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significant benefits of invasive bivalves is water filtra-
tion, which results in water purification and changes 
rates of nutrient cycling, thus mitigating the effects 
of eutrophication. Mussels are widely used as senti-
nel organisms for the assessment and biomonitoring 
of contaminants and pathogens and are consumed by 
many fishes and birds. Benefits of invasive bivalves 
are particularly relevant in human-modified ecosys-
tems. We summarize the multiple ecosystem ser-
vices provided by invasive bivalves and recommend 
including the economically quantifiable services in 
the assessments of their economic impacts. We also 
highlight important ecosystem disservices by exotic 
bivalves, identify data limitations, and future research 
directions. This assessment should not be interpreted 
as a rejection of the fact that invasive mussels have 
negative impacts, but as an attempt to provide addi-
tional information for scientists, managers, and 
policymakers.
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Introduction

Ecosystem services consist of flows of materials, 
energy, and information from natural capital stocks 
that are of fundamental importance to humankind 
(Costanza et al., 1997, 2014; Millennium Ecosystem 

Abstract  The ecosystem services approach to 
conservation is becoming central to environmental 
policy decision making. While many negative bio-
logical invasion-driven impacts on ecosystem struc-
ture and functioning have been identified, much less 
was done to evaluate their ecosystem services. In this 
paper, we focus on the often-overlooked ecosystem 
services provided by three notable exotic ecosystem 
engineering bivalves, the zebra mussel, the quagga 
mussel, and the golden mussel. One of the most 
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Assessment, 2005). Interest in the evaluation of eco-
system services has grown rapidly in the last decades, 
partly fostered by estimates suggesting that their eco-
nomic assets (~ 33 trillion US$ per year) exceed the 
global gross domestic product (Costanza et al., 1997, 
2014). The concept of ecosystem services gained fur-
ther attention in 2005, when the United Nations pub-
lished its millennium ecosystem assessment (MEA) 
(Millennium Ecosystem Assessment, 2005). The 
objective of the MEA was to assess the consequences 
of ecosystem changes for human well-being and to 
establish the scientific bases for the actions needed to 
ensure the conservation and sustainable use of eco-
systems and their contributions to humankind. Eco-
system services are defined by the MEA as “the ben-
efits that people can obtain from ecosystems”. The 
Common International Classification of Ecosystem 
Services recognized three broad categories of ser-
vices: Provisioning Services (e.g., provision of food, 
water, fuel), Regulating and Maintenance Services 
(e.g., water purification, climate regulation, pollina-
tion), and Cultural Services (e.g., education, recrea-
tion, tourism, aesthetic, and spiritual values) (Millen-
nium Ecosystem Assessment, 2005; Haines-Young & 
Potschin, 2011).

The ecosystem services approach to conservation 
is becoming central to many areas of environmental 
policy decision making, and supporting information, 
both economic and non-economic, is increasingly 
needed. In this context, many negative biological 
invasion-driven effects on the structure and function-
ing of ecosystems have been identified, but much 
less has been done evaluating and/or monetizing the 
ecosystem services provided by invasive species. The 
economic impacts of invasive species on these ser-
vices are often neither quantified nor incorporated 
into economic impact assessments (e.g., Diagne et al., 
2021), and many of their ecosystem services that are 
difficult to monetize are regularly ignored (Pejchar 
& Mooney, 2009; Thompson, 2014; Jernelöv, 2017; 
Boltovskoy et  al., 2022). A vivid example are the 
three notable exotic ecosystem engineering bivalves, 
Dreissena polymorpha (Pallas, 1771) (the zebra mus-
sel), D. rostriformis bugensis (Andrusov, 1897) (the 
quagga mussel), and Limnoperna fortunei (Dunker, 
1857) (the golden mussel).

Until around the seventeenth century, the geo-
graphic range of D. polymorpha was limited to the 
Ponto-Caspian basin, but in late 1800s—early 1900s 

the species started spreading rapidly across east-
ern and western Europe using canals built to con-
nect shipping routes between the Black Sea and the 
Baltic Sea basins, and in the 1980s it reached North 
America, most probably with ship ballast water (Mor-
dukhai-Boltovskoi, 1960; Kerney & Morton, 1970; 
Kinzelbach, 1992; Starobogatov & Andreeva, 1994; 
Karatayev et  al. 2003, 2007b, 2008; Pollux et  al., 
2010; bij de Vaate, 2010; bij de Vaate et  al., 2014). 
In contrast to zebra mussels, D. r. bugensis started 
spreading beyond its native range only in the mid-
dle of the twentieth century. Its geographic expan-
sion was initially slow but has increased dramatically 
since the 1980s in both Europe and North America 
(Zhulidov et al., 2004, 2010; Karatayev et al., 2007b, 
2011a, 2015a; van der Velde et  al., 2010; Benson, 
2014; Matthews et  al., 2014; Orlova, 2014), foster-
ing intensive research on the species (reviewed in 
Karatayev et al., 2015a).

