutxaga, I., Muguerza, J.: Efficient 3D transpositions in graphics processing units. Int.
J. Parallel Program. 43(5), 876-891 (2015)

. Kim, D, et al.: Multi-level tiling: M for the price of one. In: The 2007 ACM/IEEE Conference on

Supercomputing, SC *07, pp. 1-12. IEEE, Reno (2007). doi:10.1145/1362622.1362691
Krishnamoorthy, S., et al.: Efficient parallel out-of-core matrix transposition. Int. J. High Perform.
Comput. Netw. 2(2—4), 110-119 (2004)

Laflin, S., Brebner, M.A.: Algorithm 380: in-situ transposition of a rectangular matrix. Commun. ACM
13(5), 324-326 (1970). doi:10.1145/362349.362368

Lee, C., Ro, W.W., Gaudiot, J.: Boosting CUDA applications with CPU-GPU hybrid computing. Int.
J. Parallel Program. 42(2), 384-404 (2014)

NVIDIA. Nv link (2015). http://www.nvindia.com/object/nvlink.html

NVIDIA. NVIDIA GeForce GTX 980 (2014). http://international.download.nvidia.com/%5C%
5Cgeforce-com/international/pdfs/GeForce%S5C_GTX%5C_980%5C_Whitepaper%S5SC_FINAL.
PDF

NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi (2009).
http://www.nvidia.com/content/PDF/fermi%5C_white%5C_papers/%5C%S5CNVIDIAFermiCompu
teArchitectureWhitepaper.pdf

NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110 (2012). http://
www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110- Architecture- Whitepaper.pdf

Park, N., Hong, B., Prasanna, V.K.: Tiling, block data layout, and memory hierarchy performance.
IEEE Trans. Parallel Distrib. Syst. 14(7), 640-654 (2003)

Ruetsch, G., Micikevicius, P.: Optimizing Matrix Transpose in CUDA (2010). http://www.cs.colostate.
edu/~cs675/MatrixTranspose.pdf

Sung, I.J., et al.: Data layout transformation exploiting memory-level parallelism in structured grid
many-core applications. Int. J. Parallel Program. 40(1), 4-24 (2012)

@ Springer

http://dx.doi.org/10.1016/j.laa.2006.03.018
http://dx.doi.org/10.1145/2555243.2555253
http://dx.doi.org/10.1145/355719.355729
http://dx.doi.org/10.1109/HPCA.2000.824350
http://dx.doi.org/10.1109/HPCA.2000.824350
http://dx.doi.org/10.1109/DSAA.2014.7058100
http://dx.doi.org/10.1145/1366219.1366223
http://dx.doi.org/10.1145/1362622.1362691
http://dx.doi.org/10.1145/362349.362368
http://www.nvindia.com/object/nvlink.html
http://international.download.nvidia.com/%5C%5Cgeforce-com/international/pdfs/GeForce%5C_GTX%5C_980%5C_Whitepaper%5C_FINAL.PDF
http://international.download.nvidia.com/%5C%5Cgeforce-com/international/pdfs/GeForce%5C_GTX%5C_980%5C_Whitepaper%5C_FINAL.PDF
http://international.download.nvidia.com/%5C%5Cgeforce-com/international/pdfs/GeForce%5C_GTX%5C_980%5C_Whitepaper%5C_FINAL.PDF
http://www.nvidia.com/content/PDF/fermi%5C_white%5C_papers/%5C%5CNVIDIAFermiComputeArchitectureWhitepaper.pdf
http://www.nvidia.com/content/PDF/fermi%5C_white%5C_papers/%5C%5CNVIDIAFermiComputeArchitectureWhitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
http://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf

Int J Parallel Prog (2018) 46:1063-1093 1093

26.

27.
28.

29.

30.

31.

32.

Sung, LJ., et al.: In-place transposition of rectangular matrices on accelerators. In: Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP ’14,
pp. 207-218. ACM, New York (2014). doi:10.1145/2692916.2555266

Volkov, V.: Personal communication (2015)

Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In: High Performance
Computing, Networking, Storage and Analysis. SC *08, pp. 1-11. IEEE, Austin (2008). doi:10.1109/
SC.2008.5214359

Wei, L., Mellor-Crummey, J.: Autotuning tensor transposition. In: International Parallel and Distributed
Processing Symposium Workshops, IPDPSW 14, pp. 342-351. IEEE, Washington (2014). doi:10.
1109/IPDPSW.2014.43

Windley, P.F.: Transposing matrices in a digital computer. Comput. J. 2(1), 4748 (1959). doi:10.1093/
comjnl/2.1.47

Wolfe, M.: More iteration space tiling. In: The 1989 ACM/IEEE Conference on Supercomputing, SC
’89, pp. 655-664. ACM, New York (1989). doi:10.1145/76263.76337

Wong, H., et al.: Demystifying GPU microarchitecture through microbenchmarking. In: International
Symposium on Performance Analysis of Systems & Software, ISPASS * 10, pp. 235-256. IEEE, White
Plains (2010). doi:10.1109/ISPASS.2010.5452013

@ Springer

http://dx.doi.org/10.1145/2692916.2555266
http://dx.doi.org/10.1109/SC.2008.5214359
http://dx.doi.org/10.1109/SC.2008.5214359
http://dx.doi.org/10.1109/IPDPSW.2014.43
http://dx.doi.org/10.1109/IPDPSW.2014.43
http://dx.doi.org/10.1093/comjnl/2.1.47
http://dx.doi.org/10.1093/comjnl/2.1.47
http://dx.doi.org/10.1145/76263.76337
http://dx.doi.org/10.1109/ISPASS.2010.5452013

	Efficient Processing of Large Data Structures on GPUs: Enumeration Scheme Based Optimisation
	Abstract
	1 Introduction
	2 Prior Art
	3 Background
	3.1 Problem Definition
	3.2 Transparent Block Reordering
	3.3 Involution Transposition Optimisation

	4 Enumeration Schemes
	4.1 Basic Schemes
	4.2 Basic Pairing Functions
	4.3 V1 Scheme
	4.4 V1 Scheme: Reversed

	5 Banded Schemes
	5.1 V1B Scheme

	6 Rectangular Schemes
	7 Performance Evaluation
	8 Conclusion
	Acknowledgements
	References

