
Int J Parallel Prog
DOI 10.1007/s10766-011-0173-6

Cache-Integrated Network Interfaces: Flexible
On-Chip Communication and Synchronization for
Large-Scale CMPs

Stamatis Kavadias · Manolis Katevenis ·
Michail Zampetakis · Dimitrios S. Nikolopoulos

Received: 2 November 2010 / Accepted: 13 May 2011
© Springer Science+Business Media, LLC 2011

Abstract Per-core scratchpad memories (or local stores) allow direct inter-core
communication, with latency and energy advantages over coherent cache-based com-
munication, especially as CMP architectures become more distributed. We have de-
signed cache-integrated network interfaces, appropriate for scalable multicores, that
combine the best of two worlds – the flexibility of caches and the efficiency of scratch-
pad memories: on-chip SRAM is configurably shared among caching, scratchpad,
and virtualized network interface (NI) functions. This paper presents our architecture,
which provides local and remote scratchpad access, to either individual words or mul-
tiword blocks through RDMA copy. Furthermore, we introduce event responses, as
a technique that enables software configurable communication and synchronization
primitives. We present three event response mechanisms that expose NI functionality
to software, for multiword transfer initiation, completion notifications for software
selected sets of arbitrary size transfers, and multi-party synchronization queues. We
implemented these mechanisms in a four-core FPGA prototype, and measure the logic
overhead over a cache-only design for basic NI functionality to be less than 20%. We
also evaluate the on-chip communication performance on the prototype, as well as the

All the authors are member of HiPEAC.

S. Kavadias (B) · M. Katevenis · M. Zampetakis · D. S. Nikolopoulos
Foundation for Research & Technology - Hellas, Institute of Computer Science (FORTH-ICS),
Heraklion, Crete, Greece
e-mail: kavadias@ics.forth.gr

M. Katevenis
e-mail: kateveni@ics.forth.gr

M. Zampetakis
e-mail: mzampet@ics.forth.gr

D. S. Nikolopoulos
e-mail: dsn@ics.forth.gr

123



Int J Parallel Prog

performance of synchronization functions with simulation of CMPs with up to 128
cores. We demonstrate efficient synchronization, low-overhead communication, and
amortized-overhead bulk transfers, which allow parallelization gains for fine-grain
tasks, and efficient exploitation of the hardware bandwidth.

Keywords Cache · Network interface · Explicit communication · Synchronization

1 Introduction

As the number of processing cores per chip increases, so does the need for efficient and
high-speed communication and synchronization support, to minimize overheads and
enable applications that efficiently exploit the numerous available cores. In small sys-
tems, communication and synchronization is often done implicitly, through coherent
caches, complemented by hardware prefetching for performance reasons. Although
the use of caches relieves software from locality and communication management,
as CMP architectures will become more distributed, indirection through directories
and the round-trip nature of coherence will introduce increasing communication over-
heads.

Recently, researchers and implementors have begun to reassess the use of directly-
addressable per core local memories for a wide range of target application domains.
Scratchpad memories (also termed “local stores” in the literature) naturally lend them-
selves to the use of remote DMA (RDMA) transfer-offload engines, and allow direct
software-controlled scratchpad-to-scratchpad communication. Direct transfers are
expected to provide both performance and energy advantages over coherence. In addi-
tion, the combination of hardware assisted transfers with per core scratchpad memo-
ries, enables the use of producer-initiated communication, as well as overlapping of
communication with computation without the need for complex out-of-order proces-
sors and non-blocking caches. Software can exploit these opportunities in emerging
runtime systems (e.g. Sequoia [6]), and when communication can be orchestrated
appropriately for a given application.

In this paper, we present the architecture of cache integrated network interfaces
that we developed in the context of the “SARC” project [30], to achieve the best
of two worlds: the flexibility of caches and the optimization enabled by scratchpad
memories. The proposed architecture allows sharing on-chip SRAM, at cache-line
granularity, for caching, scratchpad, and network interface (NI) communication func-
tions, all mapped in the application’s virtual address space for virtualization. We
support load/store access to remote scratchpads, and RDMA-copy operations that can
be explicitly acknowledged. These communication mechanisms use virtual source and
destination addresses and thus provide the equivalent of generalized read and write
accesses for explicit communication.

In addition, we introduce event responses as a technique that enables efficient cache-
integration of NI functionality. Event responses leverage line tag and state lookup in the
normal cache access flow, for software-configurable communication and synchroniza-
tion mechanisms. Three event response based primitives are discussed: command buf-
fers used to initiate multi-word communication; counters that provide the equivalent of

123



Int J Parallel Prog

memory barriers for explicitly-selected “accesses” of arbitrary size; and queues imple-
mented in scratchpad memory for multi-party synchronization, supporting a single or
multiple readers.

We have implemented the above framework in a 4-core FPGA-based hardware pro-
totype. Our evaluation on the prototype provides a comparison of RDMA-copy and
remote store mechanisms for on-chip communication. Remote stores with write com-
bining provide low-overhead communication for short data transfers and enable gains
from the parallelization of fine-grain tasks of less than 500 processor cycles length.
RDMA-copy transfers are more bandwidth efficient and amortize software initiation
and communication overhead. The presented communication mechanisms also enable
the maximal utilization of the available on-chip and off-chip memory bandwidth, with
as little as 3 KB of buffering space per scratchpad memory. Simulation of barriers and
contended locks, based on counters and multiple-reader queues, for up to 128 cores,
shows 3× to 5× improvement over tree-based barriers and MCS locks [25] that use
coherently cached variables.

The rest of this paper is organized as follows: In Sect. 2 we discuss some back-
ground for this study and review related work. Section 3 presents our architecture in
detail. In Sect. 4, we briefly describe our hardware prototype and report on the logic
overhead of NI integration inside a cache. Section 5 presents performance evaluation
on the prototype and with simulations, and Sect. 6 concludes the paper.

2 Background

This paper extends on our previous work in [17]. Here, we elaborate on the architec-
ture of cache-integrated network interfaces and the technique of event responses that
enables their efficient implementation, and also measure the logic overhead of NI inte-
gration inside a cache. In addition, the following subsection unfolds the insite behind
our selection of previously proposed communication and synchronization primitives,
and the design of novel ones.

2.1 RDMA, Queues, and Counters

Remote direct memory access (RDMA) is widely used as the basic and most efficient
primitive for explicit communication, especially for large volumes of data. Relative to
the delivery of data into receive queues, it has the advantage of zero-copy, by directly
delivering “in-place”. Compared to the copying of data via load-store instructions, it
has the advantage of asynchrony, thus allowing communication to overlap with com-
putation. Unlike implicit communication through cache coherence, it can deliver data
to the receiver before the receiver asks for them, thus eliminating read-miss latency.
Finally, relative to the cases of successful prefetching in caches, RDMA uses much
fewer packets to perform the transfer, thus economizing on energy. Large RDMA trans-
fers are broken by the hardware into multiple smaller packets. Even if these packets
follow different routes through the network –since adaptive routing greatly improves
network performance– packets arriving out-of-order are correctly assembled in-place,

123



Int J Parallel Prog

since each carries its own destination address; RDMA completion detection becomes
harder, and we handle it as discussed in Sect. 3.4.