Although L. fortunei is native to southern China, 
it colonized Cambodia, Vietnam, Laos, Thailand 
in historical times, and northern China, Taiwan and 
Korea around the 1940s to 1980s, its main expan-
sion beyond continental Asia started in the early 
1990s (Japan, South America; Darrigran & Pas-
torino, 2004; Boltovskoy, 2015b). Thus, not only did 
dreissenids started spreading earlier, but they also 
colonized countries with much higher scientific out-
puts (Europe, North America) than the golden mus-
sel (several Asian and South American countries). 
As of December 2021, ~ 5000 documents on Dreis-
sena had been published since 1771 (13% of them 
on D. r. bugensis alone or together with D. polymor-
pha) (Limanova, 1964, 1978; reviewed in Karatayev 
et  al., 2015a; Karatayev and Burlakova, accepted; 
SCOPUS), and ~ 330 on Limnoperna. Therefore, 
information on D. polymorpha is much more abun-
dant than that on D. r. bugensis, and especially on 
L. fortunei. Inevitably, this imbalance is reflected in 
this research work, which is largely based on surveys 
on dreissenids, chiefly D. polymorpha, and on both 
dreissenid species, as they have often been treated 
jointly (Karatayev et  al., 2007b; Ward & Ricciardi, 
2007; Higgins & Vander Zanden, 2010; Kelley et al., 
2010; Kissman et  al., 2010), although they differ 
substantially in their spread dynamics, environmen-
tal tolerance, and within-waterbody distribution pat-
terns, often resulting in different ecosystem impacts 
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(Karatayev et  al., 1997, 1998, 2002, 2011b, 2014a, 
2015a, 2021a; Nalepa, 2010; Benson, 2014).

Dreissena spp. and L. fortunei have similar life his-
tories and share many ecological and functional traits. 
As opposed to almost all other freshwater bivalves 
that lack a free-living planktonic stage and whose 
adults burrow in the sediments, Dreissena spp. and 
L. fortunei have planktonic larvae and their adults are 
epifaunal, attaching to the substrate by a byssus (Zha-
din, 1946; Darrigran & Damborenea, 2005). Thus, 
they occupy a novel ecological niche in the invaded 
freshwaters of the northern and southern hemispheres 
(Johnson & Carlton, 1996; Karatayev et  al., 1997, 
2007a; Darrigran, 2002). Due to their high rates of 
spread and densities, the large numbers of waterbod-
ies colonized, and the extent of their ecological and 
economic impacts, both species of Dreissena and L. 
fortunei are considered among the most aggressive 
freshwater invaders (Karatayev et  al., 2007b, 2011a, 
2015a; Higgins & Vander Zanden, 2010; Kelley et al., 
2010; Boltovskoy & Correa, 2015; Ludwig et  al., 
2021). The biomass of dreissenids often exceeds the 
combined biomass of all native benthos by at least 
one order of magnitude and can represent over 90% 
of the combined biomass of all pelagic and bottom 
invertebrates combined (Vanderploeg et  al., 2002). 
These exotic bivalves are very effective ecosystem 
engineers (i.e., species that “directly or indirectly 
control the availability of resources to other organ-
isms by causing physical state changes in biotic or 
abiotic materials”; Jones et  al., 1994, 1997), alter-
ing both ecosystem structure and function, and can 
have dramatic impacts on the waterbodies invaded 
(reviewed in Karatayev et  al., 2002, 2007a; Vander-
ploeg et al., 2002; Gutierrez et al., 2003; Zhu et al., 
2006; Sousa et  al., 2009; Darrigran & Damborenea, 
2011; Boltovskoy, 2015a). These services may be 
particularly significant in “novel ecosystems” (i.e., 
systems with significant novel elements such as inva-
sive species that are the result of deliberate or inad-
vertent human action, Hobbs et al., 2006) defined by 
Hobbs et al. (2013) as “a system of abiotic, biotic, and 
social components (and their interactions) that, by 
virtue of human influence, differ from those that pre-
vailed historically, having a tendency to self-organize 
and manifest novel qualities without intensive human 
management”.

