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Abstract Male primates living in multimale groups tend to direct mate and mate-
guarding choices toward females of high reproductive value, i.e., high-ranking, parous
females, or females with which they share strong bonds. Little is known, however,
about the constraints that may limit male mate-guarding choices (the costs of this
behavior) and the influence of the females’ quality on male investment in mate-
guarding. We aimed to study the effects of female rank, parity status, and male–female
social bond strength on the costs of and investment in mate-guarding by males. We
carried out our study during two reproductive seasons on three groups of wild long-
tailed macaques in Indonesia. We combined behavioral observations on male locomo-
tion and activity with noninvasive measurements of fecal glucocorticoids (fGC). Males
spent less time feeding when mate-guarding nulliparous females than when mate-
guarding parous females and tended to have higher fGC levels when mate-guarding
low-ranking nulliparous females than when mate-guarding high-ranking nulliparous
ones. Evolution should thus favor male choice for high-ranking parous females because
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such a decision brings benefits at proximate (reduced costs of mate-guarding) and
ultimate (higher reproductive value) levels. Further, male investment in mate-guarding
was flexible and contingent on female reproductive and social value. Males were more
vigilant and more aggressive toward other males when mate-guarding females to which
they were strongly bonded and/or high-ranking ones than when mate-guarding other
females. Our findings bring a new dimension to the study of mate choice by showing
that males not only mate preferentially with high-quality females but may also aim to
secure paternity with these females through optimized monopolization.

Keywords Feeding costs . Glucocorticoids .Macaca fascicularis . Mate choice .

Reproductive effort . Vigilance

Introduction

Studies of mate choice traditionally focus on females because these are usually the sex
that invests the most into reproduction and, hence, should be more selective in regard to
their mating partners (Andersson 1994; Trivers 1972). Variability in the quality of
available females and the costs of mating may, however, favor the evolution of mate
choice in males as well, even in species with no sex-role reversal (Edward and
Chapman 2011; Kokko and Monaghan 2001). In particular, male mate choice is
particularly likely to evolve when multiple females are available at the same time and
when the rate of encounters with females is high (Kokko and Monaghan 2001), such as
in many group-living primates.

Several primate species have evolved a certain degree of male mate choice to limit
the costs of reproducing and allocate limited sperm resources toward the most valuable
females (Kappeler 2012; Keddy-Hector 1992; Setchell and Kappeler 2003). Male–male
competition for access to mates, including monopolization of females, is often costly
for male primates because it may increase the risk of injury (Drews 1996) and affect a
male’s feeding time, energy balance, or physiological stress levels (Alberts et al. 1996;
Bergman et al. 2005; Georgiev 2012; Girard-Buttoz 2014; Girard-Buttoz et al. 2014).
In addition, successive ejaculations may impair sperm performance (Marson et al.
1989). Sperm is, therefore, a limited resource (Wallen 2001) and males may face a
trade-off between current and future mating opportunities when several females are
receptive simultaneously (Kappeler 2012). Males should, therefore, choose to compete
for and mate with those females most likely to be fertile and to produce offspring
surviving until the next generation (Setchell and Kappeler 2003). Indeed, males of
several species have been observed to concentrate their mating effort on females during
their conceptive cycles, e.g., chimpanzees (Pan troglodytes schweinfurthii: Emery
Thompson and Wrangham 2008) and chacma baboons (Papio hamadryas ursinus:
Weingrill et al. 2003) and to preferentially mate with high-ranking females, e.g.,
Barbary macaques (Macaca sylvanus: Kuester and Paul 1996) and long-tailed macaques
(M. fascicularis: Berenstain and Wade 1983; de Ruiter et al. 1994). These females
produce offspring of better quality than low-ranking females, i.e., offspring more likely
to survive until adulthood and to achieve a high rank position in the future (Majolo et al.
2012; Robbins et al. 2011; Setchell et al. 2002; van Noordwijk and van Schaik 1999,
2001). For similar reasons, males may mate more frequently with “experienced” parous
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females that have already produced and successfully raised an infant than with nullip-
arous females, e.g., chimpanzees (Muller et al. 2006), mandrills Mandrillus sphinx:
Setchell 1999), savannah baboons (Papio cynocephalus: Smuts 1985). Finally, in some
species, males exhibit mating preferences toward females with which they have strong
social bonds, independently of female rank, parity, or fertility status, e.g., rhesus
macaques (Macaca mulatta: Chapais 1983), Japanese macaques (M. fuscata: Takahata
1982), and savannah baboons (Smuts 1985).

Being a selective male may make sense particularly in species in which males engage
in costly female monopolization, i.e., mate-guarding, over an extended period of time to
secure paternity (Manson 1997). While mate-guarding increases the mating or repro-
ductive success of male primates significantly (rhesus macaques: Berard et al. 1994;
Bercovitch 1997; long-tailed macaques: de Ruiter et al. 1994; Engelhardt et al. 2006;
Japanese macaques: Matsubara 2003; mandrills: Setchell et al. 2005), this behavior also
entails costs, in at least some species. In a number of baboon andmacaque species, mate-
guarding led to a reduction in male feeding time (Alberts et al. 1996; Girard-Buttoz et al.
2014; Matsubara 2003; Packer 1979; Rasmussen 1985). Males may also face physio-
logical constraints during mate-guarding. Male long-tailed macaques and chacma ba-
boons have higher fecal glucocorticoid levels (a marker of physiological stress) when
mate-guarding than when not mate-guarding females (Bergman et al. 2005; Girard-
Buttoz 2014). These costs may, however, vary depending on which female is mate-
guarded. Given that high-ranking and/or parous females may be of higher reproductive
value for males than low-ranking and/or nulliparous ones, males mate-guarding high-
ranking and/or parous females may face higher costs than when mate-guarding other
females because of the increased challenges by other males. At the same time, high-
ranking females may travel shorter distances than low-ranking females, have priority of
access to high-quality food, and face less risk of predation by spending more time in the
core of the group than low-ranking females, as is the case in baboons and macaques for
example (Ron et al. 1996; Saito 1996; van Noordwijk and van Schaik 1987; Vogel
2005). Males mate-guarding these females may, thus, face reduced costs when adjusting
their activity, locomotion, and spatial positioning to the guarded female. The direction of
the relationship between female reproductive value and costs of mate-guarding for
males therefore remains unclear.