Single-reader queues, with similar basic functionality to hardware queue support
in the Cray T3E [32] or mailboxes in the Cell BE [13], can be used to optimize many-
to-one communication via multiplexing of senders. Forming multiple such queues in
scratchpad memory also allows demultiplexing of message categories, similarly to
register-interfaced queues in Tilera’s TILE64 chip [35]. Compared to RDMA, sin-
gle-reader queues have two disadvantages, making them more suitable for control
information exchange than actual data transfers: (i) they require copying of data out
of the queue and into the program’s data structures,1 and (ii) they fix data processing
order to the unpredictable order of data arrival. Single-reader queues also have an
advantage compared to RDMA: they require constant time for locating arrived input.
RDMA requires per sender buffering at the receiver, and thus locating arrived input
requires polling time proportional to the number of possible senders.

In addition to the above, although we do not implement or evaluate such an optimi-
zation, single-reader queues can support negative acknowledgments (NACKs) when
there is insufficient space for arriving messages, to economize on receiver buffer space,
irrespective of the number of possible senders. Such an optimization, enables receiver
queue space that is proportional to the number of anticipated senders in a usual time
interval, instead of space proportional to the maximum possible number of senders
that is required for RDMA.

Single-reader queues are very closely-related to producer-consumer communica-
tion, in one-to-one, many-to-one, or many-to-many patterns. Philosophically, one can
view counters and multiple-reader queues, that will be described in Sect. 3.3, as abstrac-
tions of different attributes of single-reader queues; multiple-reader queues abstract the
reception order imposed by queue implementations, making them suitable for multiple
concurrent readers, while counters abstract away the data buffered in a single-reader
queue, and only accumulate “arrival events”.

2.2 Related Work and Contributions

Ranganathan et al. [28] have proposed associativity-based partitioning and overlapped
wide-tag partitioning of caches for software-managed partitions (among other uses).
Associativity-based partitioning allows independent, per way addressing, while over-
lapped wide-tag partitioning adds configurable associativity. PowerPCs allow locking
of caches (further misses do not allocate a line –e.g. [11]). Intel’s Xscale microar-
chitecture allows per line locking for virtual address regions either backed by main
memory or not [12]. Our design generalizes the use of line state for configurable
communication initiation (Sect. 3.2) in addition to locking lines in the cache.

Syncretic adaptive memory (SAM) [34] integrates a stream register file (SRF) with
a cache and uses cache tags to identify segments of generalized streams. It also inte-
grates a compiler-managed translation mechanism to map program stream addresses

1 This disadvantage is less important in the case of queues in processor-integrated NIs, were data appear
directly in processor registers.

123



Int J Parallel Prog

to cache and main memory locations. Compared to our architecture, SAM requires a
specialized compiler and can exploit cache-integration with a SRF using a specialized
stream processor. In addition, SAM does not provide event response support.

In smart memories [7] the first level of the hierarchy is reconfigurable and composed
of ’mats’ of memory blocks and programmable control logic. This enables several
memory organizations ranging from caches that may support coherence or transac-
tions, to streaming register files and scratchpads. Their design exploits throughput
targeted processor tiles to hide increased latencies because of reconfigurability. Smart
memories incur significant area overhead which we estimate to be higher than our
integrated approach.2 It should be possible to support coherent cache and scratch-
pad organizations simultaneously and potentially program smart memories for event
responses with adequate microcode memory, though the authors do not consider such
optimizations. SiCortex [29] ICE9 chip features microcode-programmable tasks in a
coherent DMA engine side-by-side with an L2 cache shared by 6 cores, but does not
support scratchpad memory. Smart memories and ICE9 DMA engine have the most
similarities with our cache-integrated NI, but our work focuses on keeping the NI
simple enough to integrate with a high performance cache.

Prior work on fine-grain access control [31] and application specific coherence pro-
tocols [5] demonstrates how lookup mechanisms leverage local or remote handling
of coherence events and has influenced our approach to cache-integration of event
responses. The Cray T3E [32] supported single-reader queues in main memory and
barrier/eureka FSM-based synchronization hardware. Our single-reader queues are
optimized for an on-chip environment and enable multiple item granularities for use
with multi-word short messages. Our counter-based barrier support is more general
and easier to virtualize.

The MIT Multi-ALU Processor (MAP) [18] provided support for direct message
transmission/reception from registers and dedicated receive side buffering. Our design
avoids communication arrival interrupts required in MAP, exploiting virtualized desti-
nations and explicit acknowledgments. The TILE64 chip [35] allows operand exchange
via registers. A small set of queues is associated with registers, supporting settable
tags that are matched against sender-supplied message tags, and a catch-all queue is
provided for unmatched messages. All queues can be drained and refilled to and from
off-chip memory. Our virtualized single-reader queues, formed in scratchpad mem-
ory, enable reception of direct transfers, sharing the fast and usual path through the
processor’s cache, without occupying processor registers. Cyclic buffering is enabled
by updating a hardware visible head pointer, and multiple item granularities are sup-
ported.

Leverich et al. [21] provide a detailed comparison of caching-only versus parti-
tioned cache-scratchpad on-chip memory systems for CMPs. They find that hardware
prefetching and non-allocating store optimizations in the caching-only system elim-
inate any advantages in the mixed environment. We believe their results are due to
considering communication between on-chip cores and off-chip main memory. By
contrast, for on-chip core-to-core communication, RDMA provides significant traffic

2 A direct comparison requires porting our FPGA design to an ASIC flow, because the work on smart
memories only provides estimates of silicon area for an ASIC process.

123



Int J Parallel Prog

reduction, which together with event responses and NI cache integration are the focus
of our work.

Streaming hardware support, for general purpose systems using caches, was con-
sidered in [4,9,10,27]. In [10] cache control bits are used for best-effort avoidance of
replacements and scatter-gather enhancements of the L2 controller are proposed for a
uniprocessor system. Streamware [9] exploits the compiler to avoid replacements of
streaming data mapped to processor caches, for codes amenable to stream processing.
Rangan et al. in [27], study hardware support alternatives for pipelined streaming.
They propose a set of optimizations that can reach the performance of heavyweight
hardware support. These optimizations include write-forwarding [1,19,20,26] at line
boundaries, synchronization counters in L2 caches (which they do not describe), and
small dedicated receive-side caches for pipelined streaming data in a separate address
space. Our design integrates equivalent mechanisms inside general purpose caches,
augmented with RDMA for efficient bulk transfers.

