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1x,25-Dihydroxyvitamin D3 Ameliorates Seawater
Aspiration-Induced Lung Injury By Inhibiting
The Translocation Of NF-kB and RhoA

Minlong Zhang' and Faguang Jin'"

Abstract—Our previous study have reported that 1x,25-Dihydroxyvitamin D3 (calcitriol) suppresses
seawater aspiration-induced ALI in vifro and in vivo. We also have confirmed that treatment with
calcitriol ameliorates seawater aspiration-induced inflammation and pulmonary edema via the inhibition
of NF-kB and RhoA/Rho kinase pathway activation. In our further work, we investigated the effect of
calcitriol on nuclear translocation of NF-kB and membrane translocation of RhoA in vitro. A549 cells
and rat pulmonary microvascular endothelial cells (RPMVECs) were cultured with calcitriol or not for
48 h and then stimulated with 25% seawater for 40 min. After these treatments, cells were collected and
performed with immunofluorescent staining to observe the translocation of NF-kB and RhoA and the
cytoskeleton remodeling. In vitro, seawater stimulation activates nuclear translocation of NF-kB and
membrane translocation of RhoA in A549 cells. In addition, seawater administration also induced
cytoskeleton remodeling in A549 cells and RPMVECs. However, pretreatment with calcitriol signifi-
cantly inhibited the activation of NF-kB and RhoA/Rho kinase pathways, as demonstrated by the
reduced nuclear translocation of NF-kB and membrane translocation of RhoA in A549 cells. Mean-
while, treatment of calcitriol also regulated the cytoskeleton remodeling in both A549 cells and
RPMVEGCs. These results demonstrated that treatment with calcitriol ameliorates seawater aspiration-
induced ALI via inhibition of nuclear translocation of NF-kB and membrane translocation of RhoA and

protection of alveolar epithelial and pulmonary microvascular endothelial barrier.
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INTRODUCTION

Drowning is a major cause of unintentional injury
death [1]. Acute lung injury (ALI) or acute respiratory
distress syndrome (ARDS) is a serious body injury induced
by seawater aspiration [2]. Seawater aspiration-induced
ALI is characterized by the inflammatory process in pul-
monary parenchyma and interstitial tissue and severe pul-
monary edema [3]. It has been reported that increased
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alveolar epithelial and pulmonary microvascular endothe-
lial permeability triggered the transmigration of inflamma-
tory cells such as neutrophils and the formation of edema
fluid in alveolar. Earlier work from our laboratory also
found that seawater administration induced the transmigra-
tion of inflammatory cells and increased pulmonary
epithelial-endothelial barrier permeability [4].

Nuclear factor kappa B (NF-«kB) signaling pathway is
an important pathway in inflammatory responses [5—7].
Several pro-inflammatory stimuli can cause the activation
of NF-kB through the phosphorylation of inhibitors of kB
(IkBs) by the IkB kinase (IKK) complex [8]. Afterwards,
the phosphorylated NF-kB translocate into the nucleus in
which it can lead to the transcriptional activation of several
pro-inflammatory mediators. Rho and its target protein,
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Rho-associated coiled-coil forming protein kinase(ROCK)
pathways implicated in the cytoskeletal contractile re-
sponse through their influence on myosin ATPase activity
[9, 10]. It has been reported that Rho and ROCK are well-
established mediators of the permeability between cells. In
our previous study, seawater stimulation also activated the
NF-«kB and RhoA/Rho kinase pathways [11].

1x,25-Dihydroxyvitamin D3 (calcitriol) is the active
form of vitamin D. several studies have reported that
calcitriol can inhibit neutrophil recruitment and pro-
inflammatory cytokines release and reduce the actin-
dependent cytoskeletal rearrangement through RhoA/
ROCK pathway [12, 13]. Our previous study found that
calcitriol improved lung histopathologic changes, reduced
inflammation, lung edema, and vascular leakage in
seawater-induced ALI. In addition, calcitriol also signifi-
cantly inhibited the activation of NF-kB and RhoA/Rho
kinase pathways.

On the basis of our previous study [4], we investigat-
ed the effect of calcitriol on nuclear translocation of NF-kB
and membrane translocation of RhoA in seawater stimu-
lated alveolar epithelial cells. Besides, we also observed
the effect of calcitriol on cytoskeleton remodeling in both
epithelial and endothelial cells. Dexamethasone treatment
has been proved to have therapeutic effects in seawater
aspiration-induced ALI Therefore, we choose dexametha-
sone as a positive control drug.

