
Int J Parallel Prog (2016) 44:598–619
DOI 10.1007/s10766-015-0361-x

Atomic RMI: A Distributed Transactional Memory
Framework

Konrad Siek1 · Paweł T. Wojciechowski1

Received: 14 August 2014 / Accepted: 10 March 2015 / Published online: 1 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper presentsAtomicRMI, a distributed transactionalmemory frame-
work that supports the control flowmodel of execution. AtomicRMI extends JavaRMI
with distributed transactions that can run on many Java virtual machines located on
different network nodes. Our system employs SVA, a fully-pessimistic concurrency
control algorithm that provides exclusive access to shared objects and supports rollback
and fault tolerance. SVA is capable of achieving a relatively high level of parallelism by
interweaving transactions that access the same objects and bymaking transactions that
do not share objects independent of one another. It also allows any operations within
transactions, including irrevocable ones, like system calls, and provides an unobtru-
sive API. Our evaluation shows that in most cases Atomic RMI performs better than
fine grained mutual-exclusion and read/write locking mechanisms. Atomic RMI also
performs better than an optimistic transactional memory in environments with high
contention and a high ratio of write operations, while being competitive otherwise.

Keywords Concurrency control · Distributed systems · Software transactional
memory

1 Introduction

When programmers want to increase their systems’ performance, or make them more
reliable, they increasingly turn to parallel and distributed computing. Using a mul-
tiprocessor system can increase throughput by allowing some parts of code to run

B Konrad Siek
konrad.siek@cs.put.edu.pl

Paweł T. Wojciechowski
pawel.t.wojciechowski@cs.put.edu.pl

1 Institute of Computing Science, Poznań University of Technology, 60-965 Poznan, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0361-x&domain=pdf


Int J Parallel Prog (2016) 44:598–619 599

independently on different processors and join only to perform synchronization as
necessary. The same is true for using a distributed system, where a complex task can
be distributed, so that every node, each an independent multiprocessor environment,
can perform some part of the task in parallel. Moreover, a well-designed distributed
systemcan tolerate crashes of single nodes, thus providing higher availability to clients.
Given these advantages, high-performance applications, like simulation-driven drug
discovery or social network analysis, can only be achieved through the combined effort
of tens of thousands of servers acting as a single warehouse-scale computer.

However, parallel execution can cause operations on separate nodes to interweave
in unexpected ways and produce incorrect results. For example, a node executing a
series of operations on shared data may find that another node modified the same data
in the meantime, causing the system to become inconsistent. In addition, distributed
systems face problems like partial failures and the lack of global state view which
may also affect consistency. The programmer must consider such issues and deal
with them manually. This means ensuring synchronization to guarantee consistency,
using mechanisms like distributed barriers, locks, and semaphores. However, such
low-level mechanisms are notoriously difficult to use correctly, since one must reason
about interleavings of seemingly irrelevant parts of distributed systems. They also
obscure code with concurrency control instructions.

Given the required expertise, many programmers seek recourse in simple solutions,
like a single global lock for all shared data accesses. While such techniques are simple
to use, they severely limit the level of parallelism achievable in the system. They also
introduce bottlenecks in distributed settings, which prevent the system from scaling—
i.e., operating equally efficiently as the number of nodes in the network increases.

Consequently, researchers seek ways to make concurrency control more automated
and easier, while retaining a decent level of efficiency. Transactional memory (TM)
[9,20] is one such approach, where the programmers use the transaction abstraction to
annotate blocks of code that must be executed with particular correctness guarantees
(e.g., serializability [16], linearizability [10], or opacity [6]). The TM system then
ensures this is the case using an underlying concurrency control algorithm, whose
details remain hidden from the programmer. The execution of concurrent transactions
can be interleaved by the system, but giving an illusion of being executed sequentially.
In effect, transactions make it easier for conventionally-trained software engineers to
reason about the state of the multiprocessor system, and so, reduce the effort required
to implement correct programs. In addition, the underlying concurrency control algo-
rithm can ensure a decent level of parallelism.

The TM approach can be applied to distributed systems, although additional prob-
lems, like asynchrony and partial failures, need to be addressed. On the other hand,
distributed TM also presents new opportunities. In a non-distributed TM system trans-
actions perform reads andwrites on shareddatawithin a single address space.However,
a distributed TM system can also allow transactions to execute code on remote nodes.
In effect, transactions can become distributed transactions and execute in part on dif-
ferent machines in the network. This system model is referred to as the control flow
model (as opposed to the read–write-only data flow model).

In non-distributed TMs, emphasis is placed on optimistic concurrency control.
There are variations, but generally speaking in this approach a transaction executes

123



600 Int J Parallel Prog (2016) 44:598–619

Fig. 1 Atomic RMI architecture

regardless of other transactions and performs validation onlywhen it finishes executing
(at commit-time). If two transactions try to access the same object, and one of them
writes to it, they conflict and one of them aborts and restarts (in optimized TM, this
occurs as soon as possible).When a transaction aborts, it should not change the system
state, so aborting transactions must revert the objects they modified to a checkpoint.
Alternatively, they work on local copies and merge them with the original object on a
successful commit.

Unfortunately, there is a problem with irrevocable operations in the optimistic
approach. Such operations as system calls, I/O operations, or locking once executed
cannot be canceled, and so cause aborted transactions to have a visible effect on
the system. In distributed systems these operations are common. The problem was
mitigated in non-distributedTMbyusing irrevocable transactions that run sequentially,
and so cannot abort [26], or providing multiple versions of transaction view for reads
[1,18]. In other cases, irrevocable operations are simply forbidden in transactions (e.g.,
in Haskell [8]).

A different approach, as suggested by [14] and our earlier work [27,28], is to use
fully-pessimistic concurrency control. This involves transactions waiting until they
have permission to access shared objects. In effect, potentially conflicting operations
are postponed until they no longer conflict. Thus transactions, for the most part, avoid
forced aborts, and therefore, transactions naturally avoid the problems stemming from
irrevocable operations.

In this paper, we present Atomic RMI, a programming framework that extends Java
RMI with support for distributed transactions in the control flow model. Atomic RMI
is a fully-pessimistic distributed TM with support for programmatic rollback. It uses
the Supremum Versioning Algorithm (SVA) [22] as the underlying concurrency control
algorithm which is based on the idea of versioning in [27–29]. The key point of this
approach is an early-release mechanism that allows transactions to hand over shared
objects to other transactions when possible, even before the original owner commits.

In the paper, we give a broad overview of our system in Sect. 2 and of SVA in Sect. 3,
followed by a discussion of its strengths and limitations in Sect. 4 and an evaluation
in Sect. 5, where we show the gain in efficiency compared to some typical locking
mechanisms and an optimistic distributed TM. Finally, we present related work in
Sect. 6 and conclude in Sect. 7.