Even though these mussels (especially D. poly-
morpha) have been studied intensively, assessments 

of their effects in the areas invaded vary widely, from 
almost entirely negative to largely mixed and often 
clearly positive. While in North America the effects 
of dreissenids are generally considered as predomi-
nantly negative (Nalepa, 2010; Ward & Ricciardi, 
2013), many positive influences have been described, 
especially in Europe (e.g., Binimelis et  al., 2007; 
Karatayev et al., 1994a, b; Smit et al., 1993; Ram & 
Palazzolo, 2008; Dionisio Pires et  al., 2010; Gomes 
et  al., 2018; Wang et  al., 2021). Mixed effects have 
also been reported for L. fortunei (Boltovskoy & Cor-
rea, 2015; Boltovskoy, 2017).

These mussels are also notorious for producing 
major negative economic impacts by biofouling of 
human-made facilities, including power generat-
ing, drinking water and other industrial plants, water 
conveyance structures, and watercraft, often requir-
ing costly maintenance operations conceivably in 
the range of hundreds to thousands of millions of 
US$ per year worldwide (see “Disservices, caveats, 
and unresolved issues” section). Ecological impacts 
include the overgrowth and/or competition for food 
with native benthic and pelagic species, promotion, in 
certain conditions, of the growth of bottom filamen-
tous algae and blooms of blue-green algae, transfer of 
contaminants up the food web, etc. (see “Disservices, 
caveats, and unresolved issues” section).

As with all organisms, both native and introduced, 
the effects of Dreissena spp. and L. fortunei are often 
mixed, context- and stakeholder-dependent. However, 
most policy and management actions concerning 
invasive species, as well as much of the scientific lit-
erature, rely on the assumption that these species have 
overwhelmingly negative impacts (Perrings et  al., 
2001; Pimentel, 2011; Simberloff & Vitule, 2013; 
Diagne et al., 2021).

Taking into account the large body of literature 
describing the negative impacts of these invasive 
mussels, in this paper we focus on their positive 
effects and review their ecosystem and economic ser-
vices. Our rationale is based on the assumption that 
if a particular effect of a native species is considered 
as a service (e.g., water clarity increase by native 
unionid mussels; Vaughn, 2017; Vaughn & Hoellein, 
2018), the same effect is also a service when pro-
vided by exotic bivalves. Further, if a baneful process 
(e.g., water pollution, eutrophication) driven by other 
mechanisms or organisms is mitigated by these exotic 
bivalves, we also consider this mitigation as a service. 
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For example, water filtration by native mussels (Unio-
nidae) can offset the negative impact of declines in 
water transparency, which is considered a service 
(Vaughn & Hoellein, 2018). However, because they 
commonly occur in higher densities, invasive mussels 
(Dreissena spp., L. fortunei) are much more efficient 
than native mussels in the clarification of water (Dig-
gins, 2001; Leuven et al., 2014; Collas et al., 2020), 
but when only their negative impacts are considered 
(which, admittedly, are sizeable, especially for the 

industry; see “Disservices, caveats, and unresolved 
issues” section), they get no credit for these benefits 
(Boltovskoy et al., 2022).

In the sections below we have made efforts to fol-
low the framework of the MEA (Table  1), but the 
assignment of the effects discussed to either of these 
categories is debatable. Thus, “Provisioning” and 
“Regulating” services are often tightly intertwined, 
and the regulation of a feature or process can often 
involve the provisioning of resources. For example, 

Table 1   Ecosystem services [adapted from the common international classification of ecosystem services (CICES), Haines-Young 
& Potschin, 2011] and disservices provided by exotic bivalves

Notice that except for biofouling, most of the effects listed are restricted to some waterbodies and/or local settings

Theme Service class Service group Benefits Disservices

Regulation and 
support/mainte-
nance

Regulation of physical/
biotic environment

Water quality regulation/
purification

Biofiltration
Reduction of phytoplank-

tonic primary production
Nutrient cycling and 

storage
Habitat creation/modifica-

tion
 Environmental monitor-

ing

Biofouling
Increase in toxic cyano-

bacterial blooms, 
nuisance macrophytes 
and bottom filamentous 
algae

Regulation of wastes Filtration and sequestra-
tion

Wastewater treatment
 Filtration/sequestration 

of particulates and con-
taminants, sequestration 
of nutrients

 Transfer of contaminants

Bioremediation Remediation/water purifi-
cation using mussels

Provisioning Nutrition Freshwater and terrestrial 
animals

Food for invertebrates, 
fishes, birds, and other 
animals in the wild

Fodder for farm animals 
and cultivated fishes

Food competition
Transfer of contaminants
Overgrowth of other ben-

thic animals (molluscs, 
crustaceans)

Biotic homogenization
Materials Biotic materials Mussel tissue and shells 

for agricultural applica-
tions and construction

Transfer of contaminants

Cultural Symbolic Aesthetic, heritage, 
spiritual

Landscape amelioration, 
wilderness, naturalness 
(“clean” lakes)