3 Cache-Integrated Network Interface Mechanisms

Explicit communication and synchronization mechanisms work like network I/O de-
vices: the processor initiates operations, polls for status, or waits for input or notifi-
cations using memory-mapped control and status registers. To increase parallelism,
multiple pending operations must be supported, hence there must exist multiple control
and status registers. To reduce overhead, these multiple registers must be virtualized,
so as to be accessible in user-mode. To reduce latency, these mechanisms and registers
need to be brought close to the processor, at the level of cache memory, as opposed to
the level of main memory or I/O bus.

This section explains how we achieve all of the above, describing our commu-
nication (RDMA) and synchronization (counters, queues, notifications) mechanisms
and some typical uses. Although we chose to implement our mechanisms at the level
of private L2 caches, the ideas are general and independent of that choice. We inte-
grated our NI mechanisms into private –as opposed to shared– caches in order for
processors to have parallel access to them. And we integrated them into L2 caches –as
opposed to L1 caches or processor registers– in order to provide sufficient scratchpad
space for application data and sufficient number of time-overlapped communication
operations, and in order not to affect the processor clock. Our prototype implements a
phased, pipelined L2 cache (1 access per cycle), a write-through L1 cache, and selective
L1-caching of L2 scratchpad regions.

3.1 Memory Access Semantics: Cache, Scratchpad, Communication

We explained above the advantages possible by scratchpads and multiple memory-
mapped communication control/status “registers”, all brought close to the processor
into private caches. To support these, memory access semantics must vary. We use
two mechanisms to signal such modified semantics: hardware access control (e.g.
Translation Lookaside Buffer—TLB), to mark virtual address regions as explicitly
managed or scratchpad (Fig. 1), and cache line state bits, to indicate different access
semantics and cache behavior (Fig. 2).

123



Int J Parallel Prog

Data Data

T
ag

s

T
ag

s

S
cr

’p
ad

T
ag

sProtection

Cacheable

Yes No

Rights
Type

Directly
Addressable
(Scratchpad)

Remote
Local

to Network

way #

IndexAddr.Space
Global Address

cmp cmp

TLB  or  Address Region Table (ART)

Data

Fig. 1 Memory access flow: access control hardware provides type and “way” number information for
directly addressable (scratchpad) regions

Fig. 2 Cache line types: state
bits mark lines with scratchpad
memory and communication
semantics

Tags

Counter value

arg.validity flags

tag

tag

State bits

Q

Cn

Cm

LM

LM

Ch

Ch

Data

A
dd

re
ss

 S
pa

ce
S

cr
at

ch
pa

d

Cached Data

Local Memory

arguments

Local Memory

head, tail, size

Address
Space

able
Cache−

(scatchpad) Data

(scatchpad) Data

Cached Data

notification config.
arguments

RDMA/msg cmd

rd tail, rd/wr head
(single−reader only)

As shown in Fig. 1, we assume that the access control mechanism3 indicates in
some way whether an address region or page contains cacheable or directly-addressed
(scratchpad) data. Identifying local and remote scratchpad regions enables direct
addressing, which locates scratchpad lines inside a cache using only a “way” number
and the address index. Either we augment per region information in the access control
mechanism with type and “way” number bits, or a region’s physical address can in-
clude them. This obviates tag bit comparison to verify that a memory access actually
hits into a scratchpad line; in this way, tag bits of scratchpad areas are freed, and we
use them for other purposes in the case of communication semantics. Furthermore,
indication of remote scratchpad regions identifies accesses that do not request local
caching and the relevant space allocation; note that remote stores, potentially using
write-combining buffer(s), provide a very efficient method for transfering data and
synchronization signals between producers and consumers.

In addition, to enable in-cache scratchpad allocation at cache-line granularity, cir-
cumventing the coarse granularity normally used for protection, we mark lines in

3 In our SARC project, we use Address Region Tables (ART), instead of the traditional TLBs, in order to
support scalable page migration (only local ARTs are updated on local migrations –not all TLB’s throughout
the entire system), as explained in [16]; that issue, however, is orthogonal to what we discuss in this paper.

123



Int J Parallel Prog

scratchpad regions, using line state bits in the cache, to support two functions: (i)
locking of scratchpad lines in the cache, specifying them as non-evictable in the
replacement mechanism; (ii) preventing intervention to the hit/miss calculation of
cacheable space accesses, by ignoring tag matching for scratchpad lines. This com-
bined mechanism allows for runtime-configurable partitioning of the on-chip SRAM
blocks between cache and scratchpad use, thus adapting to the needs of the application
that is being run at each point in time.

Moreover, the multiple virtualized communication control/status “registers” that
we desire, are placed in scratchpad regions and utilize state and tag bits to support
their semantics. As shown in Fig. 2, other than plain scratchpad memory, we mark
in their state bits three types of special scratchpad lines, called event sensitive lines
(ESLs), to indicate their special semantics: (i) command buffers used for short message
or RDMA command/status; (ii) counters, used for synchronization and notification
through atomic increment operations; or (iii) queue descriptors, used to atomically
multiplex or dispatch information from/to multiple asynchronously executing tasks.
The semantics and use of these primitives, including the use that they make of the tag
bits, will be explained in the rest of Sect. 3.

Their virtualized nature results as follows. Since they are located in memory space,
processors can only access them going through address translation and protection.
Also, multiple communication “registers” (ESLs) can be allocated in the (virtual)
address space of any process, and each process can freely access, in user-mode, its
own special “registers”, independent of and asynchronously to other processes. Vir-
tualization also requires that address arguments passed to control registers are given
in virtual –rather than physical– space, and are protection-checked by hardware; we
assume that the network interface has access to a second port of the processor TLB (or
ART) in order to perform these. When the operating system swaps a scratchpad out of
a certain cache, it has to properly mark and record these special cache lines. To do so,
the OS has to either know their address and type beforehand, or else it can discover
them by reading the state and tag bits. To support the latter, our prototype maps these
bits to a special address range.

Because local and remote ESL accesses may initiate communication, and to allow
multiple overlapped such transfers, the NI must utilize a job-list to keep track of in-
progress transfers and associations with ESLs. This job-list can be a simple hardware
FIFO, that may support recycling of job descriptions, to avoid blocking short transfers
behind potentially long RDMAs. The size of such a job-list can be scaled with small
complexity increase, supporting the allocation of a large number of ESLs and allowing
multiple outstanding transfers. Alternatively, the NI job-list can be implemented as a
linked list of event sensitive lines, which should then include a next pointer field.