MATERIALS AND METHODS

Animal Preparation

Sprague-Dawley (SD) rats (male, 5—7 weeks old, 200
+20 g) were obtained from the Animal Center of Fourth
Military Medical University. The feeding environment of
rats includes temperature-controlled house with 12-h light-
dark cycles, free access to standard laboratory diet and
water ad libitum. All the animal experiments were ap-
proved by the Animal Care and Use Committee of the
Fourth Military Medical University and in accordance with
the Declaration of the National Institutes of Health Guide
for Care and Use of Laboratory Animals (Publication
No.85-23, revised 1985).

Drug and Reagents

Seawater (osmolality 1300 mmol/L, PH 8.2, SW 1.05,
NaCl 6.518 g/L, MgSO, 3.305 g/L, MgCl, 2.447 g/L,
CaCl, 1.141 g/L, KC1 0.725 g/L, NaHCO50.202 g/L, NaBr
0.083 g/L) was prepared according to the major

composition of the East China Sea provided by Chinese
Ocean Bureau. Anti-RhoA and anti-CD31 antibodies were
purchased from Santa Cruz Biotechnology Inc. (Santa
Cruz, CA, USA). Anti- NF-kB p65 antibodies were pur-
chased from Cell Signaling Technology (Cell Signaling,
MA, USA). Anti-Pan-Cadherin antibodies were purchased
from Epitomics (Burlingame, CA, USA).

A549 Cell Culture and Treatment

A human lung epithelial cell line, A549 (obtained
from ATCC, Rockville, MD, USA), was maintained in
RPMI 1640 medium supplemented with 100 U/ml of
penicillin-streptomycin and 10% fetal bovine serum
(FBS) at 37 °C in a humidified atmosphere containing
5% CO, and 95% air. After incubated in the presence or
absence of calcitriol (10 °M) and dexamethasone (10 °M)
48 h, seawater (0.25 ml per 1 ml total volume) were added
to AS549 cells and the cells were stimulated for indicated
time.

RPMVEC Isolation, Treatment, and Identification

Primary RPMVECs isolation and culture were
performed according to previous methods with some
modification [14]. Firstly, the pleura and outer edges of
washed fresh rat lung lobe were cut off. Then, the 1.5-
mm® specimens of tissue cut from lung surface were
carefully plated into cell culture dishes (containing
DMEM supplemented with 20% FBS, 25 pg/ml of
endothelial cell growth supplement and 100 U/ml of
penicillin-streptomycin). These tissues were cultured at
37 °C in a humidified atmosphere with 5% CO, and
95% air. The residue specimens were removed after
60 h. The cells were passed (with 0.25% trypsin)
when monolayer cells were achieved and all
experimental cells were between passages 2 and 3.
Primary RPMVECs were identified according to their
characteristic morphology and staining with anti-CD31
antibody. After incubated in the presence or absence of
calcitriol (10 °M) and dexamethasone (10 °M) 48 h,
seawater (0.25 ml per 1 ml total volume) were added to
cells and the cells were stimulated for indicated time.

Immunofluorescent Staining

For NF-kB translocation staining, cells were seeded
in growth medium onto sterile glass slides and incubated
for 24 h with calcitriol (10 °M) and dexamethasone
(10°°M), then challenged with 25% seawater for 40 min.
Cells in serum-free growth medium were used as controls.
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Cells were then fixed with 4% paraformaldehyde (pH7.4)
for 10 min, permeabilized for 10 min with PBS containing
0.1% TritonX-100, and incubated with 2% bovine serum
albumin (BSA) for 30 min. Immunostaining was per-
formed using rabbit NF-kB p65 antibody (1:100 dilution),
followed by polyclonal anti-rabbit IgG FITC (1:200 dilu-
tion, Bioss, Beijing, China). After washing, cells were
stained with 5 pg/ml 4’, 6-diamidino-2-phenylindole
dihydrochloride (DAPI, Sigma-Aldrich) for 10 min at
room temperature. Slides were then washed and mounted
with ProLong Gold anti-fade reagent (Invitrogen) and read
with fluorescence microscope (Olympus) at x40. Negative
controls were performed by incubation with appropriate
isotype-matched primary Abs.