In addition to female reproductive value, male–female social bonds are also likely to
influence the costs of mate-guarding. On the one hand, these bonds can affect female
cooperation during mate-guarding, e.g., yellow baboons (Rasmussen 1980), which
may, in turn, reduce the costs of monopolization. On the other hand, males may invest
more energy and mate-guard females with which they are strongly bonded more
thoroughly than other females in order to maintain the fitness benefit males may derive
from long-term male–female social bond. For example, in rhesus macaques, the
strength of these bonds is positively related to a male’s reproductive success (Kulik
et al. 2012; Massen et al. 2012).

In summary, previous studies suggest that female reproductive value and male–
female social bond strength may either increase or decrease the costs of mate-guarding,
depending on the factors at play. However, these relationships have no yet been tested.
It is, therefore, difficult to predict the direction of the relationship between female
identity and costs of mate-guarding, and more empirical studies addressing this ques-
tion directly are needed.
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We aimed to quantify the influence of female rank and parity status and male–female
social bonds on the costs of, and investment in, mate-guarding in male long-tailed
macaques. Male reproductive success is highly skewed toward the α male in this
species (de Ruiter et al. 1994; Engelhardt et al. 2006). However, high-ranked males
mate-guard females to a lower extent than predicted by the Priority of Access model
(Altmann 1962; Engelhardt et al. 2006). Because males are able to discern a female’s
fertile phase (Engelhardt et al. 2004), we suggest that this lower than expected degree
of α male monopoly derives from behavioral or social constraints associated with the
costs of mate-guarding (Girard-Buttoz 2014). In previous studies, we found that mate-
guarding influences male behavior and physiology in long-tailed macaques. Males
spent less time feeding, climbed less distance, received more aggression, were more
vigilant and exhibited higher levels of stress hormones while mate-guarding females
than when not (Girard-Buttoz 2014; Girard-Buttoz et al. 2014). Male energetic status
(assessed through urinary C-peptide measures; Girard-Buttoz et al. 2011) was, howev-
er, not affected by mate-guarding (Girard-Buttoz et al. 2014). Although we documented
some costs of mate-guarding in long-tailed macaques, the extent to which these costs
varied across the guarded females remains unclear. In this species, top-ranking males
concentrate their mate-guarding effort on high-ranking and parous females (de Ruiter
et al. 1994; Engelhardt et al. 2006), as these produce better quality offspring (van
Noordwijk and van Schaik 1987). The extent to which this choice is based on
differences in the costs during mate-guarding remains, however, unclear.

We first quantified the effect of female value and male–female social bonds on
behavioral and physiological parameters that have been shown to be affected by mate-
guarding, i.e., feeding time, climbing distance, and physiological stress levels (Girard-
Buttoz 2014; Girard-Buttoz et al. 2014). Second, we examined whether males were
more vigilant and more aggressive or kept a closer distance to the female when mate-
guarding females of high reproductive value or with whom they were closely bonded
than when mate-guarding other females.

Methods

Animals and Study Site

We carried out the study on three groups of wild long-tailed macaques (Macaca
fascicularis) living in the primary lowland rain forest surrounding the Ketambe research
Station (3°41′N, 97°39′E), Gunung Leuser National Park, North Sumatra, Indonesia.
The forest structure and phenological composition has been described in detail by
Rijksen (1978) and van Schaik and Mirmanto (1985). The long-tailed macaques in
the area have been studied since 1979 (de Ruiter et al. 1994; Engelhardt et al. 2004; van
Schaik and van Noordwijk 1985). For our study, we focused on three groups: Camp (C),
Ketambe Bawa (KB), and Ketambe Atas (KA). We collected fecal samples and behav-
ioral data during two consecutive mating periods extending from March to July 2010
and from December 2010 to April 2011. We defined a mating period as the period
between the first mate-guarding day and the last mate-guarding day observed in any of
the three groups, by any male (see later for definition of mate-guarding). All adult
individuals were individually known and well habituated to human observers. The total
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size of the social groups varied from 22 to 58 individuals (Table I; for details see Girard-
Buttoz et al. 2014). Between January and April 2011, four males traveled back and forth
between the groups KA and KB and associated with one of the groups for periods
between a few hours up to 3 wk before traveling back to the other group.

We conducted the study completely noninvasively and under the permission of the
authorities of Indonesia. We adhered to the Guidelines of the Use of Animals in
Research, the legal requirements of Indonesia, and the guidelines of the involved
institutes.

Behavioral Data Collection

C. Girard-Buttoz and six experienced Indonesian and international field assistants
collected the behavioral data. C. Girard-Buttoz trained all assistants and we assessed
interobserver reliability repeatedly (measurement of agreement κ > 0.8 for each
assistant and for all behaviors). The observations covered two mating periods for two
groups (C and KB) and one mating period for the third group (KA). From March to
July 2010, four observers followed groups C and KB every day and from December
2010 until April 2011 we followed all three groups generally every other day and
frequency of observations increased to every day when α and/or β males were
observed mate-guarding. Each day, we followed the groups from dawn to dusk. We
focused our behavioral observations on α and β males because they are known to
mate-guard females most extensively (Engelhardt et al. 2006). The α and β males of
each group were the focal individuals for half or entire days depending on the number
of observers available.

We recorded the activity of the focal individual every minute using instantaneous
sampling (Altmann 1974) comprising the following categories: resting, being vigilant
(monitoring the surrounding environment by looking in different directions, being
either still or moving, and while not involved in feeding or social activity), feeding
(handling and consuming food), drinking, traveling (continuous locomotion during
≥1 min with no foraging activity and no social interactions), aggressing, affiliating

Table I Observation time on mate-guarding (MG) days, number of faecal samples measured and character-
istics of the guarded females for each of the study male long-tailed macaques (Macaca fascicularis) at
Ketambe, Gunung Leuser National Park, Indonesia (2010-2011).

