Skip to main content

Advertisement

Log in

Melatonin can Ameliorate Radiation-Induced Oxidative Stress and Inflammation-Related Deterioration of Bone Quality in Rat Femur

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

The aim of the present study was to evaluate the radioprotective effects of melatonin on the biomechanical properties of bone in comparison to amifostine (WR-2721). Forty Sprague Dawley rats were divided equally into 5 groups namely; control (C), irradiation (R; single dose of 50 Gy), irradiation + WR-2721 (R + WR-2721; irradiation + 200 mg/kg WR-2721) radiation + melatonin 25 mg/kg (R + M25; irradiation + 25 mg/kg melatonin), and radiation + melatonin 50 mg/kg (R + M50; irradiation + 50 mg/kg melatonin). In order to measure extrinsic (organ-level mechanical properties of bone; the ultimate strength, deformation, stiffness, energy absorption capacity) and intrinsic (tissue-level mechanical properties of bone; ultimate stress, ultimate strain, elastic modulus, toughness) features of the bone, a three-point bending (TPB) test was performed for biomechanical evaluation. In addition, a bone mineral density (BMD) test was carried out. The BMD and extrinsic properties of the diaphyseal femur were found to be significantly higher in the R + M25 group than in group R (p < 0.05). A significant increase was observed in R + M50 (p < 0.05) in comparison to group R in the cross-sectional area of the femoral shaft and elastic modulus parameter. The protective effect of melatonin was similar to that of WR-2721. Thus, biomechanical quality of irradiated bone can be ameliorated by free radical scavenger melatonin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Phulpin, B., G. Dolivet, P.Y. Marie, et al. 2010. Re-assessment of chronic radio-induced tissue damage in a rat hindlimb model. Experimental and Therapeutic Medicine 4: 553–560.

    Google Scholar 

  2. Jia, D., D. Gaddy, L.J. Suva, and P.M. Corry. 2011. Rapid loss of bone mass and strength in mice after abdominal irradiation. Radiation Research 176: 624–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meerveld-Eggink, A., T.L. Bollen, H.K. Wijrdeman, and M. Los. 2013. Bone metastases or an insufficiency fracture? Oncology patients reporting pain or showing bone abnormalities on a scan. Nederland Tijdschrift vood Geneeskunde 157, A6098.

    Google Scholar 

  4. Szymczyk, K.H., I.M. Shapiro, and C.S. Adams. 2004. Ionizing radiation sensitizes bone cells to apoptosis. Bone 34: 148–156.

    Article  CAS  PubMed  Google Scholar 

  5. Sakurai, T., Y. Sawada, M. Yoshimoto, M. Kawai, and J. Miyakoshi. 2007. Radiation-induced reduction of osteoblast differentiation in C2C12 cells. Journal of Radiation Research 48: 515–521.

    Article  CAS  PubMed  Google Scholar 

  6. Hopewell, J.W. 2003. Radiation-therapy effects on bone density. Medical and Pediatric Oncology 41: 208–211.

    Article  PubMed  Google Scholar 

  7. Nyaruba, M.M., I. Yamamoto, H. Kimura, and R. Morita. 1998. Bone fragility induced by X-ray irradiation in relation to cortical bone-mineral content. Acta Radiologica 39: 43–46.

    Article  CAS  PubMed  Google Scholar 

  8. Tins, B.J., M. Garton, V.N. Cassar-Pullicino, P.N. Tyrrell, R. Lalam, and J. Singh. 2015. Stress fracture of the pelvis and lower limbs including atypical femoral fractures—a review. Insights into Imaging 6: 97–110.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Georgiou, K.R., S.K. Hui, and C.J. Xian. 2012. Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy. American Journal of Stem Cells 30: 205–224.

    Google Scholar 

  10. Johnke, R.M., J.A. Sattler, and R.R. Allison. 2014. Radioprotective agents for radiation therapy: Future trends. Future Oncology 10: 2345–2357.

