International Journal of Science and Mathematics Education (2020) 18: 1587-1611
https://doi.org/10.1007/510763-019-10024-1

®

Activity with Signs and Speaking About It: Exploring | check for
Students’ Mathematical Lines of Thought Regarding | “P9a'es
the Derivative

Annika M. Wille'

Received: 28 March 2019 / Accepted: 21 September 2019 / Published online: 10 December 2019
© The Author(s) 2019

Abstract

In order to participate proficiently in mathematical activity, a student needs to become
fluent in both mathematical sign activity and speaking about the activity with signs.
From the theoretical viewpoint of the philosophers Wittgenstein and Peirce, on the one
hand, mathematics is seen as a sign game, while on the other hand experiments with
signs allow for observable, communicable and describable reasoning. In this article, the
focus is on the student’s sign activity and his or her speaking about it and the question of
how they are intertwined. To that end, a method is presented to display the interplay of
student’s activity with signs and speaking about it, and in particular, to reconstruct the
student’s line of argumentation. This is applied to a case study where imaginary dia-
logues written by a class of grade 11 students on the topic “derivative” were analyzed.

Keywords Calculus - Language and mathematics - Peirce - Semiotics - Wittgenstein

Introduction

Sign activity and speaking about sign activity are both part of mathematical activity.
They are intertwined in various ways. It is precisely this linkage that is the focus of
this article by means of examples of students’ explanations and reasoning regarding
the derivative.

In the literature, the role of mathematical signs, such as symbols, terms, equations
and graphs, often is described as a means for mathematical activity, for example to
serve as representations for abstract mathematical objects (e.g. Duval, 2006). In this
article, mathematical signs will be considered from the perspective of Wittgenstein
and Peirce (cf. Dorfler, 2016), where sign activity is seen as a central and inevitable
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part of mathematical activity. Furthermore, the meaning of these signs arises from the
use of the signs, thus, largely from activity with the signs. Therefore, these signs are
not only a means but are objects of mathematical activity as well. Additionally, speak-
ing about sign activity is also inevitable within mathematical reasoning. The ways in
which mathematical activity, sign activity and speaking about sign activity intertwine
will be elaborated upon below. From this perspective, in order to participate more and
fully in mathematical social practice, a learner needs to become fluent in mathemati-
cal sign activity and in addition this sign activity needs to be linked to speaking about
the sign activity. Neither one nor the other can be dispensed with. In complex sub-
jects, as with the topic of “derivative”, sign activity and speaking about it are linked
to each other in various ways. Therefore, how a student uses mathematical signs in
an explanation on this topic is particularly interesting.

In some countries, calculus is only taught at college or university. In other countries,
like Austria, it is already part of the school curriculum in grades 11 and 12. Students
exhibit various difficulties in learning calculus (e.g. Ferrini-Mundy & Graham 1991;
Orton, 1983; Rasmussen et al. 2014). In particular, studies mention that one dif-
ficulty in understanding the derivative is that various other terms need to have
been learned beforehand, such as “function”, “limit”, and “difference quotient” (e.g.
Park 2015; Thompson 1994a; Weigand 2014; Wille 2017b; Zandieh 2000).

This article is divided into two parts: In the first part Wittgenstein’s view of math-
ematics is presented and referenced to Peirce’s theory of signs with an emphasis
on connections between mathematical sign activity and speaking about this activity.
Afterwards, these considerations are related to the subject area of “derivative”, which
leads to specific research questions regarding:

1. The connections a student establishes between mathematical signs, between
verbal terms, or between signs and terms (see RQ 1).
2. The process of establishing these connections in an explanation (see RQ 2).

The second part presents an analysis method together with a study which was car-
ried out in a grade 11 school class and takes up the research questions stated at the
end of the theoretical part. The analysis of each student’s mathematical communi-
cation is presented in a visualization that maps the student’s mathematical lines of
thought that are displayed in their communication. In particular, there is a focus on
how a student intertwines sign activity and speaking about the activity. In that way,
differences between the high-, average- and low-achieving students in this class can
be determined and learning difficulties can be explained.

Theoretical Framework
Mathematics in the Light of Wittgenstein and Peirce

Wittgenstein: Mathematics as a Sign Game

In the view of the Austrian philosopher Ludwig Wittgenstein (1889—1951) mathe-
matics is a kind of sign game or language game where the meaning of a mathematical
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sign, symbol, word or proposition arises from its use within the game (cf. Wittgen-
stein, PI, RFM, WWK). He compares mathematics in this regard with the game of
chess, where, for example, a certain figure does not have a meaning outside the
game, but where the meaning is obtained by the rules that hold for the figure, for
example, how to move it (cf. Wrigley, 1977, p. 53). Thus, as a chess figure can be
moved according to the game rules, signs in mathematics can be operated with or
derived of others due to the rules in mathematics (cf. WWK, pp. 103-105). Nev-
ertheless, Wittgenstein does not see mathematics purely as a game. In contrast to a
pure game, Wittgenstein emphasizes that mathematics obtains its legitimation from
the “use outside mathematics” (cf. REM, p. 133e). Nevertheless, “the meaning of
the signs, symbols, and diagrams does not come from the outside of mathematics
but is created by a great variety of activities with the signs within mathematics”
(Dorfler, 2016, p. 27). From this viewpoint, understanding and learning mathemat-
ics means to progressively learn the rules of the game and how they are connected,
hence, how rules can be derived of others. As a chess player needs to practice the
game in order to become fluent in playing and to understand the game, a mathematics
learner needs to act with signs in order to understand mathematics.

Peirce’s Diagrams as Objects and Means of Mathematical Thinking

The theory of signs of the American mathematician, logician, and philosopher
Charles Sanders Peirce (1839—1914) and in particular his notions of diagram and
diagrammatic reasoning can be used to characterize the activity with signs in math-
ematics more precisely. However, it is neither the aim of this article, nor can it be
done in a few pages, to extensively describe Peirce’s theory. Elaborations in greater
detail can be found, for example, in Hoffmann (2005a, b, 2007); Dérfler (2005, 2006,
2016), and Otte (2011).

It is important to note that the term diagram used by Peirce differs from the
common understanding of the notion of a diagram in mathematics and mathemat-
ics education. A diagram, in Peirce’s sense, does not have a mandatory geometric
connotation. Examples of diagrams in mathematics are algebraic terms or equations,
function graphs, and also geometric figures or Hasse diagrams of lattices that are usu-
ally termed diagrams in the mathematical language. But, it should also be mentioned
that not every visualization that is used in mathematics or mathematics education is
a diagram in Peirce’s sense.