Group Camp Ketambe Atas Ketambe Bawa

Male rank α β α β α Β

Number of mating periods 2 2 1 1 2 2

Focal observation time on MG days (hours) 253.6 73.6 118.4 75.3 160.7 51.6

Number of MG days of observation 47 15 39 31 45 15

Number of faecal samples 32 6 24 16 26 9

Number of adult males in the group 6–9 6–9 4–7 4–7 4–8 4–8

Number of adult females in the group 14–15 14–15 7 7 9–10 9–10

Number of females mate-guarded 6 8 4 3 7 6

Number of nulliparous females guarded 1 1 1 0 5 4

Range of guarded female ranks 1–15 4–15 1–7 1–4 1–9 1–9
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(including copulation), grooming, self-grooming. We also recorded every minute the
canopy height (six categories: 0: focal individual on the ground, 1: 1–5 m; 2: 5–10 m; 3:
10–15 m; 4: 15–20 m; 5: 20–25 m; 6: >25 m), the mate-guarding behavior of the focal
male and the distance between him and the mate-guarded female. Whether a male was
mate-guarding a female or not on a given minute was coded a posteriori. We considered
that a male was “mate-guarding” when he followed a sexually active female for more
than 5 consecutive minutes and maintained a distance of ≤10 m to the female. We
considered that a female was sexually active if she was observed copulating at least once
on a given day. If the female moved away from the male and the male did not follow her
for >2 min we considered the mate-guarding activity to have ended. “Mate-guarding
days” refers to the days during which the male mate-guarded females for ≥25 % of the
observation time. In addition, we recorded all copulations and aggressions (including
submissive expressions) between any adult individuals (all occurrence sampling for the
focal male and ad libitum for all the other individuals). Aggressions comprised threat-
ening, chasing, hitting, and biting. We also recorded all occurrence of approaches
(defined as one individual entering within a 1 m radius of another individual) between
the focal male and any other adult individual in the group. Finally, we recorded the
identities of all adult males within 10 m of the focal individual every 5 min.

Vertical Traveling Distance

To calculate the vertical distance traveled, we used the centre of each height category as
an estimate for the height at which the male was at each minute-scan-point, e.g., 7.5 m
for category 2 or 12.5 m for category 3, and calculated the height difference between
consecutive minute-scans.

Determination of Female Dominance Hierarchy and Parity Status

During the focal samples, we recorded ad libitum (Altmann 1974) any agonistic
interaction and the occurrence of “bared-teeth face,” a unidirectional submissive
display (van Hooff 1967) between any adult members of the groups. We built the
dominance hierarchy for females based on 488 dyadic aggressive or submissive
interactions (312, 132, and 64 in groups C, KA, and KB, respectively) in which a
clear winner and loser could be identified. The aggressive interactions used in this
analysis were chase and displacement. We then entered winner and loser into a
sociometric matrix and compiled dominance ranks with Matman 1.1.4 using the
I&SI method with 10,000 randomizations (de Vries 1998). The percentages of un-
known relationships were 32.4%, 19.1%, and 33.3% in group C, KA, and KB,
respectively. We used I&SI because this method performs better than the David’s score
when interactions between some dyads are missing (Neumann et al. 2011). Landau’s
corrected linearity indexes were 0.54, 0.89, and 0.74 in group C, KA, and KB,
respectively and the hierarchy was significantly linear in each of the three groups (all
P < 0.02). Before statistical analysis we standardized female ordinal rank to a mean of 0
and a standard deviation of 1 in each group to obtain a range of values comparable
between the three groups containing different number of females (Table I). After
standardization, high-ranking females received a scores that were <0 and low-ranking
females a score that were >0.
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Because the long-tailed macaques in the Ketambe research area have not been
studied between 2001 and the start of our study in 2010 we did not know the
reproductive history of the focal females. Consequently, we assessed the parity status
of the female visually based on the size of the nipples. In long-tailed macaques
nulliparous female nipples are similar to male nipples and distinctively shorter than
parous female nipples.

Determination of Male–Female Social Bond

We measured dyadic male–female social bond strength using an approach inspired
from the calculation of the “composite index of sociality” (Silk et al. 2006). However,
because we did not collect focal behavioral observations on all the males present in
each of the groups, we could not compute a “composite index of sociality.” Instead, we
used the number of approaches and grooming time to calculate a “male-centered”
association index (hereafter AI) between males and females. We computed the AI for
each male–female dyad as follows: AI = [(Gij/Gix) + (Aij/Aix)]/2 where Gij/Gix is the
grooming time of male i with female j (Gij) relative to the total grooming time of male i
with all females in the group (Gix). Similarly, Aij/Aix is the number of time male i
approached or was approached by female j (Aij), relative to the total number of time
male i was approached or approached all females in the group (Aij). To obtain a measure
independent of male mate-guarding activity, we used only data collected on days during
which the male did not mate-guard females at all. The mean focal observation time on
non–mate-guarding days was 160.2 h per male (range: 39.6–265.4 h).

Determination of Fruit Availability

Fruit availability is known to affect feeding time, distance climbed, and glucocorticoid
levels in male long-tailed macaques (Girard-Buttoz 2014; Girard-Buttoz et al. 2014). It
was therefore important to control for this parameter in our analysis and we monitored
fruit trees to assess fruit availability. In each of the three groups studied, we randomly
selected 40 locations, covering the entire home ranges (120 locations in total over the
three home ranges). At each location, we randomly selected three trees from three
different species among the tree species producing fruit eaten by long-tailed macaques
(Ungar 1995). In total we selected 360 trees, from 87 different species (120 trees for
each group’s home range). A field assistant experienced in phenology surveyed each
tree monthly, within the last 3 d of every month, and recorded fruit abundance using a
logarithmic scale (0: absence, 1: 1–10 items, 2: 11–100, 3: 101–1000, 4:1001–10,000,
5: >10,000). For the analyses, we used percentage of trees fruiting as an index of fruit
availability. This index was highly correlated to the mean monthly score of fruit
abundance in each territory (Spearman signed rank test, N = 36, S = 720, r = 0.91, P
< 0.001). The percentage of trees fruiting varied between 6.8 and 30.9%.