3.2 Event Responses

Event responses is a technique that exploits tagged memory to enable software con-
figurable functions, extending the usual transparent cache operation flow, in which
line state and tag lookup guides miss handling with coherence actions. Local or re-
mote accesses to ESLs (NI events) are monitored, to atomically update associated NI

123



Int J Parallel Prog

u
p

d
at

e
at

o
m

ic

index offs

NoC
to

Data

response Outgoing NI
Job List &schedule

cache memory arrays

Accessed
Address

transfer(s)

NI metadata

Tag

........

software arguments

Response
Control

Miss & Event

cu
st

o
m

iz
e 

b
u

ff
er

in
g

State & Tags

Fig. 3 Event response mechanism integration in the normal cache access flow. ESL accesses are the moni-
tored events. In response, the NI can atomically update metadata in the ESL tag, modify the accessed index
for custom buffering in scratchpad memory (e.g. managing some lines as a queue), or conditionally initiate
response transfer(s). The outgoing NoC traffic controller can read transfer-related software configuration
arguments from the ESL data block

metadata. Conditions can be evaluated on NI metadata, depending on the event type
(e.g. read or write), to associate the effect of groups of accesses with communication
initiation, or to manage access buffering in custom ways. These conditional NI actions
are called event responses, and allow the implementation of different memory access
semantics.

On every access to the cache (local or remote), normal cache operation checks the
state and tag bits of the addressed line. As illustrated in Fig. 3, the NI monitors ESL
access, atomically reads and updates associated metadata stored in the ESL tag, and
checks whether relevant conditions are met. The state accumulated in the ESL tag
can be used to customize the location of buffering, forming for example queues in
scratchpad memory. When communication triggerring conditions are met, commu-
nication is scheduled by enqueueing a job description in the network interface job
list. Software communication arguments can be pre-configured in the ESL data block.
Such arguments are read and utilized by the outgoing traffic NI controller, when the
relevant job description appears at the top of the job-list.

Event responses provide a framework for hardware communication and synchro-
nization mechanisms configurable by software. The mechanisms designed, utilize
appropriate ESL and scratchpad region internal organization, to support atomic oper-
ations in the NI that conditionally initiate communication. The different operations are
designated by ESL state corresponding to the intended access semantics. They allow
the description of multi-word communication arguments to the NI, enabling the NI
communication functions, and the implementation of our synchronization primitives.

3.3 Communication and Synchronization Primitives

Four event-response mechanisms are designed, for command buffers, counters, sin-
gle- and multiple-reader queues. Command buffers are used to send short messages, or
initiate RDMA-copy operations. An opcode, size, destination and acknowledgement

123



Int J Parallel Prog

Reset value

.  .  .
Notification data

Notification Addr 1
Notification Addr 2

.  .  .

(Read/Add−on−Write)Cnt Counter value

if (counter == 0)

counter += data

write (data)

pckt1pckt2

req1req2

pckt1

req1

req3

rd/deq

wr/enq

wr/enq

rd/deq

(a) (b)

Wr

Notif. data
Ack Addr (null)

Notif. Addr 2

Wr

Notif. data
Ack Addr (null)

Notif. Addr 1 1tkcp3tkcp

pckt1

Fig. 4 Counter (a), and multiple-reader queue (b) operation

addresses are provided for messages, and data that may add up to the cache line size.
In the case of RDMA-copy operations, a source address is provided instead of the
data. The acknowledgement address is utilized for explicit acknowledgements, dis-
cussed in the next subsection. Command buffers exploit operation opcode and message
size to automatically initiate a transfer when its description is complete (assuming all
transfer arguments are written to a command buffer exactly once). On our prototype,
RDMA-copy operation initiation requires only four store instructions.

Command completion is monitored at word granularity, using validity flag bits, kept
in the (otherwise unused) tag of the command buffer, and allowing arbitrary order of
the relevant stores, that can be separated by any time distance. The ability to tolerate
arbitrary ordering of stores when describing a transfer, allows compiler reordering of
instructions and store issue optimizations for weakly ordered memory accesses. The
automatic detection of a complete transfer description obviates restrictions related to
load and store reordering and the need for an additional access, required for explicit
initiation. Multiple threads can be writing command buffers within their protection
domain, concurrently, in user-mode.

Counters are intended to provide software notification(s) regarding the completion
of an unordered sequence of operations (e.g. multiple transfer reception, or arrivals at
a barrier). Counter function, supporting an atomic add-on-store operation, is depicted
in Fig. 4a. The counter value is kept in the ESL tag, and can be accessed indirectly
via offset zero of the ESL data block. An implementation dependent number of con-
figurable notification addresses (four on our prototype) is provided in the counter
ESL. When the counter becomes zero, a pre-configured word is sent to all notification
addresses, by enqueueing corresponding job descriptions in the network interface job
list. In addition, the counter is reset to a value also configured in advance, in the ESL
data-block.

Single- and multiple-reader queues keep head and tail pointers in the ESL tag.
The queue is formed in scratchpad memory adjacent to the ESL. Queue head and tail
pointers are used to modify some of the least significant index bits, in order to access
a queue entry in the data array, as shown in Fig. 3. Different offsets of the ESL data-
block allow writing to the single-reader queue (sr-Q), reading the tail pointer, as well
as reading and updating the head pointer, where the latter two operations are intended
for the local processor. Data arriving to an sr-Q are written to the queue offset pointed

123



Int J Parallel Prog

Network
packets

ack
ack

packet
dequeued

or delayedimmediate

Counter

ack

to counter

dataread

w
rit

e

in
c

deq

enq

Wr

Data

Ack

Ack Addr

Dst Addr

Wr

Ack Addr

Dst Addr

Src Addr

Rd

Scratchpad

DescriptorData

Scratchpad

Region

Memory

Queue

Normal

Wr Ack Addr
Wr payload size

Rd Dst Addr

Rd Ack Addr

Fig. 5 Remote access to scratchpad regions and generation of explicit acknowledgements

by the queue tail pointer, atomically incrementing it. Items of power of two size (in
words) are supported for queue access via short messages.

Multiple-reader queues combine multiplexing of short message data from multiple
producers and request messages from multiple consumers, buffering either in the same
queue, or, more accurately, in a pair of queues overlapped in the same scratchpad
space. The mr-Q allows dequeue (read) operations that wait until data are enque-
ued (written), effectively matching read and write requests in time. When a write is
matched with a read in the mr-Q, a response packet is triggered, enqueueing a job
description in the NI job list, to sent the data of the write to the response address of
the read.

Conceptually, the multiple-reader queue (mr-Q) buffers either data or requests.
When data are buffered and a request arrives, shown in the upper part of Fig. 4b, the
data on the top of the queue are matched with the request. When requests are buffered
in the queue and data arrive, shown in the lower part of the figure, the data are matched
with the top request in the queue. In either case, when a new item arrives (request or
data), that is of the same type to those already buffered in the queue, it is also stored
at the tail of the queue; this is also the case with arrivals at an empty queue.