Diagrams are based on inscriptions, for example on paper, and have several char-
acteristics that qualify them as a diagram (cf. Dorfler, 2016, pp. 25-26). One of them
is that they belong to a system of representations that specifies how to construct dia-
grams and how to experiment with them. In the following, this type of activity with
diagrams given by a system of representations is referred to as diagrammatic activity.
Furthermore, diagrams are complex signs: indices can direct the attention to some-
thing, they form a subset of icons and represent relations because of conventions.
Therefore, a diagram also has a symbolic character (cp. Hoffmann, 2005b, p. 46).
In particular, a diagram is not a diagram by itself. But a sign can be interpreted as
diagram, if an individual knows a system of representations through which it can
be constructed and above all that offers possibilities of operations on this diagram,
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whereby operations are understood in a broad sense. For example, a mathematical
term can be interpreted as a diagram if an individual knows the conventionalized
rules about how to construct it and how to experiment with it. But for a different
individual, who does not know a corresponding representational system, that same
term may appear to be just an artistic pattern. In this way, a verbal term can also be a
mathematical diagram if there are such possibilities of operations.

For Peirce, mathematical reasoning is diagrammatic reasoning that con-
sists of constructing, experimenting, observing, noting, and assuring (cf. Peirce,
NEM 1V: pp. 47-48; Hoffmann, 2007, p. 3). Thus, diagrams are not only the
means of the generation of knowledge, but also objects. Hoffmann (2007) describes
“mathematical reasoning as a process in which an individual (or a group of individ-
uals) constructs an external representation, and experiments with this representation
playfully and creatively, in order to clarify, structure, and coordinate thinking pro-
cesses” (ibid., p. 21). Thus, the experiments with diagrams are not only algorithmic
manipulations, but involve creativity as a part of a process to coordinate thinking
processes.

This fits well with Wittgenstein’s view that the meaning of a mathematical sign
arises from its use within the sign game. The rules on how to experiment with
diagrams given by a system of representations can be seen as a part of the sign
game rules. And as one can see how a chess figure is moved, the activity on dia-
grammatic inscriptions can be perceived with physical senses. As a consequence,
this enables communication about the activity with signs. The role of communi-
cation, in particular, to speak about the activity with diagrams, will be elaborated
below.

Diagrammatical Activity and Speaking About It

In the theoretical view outlined above, diagrammatical activity is seen as an inevitable
part of mathematical activity. Furthermore, to speak about this activity is in the same
way indispensable in mathematics. In the following, the connections between and
intertwining of these two activities are outlined.

Denotations

The first connection regards denotations for different diagrams, in particular, dia-
grams that belong to different representational systems. In mathematics, often the
same denotation is used if one sees a kind of correspondence between the repre-
sentational systems along with their diagrams. For example, the word “function” is
used as a denotation for different diagrams, that is, for a function term as well as for
a function graph. Thus it is possible to speak about the properties of these denota-
tions as for example: “If a function is differentiable at a point, it is continuous at this
point.”

Instead of seeing a term and a graph as different representations of an abstract
mathematical object “function”, from the diagrammatical point of view, one starts
with systems of representations and their diagrams and if there is a kind of
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correspondence a denotation emerges.! Even if there is a correspondence between
diagrams of different representational systems, it is still possible that different rep-
resentational systems allow different diagrammatic activities of an individual. Since
a diagram represents relations, different relations can be the focus of the observer
for diagrams in different systems of representations. This can lead to different
experiments with the diagrams in order to solve a problem.

Still, it can be helpful to use the same denotation for diagrams of different repre-
sentational systems, since that way one can talk about properties of the “entities”. In
particular, the words for properties allow for connections to be made between verbal
terms and diagrammatic activity. However, it could be problematic if a learner, who
is not fluent enough in diagrammatic activity, learns a mathematical term mainly by
speaking about diagrams but with only little diagram use, and who therefore con-
nects the denotation insufficiently with the corresponding diagrams and how they
are operated with. In the study presented in this article, examples will be shown
where students use language detached from diagrammatic activity. This provides an
explanation for the learning difficulties observed (cf. e.g. the case of Peter below).

Interpretations of Diagrammatic Reasoning

A second connection between diagrammatic activity and speaking about it is outlined
in Dérfler (2005) regarding interpretations of diagrammatic reasoning. As described
above, language can be used to talk about “the results of (observing) the diagram-
matic operations and deduce on the conceptual level new properties of the latter”
(Dorfler 2005, p. 59). Dorfler calls this an “economic substitute” (ibid., p. 59), which
is the case if the complexity of diagrammatic inscriptions and the experiments with
them causes the use of verbal terms. Furthermore, Dorfler describes different rea-
sons, where limitations of diagrammatic reasoning can cause the use of speaking
about diagrams.

One limitation has to do with reasoning about infinity or rather reasoning about all
diagrams of a certain class. One example concerns natural numbers. The inscription
n can be considered as a diagram constructed by the system of representation that
contains the Peano axioms as rules. Thus, n can be called a natural number as a
denotation of this diagram. Furthermore, by these axioms (which can be regarded
as rules in the sign game according to Wittgenstein) it follows that a diagrammatic
inscription #n + 1 can be constructed. Until now the reasoning is diagrammatic. But,
to conclude that there are infinitely many natural numbers, is, according to Dorfler,
an interpretation of diagrammatic reasoning. “N has no diagram”, as Dorfler states
(ibid., p. 62). Analogous considerations can be made for the existence of infinitely
many prime numbers or the set of all real numbers.

Interestingly, in this case, there is not only a move from diagrammatic reasoning
to speaking about diagrammatic activity, but also the other way around. Because of
the interpretation “there are infinitely many natural numbers”, one invents the sign N

!nstead of correspondence, for example Thompson (1994b) used the term “sense of invariance” that may
be produced by “representational activities”.
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and likewise Q or R or C for all rational, real or complex numbers. Therefore, in the
diagrammatic “world” one can continue to operate with these signs and experiment
with them, as for example when using the phrase “for all ¢ > 0 with ¢ € R”.

Here, one can see how diagrammatic sign activity and speaking about it intertwine
in mathematics: Language is not only used to verbalize experiences with diagrams,
but also to interpret diagrammatic reasoning with a return to the “world of math-
ematical diagrams”. Thus, interpretations of diagrammatic reasoning can lead to a
diagrammatization as a backflow from “speaking about” to diagrammatic activity.