Fecal Sample Collection and Hormone Analysis

During mate-guarding periods, we collected fecal samples every third day from the
mate-guarding males. Immediately after defecation, we homogenized samples, collect-
ed 2–3 g of feces, stored them in a polypropylene vial, and placed them on ice in a
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thermos bottle. At the end of each fieldwork day, the samples were frozen at –20°C in a
freezer. In July 2011, we transported all samples, on ice, to the hormone laboratory of
the Bogor Agricultural University (IPB) and then freeze-dried and pulverized them
before transportation to the Endocrinology Laboratory of the German Primate Centre
for fecal glucocorticoid (fGC) analysis.

For hormone analysis, we extracted an aliquot (50–70 mg) of the fecal powder
within 3 ml of 80% methanol by vortex mixing for 10 min (Heistermann et al. 1995).
To monitor changes in fGC levels, we analyzed fecal extracts for immunoreactive 11ß-
hydroxyetiocholanolone (3α,11ß-dihydroxy-CM), a group-specific measurement of 5-
reduced 3α,11ß-dihydroxylated cortisol metabolites (Ganswindt et al. 2003; Möstl and
Palme 2002). The assay has been previously validated for assessing adrenocortical
activity from feces in long-tailed macaques (Heistermann et al. 2006). We carried out
hormone measurements by microtiter plate enzymeimmunoassay according to methods
previously described (Ganswindt et al. 2003; Girard-Buttoz et al. 2009). Intra- and
interassay coefficients of variation of high- and low-value quality controls were 8.9%
and 9.9% (high) and 6.3% and 14.3% (low), respectively.

Statistical Analyses

For all analyses, we considered only those days of observation for which ≥1 h of focal data
was recorded and the male mate-guarded a female for ≥25 % of observation time. We
discarded from the analyses the days during which the male did not mate-guard the same
female for at least 70 % of his mate-guarding time, and days during which females where
mate-guarded after conception (see Engelhardt et al. 2007; we discarded 12.5 % of the
mate-guarding days, i.e., 23 of 215 d). We determined the likely date of conception for
each new born in each group each year by counting back 163 d (mean gestation length in
this study population; Engelhardt et al. 2006) from the date of birth of each newborn. We
considered each mate-guarding day occurring >2 wk after the likely date of conception to
be a post-conception day.We included all days for females that did not conceive in a given
year because they may have been cycling at the time even if they did not conceive. The
final data set comprised 733 h of focal observations over 192 d (details in Table I).

Influence of Female Rank, Parity Status, and Male–Female AI on the Costs
of Mate-Guarding

For each day, we calculated the percentage of time spent feeding, grooming, and being
vigilant as percentage of the observation time for the focal male. In addition, we
determined the average canopy height difference, i.e., vertical locomotion, per minute
(in meters). We also calculated the copulation rate (number of copulations between the
focal male and any female per hour), the rate of male–male aggression (the number of
aggressions between the focal male and any other adult male per hour), the number of
males in proximity (the mean number of males within 10 m per 5-min scan), and the
number of sexually active females in each group on each observation day. We assessed
male stress hormone levels (fGC measures) on days for which we had matching fecal
samples. Because the time-lag for excretion of glucocorticoid metabolites into the feces
is on average 36 h in long-tailed macaques (Heistermann et al. 2006), we matched
behavioral observations with fGCs levels measured in samples collected at either day +
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1 or day +2 after the observations. When samples were available for both days, we used
the mean fGCs levels of the two samples.

We used generalized linear mixed models (GLMM; Baayen 2008) to test whether
the rank of the guarded female, her parity status and male–female AI had an effect on a
male’s 1) feeding time (model 1), 2) climbing distance (model 2), and 3) fGC levels
(model 3). The structure of each model is summarized in Table II. The fGC level values
were log-transformed and climbing distances were power transformed (^0.7) to achieve
a symmetric distribution. We used a Gaussian error structure in the models. Because
fruit availability affects feeding time, distance climbed, and fGC levels in our study
males (Girard-Buttoz 2014; Girard-Buttoz et al. 2014) we included fruit availability as
control predictor in each model. Fruit availability on a given day was approximated
using the fruit availability measured on the closest monthly record (details in Girard-
Buttoz et al. 2014). We also included percentage daily mate-guarding time (as percent-
age of observation time) and number of females in the group as control predictors. In
addition, in model 3, we also included variables that are known to affect fGC excretion
in primates in general and/or in our population in particular as control predictors
(Cheney & Seyfarth 2009; Girard-Buttoz et al. 2009; Girard-Buttoz 2014; Ray and
Sapolsky 1992; Warm et al. 2008), i.e., male–male aggression rate, copulation rate,
grooming time, number of male in proximity, the number of sexually active females,
and the interaction between vigilance time and mate-guarding time.

Male primates often prefer to mate with and/or mate-guard parous than nulliparous
females regardless of their rank (Muller et al. 2006; Setchell 1999; Smuts 1985). The
effect of female rank on the costs of mate-guarding may therefore be present only for
parous females. To test for this eventuality we assessed the significance of the interac-
tion between parity status and rank in all of the three models. This interaction was not
significant in models 1 and 2 [likelihood ratio test (LRT), P > 0.1] but there was a trend
toward significance in model 3 (LRT, P = 0.055).

To assess whether ecological factors modulate the relationship between costs of
mate-guarding and female rank, parity status, and male–female AI, we also tested for
the significance of the interaction between these three parameters and fruit availability
in each model. The interaction between male–female AI and fruit availability was
significant only in models 1 and 2 (LRT, P < 0.05).