3.4 Software Notification via Explicit Acknowledgements

To allow the enforcement of a software desired order among read or write accesses
to remote scratchpads, or synchronize computation with such accesses, all explicit
transfers can be acknowledged. Explicit acknowledgements can be accumulated in
counters for completion notifications of one or more multiword transfers, even over
an unordered network.

Figure 5 shows how acknowledgements are generated for each NoC packet. Three
types of lines inside a scratchpad region are depicted in the middle, with read and
write request packets arriving from the left, and the corresponding generated reply

123



Int J Parallel Prog

b

i

e
g

r

d

b

i

e
g

r

d

b

i

e
g

r

d

b

i

e
g

r

d

b

i

e
g

r

d

L1 I$

L1 D
$P3

L1 I$

P2

L1 D
$

P1

L1 I$

L1 I$

P0

L1 D
$

L1 D
$

links
off chip

PLB

OPB

U
A

R
T

JT
A

G
 &

D
eb

ug

FPGA Chip

Lo
ck

 B
ox

NI

L2 D

Cache/NI

L2 D

Cache/NI

L2 D

Cache/NI

DDR Controller
& DMA engine

L2L2 D

N o C

Cache/NI

Fig. 6 FPGA prototype system block diagram

packets on the right. A read packet, arriving to normal scratchpad memory, gener-
ates write reply packets according to the destination and acknowledgement addresses
in the read (this is also true for counters –not shown). When a read arrives at a
queue, the write reply may be delayed. Writes, arriving at any type of line, gener-
ate acknowledgements toward the acknowledgement address in the write, with the
size of the written data. This size can be accumulated in counters for completion noti-
fication of the initial transfer request (read or write). Acknowledgements arriving at
any type of line act as writes (not shown), but do not generate further acknowledge-
ments.

4 The Hardware Prototype

We have fully implemented the architecture described in Sect. 3 in a hardware pro-
totype based on a Xilinx Virtex-5 FPGA. A previous version of the prototype was
presented in [14]. The current version is a major rewrite of the code, carefully pursu-
ing logic reuse, implementing event responses, three levels of NoC priority and some
other features not present in the version of [14]. The current version of the prototype
was presented in [15], and we report here on the reduced logic cost, that resulted from
some alignment optimizations in that version.

The block diagram of the FPGA system is presented in Fig. 6. There are four
Xilinx microblaze IP cores, each with 4 KB L1 instruction and data caches and
a 64 KB L2 data cache, where our network interface mechanisms are integrated.
An on-chip crossbar connects the 4 processors through their L2 caches and NI’s, the

123



Int J Parallel Prog

Fig. 7 Area optimization as a percentage of a cache-only design

DRAM controller –to which we added a DMA engine– and to the interface (L2 NI)
of a future off-chip interconnect, over 3 high speed RocketIO transceivers, intended
for a multi-chip system. All processors are directly connected over a bus (OPB) to a
hardware lock-box supporting a limited number of locks, that we used for comparison
purposes (Sect. 5.4.1).

4.1 Logic Cost of Cache-integrated NI Mechanisms

At a high level, event responses match the operation of NI communication and syn-
chronization mechanisms to the controller and memory organization of a cache. In
order to optimize our cache-integrated design at a lower level, we carefully adapt the
format of transfer descriptions via command buffers to the NoC packet header for-
mat, so that we can exploit corresponding field alignment. This approach saves about
19.3% of the logic in our integrated design, over our measurement reported in [15].
In the results presented, we assume that 1 FPGA lookup table (LUT) or 1 flip-flop is
equivalent to 8 gates.

Figure 7 compares the logic of our optimized cache-integrated design with a cache-
only design and a partitioned one. The measurements are shown as a percentage of
the base cache-only design (second bar from the left), and refer to controller and data-

123



Int J Parallel Prog

path logic only, excluding the SRAM arrays for cache/scratchpad state, tags, or data.
The simple integrated design (third bar from the left), which includes support for 8B-
aligned RDMA, is less than 20% larger than the plain cache, and saves about 44.1%
of the logic required for a partitioned cache-scratchpad design (fourth bar from the
left). In addition, Fig. 7 shows the cost of adding counters (∼13.6%), multiple-reader
queues (∼ 15.2%), and single-reader queues (∼ 10.6%), for an advanced integrated
design (second bar from the right). The relative cost of the full functionality imple-
mented in our prototype is also shown (first bar from the right), which includes a barrel
shifter for arbitrary RDMA alignment (∼9.6%) and a remote store combining buffer
(∼23.8%).

5 Performance Evaluation

The objective of our evaluation is to demonstrate that the proposed architecture
achieves low core-to-core communication latency, low latency for high-level synchro-
nization primitives –locks and barriers–, effective utilization of the available on-chip
and off-chip memory bandwidth and exploitation of fine-grain parallelism in applica-
tions. To this end, we evaluate a FPGA prototype of the proposed architecture with
controlled microbenchmarks and applications, both stressing on-chip communication
and simulate the performance of locks and barriers for large core numbers.

5.1 Prototype Software Environment

For our hardware and software synthesis we used the ISE design suite and the Embed-
ded Development Kit (EDK) tools, which provide a complete flow for RTL-based
designs and Intellectual Property (IP) components. For compiling software, we used
a version of gcc, mb-gcc, targeted to Microblaze processors. For debugging, we used
the Xilinx Microprocessor Debug (XMD) engine, which can be used while a micro-
processor is running on the system.

We implemented the syslib, scrlib, and nilib, libraries for parallelization, synchro-
nization, and communication. The syslib library implements locks, barriers, memory
allocation, and basic timing and I/O facilities; it provides alternative implementations
of locks and barriers, thread-safe memory allocation, thread-safe I/O functions, and
basic mechanisms for getting a core ID and the value of a global system timer. The
scrlib library manipulates scratchpad memory: allocate a part of the L2 cache mem-
ory as scratchpad space at runtime, convert local addresses to remote addresses, and
check if an address is local or remote. Scrlib supports an SHMEM-like program-
ming model [33], where global addresses are given as a local-address/node ID pair.
This allows us to avoid the need for a compiler that supports threads and shared
addresses, that is not available for the FPGA environment. It also includes func-
tions for marking a cache line as a command buffer, a counter, or a queue. Last,
nilib contains functions for preparing and issuing DMAs, for managing command
buffers, notifications, and queues, and for sending messages to remote scratchpad
memories.

123



Int J Parallel Prog

5.2 Simulation Infrastructure

In this paper, we model event responses in GEMS [23] and simulate counter-based
barriers and mr-Q based locks for up to 128 processors. Our simulations are based on
the GEMS memory system simulator, driven by accesses from the Simics [22] full sys-
tem simulation. GEMS supports defining cache states, state transitions, and associated
actions; thus, we directly model event response mechanisms. A similar set of libraries
to those of Sect. 5.1 were developed to run over Simics. For our measurements we use
the Simics support for light weight instrumentation, using simulation break instruc-
tions, to selectively measure synchronization primitive invocation intervals excluding
the surrounding loop code.