This has consequences for the learning process. Diagrammatic activity can be
observed directly, but interpretations are not likewise accessible to our senses as
experiments on diagrams. That might be a reason why students have problems in
cases when not only diagrammatic reasoning but also interpretations and their reflow
as diagrams is the focus. That is in accordance with what a university student of mine,
a preservice teacher, wrote in a text: “Intuitive understanding is not a fan of infin-
ity” (translated by the author).> An example is the equation 0.9 = 1. Problems with
this equation are reported in various articles (e.g. Eisenman, 2008; Monaghan, 2001;
Tall & Schwarzenberger, 1978). Furthermore, in Miiller-Hill and Wille (2018) it was
shown, that there are students who prove the equation but nevertheless state that 0.9
is less than 1. To conclude the equality the definition of limit is necessary, where the
phrase “for all £ > 0" is central.> Now, “for all” can only be understood when there
is a set of all real numbers which is an interpretation of diagrammatic reasoning.
Thus, an individual needs to accept the interpretation and not only (which is diffi-
cult enough) the rules of how to act with diagrams and their implications, in order to
participate in the mathematical “game”. Likewise below, in the findings of the study
presented here, problems arise in cases where students try to explain what the limit
is (cf. e.g. the case of Katharina and Maria below). In the following, the focus turns
to the diagrammatical sign activity and speaking about it regarding the derivative.

Diagrammatical Sign Activity and Speaking About It Regarding the Derivative
Connecting Terms and Diagrams

On the level of speaking about diagrammatic sign activity, verbal terms can be con-
nected in the use of language. These terms can be denotations or interpretations of
diagrammatic reasoning. Regarding the topic of “derivative”, these verbal terms are
not mathematical diagrams themselves, since there are no operations on them given
by a representational system. One can only speak about operations on diagrams for
which these verbal terms are denotations. Furthermore, a verbal term can arise from
applications of diagrams where diagrams are used as models in outer-mathematical
contexts. Figure 1 (cf. similar tables in Wille (2017b, p. 1397) and in Danckwerts
and Vogel (2006, p. 57 & p. 85)) shows various verbal terms that are used regarding

2The original text in German was: “Das intuitive Verstindnis hlt nichts von der Unendlichkeit.”
3Even if the formula for the infinite sum of the geometric series is used in order to conclude 0.9 = 1, the
definition of limit is necessary to prove this formula.

@ Springer



Activity with Signs and Speaking About it: Exploring Students’...

1593

algebraic- function or value of difference of func-
analytical a function tion values
geometric- graph or point on difference of the
graphical a graph value y of points
application- according to the according to the
based specific applica- specific applica-

tion, e.g., distance

at a point of time difference of dis-

tion, e.g., absolute

difference quotient

secant slope

rate of change or
relative change,
e.g., average speed

limit

geometric descrip-
tion of an approach
of two points

according to the
specific applica-
tion, e.g., descrip-
tion of an approach

differential quo-
tient or derivative

tangent slope

local rate of change
or momentary rate
of change, e.g., mo-
mentary speed

of two points of
time

tances

Fig. 1 Use of verbal terms regarding the topic “derivative”

the topic “derivative”. They are differentiated in algebraic-analytical, geometric-
graphical, and application-based terms. In what follows, I distinguish horizontal and
vertical connections according to this table.

On the level of diagrammatic activity, the correspondence between function terms
and function graphs is central in school mathematics,* where these diagrams belong
to different representational systems. In what follows, the representational system
to which diagrams like function terms belong will be termed algebraic-analytical
and the representational system to which diagrams like function graphs belong
will be termed geometric-graphical. Furthermore, the terms horizontal and vertical,
which refer to the table in Fig. 1, are transferred to diagrams: A vertical con-
nection represents a correspondence of two diagrams in different representational
systems, here, between the algebraic-analytical and the geometric-graphical repre-
sentational system. A horizontal connection corresponds to a diagrammatic line of
reasoning within one representational system, possibly using diagrammatizations of
interpretations.

In the algebraic-analytical system of representations the (horizontal) diagrammatic
line of reasoning to derive the differential quotient uses diagrams of the form:

h) — h) —
FOO. FO0) = ), M M

Of course, instead of these diagrams, it is possible to write other diagrams
due to manipulation rules of the re;presentational system, like, for example,
%}{0@0) instead of limy,_, ¢ w or using g(t) instead of f(x).

f(X-i-hz—f(X)

and f'(x) = ;}g%

lim,_, X0

As argued before the step from w to limy,—o requires a
reflow from speaking about diagrams, because of the phrase “for all ¢ > 0 with
¢ € R” in the definition of the limit. Hence, a precondition of following this step is
to accept the interpretation that there is an infinite set of real numbers.

Due to the geometric-graphical system of representations, secants and tangents
can be constructed and one can reason about their slope, for example understood as
the angle of the gradient triangle. Here, a horizontal connection uses diagrams like
graphs, secant lines and their slopes and tangent lines together with their slopes.

40f course, this correspondence also plays a role in university mathematics, which however is not the
focus here.
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Research Questions Concerning the Connections Between Diagrammatic Activity
and Speaking About It

As discussed, an individual can establish diagrammatically horizontal and vertical
connections regarding the derivative and communicate about it. With the perspective
of seeing diagrammatic reasoning as a central and inevitable part of mathematical
activity, the question arises of how when speaking about connections of mathemat-
ical verbal terms, a learner links his or her discourse to diagrams and diagrammatic
activity.

Clearly, someone who is experienced in diagrammatic activity regarding the
derivative, thus, who links horizontally and vertically diagrams according to one or
several representational systems, may use denotations to speak about these experi-
ences. However, if a learner speaks about mathematical verbal terms as if they were
entities, what the learner says will not necessarily be based on their experience with
diagrams. Instead, the learner could have memorized the “speaking about” detached
from diagrammatic activity. One can imagine, for example, that a student could not
follow the diagrammatic activity that was presented and discussed in class, and that
he or she therefore learned non-diagrammatic phrases by heart.

Taking these considerations into account, the above question can be specified as
follows as the first research question for the study presented here:

(RQ 1) How does a student horizontally and vertically connect verbal terms
and diagrams regarding the topic “derivative”? In particular, in which way
does he or she use diagrams when speaking about this topic?

Because of the significance of the connection of the diagrams

fx+h) — fx) . fx+h) = fx)
— = and lim —mMmM
h h—0 h

respectively the verbal terms “difference quotient” and “differential quotient”, the
question arises not only whether a student connects them, but how this connection is
integrated into the student’s line of argumentation. This leads to the second research
question:

(RQ 2) Which lines of thought can be observed when a student acts with dia-
grams regarding the topic “derivative” and/or speaks about the denotations
“difference quotient” and “differential quotient” or “derivative”?