Influence of Female Rank, Parity Status, and Male–Female AI on the Investment
of Males into Mate-Guarding

In a second set of models we assessed whether males are more motivated and engage
more in costly behaviors when they mate-guard females of high reproductive value, i.e.,
high-ranking parous females, or with which they are closely bonded, i.e., high AI, than
when mate-guarding other females. We used GLMMs to analyze the effect of female
rank, parity status, and male–female AI on 1) likelihood of severely aggressing other
males (model 4), 2) distance to the mate-guarded female (model 5), and 3) vigilance
time (model 6). We calculated vigilance time using data collected during the focal time,
i.e., both mate-guarding and non–mate-guarding instantaneous minute scan samples of
each mate-guarding day, to provide an accurate representation of the male’s time budget
that day. In contrast, the distance to the mate-guarded females is meaningful only
during the instantaneous minute scans during which the males were mate-guarding and
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hence this distance was calculated only based on the mate-guarding minutes. The
structure of each model is summarized in Table II.

Severe aggressions comprised chase, hit, and bite. The focal males did not severely
aggress any male during over half of the observation days (101/192) and hence the
resulting distribution of daily aggression given was highly zero inflated. Accordingly
we could not run a model with a Gaussian error structure. We thus coded each day with
at least one severe aggression given by the focal male toward any other male in the
group as an “aggressing” day and other days as “non-aggressing” days. We used a
model with a binomial error structure to test the influence of mate-guarding on the
likelihood of aggression with other males on a given day (model 4). For the other
models we used a Gaussian error structure because the response variable was symmet-
rically distributed. As the likelihood of recording severe aggression given on a given
day was dependent on the observation time that day, we included observation time (in
minutes) as a control predictor in model 4. In long-tailed macaques, fruit availability
affects male locomotion (and hence also potentially the distance a male maintains with
the female during mate-guarding), the trade-off between vigilance and feeding (Girard-
Buttoz 2014) and potentially also the degree of male-male competition for access to
food. Similar to models 1–3 we thus included this parameter as a control predictor in
models 4–6. Finally, because the investment of males into mate-guarding can be
modulated by sociosexual context and degree of male–male competition we also
included number of sexually active females on a given day and number of males in
proximity (see definition given earlier) as control predictors into these models.

In this set of models, we also tested for the significance of several interactions: 1) the
interactions between fruit availability and female rank, parity status, and male–female
AI to assess whether ecological factors modulate the relationship between these three
parameters and male investment during mate-guarding and 2) the interaction between
female rank and parity status for the same rational basis as in models 1–3. The
interaction between male–female AI and fruit availability was significant in models 5
and 6 (LRT, both P < 0.05). All other LRT tests revealed P > 0.1.

For all models (models 1–6) all interactions with P < 0.1 for the LRT were kept in
the final models. Finally, in addition of all the fixed factors mentioned previously, we
included, in all models, male rank as a control fixed factor and male ID and group as
nested random effects.

Models Fitting and Assumptions Checking

Each model was fitted in R 2.15.0 (R Development Core Team 2012) using the
function lmer of the R-package lme4 (Bates and Maechler 2010).

In each model, we checked that the assumptions of normally distributed and
homogeneous residuals were fulfilled by visually inspecting a qqplot and the residuals
plotted against fitted values. We checked for model stability by excluding data points
one by one from the data and comparing the estimates derived with those obtained for
the full model. In some models we identified influential cases that rendered the model
unstable. We then reran the models without these particular data points. If the results
were similar with or without influential cases we present the outcome of the model run
on the full data set. If the results were different, we present the outcome of the models
run with a reduced data set, i.e., not comprising influential cases. We derived variance
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inflation factors (VIF, Field 2005) using the function vif of the R-package car (Fox and
Weisberg 2010) applied to a standard linear model excluding the random effects. VIFs
<5 indicate that covariation between the predictors is not a problem (Bowerman and
O’Connell 1990; Myers 1990). In all our models VIFs were <2.2. The other diagnostics
did not indicate obvious violation of the assumption.

For each model, we first determined the significance of the full model as compared
to the corresponding null model (including all the factors except “female rank,” “female
parity status,” “male–female AI,” and the interactions) using a likelihood ratio test (R
function anova with argument test set to Chisq). To achieve a more reliable P-value, we
fitted the models using maximum likelihood rather than restricted maximum likelihood
(Bolker et al. 2009). If this likelihood ratio test revealed P < 0.1 we considered the
significance of the individual predictors. P-values for the individual effects were based
on Markov Chain Monte Carlo sampling (Baayen 2008) and derived using the
functions pvals.fnc and aovlmer.fnc of the R package languageR (Baayen 2010;
number of simulations = 10,000).

Results

Mate-Guarding Duration, Female Value, and Male–Female AI

All males but one (α male of group KA) mate-guarded nulliparous and parous females
and all males but one (βmale in group KA) mate-guarded females ranging from high to
low ranking (Table I). Our data set is thus not biased toward certain males mate-
guarding exclusively females with certain characteristics, e.g., high-ranking males
mate-guarding only high-ranking or parous females.

The number of mate-guarding days was generally not related to female parity, rank, or
male–female AI (Fig. 1). Whereas males spent more time on mate-guarding parous than
nulliparous females in two groups (C and KA), the opposite occurred in the third group
(KB) (Table I). Of all females that were observed to be mate-guarded, nulliparous females
were guarded by a givenmale between 1 and 20 d and parous females between 1 and 28 d.
Further, several females with anAI with the guardingmale that was above themean (mean
AI = 0.121, range = 0.015–0.350) were mate-guarded only for 1 or 2 d, whereas several
females with AI with the guarding male below the mean were guarded for >5 d or even for
14 d in the case of one female. Finally, a few low-ranking females were guarded for >10 d
whereas many high-ranking females were mate-guarded for only 1 or 2 d.

Influence of Female Rank, Parity Status, and Male–Female AI on the Costs
of Mate-Guarding

Feeding Time (Model 1) The full model was significantly different to the null model in
model 1 (feeding time, P < 0.001, Table III). Males spent more time feeding when
mate-guarding parous females than when mate-guarding nulliparous ones (N = 192 d,
at reference level “parous” estimate ± SE = 5.73 ± 1.86, PMCMC = 0.014, Table III), but
female rank did not affect time spent feeding (PMCMC = 0.794). A male’s AI with the
guarded female influenced his feeding time through an interaction with fruit availability
(PMCMC = 0.001, Table III). When fruit availability was low, males fed less time while
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mate-guarding females with which they had a high AI. However, above a certain level
of fruit availability, the pattern was reversed and males spent more time feeding while
mate-guarding females with which they had a high AI (Fig. 2).