123



Int J Parallel Prog (2016) 44:598–619 601

Fig. 2 Atomic RMI transaction
example

1 Transaction t = new Transaction(...);
2 a = t.accesses(registry.lookup("A"), 2);
3 b = t.accesses(registry.lookup("B"), 1);
4 t.start();

5 a.withdraw(100);
6 b.deposit(100);

7 if (a.getBalance() > 0)
8 t.commit();
9 else

10 t.rollback();

2 Overview

The Atomic RMI architecture is strongly based on the architecture of Java RMI, as
shown in Fig. 1. Java Virtual Machines (JVMs) running on network nodes can host
a number of shared remote objects, each of which is registered in an RMI registry
located on the same node. Each remote object specifies an interface of methods that
can be called remotely. A client application running on any JVM can ask any registry
for a reference to a specific object. Then, the client can use the reference to call the
object’s methods. Each method’s code then executes on the object’s host node and
returns the result to the client.

Atomic RMI introduces transaction-based concurrency control to this model.
Clients calling multiple remote objects in parallel can resort to atomic transactions
to enforce consistent accesses to fields of the objects, and the system makes sure that
concurrent transactions are executed correctly and efficiently. For this, Atomic RMI
employs SVA, a TM algorithm described in Sect. 3.

In order to give SVA the means to guide execution, so that correctness is guaran-
teed, Atomic RMI introduces remote object proxies into the RMI architecture. For
each shared remote object there is an automatically-generated proxy on the host node
that has a wrapper method for each of the original object’s methods (those available
remotely). Clients are required to access remote objects via proxies, so all calls of the
original object’s methods first pass through wrapper methods. The wrapper methods
are then used to enforce SVA: establish whether a given operation can be executed
at a given time, or whether it must be deferred or cancelled. Once the algorithm
establishes that a call may proceed, the proxy calls the original method of the remote
object.

An example of transactional code in Atomic RMI is given in Fig. 2. The example
shows a transactionwhichwithdraws a sumof100 fromone account and deposits it on
another. The transaction only succeeds if the first account does not become overdrawn,
otherwise its effects are erased.

To designate a transaction, the programmer creates a transaction object (line 1 in
Fig. 2) and calls itsstart (line 4) andcommit (line 8) methods to indicate where the
transaction begins and ends. Alternatively, the transaction may abort at the end using
the rollbackmethod (line 10)—then all the effects of the transaction on the system

123



602 Int J Parallel Prog (2016) 44:598–619

are reverted. Rollback can be used to facilitate application logic or handle exceptions
and errors.

The code between transaction’s start and commit (or abort) is its body (lines 4–
10). The body of an Atomic RMI transaction can contain local operations as well as
method calls to remote objects. Any code executed as part of remote method execution
within a transaction is also part of the transaction. So Atomic RMI transactions are
distributed transactions: the execution of their code can be distributed among several
nodes.

The code executed prior to start that sets up the transaction is called its preamble.
Atomic RMI preambles trigger the creation of remote proxy objects and provide the
information for SVA’s early releasemechanism (explained in Sect. 4). The programmer
is required to use the accesses method of the transaction object to indicate which
remote objects can be used within the transaction (lines 2–3). This prompts the host of
the remote object to generate a proxy object—a separate proxy is generated for each
transaction. The accesses method returns a reference to the proxy object which is
then used within the transaction to call the remote object’s methods. The method also
allows the maximum number of method calls on each remote object to be declared—
this allows Atomic RMI to increase the efficiency of transaction execution through
the early release mechanism.

On the server-side, shared remote objects used with Atomic RMI are plain unicast
(stateful) RMI objects, except that instead of UnicastRemoteObject (which pro-
vides Java Remote Method Protocol handling) they subclass the Transactional
UnicastRemoteObject class. This class creates proxy objects when necessary,
in effect injecting SVA support code into remote method invocations. The methods of
remote objects are not limited: as well as simple operations like reading and writing
to a field, they can contain blocks of code which include side effects, system calls, I/O
operations, network communication etc. that execute on the server. This freedom is
possible in large part due to the pessimistic approach to concurrency control used by
SVA—since these operations often produce visible effects on the system, they cannot
be repeated in case of conflicts, as in the optimistic approach. The pessimistic approach
will only let them execute (up to) once in the course of normal operation, although
allowances must be made when the user triggers an abort by manually rolling back
some transaction.

In particular, remote methods can also contain method calls to other remote objects,
further distributing the execution of the transaction. Note, however, that if these are to
be accessed transactionally (i.e., with the same correctness guarantees), references to
the objects have to be included in the transaction’s preamble.

Note that Atomic RMI uses the control flow model of execution, since it allows
transactions to execute code on the server where the remote object is located, rather
than limiting them to reading and writing data, as in the data flowmodel. Our intention
is to orientate Atomic RMI towards this model, since it provides greater freedom and
expressiveness to the programmer, who can balance the load between servers and
clients by defining the level of processing that is done on remote objects. Additionally,
the control flow model is more versatile, because it can emulate the data flow model
if remote objects only provide methods which simply write or retrieve data from the
host.

123



Int J Parallel Prog (2016) 44:598–619 603

3 Supremum Versioning Algorithm

Atomic RMI employs the Supremum Versioning Algorithm (SVA) [22], a fully-
pessimistic distributed concurrency control algorithm with rollback support; it builds
on our rollback-free variant in [28,29]. SVA is a transactional memory algorithm. That
is, blocks of code can be executed as atomic transactions that share objects and either
execute as a whole and commit, or rollback and their results are discarded. The algo-
rithm guarantees exclusive access to shared objects as long as a transaction requires
it (otherwise objects are released). Atomic RMI guarantees transaction serializability
[16]—any concurrent execution of transactions is equivalent to some serial execution
of those transactions. In addition, executions are recoverable [7]—a transaction which
reads from an earlier transaction will only complete (abort or commit) after the earlier
one does. Atomic RMI also preserves transaction real-time–order (see e.g., [6])—any
non-concurrent transactions retain their order. Furthermore, in terms of consistency,
transactions are last-use consistent [23].

SVA is pessimistic—it delays operations on shared objects, rather than optimisti-
cally executing them and rolling transactions back if conflicts appear. Furthermore,
synchronization is achieved using a fully distributed mechanism based on version
counters associated with individual remote objects and/or transactions. Below we
give a rudimentary explanation of the algorithm, but this variant of SVA is described
in detail in [22].