5.3 Applications and Benchmarks

The STREAM triad benchmark [24] is designed to stress bandwidth at different layers
of the memory hierarchy. The benchmark copies three arrays from a “remote” to a
“local” memory, conducts a simple calculation on the array elements and sends the
results back to the original “remote” memory. We developed two configurations of
STREAM for stressing on-chip and off-chip memory bandwidth respectively. In the
on-chip configuration, the data is streamed from scratchpad memories to scratchpad
memories and backwards, whereas in the off-chip configuration, data is streamed from
DRAM to scratchpad memories. In each configuration, we apply multi-buffering to
overlap the latency of fetching data from the “remote” memory and we vary the num-
ber of buffers, the buffer size and the communication mechanism, which alternates
between DMAs and remote stores.

The FFT benchmark originates from the StreamIt language benchmarks [2] and
includes all-to-all data exchange patterns between processors. We configure the bench-
mark so that it performs the entire computation and all-to-all data exchanges on-chip,
in order to stress the performance of our cache-integrated NI mechanisms. We imple-
ment data exchanges using DMAs and remote stores to explore trade-off’s between
the two communication mechanisms.

The bitonic sort benchmark originates also from the StreamIt language bench-
marks [2]. Bitonic-sort is computation bound and we use it to measure the minimum
granularity of exploitable parallelism on the architecture. We configure the benchmark
so that sorting and any associated data exchanges between processors are performed
entirely on-chip and we explore the trade-off between DMAs and remote stores in the
implementation of the benchmark.

The simulated microbenchmarks compare coherence-based implementations of
tree-based barriers and MCS locks described in [25], with barriers composed from
counters and mr-Q based locks respectively. Counter barriers are realized by con-
structing an arrival and a broadcast tree of counters. All threads store the value one
(1) to counters on the arrival tree leaves and then poll on local flags for the barrier
completion. The counters count arrivals and forward notifications of completion of
the barrier phases. The mr-Q implements a lock as follows: initially we store a token
in it; then, waiting for a read from the mr-Q acts as lock acquisition and writing back

123



Int J Parallel Prog

the token acts as lock release. For barriers, we measure 104 episode times indepen-
dently on each processor and average cycle times across processors and iterations.
For locks, we measure 1–8 thousand lock acquisitions and releases per core, with an
empty critical section.

5.4 Results

5.4.1 Performance on the Hardware Prototype

We implemented two versions of locks and barriers on our hardware prototype. The
mutex lock uses the hardware lock box of Fig. 6, whereas the second uses multiple
reader queues (see Sect. 3). For barrier synchronization, we developed a barrier using
the mutex lock implemented with the hardware lock box and a barrier using counters.

Table 1a illustrates that the lock that leverages the multiple reader queue executes
an acquire-release pair for an empty critical section under full contention between 4
cores in 214 cycles. Table 1b illustrates that a simple counter-based barrier with on-chip
communication of the barrier arrival and release notification between 4 cores takes
117 cycles. To put these numbers in perspective, we note that the one-way latency of a
remote store is 35 cycles. Both the lock and the barrier require one remote store each.
The barrier uses a remote store to a counter from which an automatic notification is
generated when the counter value reaches 0. Software overhead accounts for 28 cycles
in the case of locks and 34 cycles in the case of barriers. Though direct comparisons
with competitive hardware designs are not possible on our FPGA prototype, we note
that on leading commercial multicore processors, lock acquire-release pairs cost in
the order of thousands of cycles (typically around 1 ns on processors with multi- GHz
clocks), and barriers cost in the order of tens of thousands of cycles (typically over
5ns on processors with multi- GHz clocks) [3].

Figure 8 illustrates the results of the STREAM benchmark on our FPGA proto-
type. We plot the maximum feasible bandwidth on the prototype (horizontal line) for
remote stores and DMAs and the realizable bandwidth while we vary the buffer size
and the number of buffers used for overlapping computation with memory latency.

Table 1 Different lock and barrier latencies

Mutex lock MRQ lock

CPUs 1 2 4 1 2 4

(a) Contended lock times
Acquire 44 87 201 42 82 193

Release 32 32 32 21 21 21

Total 76 119 223 63 103 214
Mutex barrier Counter barrier

CPUs 1 2 4 1 2 4
(b) Barrier times

Cycles 188 281 618 75 105 117

123



Int J Parallel Prog

Fig. 8 Performance of STREAM triad benchmark

For measuring the on-chip realizable bandwidth we lay out the data in the scratch-
pad memories of one or two cores and have the remaining cores stream data from
these scratchpads. Off-chip bandwidth is measured by streaming data from three large
arrays in DRAM. As expected, the achievable maximum bandwidth with remote stores
is lower (about 7–8×) than the maximum achievable bandwidth with DMAs, since
remote stores incur the overhead of one instruction per word transferred whereas
DMAs can transfer up to 64 KB worth of data with overhead of 4 instructions. The
software saturates the off-chip memory bandwidth when all four cores stream data
and use three or more buffers of size 1 KB for latency overlap. On-chip memory band-
width is saturated when three cores stream data out of and in to the scratchpad of the
remaining core, using three or more buffers of size 1 KB for latency overlap. In all
cases, the architecture can maximize bandwidth and overlap memory latency using a
small space (3–4 KB) for buffering data in scratchpad memory.

Figure 9 illustrates the speedup of on-chip bitonic sorting for various input sizes,
using remote stores and DMAs for inter-core communication, as well as the break-
down of execution time in computation and communication for selected input sizes.
The results indicate two trends: First, that the proposed cache-integrated on-chip com-
munication mechanisms enable profitable parallelization (i.e. speedup greater than 1
on 2 or more cores) of tasks as fine as 470 clock cycles (input size N = 4). Second,
the results exhibit a trade-off between DMA-based and remote-store-based commu-
nication. In small input sizes (N = 4 . . . 64), communication via remote stores is
5–41% less than communication with DMAs since for very short (word-size) trans-
fers, remote stores have less overhead per transfer (one vs. four instructions). With the
same small input sizes, overall performance with remote stores exceeds performance
with DMAs by 0.2–14%. For larger input sizes, communication time with DMAs is
13–32% less than communication time with remote stores, however overall perfor-

123



Int J Parallel Prog

Fig. 9 Performance of bitonic sort

mance with DMAs exceeds only marginally performance with remote stores (by no
more than 0.2%) due to the low communication to computation ratio of the benchmark.
Parallel efficiency with DMAs and remote stores (defined as the ratio of speedup to
the number of cores) reaches 89% on 2 cores and 67% on 4 cores, for data sets that fit
on-chip, i.e. do not exceed the 64 KB of available on-chip L2 cache space. Overall, the
presence of both communication primitives on the prototype provide the capability to
parallelize effectively at both fine and coarse granularity.