Climbing Distance (Model 2) In model 2, the comparison of the null and the full model
revealed a trend toward significance (P = 0.063, Table III). Similar to model 1, a male’s AI
with the guarded female influenced his distance climbed through an interaction with fruit
availability (PMCMC = 0.012, Table III). When fruit availability was low, males climbed
less distance while mate-guarding females with which they had a high AI. However,
above a certain level of fruit availability, the pattern was reversed and males climbedmore
distance while mate-guarding females with which they had a higher AI (Fig. 3).

fGC Levels (Model 3) In model 3, the comparison between the null and the full model
revealed a trend toward significance (P = 0.069, Table III). The AI between the male and
the guarded female did not influence male’s fGC levels (N = 113 d, P = 0.605). The
interaction between “female rank” and “parity status” was close to significance (P =
0.072) and males tended to have higher stress hormone levels when mate-guarding low-
ranking nulliparous females than when mate-guarding high-ranking nulliparous females
(Fig. 4). Finally fruit availability had a significant and negative effect on a male’s fGC
levels (estimate ± SE = –0.25 ± 0.05, PMCMC < 0.001, Table III). The more fruits were
available the lower were the males’ fGC levels.

Influence of Female Rank, Parity Status, and Male–Female AI on Male Investment
During Mate-Guarding

Aggression Given (Model 4) The full model was significantly different from the null
model in model 4 (P = 0.019, Table III). The likelihood of aggressing other males was

Fig. 1 Number of days each female long-tailed macaque (Macaca fascicularis) was observed being mate-
guarded by a given male depending on male–female association index (a) and female rank (b), at Ketambe,
Gunung Leuser National Park, Indonesia (2010–2011). Parous females are depicted with circles and nullip-
arous ones with triangles. Each point represents a given male-female guarding dyad.
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affected significantly by male–female AI (N = 189 d, estimate ± SE = 0.78 ± 0.28,
PMCMC = 0.005, Table III) and female rank (estimate ± SE = –0.52 ± 0.23, PMCMC =
0.027, Table III) but not by female parity status (PMCMC = 0.246). Males were more
likely to aggress other males when mate-guarding high-ranking females and those with
which they had a high AI.

Distance to the Female (Model 5) In model 5, the full model was not significantly
different from the null model (LRT, df = 5, χ2 = 9.09, P = 0.105), indicating that neither
male–female AI nor female rank or parity status significantly affected the distance
males maintained with the female during mate-guarding.

Vigilance Time (Model 6) In model 6, the full model was significantly different from
the null model (LRT, df = 4, χ2 = 9.88, P = 0.042). A male’s vigilance time during
mate-guarding was significantly affected by female rank (N = 191, estimate ± SE = –
2.10 ± 0.78, PMCMC = 0.048, Table III) but not by female parity status or male–female
AI (both P > 0.15, Table III). Males were more vigilant when mate-guarding high-
ranking females than when mate-guarding low-ranking ones.

Discussion

Our results indicate that female rank, parity, and the strength of male–female social
bonds affect behavioral and physiological costs of mate-guarding and male investment
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Fig. 2 Effect of male–female Association Index (AI) and fruit availability on male long-tailed macaque
(Macaca fascicularis) feeding time, at Ketambe, Gunung Leuser National Park, Indonesia (2010–2011). The
plane depicts values predicted by model 1.
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Fig. 3 Effect of male–female Association Index (AI) and fruit availability on male long-tailed macaque
(Macaca fascicularis) climbing distance, at Ketambe, Gunung Leuser National Park, Indonesia (2010–2011).
The plane depicts values predicted by model 2.
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in this behavior in wild long-tailed macaques. Specifically, our results suggest that
females of lower reproductive value, i.e., nulliparous and low-ranking females, might
be more costly to mate-guard than females of high reproductive value. Males spent less
time feeding when mate-guarding nulliparous than parous females and tended to be
more physiologically stressed when mate-guarding low-ranking nulliparous females
than other females. Further, the male–female social bond strength (AI) influenced a
male’s feeding time during mate-guarding but this effect was contingent on fruit
availability. When fruit availability was high, males fed longer while mate-guarding
females with which they were strongly bonded than while mate-guarding other females;
this pattern was reversed when fruit availability was low. Finally, males appear to invest
more in females of high reproductive value or in females with which they are strongly
bonded than in other females. Males were more vigilant and aggressive when mate-
guarding high-ranking and/or females with which they were strongly bonded (high AI)
than when mate-guarding other females.

Feeding and stress-related costs of mate-guarding have been reported in different
primate species, including long-tailed macaques (Alberts et al. 1996; Bergman et al.
2005; Girard-Buttoz 2014; Girard-Buttoz et al. 2014; Matsubara 2003; Packer 1979;
Rasmussen 1985). Our study shows that male long-tailed macaques may have the
opportunity to limit these costs by mate-guarding preferentially parous high-ranking
females. For male long-tailed macaques the cost/benefit ratio might be higher when
mate-guarding low-ranking nulliparous females because the costs are higher (lower
food intake and higher physiological stress) and the benefits are lower (lower quality
offspring) than when mate-guarding high-ranking parous females. First, in our study,
males fed for longer when mate-guarding parous than nulliparous females. Males may
thus benefit from preferentially mate-guarding parous females in terms of balancing
their energetic status. Further, despite the absence of an effect of female rank on male