Method
A Method to Explore a Student’s Thinking Processes Regarding the Derivative

The following requirements guided the decision on which form of communication
was chosen for this study: In order to address the research questions, it should be pos-
sible for the communicating student to combine the writing of diagrams and speaking
about diagram activity. One possibility for such a combination is to use written lan-
guage. In that way, even in one sentence, a student can reason with diagrams and
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about diagrams. Since there are pronounced differences between oral and written
speech (e.g. Vygotsky, 1986, p. 180), this is discussed below in relation to the form
of communication utilized in this study. Furthermore, having the individual work of
a student makes it easier to focus on that student. Additionally, in order to minimize
the influence on the student after an initial stimulus there should be no further inter-
ruption. Finally, the form of communication should enable the student not only to talk
about connections in a static way, but also in a procedural way, i.e. how connections
are established and not only which.

Therefore, the method of imaginary dialogues (Wille 2008, 2017a) was chosen:
An imaginary dialogue means that a student works individually to compose a writ-
ten dialogue between two protagonists discussing a mathematical task or question.’
The student provides a continuation of a given initial dialogue as shown in Fig. 2.
The imaginary dialogue is in written form, but its content is a conceived spoken
dialogue. Thus, the imaginary dialogue possesses aspects of spoken and written lan-
guage. This can be illustrated using Koch and Osterreicher’s (2012) model, where
forms of communication are placed between two poles: language of immediacy and
language of distance either as phonic or graphic realization. Here, imaginary dia-
logues can be positioned about midway between these two poles on the graphic side
(Wille 2017a, p. 37). This means that students tend to write how they understood
something rather than only what they understood (cf. ibid., p. 42).

The task in the case study presented here was an initial dialogue (see Fig. 2) that
was given to grade 11 students in a class at a gymnasium in Graz, Austria, in Novem-
ber 2016. The students’ grades in mathematics from the previous year were also
known. Before this task, the students had been taught calculus including the topic of
derivative by their teacher.® Each of the 20 students in the class continued the initial
dialogue as individual work. The dialogues were written in German and translated by
the author.

Because of the focus on the connection “difference quotient”, “differential quo-
tient” (regarding RQ 2), the task addresses a question concerning the limit. When the
function f is a polynomial, the limit of the difference quotient can be calculated by
first cancelling /4 in the denominator. Then, in order to obtain the limit, it seems like
one is substituting & by 0, even though, in the ¢-§-definition of the limit of a func-
tion there is no such substitution. In particular, this does not work for an arbitrary f.
However, in the case of polynomials that are mainly treated in school, substituting &
by 0 leads to the ostensible problem that “the denominator will become 0 which one
protagonist addresses.

Since this is a difficult task, the students were not expected to solve this issue
extensively. However, the conflict that was addressed in the initial dialogue should
encourage the students to reason about horizontal connections, in particular, about
the step from the difference quotient to the differential quotient. That way, horizontal

3One approach that is related to imaginary dialogues is that of a lesson play (Zazkis, Liljedahl & Sinclair,
2013), where, in contrast to imaginary dialogues, it is prospective teachers, not students, who write the
dialogues.

SIn Austria calculus is part of the school curriculum.
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Two students are talking to each other. We call them S1 and S2. Continue their dialogue.

S1: Hi! Can you explain something for me?
S2: Yes, sure.
S1:  You know we discussed the derivative in class. First, we had the difference quotient

f(zo —h) = f(=o)
h

Then, there was the limit, whereby h approaches 0.
S2: I remember. What do you want to know?
S1: If h approaches 0, then the denominator will become 0 and nothing works anymore!
S2:  Okay. I'll explain it to you clearly with an example what the derivative means. Then,
it will also be clear why the limit is there and what happens when h approaches 0.
S1: Thank you very much! Because it is not clear to me, what the difference quotient
and the derivative actually are.

Fig.2 The initial dialogue that was given to each student to be continued

connections are slightly more in focus than vertical connections. An additional task
that explicitly emphasizes vertical connections is referred to further research.

In order to address the research questions, the aim of the analysis of the students’
imaginary dialogues is to investigate their line of reasoning. Thus, an analysis sheet
(see Fig. 4, on the left) was designed for this purpose. The analysis sheet has the
same columns as the table of Fig. 1. Additionally, there is one column to notate
algebraic-analytical, geometric-graphical, or application-based diagram usage or lan-
guage usage to speak about diagrams, abbreviated with “a.-a.”, “geo.”, and “appl.”.
Furthermore, analysis tables (see Fig. 4, on the right) have been designed to sum-
marize the more detailed analysis sheets. How the sheets and tables were filled in is
described below and then illustrated with the help of examples.

First Step of the Analysis

The first step of the analysis for each imaginary dialogue was to fill out an analysis
sheet (see Fig. 4, on the left): According to the word use, a phrase is put as a circle in
one column. A circle can also denote various phrases (or sentences) in succession, but
only if a single verbal term is used and not several. For example, if the question and
the following response use the same term, as can be seen in row 4 in Figs. 3 and 4,
these phrases are coded as one circle. Phrases such as “Ah, I understand”, which link
phrases about mathematics in the dialogue, were not coded in the analysis sheet as
separate circles.

A circle is shaded if diagrams are used in the phrase. In cases where diagrams
are used exclusively, this is notated as a shaded square. For example, the phrase “So
imagine that you have a second-degree function” was coded as a non-shaded circle
in the column “function/function values”. The phrase “apply the difference quotient

%” was coded as a shaded circle in the column “difference quotient”. And finally,

the diagram w was inserted as a shaded square in the column “difference
quotient”. All three examples were described as algebraic-analytical.
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17

18

S2:

S1:

S2:

S1:
S2:

S1:
S2:

The difference quotient

is the average change between two x values,

how it changes on average in this interval.

I see, I understand.

But, what is now the derivative?

The derivative of a function

yields a graph, which gives the slope of the original function.
For example the derived z2

is a linear function,

a straight line,

where you can read out the slope at any moment.

At any moment, is that the difference quotient, too?
No, that is the differential quotient, which is Z—Z.
It yields the slope at any moment.

That has something to do with the limit.

From the difference quotient

you can get to the differential quotient.

You can also calculate it by inserting the x value of the point in the equation

of the derivative function.
Thank you very much! Now, I understand it much better!

By the way: Within the formula M+H<”“) xo stands for the first « value

and h yields the distance to the second x value.
Instead of h there could be Az.