SVA uses four version counters to determine whether any transactional action (e.g.,
executing amethod call on a shared object or committing a transaction) can be allowed,
or whether it needs to be delayed or countermanded. Global version counter o.gv
counts how many transactions that asked to access object o started. Private version
counter o.pv[k] remembers transaction k’s version number for object o (which
equals o.gv at the time when k started). Local version counter o.lv stores the
version number for o of the last transaction which released o. Local terminal version
counter o.ltv similarly stores the version number for o of the last transaction which
released o, but only if it already committed or aborted. There is one of each of these
counters per remote object, and they are either a part of the remote object itself (o.gv,
o.lv, o.ltv) or its proxy (o.pv[k]). Each remote object also maintains one lock
o.lock that is used to initialize transactions atomically.

SVA also uses k.sup, a map informing which shared objects will be used by
transaction k and at most how many times each of them will be accessed. Only an
upper bound (supremum) on the number of accesses is required, and this number can be
infinity, if it cannot be predicted. Each transaction also keeps call counters k.cc[o]
for each object it accesses.

Each transaction’s life-cycle consists of an initialization followed by any number of
method calls to transactional remote objects, possibly interspersed by local operations.
Finally, it completes by either a commit or abort (rollback) operation. We describe the
behavior of SVA with respect to these stages below.

Transaction initialization is shown in Fig. 3.When transactionk starts, it increments
gv for every object in its sup, indicating that a new transaction using each of these
objects has started. Then, the value of gv is assigned to pv[k] for each object—the
transaction is assigned a unique version of the object that it can access exclusively. For

123



604 Int J Parallel Prog (2016) 44:598–619

this assignment to be atomic, each transactionmust acquire distributed locks (mutexes)
for all the objects in sup for the duration of its initialization. Note, that this lock is
released shortly, and SVA uses other mechanisms for synchronization. Additionally,
in order to avoid deadlocks from using fine grained locks, the locks are acquired in a
set order. Atomic RMI sorts the locks using their unique identifiers.

After starting, transaction k can call methods on shared remote objects (shown in
Fig. 4), but only when the object is in the version that was assigned to k at start. So,
when a method is called on object o, k’s private version for pv is checked against o’s
local version lv. The local version is the version of the transaction that released o
most recently, so if lv is one less than pv, then the previous transaction released o,
and k can now access o. We refer to this condition as the access condition. Once it is
met, the transaction performs a check to see if the remote object was not invalidated
by some other transaction, which released the object early and subsequently aborted.
If this happened, the current transaction cannot proceed working on inconsistent data
and must also roll back. Otherwise, the transaction performs the actual method call, so
the code of method o.m is executed on the remote host. After transaction k calls the
method, the call counter o.cc is incremented. If the counter is equal to k’s maximum
declared number of calls too, then object o is released by assigning k’s private version
to o’s local version. This means that some other transaction with pv one greater than
k’s o.lv can now begin to access o.

Since SVA is created with the control flow model in mind, it makes no distinction
between reads and writes. That is, all method calls to remote objects are treated as
potential modifications to the remote object. This means that certain standard opti-
mizations with respect to read-only transactions are not used in Atomic RMI’s version
of SVA. This is done in trade for the expressiveness and versatility allowed by the
control flow model and offset by the early release mechanism, as we show in Sect. 5.

When transaction k finishes successfully, it commits as shown in Fig. 5. First for
each object o used by k, k waits until the terminal local counter ltv is one less than
its own private version pv—this means that the previous transaction completes and is
either committed or aborted. We refer to this condition as the commit condition, and
it is analogous to the access condition. Passing it is necessary before the transaction
can complete, because if any previous transaction from with which k shared some
object rolled back, then kwould be working on inconsistent data. So, in order to leave
the possibility to force k to abort in such situations, all transactions must wait until
preceding transaction with which they shared objects commit or rollback. If there
was no rollback, the transaction releases all shared objects that it did not release yet
(i.e., the upper bound in sup was not reached) by assigning pv to lv. Finally, the
transaction indicates that it completed by assigning pv to ltv.

Alternatively, the programmer may induce a rollback (Fig. 6), or a rollback may
be forced during commit or a method call. In that case k waits until the previous
transaction completed and restores each object o to a state prior to the transaction.
Restoring the object invalidates it to all subsequent transactions, which causes them
to roll back as well. This is much more subtle in practice and involves checkpoint
management, but we omit the details as they are, on the whole, secondary matters (see
[22] for a full treatment).

123



Int J Parallel Prog (2016) 44:598–619 605

Fig. 3 Initialization
1 for(o : sort(k.sup))
2 o.lock.acquire();
3 for(o : k.sup) {
4 o.gv += 1;
5 o.pv[k] = o.gv;
6 }
7 for(o : sort(k.sup))
8 o.lock.release();

Fig. 4 Method call 1 k.waitUntil(o.pv[k]-1 == o.lv);
2 if (o.isInvalid())
3 { k.rollback(); return; }
4 o.m(...); // call method
5 // on shared object
6 k.cc[o] += 1;
7 if (k.cc[o] == k.sup[o])
8 o.lv = o.pv[k];

Fig. 5 Commit 1 for (o : k.sup) {
2 k.waitUntil(o.pv[k]-1 == o.ltv);
3 if (o.isInvalid())
4 { k.rollback(); return; }
5 }

6 for (o : k.sup) {
7 if (k.cc[o] < k.sup[o])
8 o.lv = o.pv[k];
9 o.ltv = o.pv[k];

10 }

Fig. 6 Rollback 1 for (o : k.sup) {
2 k.waitUntil(o.pv[k]-1 == o.ltv);
3 o.restore(k);
4 if (k.cc[o] < k.sup[o])
5 o.lv = o.pv[k];
6 o.ltv = o.pv[k];
7 }

Fig. 7 Manual release 1 k.waitUntil(o.pv[k]-1 == o.lv);
2 o.lv = o.pv[k];

In certain situations, the programmer may have a good knowledge of when an
object stops being used in a transaction from the semantics of the program. In such
cases the programmer can then allow a remote object to be released early and in this
simple manner increase the efficiency of the system. For this reason, SVA includes
a manual release operation that can be programmatically invoked, shown in Fig. 7.
First, transaction kwaits for lv to reach pvminus one for o, as with calling a method,
because k cannot release an object it should not yet even have access to. Then pv is
assigned to lv, and another transaction can access it (and k cannot).

The early release mechanism makes SVA capable of achieving a relatively high
level of parallelism by interweaving pairs of transactions that access the same objects
and by making transactions that do not share objects independent of one another. For
example, if there are two transactions T1 and T3, as in Fig. 8, that use different objects
from each other (T1 uses x and y, T3 uses z) they do not interfere with each other, so

123



606 Int J Parallel Prog (2016) 44:598–619

Fig. 8 Parallel execution of SVA transactions

they can run in parallel. However, since transactions T1 and T2 access the same objects
(x and y), T2 can only start using x or y once T1 releases them. However, T2 does not
wait with accessing x and y until T1 commits. Assuming transactions have precise
suprema specified, objects are released as soon as each transaction performs its last
operation on them. This way T1 and T2 can run partially in parallel, and therefore T1
and T2 together finish execution faster than they would if they were run sequentially.
Similarly, T4 must wait for T3 to release z and for T2 to release y, but it can execute
code using z in parallel to T2 executing its own operations on other objects.