Fig. 4 Effect of the guarded female’s rank on male long-tailed macaque (Macaca fascicularis) fGC levels for
nulliparous females (triangles) and parous females (circles), at Ketambe, Gunung Leuser National Park,
Indonesia (2010–2011). The lines depict the linear relationship predicted by model 3 for nulliparous (dashed
line) and parous females (solid line) and the dots depict the raw data points.
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feeding time, males may also benefit from mate-guarding high-ranking females.
Whereas male long-tailed macaques trade-off vigilance time against feeding time
during mate-guarding in general (Girard-Buttoz 2014), this might be the case less when
they mate-guard high-ranking females than when they mate-guard low-ranking fe-
males. In fact, males were more vigilant when mate-guarding high-ranking females
than when mate-guarding low-ranking ones but achieved this without reducing their
feeding time. The absence/reduction of the trade-off between feeding and vigilance
when mate-guarding females of high rank might be related to the fact that high-ranking
females have priority of access to high-quality food patches (van Noordwijk and van
Schaik 1987) from which mate-guarding males may also benefit. Consequently, males
may mate-guard females of high reproductive value more thoroughly than females of
low reproductive value by being more vigilant without paying extra costs of reduced
feeding time.

Second, in our study, males were more physiologically stressed when mate-guarding
low-ranking nulliparous than high-ranking parous females. This result is somewhat
surprising because we might expect that higher male–male competition for females
with the highest reproductive value, i.e., parous, high-ranking females, would be
stressful for the mate-guarding male. However, this may not have been the case in
our study males because they were rarely challenged during mate-guarding (Girard-
Buttoz 2014). Further, male–male aggression did not affect male stress levels signifi-
cantly in a previous study on long-tailed macaques (Girard-Buttoz 2014). In contrast,
female spatial positioning and centrality in the group may explain the effect of rank and
parity on male physiological stress levels. In long-tailed macaques, low-ranking fe-
males spend usually more time in the periphery of the group than high-ranking females
(van Noordwijk and van Schaik 1987).Whenmate-guarding low-ranking females, males
may therefore also occupy a less central position in the group than when mate-guarding
high-ranking females. In turn, not being at the core of the group is likely to increase a
male’s stress levels for several reasons. First, our studymales are more stressed when they
have fewer males in proximity (Girard-Buttoz 2014) and hence fewer potential allies to
support them and form coalitions against extra-group male consort or rank takeover
attempts (van Noordwijk and van Schaik 2001). Second, being at the periphery of the
group may enhance the risk of exposure to predators (Ron et al. 1996), which may be
stressful. Third, a less central spatial position reduces the opportunity of interacting with
other females and sociosexual interactions with females may be of prime importance for
males in this species. In long-tailed macaques, it has been suggested that males need to
copulate with females to monitor the timing of their fertile phase because female sexual
behavior but not sex skin swelling reliably indicates the female fertile window
(Engelhardt et al. 2005). While mate-guarding a low-ranking nulliparous female, males
may thus be stressed because they may not be able to monitor the fertility status of other
females and hence lose the opportunity to fertilize females of higher reproductive value.
Yet whether male long-tailed macaques have the cognitive ability to track the fertility
status of several females simultaneously while mate-guarding remains to be investigated.

Our data suggest that the males may lower the risk of exposure to repeated elevation
of physiological stress by preferentially mate-guarding high-ranking, parous females
compared to low-ranking nulliparous ones. This might be particularly important
in a non-strictly seasonal species, such as long-tailed macaques, in which an
increase in stress levels during mate-guarding (Girard-Buttoz 2014) might have
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deleterious consequences. In this species, the timing of female fertility periods
is unpredictable and females can conceive year round (van Schaik and van
Noordwijk 1985). Further, female fertile phases are usually asynchronous
(Engelhardt et al. 2006). Therefore, by mate-guarding one female after the
other, males may be exposed to repeated elevations in their glucocorticoid
levels and eventually face the risk of becoming chronically stressed (Girard-
Buttoz 2014). This might be highly costly for the males because chronic stress
may suppress the immune system (Grossman 1985; Setchell et al. 2010) and
testicular function (Hardy et al. 2005; Sapolsky 1985) and hence affect males’
health and ability to reproduce (cf. Boonstra 2013).

In long-tailed macaques and other primate species, low-ranking and/or nulliparous
females produce offspring that are less likely to survive until adulthood and to achieve a
high rank position in the future than offspring of high-ranking and/or parous females
(Bercovitch et al. 1998; Majolo et al. 2012; Robbins et al. 2006, 2011; Setchell et al.
2002; van Noordwijk and van Schaik 1999, 2001). Evolutionary pressures at both
proximate and ultimate levels may therefore bias male mate-guarding choice toward
high-ranking parous females which appear to be less costly to monopolize and are
likely to achieve higher reproductive success. Given that high-ranking males usually
have priority of access to females (Berard et al. 1994; Bercovitch 1997; de Ruiter et al.
1994; Engelhardt et al. 2006; Matsubara 2003; Setchell et al. 2005) they are less
constrained in their mate-guarding choices than other males. High -ranking males may
therefore benefit from their dominance status twice over: by being able to access and
mate-guard females with high reproductive value successfully and by reducing the
costs of female monopolisation while doing so. In view of this, it is surprising that in
our study males did not obviously choose females of high reproductive value as
preferred mate-guarding partners. This pattern contrasts, at least partially, with results
from a previous study of the same population (Engelhardt et al. 2006) that found that
higher ranking females were mate-guarded longer by the α male during their fertile
phase than lower ranking females. In the study by Engelhardt and colleagues (2006),
female fertile phases did not overlap and the focal group comprised only 8 females. Our
study groups had up to 15 females and thus the likelihood of temporal overlap of fertile
phases is much greater. However, we did not have the logistical power to collect regular
fecal samples from all the females of all the study groups so as to be able to assess
temporal overlap of female fertile phases. We cannot, therefore, draw definite conclu-
sions regarding male mate-guarding choice. For example, it may well be that when two
females are fertile at the same time high-ranking males mate-guard high-ranking or
parous females preferentially.