For RhoA staining, cells were seeded in growth
medium onto sterile glass slides and incubated for 24 h
with calcitriol (10761\/[) and dexamethasone (1076M),
then challenged with 25% seawater for 40 min. Cells
in serum-free growth medium were used as controls.

seawater+
calcitriol seawater none

seawater+
dexamethasone
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Cells were then fixed with 4% paraformaldehyde (pH
7.4) for 10 min, permeabilized for 10 min with PBS
containing 0.1% TritonX-100, and incubated with 2%
bovine serum albumin (BSA) for 30 min. Immuno-
staining was performed using rabbit RhoA antibody
(1:100 dilution) and mouse pan-cadherin antibody
(1:100 dilution), followed by rhodamine red goat
anti-mouse IgG (1:200 dilution, Bioss, Beijing, China)
and anti-rabbit IgG FITC (1:200 dilution). After wash-
ing, cells were stained with 5 pg/ml DAPI for 10 min
at room temperature. Slides were then washed and
mounted with ProLong Gold anti-fade reagent and read
with confocal microscope (Olympus) at x60.

The F-actin was stained with fluorochrome-
conjugated phalloidin (Alexa488-Phalloidin; Molecular
Probes, Eugene, OR) for 60 min at room temperature.
Nuclei were stained with DAPI. Slides were mounted with
ProLong Gold anti-fade reagent and read with confocal
microscope at x60.

Fig. 1. Effects of calcitriol on nuclear translocation in A549 cells. After treatment, cells were washed, fixed, and stained with anti- NF-kB p65 antibody and
DAPI. Cells were analyzed by fluorescence microscope, and individual and merged stainings are shown (magnification x40). NG: normal group; SG:

seawater group; CG: 10-°M calcitriol group; DG: dexamethasone group.
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Fig. 2. Effects of calcitriol on RhoA translocation in A549 cells. After treatment, cells were washed, fixed, and stained with anti-RhoA and anti-pancadherin
antibodies. Cells were analyzed by confocal microscopy, and individual and merged stainings are shown (magnification x60). NG: normal group; SG:

seawater group; CG: 10-°M calcitriol group; DG: dexamethasone group.

RESULTS

Effects of Calcitriol on NF-kB p65 Nuclear Transloca-
tion in A549 Cells after Seawater Treatment

To identify the effect of calcitriol to inhibit
translocation of NF-kB p65 to the nucleus in A549
cells, cells were cultured for 24 h with or without

calcitriol followed by stimulation for 40 min with
seawater. Individual and merged stainings were ob-
tained by fluorescence microscopic analysis (Fig. 1).
As shown in the figure, NF-kB p65 translocated into
the nucleus in seawater-stimulated A549 cells. How-
ever, NF-kB p65 was retained into the cytoplasm in
A549 cells treated with calcitriol. Therefore, calcitriol
inhibited the nuclear translocation of NF-«kB p65.
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Fig. 3. Effects of calcitriol on cytoskeletal remodeling in A549 cells. A549 cells were treated for 40 min with seawater in the presence or absence of calcitriol
and dexamethasone. Phenotype of cultured A549 cells were examined by confocal microscopy following staining for F-actin (magnification x60). NG:
normal group; SG: seawater group; CG: 10-°M calcitriol group; DG: dexamethasone group.

Moreover, similar effect was observed in dexametha-
sone group.

Effects of Calcitriol on RhoA Plasma Membrane
Translocation in A549 Cells Stimulated by Seawater

As RhoA activation results in its translocation to the
cell plasma membrane, we used immunofluorescence to

validate these results. The intracellular localization of
RhoA was monitored by staining with specific anti-RhoA
antibody and compared with pan-cadherin immunoreactiv-
ity as a cell membrane marker (Fig. 2). This figure con-
firmed that seawater stimulation increased RhoA localiza-
tion at the plasma membrane. Whereas, RhoA was retained
in the cytoplasm in A549 cells treated with calcitriol and
similar effect was observed in dexamethasone group.



1 ¢,25-Dihydroxyvitamin D3 Ameliorates Seawater Aspiration-Induced 837

F-actin

seawater none

seawater+
calcitriol

seawater+
dexamethasone

Fig. 4. Effects of calcitriol on cytoskeletal remodeling in RPMVECs. RPMVECs were treated for 40 min with seawater in the presence or absence of
calcitriol and dexamethasone. Phenotype of cultured RPMVECs were examined by confocal microscopy following staining for F-actin (magnification x60).
NG: normal group; SG: seawater group; CG: 10°M calcitriol group; DG: dexamethasone group.