Fig.3 Translation of Oliver’s imaginary dialogue

In the analysis sheet, circles can be connected by lines, either dashed or solid: Two

circles are connected by a dashed line if two terms are connected by speaking about
them. For example, a sentence like ““You should know, that the difference quotient is

© W N ;A W N e

function,

value of a
function

5 > e
R - « 9B
2% &8 =l=he - g2
=1 00 SRR :us =] =R
558 8% £ SEZ | 4543 292 8¢,
E25 | E3 E |E35 Tgk FERRCEE]
385 | B = EECEEED 535 o3
55 E<E
O a-a R T O P
O . algebraic-analytical
app
O . geometric-graphical
appl.
O application-based
a.-a.
[ O geo
a.-a.
A a.-a
8 algebraic-analytical )
geo
O geometric-graphical
e geo
O T application-based
a.-a.
T @ a.-a.
O o
. O - a.-a.
ol a-a
o O a.-a
O algebraic-analytical
A.-a
geometric-graphical
a.-a.
Z application-based
a.-a

Fig.4 The analysis sheet and analysis tables for Oliver’s imaginary dialogue

difference
quotient

o O

differential
quotient
derivative

limit
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the rate of change” was denoted as two non-shaded circles in the column “difference
quotient”, the first labelled as algebraic-analytical, the second application-based, and
both connected by a dashed line. However, two circles or squares are connected by
a solid line, if two diagrams are linked diagrammatically, either horizontally by dia-
grammatic activity or vertically by describing the diagrammatical correspondence
of an algebraic-analytical and geometric-graphical diagram. For example, the equa-
tion 4+4hzh2—4 = 4h;lrh2 was denoted as two shaded squares in the row difference

quotient and connected with a solid line.

A solid line together with a dashed line denotes a connection by diagrammatic
activity and speaking about it. For example, the sentence: “And if I have for example
flx) = x3, it will be flix) = 3x2, won’t it?” was denoted as a shaded circle in
the column “function/function value” and a shaded circle in the column “derivative”
connected with two parallel lines, one of them solid, the other dashed. That way the
line of the student’s thoughts that he or she put on paper can be displayed for each
imaginary dialogue.

Second Step of the Analysis

In a second step of the analysis, condensed analysis tables (see Fig. 4, on the right)
were built from each analysis sheet.” The tables can be seen as summaries of the
corresponding analysis sheets, in order to see at a glance, with regard to RQ 1, the
totality of the established connections.

When in an analysis sheet the circles are connected it is regarded as one line of
thought. As soon as two circles are not connected, the second circle is understood
as the beginning of another line of thought. For example, in his imaginary dialogue
a student first talks about the difference quotient and then he writes: “Okay. Let’s
come to the derivative.” This sentence and the sentences that follow do not refer to
the previous content. Therefore, a non-shaded circle in the column of “differential
quotient” is drawn without a line connecting it to the previous circle. At this point I
would like to emphasize that with connected or unconnected circles only a statement
is made about what appears on paper in the imagined dialogue as a line of thought.

Each analysis table now represents exactly one line of thought, as it becomes vis-
ible in the imaginary dialogue. Therefore, several analysis tables can belong to one
analysis sheet.

A circle in a table field denotes that, in the corresponding line of thought within
the analysis sheet, one or several circles can be found in the same column and are
denoted with the same label (“‘a.-a”, “geo.”, or “appl.”). For example, a shaded circle
in the table field “algebraic-analytical/differential quotient” denotes that in the line of
thought within the corresponding analysis sheet, there is either at least one shaded cir-
cle in the column “differential quotient” which is denoted as ““algebraic-analytical”,
or there is at least one non-shaded circle and, in addition, at least one shaded square,
both in the column “differential quotient” and denoted as “algebraic-analytical”.

7The notation of the shaded and non-shaded circles in tables is inspired by a study of Zandieh (2000).
However, Zandieh’s circles denote something different than the study presented here.
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Dashed lines in the analysis sheet are not specially denoted in the analysis table,
since two circles in the same table already means that they belong to one line of
thought. However, solid lines in the analysis sheet are notated as solid lines in the
table as well. That way, the diagrams which a student connects diagrammatically can
be seen.

Results

Before the analysis sheets and tables are discussed and compared as a whole, two
imaginary dialogues are presented in detail to visualize how they are reflected in the
sheets and tables. In addition, a brief insight into the imaginary dialogues of three
other students is given.

Two Examples in Detail

The first imaginary dialogue is written by Oliver, a low-achieving student® and the
second imaginary dialogue is written by a high-achieving student called Jakob.?

Oliver’s Imaginary Dialogue

The English translation of Oliver’s imaginary dialogue can be found in Fig. 3.1 In
order to better see the single phrases that were coded, more line breaks were inserted
into the text than Oliver used himself. Thereby, a numbered row in Fig. 3 visualizes to
which circle in a column on the analysis sheet the phrase belongs.'! Therefore, in what
follows, the term “row” is used in a broader sense than usual to correspond to one circle
in the analysis sheet. Figure 4 shows the corresponding analysis sheet and tables.

Oliver starts by talking about the difference quotient and connects vertically the
algebraic-analytical and applications-based terms “difference quotient” and “average
change”. In row 3, Oliver explains the latter in more detail. Up to this point, he does
not use any diagrams, therefore the circles in the analysis sheet are not shaded.

In row 4, Oliver begins to talk about the derivative without an explicit connection
to the previous part. Therefore this is coded with no connecting line between the cir-
cles and taken as a different line of thought. In rows 5 to 9, Oliver explains that the
derivative is connected to the “slope of the original function” and that the deriva-
tive of x? is a linear function, “where you can read out the slope at any moment”
(row 9). In the analysis sheet, it can be seen how Oliver’s line of thought is mainly
situated in the column “differential quotient, derivative”, with only one jump to the
column “function, value of a function”, which is the only phrase so far where he

8 All names in this article are in anonymous form.

9The fact that both of these imaginary dialogues are by male students has no significance for this study.
They were selected because they highlight particular differences in students’ imaginary dialogues.

10The imaginary dialogues were originally written in German and translated by the author.

Similarly, Staats (2008) represents repetitions in transcripts in order to analyze them.
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uses a diagram. According to the table in Fig. 1, Oliver mainly connects denotations
vertically that refer to algebraic-analytical and geometric-graphical representational
systems, but only with sporadic diagram use. He writes the first isolated diagram
after one jump to the “function, value of a function” column without operating dia-
grammatically with it. Instead he explains the outcome of an operation (i.e. deriving
a function) with the words “linear function”.