Figure 10 illustrates the speedup of on-chip FFT for various input sizes, using
remote stores and DMAs for inter-core communication, as well as the breakdown of
execution time in computation and communication for various input sizes. The results
show similar trends with bitonic sort in terms of communication performace. For
small problem size (N <128) remote stores accelerate communication by 5–48% and
overall performance by 0.4–4.5%. However, FFT does not profit from parallelization
on small input sizes (N < 128), because execution time is dominated by overhead
specific to parallelization, in particular, instructions for locating the receivers of mes-
sages during the global data exchange phase of FFT and loop control overhead. For
larger input sizes, DMAs outperform remote stores (by 0.6–20% in terms of overall
performance and) due to lower communication initiation overhead and better overhead
amortization. The performance advantage of DMAs is consistently amplified as the
input size increases. Parallel efficiency with DMAs reaches 95% on 2 cores and 81%
on 4 cores, while with remote stores it is capped at 88% on 2 cores and 68% on 4
cores, for problem sizes with data sets that fit on-chip.

5.4.2 Simulated Locks and Barriers

Figure 11a shows the average latency of contended lock-unlock pairs of operations. In
both implementations requests are queued until the lock is available. The mr-Q based
implementation is about 3.6–3.9 times faster than the MCS lock implementation. This
is because contended lock-unlock operations for MCS locks will incur 3 to 5 misses
per iteration, requiring remote acquisition of cache lines through the directory.

Figure 11b shows the performance of the two barrier implementations. The counter-
based barrier is from 4.1× faster for 16 cores to 5.3× faster for 128 cores. The main
source of increased latency for the tree barrier using coherent variables, is that a barrier

123



Int J Parallel Prog

Fig. 10 Performance of FFT

(a) (b)

Fig. 11 Average latency versus number of processors for simulated barriers and locks. MCS locks and
Tree-based Barriers use coherent communication. mr-Q Locks and Counter Barriers utilize event responses
and direct scratchpad-to-scratchpad communication

requires propagation of signals (for arrival of node or group and exit notifications).
Receivers polling for these signals introduce multiple round-trips through the directory
to each signal propagation.

For both MCS barriers and locks, one can expect that aggressive non-blocking
coherence protocols [8] and migratory sharing optimizations can reduce the latency of
contended flag update-reclaim interactions (atomic or not), but communication oper-
ations in these algorithms are dependent on each other and will introduce serialization
of miss overhead. Explicit communication advocated here can significantly reduce
such overheads. In addition, counters and queues can further reduce synchronization
overhead by implementing the required atomicity in cache-integrated NIs and thus
decoupling the processor from the synchronization operation.

6 Conclusions and Future Work

This paper presented our design for cache-integrated network interfaces aiming to
enhance the scalability and efficiency of future multicore systems. In addition, we pre-
sented our design for hardware event response mechanisms configurable by software.
We evaluate this architecture on an FPGA prototype and with simulations and demon-
strate its capabilities. Direct communication and event response mechanisms provide

123



Int J Parallel Prog

scalable synchronization to several tens of cores. Remote stores with write combining
are shown that allow parallelization gains from tasks of less than 500 cycles in length.
For the benchmarks used, the communication efficiency of RDMA quickly dominates
over remote stores for relatively small data transfers. Finally, RDMA transfers can
saturate the on-chip bandwidth with as few as three overlapped transfers of 1 KB on
our prototype. On our prototype, RDMA operations may occur between scratchpad
regions, or between scratchpads and non-cacheable portions of main memory; strided
RDMA and RDMA to/from cacheable addresses are on our future-extensions list.

As CMP architectures become more distributed, mechanisms for on-chip direct
communication may allow performance gains from the many cores available, as well
as increased hardware efficiency, and software pre-configured communication via
event responses will be able to support latency secitive tasks for better scalability.

Acknowledgements This work was supported by the European Commission in the context of the pro-
jects SARC (FP6 IP #27648) and the HiPEAC Network of Excellence (NoE 004408). We also thank, for
their assistance in designing the architecture and in implementing the prototype: Vassilis Papaefstathiou,
Giorgos Kalokairinos, George Nikiforos, Dionisios Pnevmatikatos, Dimitris Nikolopoulos, Alex Ramirez,
Georgi Gaydadjiev, Spyros Lyberis, Christos Sotiriou, Euriclis Kounalakis, Dimitris Tsaliagos, and Michael
Ligerakis.

References

1. Abdel-Shafi, H., Hall, J., Adve, S.V., Adve, V.S.: An evaluation of fine-grain producer-initiated com-
munication in cache-coherent multiprocessors. In: HPCA’97: Proceedings of the 3rd IEEE Symposium
on High-Performance Computer Architecture, p. 204. USA, IEEE Computer Society, Washington, DC
(1997)

2. Amarasinghe, S.P., Gordon, M.I., Karczmarek, M., Lin, J., Maze, D., Rabbah, R.M., Thies, W.:
Language and compiler design for streaming applications. Int. J. Parallel Program. 33(2–3), 261–
278 (2005)

3. Bronevetsky, G., Gyllenhaal, J., de Supinski, B.R.: CLOMP: accurately characterizing OpenMP appli-
cation overheads. In: Proceedings of the Fourth International Workshop on OpenMP (IWOMP), pp.
13–25. West Lafayette, IN (May 2008)

4. Cook, H., Asanović, K., Patterson, D.A.: Virtual local stores: enabling software-managed memory
hierarchies in mainstream computing environments. Technical Report UCB/EECS-2009-131, EECS
Department, University of California, Berkeley (Sep 2009)

5. Falsafi, B., Lebeck, A.R., Reinhardt, S.K., Schoinas, I., Hill, M.D., Larus, J.R., Rogers, A., Wood,
D.A.: Application-specific protocols for user-level shared memory. In: Supercomputing ’94: Proceed-
ings of the 1994 Conference on Supercomputing, pp. 380–389. IEEE Computer Society Press, Los
Alamitos, CA, USA (1994)

6. Fatahalian, K., Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y. Erez, M., Ren, M., Aiken,
A., Dally, W.J., Hanrahan, P.: Sequoia: programming the memory hierarchy. In: SC ’06: Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, p. 83. ACM, New York, NY, USA (2006)

7. Firoozshahian, A., Solomatnikov, A., Shacham, O., Asgar, Z., Richardson, S. Kozyrakis, C., Horowitz,
M.: A memory system design framework: creating smart memories. In: ISCA ’09: Proceedings of the
36th Annual International Symposium on Computer Architecture, pp. 406–417. ACM, New York, NY,
USA (2009)

8. Gharachorloo, K., Sharma, M., Steely, S., Van Doren, S.: Architecture and design of AlphaServer
GS320. SIGPLAN Not. 35(11), 13–24 (2000)