    Article  CAS  PubMed  Google Scholar 

  11. Weiss, J.F. 1997. Pharmacologic approaches to protection against radiation-induced lethality and other damage. Environmental Health Perspectives 105: 1473–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demirel, C., S. Kilciksiz, S. Gurgul, N. Erdal, and A. Yildiz. 2011. N-acetylcysteine ameliorates γ-radiation-induced deterioration of bone quality in the rat femur. The Journal of International Medical Research 39: 2393–2401.

    Article  CAS  PubMed  Google Scholar 

  13. Valko, M., D. LeibfritZ, J. Moncol, M.T. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 39: 44–84.

    Article  CAS  Google Scholar 

  14. Margulies, B.S., T.A. Damron, and M.J. Allen. 2008. The differential effects of the radioprotectant drugs amifostine and sodium selenite treatment in combination with radiation therapy on constituent bone cells, Ewing’s sarcoma of bone tumor cells, and rhabdomyosarcoma tumor cells in vitro. Journal of Orthopaedic Research 26: 1512–1519.

    Article  CAS  PubMed  Google Scholar 

  15. Amstrup, A.K., T. Sikjaer, L. Mosekilde, and L. Rejnmark. 2013. Melatonin and the skeleton. Osteoporosis International 24: 2919–2927.

    Article  CAS  PubMed  Google Scholar 

  16. Topkan, E., H. Tufan, A.A. Yavuz, et al. 2008. Comparison of the protective effects of melatonin and amifostine on radiation-induced epiphyseal injury. International Journal of Radiation Biology 84: 796–802.

    Article  CAS  PubMed  Google Scholar 

  17. Man, G.C., J.H. Wong, W.W. Wang, et al. 2011. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. Journal of Pineal Research 50: 395–402.

    Article  CAS  PubMed  Google Scholar 

  18. Tami, A.E., M.B. Schaffler, and M.L. Knothe Tate. 2003. Probing the tissue to subcellular level structure underlying bone’s molecular sieving function. Biorheology 40: 577–590.

    CAS  PubMed  Google Scholar 

  19. Reiter, R.J., D.X. Tan, and A. Galano. 2014. Melatonin: Exceeding expectations. Physiology (Bethesda) 29: 325–333.

    CAS  Google Scholar 

  20. Liu, J., F. Huang, and H.W. He. 2013. Melatonin effects on hard tissues: Bone and tooth. International Journal of Molecular Sciences 14: 10063–10074.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tan, D.X., L.C. Manchester, M.P. Terron, L.J. Flores, and R.J. Reiter. 2007. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? Journal of Pineal Research 42: 28–42.

    Article  CAS  PubMed  Google Scholar 

  22. Akkus, O., R.M. Belaney, and P. Das. 2005. Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue. Journal of Orthopaedic Research 23: 838–845.

    Article  PubMed  Google Scholar 

  23. Leppanen, O., H. Sievanen, J. Jokihaara, I. Pajamaki, and T.L. Jarvinen. 2006. Three-point bending of rat femur in the mediolateral direction: Introduction and validation of a novel biomechanical testing protocol. Journal of Bone and Mineral Research 21: 1231–1237.

    Article  PubMed  Google Scholar 

  24. Akkus, O., F. Adar, and M.B. Schafflerc. 2004. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34: 443–453.

    Article  CAS  PubMed  Google Scholar 

  25. Corwin, S.C. 2001. Bone mechanics handbook, 2nd ed, 7-1–7-26. New York: CRC Press LLC.

    Google Scholar 

  26. Brzoska, M.M., K. Majewska, and J. Moniuszko-Jakoniuk. 2005. Mechanical properties of femoral diaphysis and femoral neck of female rats chronically exposed to various levels of cadmium. Calcified Tissue International 76: 287–298.

    Article  CAS  PubMed  Google Scholar 

  27. Shirazi, A., G. Ghobadi, and M. Ghazi-Khansari. 2007. A radiobiological review on melatonin: A novel radioprotector. Journal of Radiation Research 48: 263–272.