With rows 9, 10, and 11, Oliver connects verbal terms horizontally in the column
“differential quotient, derivative” and “difference quotient”, again using a diagram
without acting on it: Oliver’s diagram use in row 11 is similar to the diagram use
in row 6: he writes down a diagram without further experimenting with it. After
this, he connects once again vertically algebraic-analytical in row 11 with geometric-
graphical denotations in row 12.

Now, starting from rows 13 to 16, Oliver moves to the term “limit” and says
vaguely: “That has something to do with the limit” (row 13). Oliver does not use dia-
grams or diagrammatic activity regarding the limit. Moreover, in the further course
of the imaginary dialogue limit is not taken up again. Instead, he describes a hori-
zontal connection of the terms “difference quotient” and “differential quotient” with
the sentence: “From the difference quotient you can get to the differential quotient”
(rows 14 and 15), but he does not specify this transition, neither diagrammatically
nor by speaking about diagrammatic activities. In row 16, there is a diagram, x, that
is part of the diagram of the derivative, but since it is not the whole diagram, the
corresponding circle is denoted non-shaded.

At the end, rows 17 and 18 are disconnected from the part above. How this part
relates to what came before is not explicitly discussed, thus, there is no line connect-
ing row 16 and row 17. In row 17, Oliver talks about the diagram w and
explains the meaning of x¢ and 4. It ends with the only diagrammatic operation in
this imaginary dialogue, in which Oliver substitutes 4 for Ax in row 18.

Regarding RQ 2, overall on Oliver’s analysis sheet, it can be seen that he often
connects denotations vertically. Furthermore, if he changes the column, he does so
in rather wide jumps. Only in the lower middle part there are smaller horizontal
steps, which also mention the limit (in row 13), but with no diagrammatic activity. In
particular, the connections in row 13 to 15 are not from left to right, to see how to get
to the differential quotient, but the other way around.

The three corresponding analysis tables (see Fig. 4, on the right) visualize Oliver’s
horizontal and vertical connections: The first table corresponds to rows 1 to 3,
the second to rows 4 to 16, and the third to rows 17 and 18. Regarding RQ 1,
it can be seen that Oliver only rarely uses diagrams and there are no diagram-
matic activities concerning horizontal connection. Oliver’s vertical connections are
only non-diagrammatical: Although he writes an algebraic-analytical diagram for the
derivative, as can be seen in the second analysis table, a diagram in the geometric-
graphical representation system is not used.

Jakob’s Imaginary Dialogue

In contrast, Jakob is a high-achieving student. His imaginary dialogue and the
corresponding analysis sheet and table can be seen in Fig. 5.
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Fig. 5 Translation of Jakob’s imaginary dialogue and the corresponding analysis sheet and analysis

table
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Even a glance at Jakob’s analysis sheet reveals great differences between his and
Oliver’s imaginary dialogue regarding RQ 2. One can see a movement, starting in
the column “function, value of a function” via the columns “difference quotient” and
“limit” to the column “differential quotient, derivative”. Furthermore, the shaded cir-
cles and the solid connections display a line of diagrammatic activity. All the circles
are connected. There are no breaks between the different lines of thought that can be
read in the imaginary dialogue.

Looking at Jakob’s imaginary dialogue in more detail, it can be seen that he starts
with a concrete example f(x) = x2 + 4, thus, a diagram, and transforms the cor-
responding difference quotient until he can cancel 4 in the denominator (rows 4
and 5). In row 6 Jakob states that the problem # = 0 that was mentioned in the ini-
tial dialogue in connection with the limit has now been solved. The following rows
explain with the help of diagrammatic operations, why, in Jakob’s view, the problem
actually is solved. In particular, the diagrams in rows 5, 10, 12, and 14 are con-
nected by diagrammatic activity. Moreover, in the middle (rows 8 and 9), there is
a short excursion in which Jakob clarifies the terms “difference quotient” and “dif-
ferential quotient” and at the end, in rows 11, 13, and 15, he vertically connects
application-bazterms with algebraic-analytical denotations that he uses otherwise.

The analysis table in Fig. 5 (on the right) displays Jakob’s horizontal and vertical
connections. It becomes apparent, regarding RQ 1, that Jakob mainly argues within
the algebraic-analytical system of representations. In particular, all circles in the
“algebraic-analytical” row are shaded and connected to each other with solid lines.
This means that Jakob not only speaks about the steps from a function to its deriva-
tive, but also uses diagrams at every point, which are connected by diagrammatic
activities. Only the difference of function values is not mentioned explicitly, since
he moves directly from a concrete function to the corresponding difference quotient.
In comparison, vertical connections are only made to application-based terms at two
columns.

Thus, it can be said that Jakob acts with diagrams in order to connect all
significant (horizontal) steps from a function to its derivative within the algebraic-
analytical system of representations. Vertical connections are only rarely and
non-diagrammatically made.

A Comparison of Oliver’s and Jakob’s Imaginary Dialogues

Comparing Oliver’s and Jakob’s imaginary dialogues and their corresponding analy-
sis sheets and tables, two main differences become apparent:

The first is their use (or non-use) of diagrams when moving between different
“places” (i.e. columns in the analysis sheets and tables) concerning how to get to the
derivative. Jakob demonstrates by example, by using the diagram f(x) = x* + 4,
how the diagram Wﬂ is built and how with diagrammatic operations one
can reach the diagram 2x + 0 that he terms “function of the derivative”. That way, he
can even address the ostensible problem of the division by O when 4 in the denom-
inator approaches 0. In contrast, Oliver writes diagrams rarely and does not operate
with diagrams, except in one point when substituting # by Ax. In particular, the
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derivative of f(x) = x? is named a “linear function” without writing the correspond-
ing diagram (row 7). Moreover, the ostensible problem of the division by 0 is not
addressed.

The second is the difference in the length of the steps between the columns. While
Jakob takes small steps, and there is an overall movement from the column “function,
value of a function” to the column “differential quotient, derivative”, Oliver more
often remains vertical in a column and then jumps across several columns. Further-
more, Jakob’s imagined dialogue seems like a coherent line of thought, whereas
Oliver’s dialogue shows breaks, which are then reflected in several tables per line of
thought. Such differences are also apparent, when the analysis sheets and tables of
the entire class are considered.

Further Insights in the Students’ Imaginary Dialogues

The following examples will provide insight into how a student vertically connects
diagrams and how he speaks about the connection between functions and their deriva-
tive while omitting diagram activity. In addition, examples are given where students
have difficulty talking about the limit.