Beyond the time spent mate-guarding different females, the selectivity of males
toward certain females may also be expressed at the level of the investment and
thoroughness with which males mate-guard the females. We found that males were
more aggressive and more vigilant when mate-guarding high-ranking females than
when mate-guarding low-ranking ones. These two parameters may reflect an active
decision of the males to enhance the efficiency of monopolizing females of high rank
and thus higher reproductive value. In this respect, our focal males follow patterns
described in long-tailed macaques and other species of primates with male mating and/
or mate-guarding preference toward higher-ranking females (de Ruiter et al. 1994;
Engelhardt et al. 2006; Kuester and Paul 1996; Setchell and Wickings 2006). By
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aggressing other males, the mate-guarding male may face counter-aggressions and is
thus exposed to a higher risk of injuries (Blanchard et al. 1988; Clutton-Brock et al.
1979; Drews 1996). Being injured may, in turn, prevent high-ranking males from mate-
guarding current or subsequent fertile females and/or maintaining their hierarchical
status (Drews 1996; C. Girard-Buttoz pers obs). Given the strong link between rank
and reproductive success in male long-tailed macaques (de Ruiter et al. 1994;
Engelhardt et al. 2006) males may only be willing to face the risk of aggressive
retaliation, and the likelihood of associated deleterious consequences, to monopolize
females of high reproductive value.

Beyond enhancing the efficiency of monopolization, being more vigilant while
mate-guarding high-ranking females may also partially modify male physiolog-
ical stress levels. In a previous study we found that males had lower physiolog-
ical stress levels the more vigilant they were during mate-guarding (Girard-
Buttoz 2014). This may explain our finding of lower glucocorticoid levels when
males were mate-guarding high-ranking compared to low-ranking nulliparous
females.

In addition to female rank and parity status, male–female social bonds also affected
costs of mate-guarding and male investment in this behavior. The strength of male–
female social bonds affected the time spent feeding and the climbing distance of the
mate-guarding male, although this effect was contingent on fruit availability. In periods
of high fruit availability, males fed more but also climbed more when the association
index with the guarded female was higher. In this context, increased feeding time may
stem from greater cooperation by the female. It has, in fact, been suggested and
reported in some species that male–female social bonds influence female cooperation
during mate-guarding in primates (Rasmussen 1980; Smuts 1985; cf.Manson 1994). In
turn, feeding for longer may imply the exploitation of more food patch and hence
increased locomotion (Alberts et al. 1996), which may explain why increased feeding
time was accompanied by an increase in vertical distance climbed in our focal males. In
contrast, when fruit availability was low, males fed less and climbed less when mate-
guarding females with which they were strongly bonded. This may indicate a higher
degree of investment of the males into mate-guarding strongly bonded females. In the
context of fruit scarcity, males may face a trade-off between feeding long enough to
meet their energetic requirement and being able to mate-guard females thoroughly.
Under such conditions, males may therefore only thoroughly mate-guard the female
which they are strongly bonded at the costs of reduced feeding. In contrast, if the
female is not strongly bonded to him, the male may favour energetic needs over mate-
guarding investment and relax mate-guarding attention to feed longer. However,
because feeding time and climbing distance covary, a potential decrease in males’
energy intake (related to lowered feeding duration) may be counterbalanced by a
decrease in male energy expenditure (associated with a decreased distance climbed
see Girard-Buttoz 2014). The effect of male–female social bond strength on male
energetics remains therefore to be shown, using physiological markers of energetic
status such as urinary C-peptide (Deschner et al. 2008; Emery Thompson and Knott
2008; Emery Thompson et al. 2009; Girard-Buttoz et al. 2011; Higham et al. 2011;
Sherry and Ellison 2007).

The fact that males were also more aggressive when mate-guarding females with
which they are strongly bonded further shows their increased investment in these
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females. Mate-guarding females more thoroughly and preventing other males from
accessing them more aggressively might be a mechanism for the mate-guarding male to
maintain strong social bonds with certain females. In turn, this bond may have direct
fitness benefit for the males, as shown in rhesus macaques (Kulik et al. 2012; Massen
et al. 2012). In long-tailed macaques, females are not fully monopolizable because
females can gain copulations via non–mate-guarding males (de Ruiter et al. 1994).
Accordingly, cryptic post-copulatory female choice has been hypothesized to play a
role in offspring paternity (Engelhardt et al. 2006; see Kappeler 2012 for possible
mechanisms). It may, therefore, be of high importance for males, even high-ranking
ones, to maintain strong social bonds with certain females to enhance their probability
of post-copulatory sperm selection.

Our study brings a new dimension to the study of mate choice in primates (Kappeler
2012; Keddy-Hector 1992; Setchell and Kappeler 2003) by showing that males might
be constrained in their mate-guarding choices by both social and ecological factors.
Further, we showed that beyond differential time allocation of mate-guarding
(Engelhardt et al. 2006; Setchell and Wickings 2006), males may express preference
toward highly valuable females (those with high reproductive potential or those to
which they are closely bonded) by investing more in aggression and vigilance while
mate-guarding these females. A male may thus not only mate preferentially with the
most valuable females (Kappeler 2012; Setchell and Kappeler 2003) but also aim to
securing paternity better through optimized monopolization (our study). Our findings
support mathematical modeling and evolutionary theories (Edward and Chapman 2011;
Kokko and Monaghan 2001) predicting that when females vary in quality (van
Noordwijk and van Schaik 1999, 2001) and the access to and monopolization of
females is costly (Girard-Buttoz 2014), males may express choosiness toward certain
females. Future studies should investigate how, at a given point in time, males adjust
their mating and/or mate-guarding decisions depending on the interplay between their
physiological and physical conditions, the food available, and the quality and diversity
of females in their fertile phase. Such studies will require hormonal assessment of
female fertile phase (Dubuc et al. 2012; Engelhardt et al. 2004; Heistermann et al.
2001; Young et al. 2013) but also the use of noninvasive physiological markers of male
body condition and energetic status, such as urinary C-peptides (Deschner et al. 2008;
Emery Thompson and Knott 2008; Emery Thompson et al. 2009; Girard-Buttoz et al.
2011; Higham et al. 2011; Sherry and Ellison 2007) or stable Isotopes (Deschner et al.
2012).
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