4 In-depth Look

In this section we discuss in greater detail some of the mechanisms employed in
Atomic RMI and their implications.

Suprema The main requirement that Atomic RMI poses for its users is the need to
provide the set of objects used by transactions a priori and a strong suggestion to
also provide upper bounds (suprema) on the number of accesses of remote objects
accessed by each transaction. The former is required to acquire versions on each
object. The latter allows Atomic RMI to decide when objects can be released early—
if this information is inexact or omitted (equivalent to setting the upper bound to
infinity) Atomic RMI will only release objects when transactions commit or roll back,
and forgo early release. In such cases Atomic RMI will be less efficient (transactions
will wait more on one another), although the execution will nevertheless be correct.

However, while it is acceptable for upper bounds to be too high, it is essential that
they are never lower than the actual number of calls a transaction does to a given
object. If the specification is lower then the actual number of accesses, the guarantees
provided by SVA cannot be upheld, because a transaction could release an object and
then attempt to access it again. Hence, when transaction k releases object o, counter
o.lv is set to o.pv[k], then access condition o.pv[k] - 1 = o.lv is no
longer met for k, so the transaction will not be able to access o again. Then since
transaction versions are unique, no other transaction will be able to set o.lv to a
value that would allow k to access o again and k would perpetually wait at the access
condition for o. In order to alleviate such situations, transactions throw an exception
when the number of accesses for some object exceeds its supremum. It is then left

123



Int J Parallel Prog (2016) 44:598–619 607

Fig. 9 Early release at end of
block

1 t = new Transaction(...);
2 a = t.accesses(a);
3 b = t.accesses(b);
4 t.start();

5 for (i = 0; i < n; i++) {
6 a.foo();
7 b.foo();
8 }
9 t.release(a);

10 t.release(b);

11 // local operations
12 t.commit();

Fig. 10 Conditional early
release

1 t = new Transaction(...);
2 a = t.accesses(a);
3 b = t.accesses(b);
4 t.start();

5 for (i = 0; i < n; i++) {
6 a.foo();
7 if (i == n)
8 a.release();
9 b.foo();
10 }
11 t.release(b);
12 // local operations
13 t.commit();

to the programmer to resolve the issue by handling the exception. A typical solution
would be to roll back the offending transaction. Amore sophisticated technique would
be to roll back the transaction, then modify the suprema, and retry.

The upper bounds can be collected manually by the programmer by inspecting the
code and creating the preamble. They can also be inferred automatically by various
means, including a type system (see e.g., [27]) or static analysis. In particular, Atomic
RMI comes with a precompiler tool which statically analyses transactions to discover
which objects they use, and to derive the upper bounds on accesses to them. With
this information, the precompiler generates the appropriate code and inserts it into the
program. The idea behind the static analysis is described in [21]. The tool itself is a
command-line utility implemented on top of the Soot framework [25].

Manual Early Release The early release mechanism in Atomic RMI can be triggered
automatically or manually. The two methods complement each other.

Note the simple example in Fig. 9, where a transaction calls methods on shared
objects a and b in a loop. If manual release was to be used, the simplest way to use
it is to insert release instructions at the end of the loop at lines 9–10. However, it will
mean that before a is released, the transaction unnecessarily waits until b executes as
well. If a and b are remote objects, each such call can take a long time, so this simple
technique impairs efficiency.

123



608 Int J Parallel Prog (2016) 44:598–619

Fig. 11 Early release by
supremum

1 t = new Transaction(...);
2 a = t.accesses(a, n);
3 b = t.accesses(b, n);
4 t.start();

5 for (i = 0; i < n; i++) {
6 a.foo(); // nth call: release
7 b.foo(); // nth call: release
8 }

9 // local operations
10 t.commit();

Fig. 12 Complementary
manual release

1 t = new Transaction(...);
2 for (h : hotels)
3 h = t.accesses(h, 2);
4 t.start();

5 for (h : hotels) {
6 if (h.hasVacancies())
7 h.bookRoom();
8 else
9 t.release(h);
10 }
11 t.commit();

Instead, the programmer should strive to write transactions like in Fig. 10. Here,
a is released at lines 7–8, in the last iteration of the loop before the method call on
b is started. An earlier release improves parallelism, but the solution requires that the
programmer spends time on optimizing concurrency (which the TM approach should
avoid) and clutters up the code with instructions irrelevant to the application logic. In
addition, the release in both examples sends an additional network message to a and
b (because the release method requires it), which can be relatively expensive.

However, if the algorithm is given the maximum number of times each object is
accessed by the transaction, i.e., that a and b will be accessed at most n times each,
then Atomic RMI can determine which access is the last one as it is happening. Then,
the transaction’s code looks like in Fig. 11, where suprema are specified in lines 2–3,
but the instructions to release objects are hidden from the programmer, so there is no
need for supplementary code. Additionally, since release is done as part of the nth call
on each object, there is no additional network traffic. Furthermore, a does not wait for
b to execute.

However, releasing by suprema alone is not always the best solution, since there
are scenarios when deriving precise suprema is impossible. In those cases the manual
early release complements the suprema-based mechanism. One such case is shown in
Fig. 12, where a transaction searches through objects representing hotels, and books
a room if there are vacancies. Each interaction with a hotel can take up to two method
calls: vacancy check (line 6) and booking (line 7). However the supremum will only
be precise for one hotel, the first one with vacancies. Other hotels that do not have
vacancies, will not be asked to book a room, so there is only one access. This means

123



Int J Parallel Prog (2016) 44:598–619 609

that the supremum will not be met for those cases until the end of the transaction, so
they will be released only on commit. Hence, they are manually released on line 9, so
they can be accessed by other transactions as soon as possible.

IrrevocableOperations The greatest advantage ofAtomicRMI is its novel pessimistic
algorithm, which allows any operation to be used within transactions. In particular,
irrevocable operations pose no problem. These are operations that have visible effects
on the system and cannot be easily reverted, e.g., system calls, sending network mes-
sages. This is not true for optimistic transactions, because conflicts cause rollbacks,
which then cause irrevocable transactions to be repeated.