Peter’s Vertical and Horizontal Connections

Peter is an average-achieving student. His imaginary dialogue and the correspond-
ing analysis sheet and analysis tables can be seen in Fig. 6. On the one hand, he
vertically connects diagrams by explaining their correspondence in different rep-
resentational systems (rows 1 to 8). On the other hand, he discusses horizontal
connections only between functions and their derivatives, but without the steps in
between and especially without any diagrammatic activity. For Peter, the connection
between a function and its derivative is only a kind of “relationship”, where “square
functions become linear” (rows 9 to 16). This reads as if the square function dis-
appears and (magically?) becomes a linear function. Furthermore, Peter writes that
this relationship can be recognized regarding special points of the functions without
explaining why. In particular, Peter compares the two diagrams f(x) and f’(x) by
speaking about them, but in the whole imaginary dialogue there is no explanation
how the differential quotient is derived from a function by diagrammatic activ-
ity, neither in the algebraic-analytical representational system nor in the geometric-
graphical.

This can also be seen in Peter’s analysis sheet (see Fig. 6): First, he stays in
the “difference quotient” column including two solid lines (between rows 3 and 4
and rows 6 and 7). After a split up he jumps non-diagrammatically between the
column “function, value of a function”, and the column “differential quotient, deriva-
tive” without a connection to the first part. Thus, Peter only refers to the diagrams
themselves, but not to the diagrammatic activity that links diagrams belonging to
different columns. In particular, he compares diagrams without referring to their
diagrammatical connections.
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14 for example, square functions
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their intercepts, local extrema, inflection points or global extrema are similar
to each other.
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Fig.6 Peter’s imaginary dialogue (with a little error concerning where to draw x¢ and x| into the graph,
and some confusion between “law of tangents” and “tangents”) and the analysis sheet and analysis tables
for his imaginary dialogue
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Katharina and Maria: Problems with Speaking About the Limit

However, it cannot be said that the use of diagrams always leads to speaking cor-
rectly about denotations. This becomes particularly clear when students talk about
the limit. In some imaginary dialogues, for example, it is not clear whether the
students can distinguish between the 0, to which A approaches, and the limit of
the difference quotient itself. For instance, Katharina, an average-achieving student,
writes:

o L= f(x0) : S o+h)— f(xo)
This === (here x approaches 0) is actually the same as ===~

(here h ap}rooaches 0).
This means that the variable is approaching the limit, i.e. as close to 0 as
possible.

Katharina writes “x approaches 0 instead of xp, but this could be a typo because
above, she writes lim,_,y, correctly. However, later in the text it is not clear
what exactly Katharina means by the term “limit”, although in her imaginary dia-
logue she nicely connects the difference quotient with the differential quotient with
diagrammatic activity.

Similarly, in the imaginary dialogue of another student, Maria, it is not clear, what
exactly she is referring to with the term “limit” when she writes: “The limit (in Ger-
man “Limes”) is equal to the limit (in German “Grenzwert”), i.e. the smallest value
that 4 may take so that it does not become 0.2

Comparing the Analysis Sheets and Analysis Tables of the Entire Class
A Response to RQ 2: Movements on the Analysis Sheet

In considering the analysis sheets of the entire class, different types of movements
between the columns are evident:

e  Walk: Small movements between columns can be considered as a walk on the
analysis sheet. Jakob’s imaginary dialogue is an example: Jakob reasons about
specific steps within the process that leads to the derivative. Some of the “walk-
ing” students mainly speak about this “walk” with no or little diagram use (as can
be seen in Fig. 7 on the left). Others, such as Jakob, use diagrams and operations
on diagrams to a large extent.

e Jump: Larger movements between columns appear as jumps on the analysis
sheet. Most jumps appear between the columns “function, value of function” and
“differential quotient, derivative”, others between the columns “difference quo-
tient” and “differential quotient, derivative” without addressing the limit. Often
these “jumpers” stay in one column for some time, where they vertically con-
nect verbal terms, followed up by a jump to another column, where verbal terms

2Maria’s original text in German is: “Der Limes ist gleich der Grenzwert, das heifit der kleinste Wert, den
h einnehmen darf, damit er nicht O wird.”
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Fig.7 The analysis sheets of three students

are linked. Examples can be seen in Oliver’s analysis sheet and in Fig. 7 (in the
middle).

e  Split up: Finally, there are students who frequently split the line of thought, which
is represented in the analysis sheets by unconnected circles. Examples can be
seen in Fig. 7 (in the middle), and in Fig. 6. Of course, it is possible, that these
students would be able to connect the different lines of thought if asked to. How-
ever, in my opinion, the very fact that they do not implement it in their imaginary
dialogue shows a weaker connection than if they established the connections
themselves.

A Response to RQ 1: Differences Regarding the Analysis Table

The analysis tables display the split ups as in the analysis sheet, here, as multiple
tables for one student. They also display whether a student uses diagrams, which
representational systems they belong to, algebraic-analytical or geometric-graphical,
and whether the diagrams are connected by diagrammatic activity. Moreover, the use
of application-based terms can be seen.

In the entire class, there is a wide range of different use of diagrams: Some students
connect diagrams with denotations by writing diagrams without acting with them
(see Fig. 8), some students connect diagrams vertically by explaining their corre-
spondence in different representational systems (see Peter’s imaginary dialogue and
analysis tables), and some students use diagrammatic activity in order to horizontally
connect diagrams and their denotations (see Jakob’s analysis table).
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Fig.8 The analysis table of a student
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In particular, concerning the use of diagrammatic activity to horizontally link dia-
grams, there are those students who only link concrete functions with their derivative
with the help of derivation rules and those who connect more “steps in between”, like
Jakob.

Differences in Relation to the Mathematics Grade Achieved in the Previous Year

Because of the small number of students, the differences listed here are only seen as
an indication of how high-, average-, and low-achieving students may connect verbal
terms and diagrams in this context. Of the total of 20 students, four students achieved
a high grade for mathematics in the previous year’s certificate, eleven achieved an
average grade and six a low grade. These groups are referred to as high, average, and
low achievers in what follows.

Concerning the movements in the analysis sheets (in relation to RQ 2), the high-
achieving students jump less often between columns and have fewer split ups in their
line of thought. They rather make small movements between columns like a walk on
the analysis sheet. In contrast, the average achievers jump more frequently and the
low achievers even more frequently than the high achievers. Less frequently, a walk-
ing style can be found in these two groups. In addition, split ups are more common
among the weaker students: None of the high achievers splits up their line of thought
on paper. In contrast, almost 40% of the average achievers and a little over 80% of
the low achievers have at least one split up.