Therefore, calcitriol inhibited the membrane translocation
of RhoA.

Effects of Calcitriol on Cytoskeletal Remodeling in
A549 Cells Stimulated by Seawater

Cell contraction is a RhoA/ROCK-dependent event.
To evaluate the effect of calcitriol on cytoskeletal remod-
eling as a parameter of pulmonary barrier function, we
stained F-actin on A549 cells (Fig. 3). Compared with
control cells, seawater treatment induced an evident motile

phenotype characterized by increase of stress fibers,
filopodia and membrane ruffles. Pretreatment with
calcitriol and dexamethasone led to significantly reduction
of the actin-dependent cytoskeletal remodeling.

Effects of Calcitriol on Cytoskeletal Remodeling in
RPMVECs Stimulated by Seawater

To assess the effect of calcitriol on cytoskeletal remod-
eling in RPMVECs, we stained F-actin on cells (Fig. 4). As
shown in the figure, seawater exposure induced the increase
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of stress fibers in RPMVECsS, but the effect was less prom-
inent than in A549 cells. Furthermore, calcitriol and dexa-
methasone reduced the actin-dependent cytoskeletal remod-
eling. Nevertheless, no significant difference between
calcitriol group and dexamethasone group was observed.

DISCUSSION

In our present study, we investigated the effect of
calcitriol on nuclear translocation of NF-kB and membrane
translocation of RhoA in vitro. In addition, we explored the
effect of calcitriol on cytoskeletal remodeling in Iung
epithelial-endothelial barrier. These results showed that
seawater stimulation activates nuclear translocation of
NF-kB and membrane translocation of RhoA in A549
cells. Seawater administration also led to cytoskeletal re-
modeling both in A549 cells and RPMVECs. However,
calcitriol significantly inhibited nuclear translocation of
NF-kB and membrane translocation of RhoA. Moreover,
calcitriol also regulated the cytoskeleton remodeling in
both A549 cells and RPMVECs.

Inflammation and lung epithelial-endothelial barrier
injury are two main characteristics in seawater aspiration-
induced ALI. NF-kB pathway activation plays an impor-
tant part in seawater aspiration-induced ALI. Seawater
simulation may lead NF-kB phosphorylation, and phos-
phorylated NF-kB translocation from the cytoplasm to the
nucleus is a key step in the expression of downstream
inflammation-related genes [15]. RhoA/Rho kinase path-
way is critical in the cytoskeletal contractile response.
Several published works suggested that RhoA/ROCK
pathway can also activate NF-kB and these findings indi-
cated that RhoA/ROCK pathway is a potential pathway in
inflammation responses [16]. RhoA belongs to monomeric
GTP-binding proteins and GTP-RhoA cytoplasm mem-
brane translocation is a critical step in the inflammation
process and cytoskeletal contractile response [17]. As is
known to all, increased lung tissue barrier permeability can
enhance inflammatory cells recruitment [18]. Thus, trans-
location of activated NF-kB and RhoA may have impor-
tant roles in the process of seawater aspiration-induced
ALL Our previous study has confirmed that seawater stim-
ulation resulted in NF-kB and RhoA/ROCK pathways
activation. In present work, we further demonstrated that
seawater administration stimulated NF-«kB nuclear translo-
cation and RhoA membrane translocation. In addition,
seawater also promoted the cytoskeletal remodeling both
in epithelial and endothelial cells.

Zhang, and Jin

Several works have confirmed that, active metabolite
of vitamin D, calcitriol can suppress inflammatory re-
sponses and inhibit neutrophil infiltration [19, 20]. Previous
study in our lab also demonstrated that calcitriol ameliorated
seawater aspiration-induced inflammation and pulmonary
edema and these effects worked through inhibition of NF-
kB and RhoA/ROCK pathways activation. In present work,
we further confirmed that calcitriol inhibited nuclear trans-
location of NF-kB and membrane translocation of RhoA.
Furthermore, calcitriol also regulated the cytoskeleton re-
modeling in both epithelial and endothelial cells.

In summary, our work demonstrated that pre-
treatment with calcitrol ameliorates seawater aspiration-
induced ALI via inhibition of nuclear translocation of
NF-kB and membrane translocation of RhoA and protec-
tion of alveolar epithelial and pulmonary microvascular
endothelial barrier.
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