For the same reason, Atomic RMI allows transactions to include locking or to
start new threads within transactions. This is also often not possible in optimistic
transactions, where rollbacks can cause threads to be restarted or locks to be acquired
and not released (especially, if conflicts are detected eagerly). However, not only does
allowing these sorts of operations improve expressiveness, but it also makes working
with legacy code easier.

Nesting and Recurrency Atomic RMI supports transaction nesting, albeit with limita-
tions. The programmer can create a transaction within another transaction, but in such
cases it is vital to ensure that they do not share objects. Otherwise, the inner transaction
will wait for the outer to release the objects, while the outer will not release them until
the inner finishes. In effect, a deadlock occurs (although, in the original SVA [29]
nesting is not an issue since all transactions are parallel).

Atomic RMI also supports transaction recursion. That is, a transaction may call
itself within itself. Atomic RMI provides an interface called Transactable that
allows transactions to be enclosed within a method, rather than between start and
commit, and the method may then be used recursively. The recursion will be treated
as a single transaction. The execution will proceed until the commit and rollback
methods are called, inwhich case the transactionalmethod is exited and the transaction
finishes as normal. Keep in mind, however, that the suprema for object accesses must
still be defined for the entire execution of the transaction.

Fault Tolerance In distributed environments detecting and tolerating faults of network
nodes (or processes) is vital. Atomic RMI can suffer two basic types of failures: remote
object failures and transaction failures. Remote objects failures are straightforward
and the responsibility for detecting them and alarming Atomic RMI falls onto the
mechanisms built into JavaRMI.Whenever a remote object is called from a transaction
and it cannot be reached, it is assumed that this object has suffered a failure and an
exception is thrown. The programmer may then choose to handle the exception by, for
example, rerunning the transaction, or compensating for the failure. Remote object
failures follow a crash-stopmodel of failure: any object that crashed is removed from
the system.

On the other hand, a client performing some transaction can crash causing a trans-
action failure. Such failures can occur before a transaction releases all its objects and
thus make them inaccessible to all other transactions. The objects can also end up in
an inconsistent state. For these reasons transaction failures need also to be detected

123



610 Int J Parallel Prog (2016) 44:598–619

and mitigated. Atomic RMI does this by having remote objects check whether a trans-
action is responding. If a transaction fails to respond to a particular remote object
(times out), it is considered to have crashed, and the object performs a rollback on
itself: it reverts its state and releases itself. If the transaction actually crashed, all of
its objects will eventually do this and the state will become consistent. On the other
hand, if the crash was illusory and the transaction tries to resume operation after some
of its objects rolled themselves back, the transaction will be forced to abort when it
communicates with one of these objects.

5 Evaluation

In this section we present the results of a practical evaluation of Atomic RMI. First,
we compare the performance of Atomic RMI to other distributed concurrency con-
trol mechanisms, including another distributed TM. In the second test, we check the
performance of Atomic RMI under different Java Runtime Environments (JREs).

Benchmarks For our comprehensive evaluation we used amicro-benchmark and three
complex benchmarks. We based our implementation of the benchmarks on the one
included in HyFlow [19].

The distributed hash table benchmark (DHT) is a micro-benchmark containing a
number of server nodes acting as a distributed key-value store. Each node is responsible
for storing values for a slice of the key range. There are two types of transactions. A
write transaction selects 2 nodes and atomically performs a write on each. A read
transaction selects 4 nodes and performs an atomic read on them. The benchmark is
characterized by small transactions (2–4 remote operations, few local operations) and
low contention (few transactions try to access the same resource simultaneously).

The bank benchmark simulates a straightforward distributed application using the
bank metaphor. Each node hosts a number of bank accounts that can be accessed
remotely by clients. Bank accounts allow write operations (withdraw and deposit) and
a read operation (get balance). Clients perform either write or read transactions. In the
former type, a transfer transaction, two random accounts are selected and some sum
is withdrawn from one account and deposited on the other. In the latter type, an audit
transaction, all the accounts in the bank are atomically read by the transaction and a
total is produced. The benchmark has both short and long transactions and medium to
high contention, depending on the number of read-only transactions.

The loan benchmark presents a more complex distributed application where the
execution of the transaction is also distributed. Each server hosts a number of remote
objects that allow write and read operations. Each client transaction atomically exe-
cutes two reads or two writes on two objects. When a read or write method is invoked
on a remote object, then it also executes two reads or writes (respectively) on two
other remote objects. This recursion continues until it reaches a depth of five. Thus,
each client transaction “propagates” through the network and performs 30 operations
on various objects. Hence, the benchmark is characterized by long transactions and
high contention, as well as relatively high network congestion.

123



Int J Parallel Prog (2016) 44:598–619 611

Finally, the vacation benchmark is a complex benchmark (originally a part of
STAMP [15]), representing a distributed application with the theme of a travel agency.
Each server node supplies three types of objects: cars, rooms, and flights. Each of these
represents a pool of resources that can be checked, reserved, or released by a client.
When some resource is reserved, associated reservation and customer objects are also
created on the server. Clients perform one of three types of transactions.Update tables
selects a number of random objects and changes their price to a new value. Delete
customer removes a random customer object along with any associated reservations.
This transaction may require programmatic use of rollback. Make reservation is a
read-dominated transaction that searches through a number of objects, chooses one
of each type (car, room, flight) that meet some price criterion. Once the objects are
chosen, the transaction may create a reservation. The benchmark has medium to large
transactions with a lot of variety, and medium to high contention.

Frameworks We evaluate Atomic RMI with specified precise suprema (where possi-
ble). All versions of Atomic RMI use manual early release in the vacation benchmark
to improve efficiency while making reservations (while searching through remote
objects). In all other cases, transactions release objects when they reach their supre-
mum.

We compare Atomic RMI with standard Java RMI with mutual exclusion locks (or
mutexes, denoted Exclusion Locks) and Java RMI with read/write locks (denoted R/W
Locks). They feature fine grained locking: there is one lock per remote object. The
locks are used like a transaction: all locks are acquired at the start (in a predefined
order, to avoid deadlocks), and they are all released on “commit.” We use this locking
scheme with mutual exclusion locks as a baseline algorithm, which is very simple to
use and can be expected to be seen in applications written by conventionally trained
software engineers. On the other hand, read/write locks present one of themost popular
types of performance optimizations in concurrent systems: parallelizing reads.

We also compare Atomic RMI with HyFlow [19], another Java RMI-based imple-
mentation of transactional memory. Specifically, we use Distributed Transactional
Locking II (DTL2), HyFlow’s distributed variant of TL2 [5], a well-known optimistic
TM. Since the technology used in both Atomic RMI and HyFlow is the same, the com-
parison should show theperformancedifferencebetween the pessimistic andoptimistic
approaches to TM.