    Article  CAS  PubMed  Google Scholar 

  28. Yavuz, M.N., A.A. Yavuz, C. Ulku, et al. 2003. Protective effect of melatonin against fractionated irradiation-induced epiphyseal injury in a weanling rat model. Journal of Pineal Research 35: 288–294.

    Article  CAS  PubMed  Google Scholar 

  29. Karslioglu, I., M.V. Ertekin, S. Taysi, et al. 2005. Radioprotective effects of melatonin on radiation-induced cataract. Journal of Radiation Research 46: 277–282.

    Article  CAS  PubMed  Google Scholar 

  30. Sener, G., A.O. Sehirli, M. Keyer-Uysal, S. Arbak, Y. Ersoy, and B.C. Yeğen. 2002. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat. Journal of Pineal Research 32: 120–126.

    Article  CAS  PubMed  Google Scholar 

  31. Reiter, R.J., D.X. Tan, M.P. Terron, L.J. Flores, and Z. Czarnocki. 2007. Melatonin and its metabolites: New findings regarding their production and their radical scavenging actions. Acta Biochimica Polonica 54: 1–9.

    CAS  PubMed  Google Scholar 

  32. Reiter, R.J., J.R. Calvo, M. Karbownik, W. Qi, and D.X. Tan. 2000. Melatonin and its relation to the immune system and inflammation. Annals of the New York Academy of Sciences 917: 376–386.

    Article  CAS  PubMed  Google Scholar 

  33. Sánchez, A., A.C. Calpena, and B. Clares. 2015. Evaluating the oxidative stress in inflammation: Role of melatonin. International Journal of Molecular Sciences 16: 16981–17004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Green, D.E., and C.T. Rubin. 2014. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 63: 87–94.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor, A.C., M. Horvat-Gordon, A. Moore, and P.A. Bartell. 2013. The effects of melatonin on the physical properties of bones and egg shells in the laying hen. PLoS One 8, e55663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burr, D.B. 2002. The contribution of the organic matrix to bone’s material properties. Bone 31: 8–11.

    Article  CAS  PubMed  Google Scholar 

  37. Turner, C.H. 2002. Biomechanics of bone: Determinants of skeletal fragility and bone quality. Osteoporosis International 13: 97–104.

    Article  CAS  PubMed  Google Scholar 

  38. Turner, C.H., and D.B. Burr. 2001. Experimental techniques for bone mechanics. In Bone mechanics handbook, ed. S.C. Cowin. Boca Raton: CRC Press.

    Google Scholar 

  39. Suzuki, N., M. Somei, A. Seki, R.J. Reiter, and A. Hattori. 2008. Novel bromomelatonin derivatives as potentially effective drugs to treat bone diseases. Journal of Pineal Research 45: 229–234.

    Article  CAS  PubMed  Google Scholar 

  40. Ostrowska, Z., B. Kos-Kudla, B. Marek, et al. 2002. The influence of pinealectomy and melatonin administration on the dynamic pattern of biochemical markers of bone metabolism in experimental osteoporosis in the rat. Neuro Endocrinology Letters 23: 104–109.

    CAS  PubMed  Google Scholar 

  41. Gürgül, S., N. Erdal, S.N. Yilmaz, A. Yildiz, and H. Ankarali. 2008. Deterioration of bone quality by long-term magnetic field with extremely low frequency in rats. Bone 42: 74–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Demirel.

Ethics declarations

All experiments and protocols described in the present study were performed in accordance with the guidelines of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes and also approved by the Medical Faculty Experimentation Ethics Committee of Gaziantep University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakir, Z.Ü., Demirel, C., Kilciksiz, S.C. et al. Melatonin can Ameliorate Radiation-Induced Oxidative Stress and Inflammation-Related Deterioration of Bone Quality in Rat Femur. Inflammation 39, 1134–1140 (2016). https://doi.org/10.1007/s10753-016-0347-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0347-x

KEY WORDS

Navigation