9. Gummaraju, J., Coburn, J., Turner, Y., Rosenblum, M.: Streamware: programming general-purpose
multicore processors using streams. In: ASPLOS XIII: Proceedings of the 13th International Con-
ference on Architectural Support for Programming Languages and Operating Systems, pp. 297–307.
ACM, New York, NY, USA (2008)

123



Int J Parallel Prog

10. Gummaraju, J., Erez, M., Coburn, J., Rosenblum, M., Dally, W.J.: Architectural support for the stream
execution model on general-purpose processors. 16th International Conference on Parallel Architecture
and Compilation Techniques (PACT), pp. 3–12, 15–19 (Sept 2007)

11. IBM: PowerPC 750GX/FX Cache Programming (Dec 2004)
12. Intel: Intel XScale Microarchitecture Programmers Reference Manual (Feb 2001)
13. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduction to the cell

multiprocessor. IBM J. Res. Dev. 49(4/5), 589–604 (2005)
14. Kalokairinos, G., Papaefstathiou, V., Nikiforos, G., Kavadias, S., Katevenis, M., Pnevmatikatos, D.,

Yang, X.: FPGA implementation of a configurable cache/scratchpad memory with virtualized user-level
RDMA capability. In: Proceedings IEEE International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (IC-SAMOS2009) (July 2009)

15. Kalokerinos, G., Papaefstathiou, V., Nikiforos, G., Kavadias, S., Katevenis, M., Pnevmatikatos, D.,
Yang, X.: Prototyping a configurable cache/scratchpad memory with virtualized user-level RDMA
capability. Trans. HiPEAC (2010, to appear)

16. Katevenis, M.: Interprocessor communication seen as load-store instruction generalization. In:
K. Bertels e.a. (ed.) The Future of Computing, Essays in Memory of Stamatis Vassiliadis,
pp. 55–68. Delft, The Netherlands (Sept 2007)

17. Kavadias, S., Katevenis, M.G.H., Zampetakis, M., Nikolopoulos, D.S.: On-chip communication and
synchronization with cache-integrated network interfaces. In: CF ’10: Proceedings of the 7th ACM
Conference on Computing Frontiers. ACM, New York, NY, USA (May 2010)

18. Keckler, S.W., Chang, A., Lee, W.S., Chatterjee, S., Dally, W.J.: Concurrent event handling through
multithreading. IEEE Trans. Comput. 48(9), 903–916 (1999)

19. Koufaty, D., Torrellas, J.: Comparing data forwarding and prefetching for communication-induced
misses in shared-memory MPs. In: ICS ’98: Proceedings of the 12th International Conference on
Supercomputing, pp. 53–60. ACM, New York, NY, USA (1998)

20. Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta, A., Hennessy, J., Horowitz, M., Lam,
M.S.: The stanford dash multiprocessor. Computer 25(3), 63–79 (1992)

21. Leverich, J., Arakida, H., Solomatnikov, A., Firoozshahian, A., Horowitz, M., Kozyrakis, C.: Com-
paring memory systems for chip multiprocessors. SIGARCH Comput. Archit. News. 35(2), 358–
368 (2007)

22. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J., Larsson, F.,
Moestedt, A., Werner, B.: Simics: a full system simulation platform. Computer 35(2), 50–58 (2002)

23. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R., Moore, K.E.,
Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multiprocessor simulator (gems) tool-
set. SIGARCH Comput. Archit. News. 33(4), 92–99 (2005)

24. McCalpin, J.: Memory bandwidth and machine balance in current high performance computers. IEEE
Comput. Soc. Tech. Comm. Comput. Archit. (TCCA) Newsl. (Dec 1995)

25. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-memory mul-
tiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

26. Poulsen, D.K., Yew, P.-C.: Data prefetching and data forwarding in shared memory multiproces-
sors. In: Proceedings of the 1994 International Conference on Parallel Processing (ICPP ’94),
vol. 2, pp. 276–280 (1994)

27. Rangan, R., Vachharajani, N., Stoler, A., Ottoni, G., August, D.I., Cai, G.Z.N.: Support for high-
frequency streaming in CMPs. In: MICRO 39: Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 259–272. IEEE Computer Society, Washington, DC, USA
(2006)

28. Ranganathan, P., Adve, S., Jouppi, N.P.: Reconfigurable caches and their application to media process-
ing. In: ISCA ’00: Proceedings of the 27th Annual International Symposium on Computer Architecture,
pp. 214–224. ACM, New York, NY, USA (2000)

29. Reilly, M., Stewart, L.C., Leonard, J., Gingold, D.: A new generation of cluster interconnect
30. SARC: Scalable computer ARChitecture: http://www.sarc-ip.org/. European IP Project (2005–2009)
31. Schoinas, I., Falsafi, B., Lebeck, A.R., Reinhardt, S.K., Larus, J.R., Wood, D.A.: Fine-grain access

control for distributed shared memory. SIGPLAN Not. 29(11), 297–306 (1994)
32. Scott, S.L.: Synchronization and communication in the T3E multiprocessor. SIGOPS Oper. Syst.

Rev. 30(5), 26–36 (1996)
33. Shan, H., Singh, J.P.: A comparison of MPI, SHMEM and cache-coherent shared address space pro-

gramming models on a tightly-coupled multiprocessors. Int. J. Parallel Program. 29(3), 283–318 (2001)

123

http://www.sarc-ip.org/


Int J Parallel Prog

34. Wen, M., Wu, N., Zhang, C., Yang, Q., Ren, J., He, Y., Wu, W., Chai, J., Guan, M., Xun, C.: On-chip
memory system optimization design for the FT64 scientific stream accelerator. IEEE Micro. 28(4),
51–70 (2008)

35. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina, M., Miao,
C.-C., III, J.F.B., Agarwal, A.: On-chip interconnection architecture of the tile processor. IEEE Micro.
27(5):15–31 (2007)

123


	Cache-Integrated Network Interfaces: Flexible On-Chip Communication and Synchronization for Large-Scale CMPs
	Abstract
	1 Introduction
	2 Background
	2.1 RDMA, Queues, and Counters
	2.2 Related Work and Contributions

	3 Cache-Integrated Network Interface Mechanisms
	3.1 Memory Access Semantics: Cache, Scratchpad, Communication
	3.2 Event Responses
	3.3 Communication and Synchronization Primitives
	3.4 Software Notification via Explicit Acknowledgements

	4 The Hardware Prototype
	4.1 Logic Cost of Cache-integrated NI Mechanisms

	5 Performance Evaluation
	5.1 Prototype Software Environment
	5.2 Simulation Infrastructure
	5.3 Applications and Benchmarks
	5.4 Results
	5.4.1 Performance on the Hardware Prototype
	5.4.2 Simulated Locks and Barriers


	6 Conclusions and Future Work
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