Note that the delete customer operation in the Vacation benchmark requires some
transactions to execute speculatively and abort when the list of objects reserved for
deletion becomes out of date. In that case, Atomic RMI and HyFlow transactions
use the rollback operation. However, the lock-based frameworks we use do not have
rollback support, so an ersatz rollback mechanism must be implemented within these
transactions.

Testing Environment In each of the benchmarks every node performs the rôle of a
server hosting a number of publicly accessible remote objects, as well as a client
running various randomly chosen types of transactions using remote objects from any
server.

123



612 Int J Parallel Prog (2016) 44:598–619

We perform our tests on a 10-node cluster connected by a private 1 Gb network.
Each node is equipped with two quad-core Intel Xeon L3260 processors at 2.83
GHz with 4 GB of RAM each and runs an OpenSUSE 13.1 (kernel 3.11.10, x86_64
architecture). We use the 64-bit IcedTea 2.4.4 OpenJDK 1.7.0_51 Java runtime (suse-
24.13.5-x86_64) for tests involving comparison between multiple frameworks. We
also use this JRE (denotedOpenJDK1.7.0_51 on the graphs) alongsideOracle’s 64-bit
1.7.0_55-b13 Java Runtime Environment with Java HotSpot build 24.55-b03 (denoted
Oracle 1.7.0_55), and Oracle’s 64-bit 1.8.0_05-b13 Java Runtime Environment with
Java Hotspot build 25.5-b02 (denoted Oracle 1.8.0_05) for evaluating behavior when
running on different JREs.We also attempted to run the benchmarks on the last version
of Oracle JRockit (1.6.0_45-b06), but were unsuccessful due to compatibility issues
with the libraries used for the implementation of the benchmarks.

Each of the benchmarks is run on 2–10 nodes. Every node hosts one server with
as many objects as specified by the benchmark. In addition, every node hosts one
client with 24 threads each. So, for example, on 10 nodes there are 240 simultaneous
transactions accessing objects on 10 nodes. Threads execute transactions selected at
random. In one batch of tests there are 20% of read transactions and 80% of write
transactions in each benchmark. In the other batch the ratio is reversed.

Results The results of the comparison between concurrency control mechanisms are
presented in Fig. 13.

The result of the DHT benchmark show that in a low-contention environment with
short transactions Atomic RMI is comparable to performance obtained by using both
fine grained R/W Locks and HyFlow, and all three are much better than fine grained
Exclusion Locks. Atomic RMI’s advantage over Exclusion Locks comes from early
release and allowing some transactions to execute in part in parallel. Thus, there are
more transactions executing at once, somore of themcango through the systemper unit
of time. R/W Locks and HyFlow attain a very similar result, by allowing reads to exe-
cute in parallel with other reads, therefore also allowing some transactions to execute in
part in parallel. The gain from treating reads specially is very similar to what is gained
from early release, so the shapes of the graphs are very similar. However, the overhead
of maintaining all of the distributed TM mechanisms in Atomic RMI and HyFlow—
including rollback support (so making copies of objects) and fault tolerance (extra
network communication)—is greater than the overhead of R/WLocks. Hence, Atomic
RMI and HyFlow perform consistently worse in DHT than R/W Locks. Note also that
the advantage that the more subtle frameworks have over Exclusion Locks increases
in proportion to the number of nodes in the network, hinting at better scalability.

The results for Bank show a case with a higher contention, where the higher cost
of setting up HyFlow’s and Atomic RMI’s more complex concurrency control pays
off, so both frameworks tend to outdo R/W Locks (and Exclusion Locks) on average.
The benchmark also shows the impact of the two approaches to parallelizing trans-
actions. Since R/W Locks and HyFlow allow executing reads in parallel, they both
gain a significant boost in the 80% read case, since any number of transactions can
simultaneously read from the same object. To the contrary, Atomic RMI parallelizes
transactions on the basis of early release rather than reads, so it is forced to wait for
a preceding transaction to release the right object for two transactions to be able to

123



Int J Parallel Prog (2016) 44:598–619 613

2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsDHT
Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
20

0
60

0
10

00
14

00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsDHT
Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

10
0

15
0

20
0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsBank

Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

15
0

25
0

35
0

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsBank

Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
20

0
60

0
10

00

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsLoan
Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

0
10

00
15

00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsLoan
Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
20

0
40

0
60

0
80

0

Nodes

T
hr

ou
gh

pu
t [

%
]

20% readsVacation
Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

2 4 6 8 10

0
50

0
10

00
15

00

Nodes

T
hr

ou
gh

pu
t [

%
]

80% readsVacation
Atomic RMI
Exclusion Locks
R/W Locks
HyFlow DTL2

Fig. 13 Evaluation results by benchmark (DHT, Bank, Loan, and Vacation) and read/write transaction
ratio (20% reads vs 80% reads). Each benchmark is presented on two graphs: one for 20–80 read/write
operation ratio, and the other for 80–20 ratio. Points on the graph represent the mean throughput (on the
y-axis) from the given benchmark run on a particular number of nodes (on the x-axis). The results are shown
as a percentage improvement in relation to the execution of Exclusion Locks

123



614 Int J Parallel Prog (2016) 44:598–619

execute simultaneously. Since transactions here contain operations in random order,
Atomic RMI’s SVA algorithm is often forced to wait for a preceding transaction to
release the right object. This still gives performance similar to that of R/W Locks, but
it means Atomic RMI is outperformed by HyFlow. On the other hand, in the 20%
read case, R/W Locks and HyFlow have fewer reads to parallelize, so they execute
on a par with Exclusion Locks, HyFlow performs particularly poorly in this scenario
because of the high number of aborts caused by speculative execution of write opera-
tions. Here, HyFlow transactions abort in between 15.5 and 51% cases (as opposed to
between 4.25 and 8.9% in the 80% read case), while other frameworks do not perform
aborts in this scenario at all. In contrast, Atomic RMI performs significantly better
than the other frameworks, since its early release mechanism does not depend on a
large read-to-write ratio. In fact, Atomic RMI performs similarly in both the 20 and
the 80% read case, reliably achieving a throughput of around 200% in both scenarios.
Nevertheless, it is clear that Atomic RMI could benefit from introducing support for
read/write differentiation in addition to the existing mechanisms.

The Loan benchmark shows that Atomic RMI is also much better at handling
long transactions and high contention than all other types of the concurrency control
mechanisms. Again, since Atomic RMI does not distinguish between reads andwrites,
both scenarios are effectively the same in terms of performance and an increase in
throughput comes from releasing objects as early as possible. However, as opposed
to Bank, in the Loan benchmark, Atomic RMI can effect an early release while about
half of the transaction still remains to be executed. Hence, Atomic RMI transactions
run in parallel in part to the transaction preceding it, and in part to the one following
it. This creates a significant performance gain compared to R/W Locks and HyFlow.
These, again, differ in performance between the 20% read case and the 80% read
case, but in this high a contention their advantage over Exclusion Locks is not as great
as Atomic RMI’s.