Differences can also be found when looking at the use of diagrams and diagram-
matic activity. The median of the ratio of shaded circles and squares to all circles and
squares is 76% for the high achievers, 44% for the average achievers, and 38% for
the low achievers. Differences in the average are about the same.

More distinct is the difference in the ratio of solid lines to all lines: the median for
high achievers is 63%, for average achievers 15%, and for low achievers 8%. Here,
the average does not show such clear differences as the median: the ratio is 64% for
high achievers, 18% for average achievers, but 29% for low achievers. The reason for
the difference of the median and the average is the imaginary dialogue of one low-
achieving student who uses diagrams and diagrammatic manipulations at every point
(see Fig. 7 on the right) in contrast to the other low achievers. Thus, in terms of the
occurrence of diagrams and diagrammatic activity there is no difference between this
student and the higher achievers. In this case, however, it becomes clear how much
the line of thought jumps back and forth between the column “function, value of a
function” and “differential quotient, derivative”. At this point it can be seen that one
criterion such as the use of diagrams is not sufficient to clearly distinguish between
the different groups.

However, overall, it can be said that the high achievers use diagrams more fre-
quently, and above all, they act with diagrams considerably more frequently than the
average achievers. Moreover, except for this one student, the same difference can be
observed between average and low achievers.

Regarding the analysis table that focuses more on RQ 1, the clearest difference can
be seen between the number of (diagrammatical) connections in the tables: The high-
achieving students establish an average of 4.3 connections, the average-achieving
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students 2.1 connections and the low-achieving students 1.2 connections. Altogether,
most of the connections are horizontal, fewer are identity connections (i.e. when two
diagrams of the same column are connected diagrammatically) and only a few are
vertical.

With regard to the ratio of shaded to non-shaded circles or squares in the tables,
there are hardly any differences between the three groups in the tables. The average
of this ratio is 77%, 60%, and 68% for the three groups, starting with the high-
achieving students (the median is: 80%, 67%, and 68%). Similarly, there is no distinct
difference between the occurrence of algebraic-analytical, geometric-graphical and
application-based terms or diagrams. Here, it is the case that the average- and low-
achieving students speak a little more about geometric-graphical or application-based
terms than the high-achieving students, who mainly argue algebraic-analytical.

Discussion

Previous works on learning differentiation have often concentrated on the students’
conceptions (e.g. Zandieh (2000) findings about pseudo-objects). An additional per-
spective is provided by the approach presented here, which focuses on the students’
sign activity and speaking about it as displayed in the students’ writings. In this way,
further effects on the learning process can be discussed that result from the differ-
ences observed in the students’ lines of thought seen on paper, their diagrammatic
activity, and how they speak about acting with diagrams.

Consequences of the Way of Intertwining Diagram Activity and Speaking
About It

As seen above, the weaker students in particular acted with diagrams less frequently
than the stronger students. This raises the question of what the consequences are
for such students. In the framework outlined above, the meaning of a mathemat-
ical sign arises from its use within the sign game. Therefore, without sufficient
activity with diagrams meaning cannot be grasped. One example can be found in

Oliver’s dialogue: since he does not act diagrammatically to get from M

to limy,_, ¢ w, in contrast to Jakob, Oliver can only speak about the limit
superficially, saying: “That has something to do with the limit.” Another example
can be found in Peter’s imaginary dialogue, when he compares diagrams without
referring to their diagrammatical connections. Therefore, Peter cannot address their
meaning, which arises precisely through the activity with diagrams.

Furthermore, the examples of Katharina’s and Maria’s problems with the limit
showed that the use of diagrams does not always mean that the speaking about deno-
tations will be correct. A possible explanation for difficulties with the limit could be
the theoretical considerations that have been made above about denotations, interpre-
tations, and diagrammatizations: As discussed previously, the step from w

to limy_,q w requires a reflow from speaking about diagrams to diagram-
matic activity, because of the phrase “for all ¢ > 0 with ¢ € R” in the definition
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of the limit of a function. Hence, one has to accept an interpretation in order to get
to limy, ¢ W and, in particular, it is not sufficient to only follow a line of
diagrammatic activity.

This shows, how difficult it is for students to grasp the meaning of the limit. If
one understands the meaning as its sign use, but the student’s sign use is limited
(for example if the limit is only used as a late substituting) and diagrammatiza-
tions of interpretations are included, the meaning cannot be fully comprehended. The
difficulty for students here lies within the complex intertwining of diagrammatical
activity and speaking about it.

Conclusion

From the viewpoint of a framework based on Wittgenstein and Peirce where diagram
activity and speaking about it are both inevitable and central to mathematical activity,
the intertwining of the two becomes the focus. For a student, in order to progressively
learn about the meaning of mathematical diagrams and their denotations it means that
he or she needs numerous experiences both in diagram activity and speaking about it.

The analyzing method presented in this article can be a tool to display this inter-
twining. For the topic of “derivative”, regarding RQ 1, it became apparent from
the analysis tables which connections are actually made by speaking about diagram
activity and which by the diagram activity itself. Additionally, regarding RQ 2, the
different types of movement, walk, jump, and split up became apparent with the help
of the analysis sheets.

In the light of the framework presented here, understanding mathematics means
that a student learns more and more about the rules of the “game” and how they can
be derived from other rules, thus, how diagrams and propositions about diagrams are
connected. This requires both diagram activity and speaking about diagram activity.
Furthermore, a student can better comprehend the meaning of a diagram the more
experience he or she has with extensive diagrammatical use, possibly in different
representational systems. In particular, speaking about diagrams is needed to formu-
late properties and theorems, but it cannot replace diagrammatic activity and there
is a risk that speaking about diagrams might be detached from the diagram activity
itself. In cases that include diagrammatizations of interpretations, a student’s diagram
activity and his or her speaking about this activity should be taken into consideration
when evaluating the student’s mathematical understanding. In the examples outlined
here this concerned the limit.

What does this mean in terms of the findings of the case study? It was shown that
the lower achievers in particular acted diagrammatically less frequently and when
they did, they mainly used derivation rules without the steps in between, specifically,
they jumped more often or had more split ups. This means, in order to support these
students, it is not enough to show them horizontal and vertical connections only by
talking about them. Instead, they must be offered a variety of learning opportuni-
ties where they can both be diagrammatically active and express this in language.
In particular, not only should connections between a function and its derivative be
diagrammatically established, but also the “steps in between”.

@ Springer
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Furthermore, in order to study the students’ understanding both how they speak
about the denotations and how they act diagrammatically are worth investigating,
especially in cases where diagrammatizations of interpretations are involved. The
method presented here is one way in which this could be done.
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