Finally, Vacation shows the behavior of more complex transactions in a high con-
tention environment. In this scenario, there is an actual advantage to being able to roll
back and this is a component in the performance gain. Atomic RMI makes copies for
rollback on the server-side, so there is no network overhead associated with either
making a checkpoint or reverting objects to an earlier copy. On the other hand, the
ersatz rollback mechanism requires that clients copy objects and store them on the
client side, which makes them costly operations. Atomic RMI, therefore, has a big
advantage over both lockingmechanism, from rollback support alone. In particular, the
transaction that requires rollback is delete customer, which makes up for 10 and 40%
of transactions in Vacation (in the 80 and 20% read case, respectively). Furthermore,
the complexity of this real-world–like benchmark makes transactions increasingly
difficult to parallelize using locks, since often it is necessary to lock a superset of a
transaction’s readset and writeset, and since read-only transactions are less likely to
occur. Hence, R/W Locks struggle with performance, even falling behind Exclusion
Locks at times.

The comparison of HyFlow and Atomic RMI in Vacation is much more involved.
Since read transactions do not imply read-only transactions here, there is much less
to be gained by parallelizing reads. Here, even a read transaction can write, so cause
conflicts and therefore effect aborts in HyFlow. It is the order of operations and the

123



Int J Parallel Prog (2016) 44:598–619 615

implementation of the read transaction that explains why Atomic RMI does better
than HyFlow in the 80% read case and not in the 20% read case. First of all, the
make reservation transaction initially performs a sequence of reads to a large set of
remote objects, until one is found that fits some specified criterion. Since the object
can be released instantly if the criterion is not met, then Atomic RMI allows many
parallel transactions to work on the same objects. And since reads in Vacation are
done in the same order in each transaction, any two Atomic RMI transactions can
execute almost entirely in parallel. On the other hand, since there are writes at the end
of make reservation, if HyFlow executes these in parallel, a conflict can occur and
cause an abort. This is why there is the advantage of Atomic RMI over HyFlow in an
80% read scenario, where the make reservation transaction is prevalent. On the other
hand, the necessary rollback in delete customer is more problematic in Atomic RMI,
since it may cause a cascade of rollbacks. Furthermore, update tables performs reads
in random order, so Atomic RMI encounters the same problems as in the 80% read
case in Bank. HyFlow avoids both these problems through speculation and avoiding
cascading aborts. Hence HyFlow outperforms Atomic RMI in the 20% read case
where these particular transactions are a bigger part of the workload. However, both
Atomic RMI and HyFlow perform quite well, achieving a typical speedup of at least
200% in comparison to Exclusion Locks.

On the whole, Atomic RMI is able to perform just as well as fine grained locks
in all environments, with only small penalty for additional features in environments
particularly hostile to versioning algorithms (low contention, short transactions). On
the other hand, in environments for which versioning algorithms were intended (high
contention, long transactions, mixed reads and writes) Atomic RMI gains a significant
performance advantage over fine grained locking. In comparison to HyFlow, both TM
systems perform variously in different environments. On average, Atomic RMI tends
to perform better than HyFlow in high contention, while it tends to be outperformed by
HyFlow in cases where read-only transactions can be treated specially. Hence Atomic
RMI is preferable to R/WLocks and Exclusion Locks in all cases, while the decision to
use Atomic RMI in place of an optimistic TM like HyFlow should be made depending
on the workload.

The results under different Java Runtime Environments are presented in Fig. 14.
The benchmarks indicate that Atomic RMI performs in a relatively similar manner.
The most significant difference can be seen when relatively few nodes are involved.
This is best visible in Vacation for tests with 4 nodes or fewer, where Oracle 1.8.0_85
significantly outperforms either of the Java 7 implementations. The results also show
a decline in throughput as more nodes are added. This is because each added node
increases the rate of conflicts between transactions, as well as network congestion.

6 Related Work

Atomic RMI is similar to HyFlow [19]. Both use Java RMI as their basis, both support
distributed transactions and both allow remote code execution. However, HyFlow
uses optimistic concurrency, which—contrary to our approach—incurs inadvertent
rollbacks and, in effect, causes problems with irrevocable operations. On the other

123



616 Int J Parallel Prog (2016) 44:598–619

2 4 6 8 10

0
20

40
60

80
12

0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsDHT

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
20

40
60

80
10

0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsDHT

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
50

10
0

15
0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsBank

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
50

10
0

15
0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsBank

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
5

10
15

20

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsLoan

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
5

10
15

20

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsLoan

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
20

40
60

80
12

0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

20% readsVacation

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

2 4 6 8 10

0
50

10
0

15
0

20
0

Nodes

T
hr

ou
gh

pu
t [

T
/s

]

80% readsVacation

Oracle 1.7.0_55
Oracle 1.8.0_85
OpenJDK 1.7.0_51

Fig. 14 Evaluation results of Atomic RMI under various JREs. Points on the graph represent the mean
throughput in transactions per second (on the y-axis) from the given benchmark run on a particular number
of nodes (on the x-axis)

123



Int J Parallel Prog (2016) 44:598–619 617

hand, HyFlow natively supports both control flow and data flow execution models.
HyFlow2 [24] is an improved version of HyFlow, written in Scala and with advanced
nesting support.

Distributed transactions are successfully used where requirements for strong con-
sistency meet wide-area distribution, e.g., in Google’s Percolator [17] and Spanner
[3]. Percolator supports multi-row, ACID-compliant, pessimistic database transac-
tions that guarantee snapshot isolation. A drawback in comparison to our approach
is that writes must follow reads. Spanner provides semi-relational replicated tables
with general purpose distributed transactions. It uses real-time clocks and Paxos
to guarantee consistent reads. Spanner defers commitment like SVA, but buffers
writes and aborts on conflict. Irrevocable operations are completely forbidden in
Spanner.

Several distributed transactionalmemory systemswere proposed (see e.g., [2,4,11–
13]). Most of them replicate a non-distributed TM on many nodes and guarantee
consistency of replicas. This model is different from the distributed transactions we
use, and has different applications (high-reliability systems rather than e.g., distributed
data stores). Other systems extend non-distributed TMs with a communication layer,
e.g., DiSTM [13] extends D2STM [4] with distributed coherence protocols.

7 Conclusions

We presented Atomic RMI, a programming framework for distributed transactional
concurrency control for Java. The transaction abstraction is easy for programmers to
use, while hiding complex synchronization mechanisms under the hood. We use that
to full effect by employing SVA (with rollback support), an algorithm based on solid
theory that allows high parallelism.

Additionally, the pessimistic approach that is used in the underlying algorithm
allows our system to present fewer restrictions to the programmer with regard to what
operations can be includedwithin transactions. Apart from limited transaction nesting,
very little is forbidden within transactions.

Supremum-based early release makes our programming model efficient and rela-
tively burden-free (especially, when static analysis is employed). Upper bounds on
object calls are hard to estimate but the effort pays off since they allow to release
objects as early as possible in certain cases. Our evaluation showed that due to the
early release mechanism, Atomic RMI has a significant performance advantage over
fine grained locks. Suprema are also safe: when they are not given correctly (or at all)
the system only looses efficiency but maintains correctness, and, at worst, throws an
exception.

While the framework is young and some aspects will undoubtedly still need to
be ironed out, we are confident that Atomic RMI is a good basis for programming
distributed systems with strong guarantees. Given the results of our evaluation, in our
futureworkwewill implement a different versioning algorithm,whichwill distinguish
between reads and writes, while retaining the early release mechanism. Combining
the two optimizations should improve the efficiency of the system even further.

123



618 Int J Parallel Prog (2016) 44:598–619

Acknowledgments The project was funded from National Science Centre funds granted by decision No.
DEC-2012/06/M/ST6/00463. Early work on Atomic RMIwas funded by the PolishMinistry of Science and
Higher Education Grant No. POIG.01.03.01-00-008/08. We would like to thank Wojciech Mruczkiewicz,
Piotr Kryger, and Mariusz Mamoński for their contributions to the implementation. We also thank Binoy
Ravindran, Roberto Palmieri, and Alexandru Turcu for making available the HyFlow source code.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Attiya, H., Hillel, E.: Single-version STMs can be multi-version permissive. In: Proceedings of the
12th International Conference on Distributed Computing and Networking (ICDCN’11), vol. 6522 of
LNCS, pp. 83–94 (2011)

2. Bocchino, R. L., Adve, V. S., Chamberlain, B. L.: Software transactional memory for large scale
clusters. In: Proceedings of the 13th ACMSIGPLANSymposium on Principles and Practice of Parallel
Programming (PPoPP’08) (2008)

3. Corbett, J. C. et al.: Spanner: Google’s globally-distributed database. In: Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI’12) (2012)

4. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: dependable distributed software
transactional memory. In: Proceedings of the 15th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC’13) (2009)

5. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Proceedings of the 20th International
Symposium on Distributed Computing (DISC’06) (2006)

6. Guerraoui, R., Kapałka, M.: Principles of Transactional Memory. Morgan & Claypool, San Rafael
(2010)

7. Hadzilacos, V.: A theory of reliability in database systems. J. ACM 35, 121–145 (1988)
8. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory transactions. In: Proceed-

ings of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’05) (2005)

9. Herlihy, M., Moss, J. E. B.: Transactional memory: architectural support for lock-free data structures.
In: Proceedings of the 20th International Symposium on Computer Architecture (ISCA’93) (1993)

10. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

11. Hirve, S., Palmieri, R., Ravindran, B.: HiperTM: high performance, fault-tolerant transactional mem-
ory. In: Proceedings of the 15th International Conference on Distributed Computing and Networking
(ICDCN’14) (2014)

12. Kobus,T.,Kokociński,M.,Wojciechowski, P.T.:Hybrid replication: state-machine-based anddeferred-
update replication schemes combined. In: Proceedings of the 33rd International Conference on
Distributed Computing Systems (ICDCS’13) (2013)

13. Kotselidis, C., Ansari, M., Jarvis, K., Luján, M., Kirkham, C. C., Watson, I.: DiSTM: a software trans-
actional memory framework for clusters. In: Proceedings of the 37th IEEE International Conference
on Parallel Processing (ICPP’08) (2008)

14. Matveev, A., Shavit, N.: Towards a fully pessimistic STM model. In: Proceedings of the 7th ACM
SIGPLANWorkshop on Transactional Computing (TRANSACT’12), vol. 7437, LNCS, pp. 192–206
(2012)

15. Minh, C. C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional applications for
multi-processing. Proceedings of the 4th IEEE International SymposiumonWorkloadCharacterization
(IISWC’08) (2008)

16. Papadimitrou, C.H.: The serializability of concurrent database updates. J. ACM 26(4), 631–653 (1979)
17. Peng,D.,Dabek, F.: Large-scale incremental processingusingdistributed transactions andnotifications.

In: Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’10) (2010)

18. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: Proceedings of the
29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC’10) (2010)

123



Int J Parallel Prog (2016) 44:598–619 619

19. Saad,M.M., Ravindran, B.: HyFlow: a high performance distributed transactionalmemory framework.
In: Proceedings of the 20th International Symposium on High Performance Distributed Computing
(HPDC’11) (2011)

20. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 14th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC’95) (1995)

21. Siek, K., Wojciechowski, P. T.: A formal design of a tool for static analysis of upper bounds on object
calls in Java. In: Proceedings of the 17th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’12), vol. 7437, LNCS, pp. 192–206 (2012)

22. Siek, K., Wojciechowski, P. T.: Brief announcement: towards a fully-articulated pessimistic distributed
transactional memory. In: Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’13) (2013)

23. Siek, K., Wojciechowski, P. T.: Zen and the art of concurrency control: an exploration of TM safety
property space with early release in mind. In: Proceedings of the 6th Workshop on the Theory of
Transactional Memory (WTTM’14) (2014)

24. Turcu, A., Ravindran, B., Palmieri, R.: HyFlow2: a high performance distributed transactional memory
framework in Scala. In: Proceedings of the 10th International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’13) (2013)

25. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot —a Java optimization
framework. In: Proceedings of the 9th Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON’99) (1999)

26. Welc, A., Saha, B., Adl-Tabatabai, A.-R.: Irrevocable transactions and their applications. In: Proceed-
ings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’08) (2008)

27. Wojciechowski, P. T.: Isolation-only transactions by typing and versioning. In: Proceedings of the 7th
ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming
(PPDP’05) (2005)

28. Wojciechowski, P.T.: Language Design for Atomicity, Declarative Synchronization, and Dynamic
Update in Communicating Systems. Publishing House of Poznań University of Technology, Poznań
(2007)

29. Wojciechowski, P. T., Rütti, O., Schiper, A.: SAMOA: a framework for a synchronisation–augmented
microprotocol approach. In: Proceedings of the 18th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’04) (2004)

123


	Atomic RMI: A Distributed Transactional Memory Framework
	Abstract
	1 Introduction
	2 Overview
	3 Supremum Versioning Algorithm
	4 In-depth Look
	5 Evaluation
	6 Related Work
	7 Conclusions
	Acknowledgments
	References