Biofouling of ship-
wrecks and other 
submerged culturally 
valuable objects

Intellectual and experi-
ential

Recreational and social 
activities

Angling, diving, swim-
ming, boating, bird 
watching

Economic (increase in 
property value)

Biofouling of beaches, 
boats, docks and piers

Increase in toxic cyano-
bacterial blooms, 
nuisance macrophytes 
and bottom filamentous 
algae

Transfer of contaminants
Information and knowl-

edge
Test organisms for 

scientific research and 
education

Sentinel organisms
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habitat modification by invasive mussels involves 
the regulation of environmental variables on the sub-
strates colonized, but also the provisioning of food 
for invertebrates that co-inhabit them (see below). In 
addition, the role invasive mussels play in the eco-
system (ecosystem functions) are much wider than 
the ecosystem services defined by the MEA as those 
that directly or indirectly contribute to human well-
being. Ecosystem functions are “dynamic processes 
that determine the amount, forms, distribution, fluxes, 
import and export of energy and various materials” 
(Strayer, 2012), and while many contribute to ecosys-
tem services, others are not directly linked to human 
benefits. The maintenance of ecological functions, 
and thus ecosystem services, is key for conservation 
in the race to cope with global environmental change, 
and exotic species that perform ecological functions 
similar to those of natives, should be valued and 
deserve recognition (Vizentin-Bugoni et  al., 2019; 
Leuzinger & Rewald, 2021).

Analysis of published studies

A search of SCOPUS performed in December 2021 
using “Dreissena” or “zebra mussel” or “quagga mus-
sel” in the abstract, title or keywords yielded 2853 
publications, whereas 333 documents were retrieved 
for “Limnoperna” or “golden mussel” (after eliminat-
ing duplicates and non-applicable titles). All the pub-
lications were separated into eight major categories: 
(1) ecosystem services (including positive impacts 
on ecosystems/communities, such as water purifica-
tion, reduction in phytoplankton, nutrient cycles (e.g., 
phosphorus reduction), food for other animals, posi-
tive effects on the native benthos consumed by fish 
and birds, macrophytes etc., biomonitoring, biore-
mediation, various uses, mussel farming, etc.); (2) 
general biology (including anatomy and morphology, 
physiology, life history traits, symbionts, parasites, 
and ecotoxicology); (3) ecology (ecological traits and 
habitat requirements); (4) management (risk analy-
sis, early detection, prevention, control, management, 
eradication, etc.); (5) impacts (studies that assess neg-
ative ecological and/or economic impacts on ecosys-
tems or native communities/species, including com-
petition, transfer of contaminants up the food chain, 
and others, see below); (6) dispersal (past and future 
dispersal, vectors and pathways); (7) taxonomy, 

systematics and evolution (phylogeny, phylogeogra-
phy, genetic diversity, taxonomy, systematics), and 
(8) other studies that did not fit into the above catego-
ries. Publications were separated based on our inter-
pretation of the results provided by authors. Docu-
ments often covered more than one subject but were 
tallied only once and assigned to the most relevant 
category only. As mentioned above, ecosystem func-
tions (defined by the MEA as those that directly or 
indirectly contribute to human well-being) are much 
wider than the ecosystem services provided by natu-
ral capital assets. Therefore, papers dealing with eco-
system functions resulting in predominantly negative 
ecological impact were included in the impact cate-
gory, while publications dealing with predominantly 
positive ecological impacts were included in the eco-
system services category.

Considering the three species jointly, the larg-
est number of publications was centered on ecosys-
tem services (33%), followed by general biology 
(19%) and ecology (17%) (Fig.  1). Publications on 
impact and management constituted 10% each, 8% of 
the papers were on dispersal, and 2% on taxonomy, 
systematics and evolution. This analysis indicates 
that despite the large economic and ecological con-
sequences of freshwater mussel invasions, there is 
ample recognition of the ecosystem functions and 
services they provide. For dreissenids, in the ecosys-
tem services group, the largest number of publica-
tions (28%) were on the use of dreissenids as envi-
ronmental bioindicators, 16% reported fish and bird 
consumption of dreissenids, 14% on reductions in 
phytoplankton, 9% described their positive effect on 
the benthos, 6 and 7%, respectively, were on improve-
ment in water clarity and their effects on nutrient 
cycles. The largest number of papers in the impact 
category was on the effect of dreissenids on unionids 
(32%), impacts on water utilities (10%), their negative 
effect on the deep-water amphipod Diporeia (11%) 
and fishes (8%), and on the transfer of contaminants 
(10%).

Regulating and supporting/maintenance

One of the most significant impacts of invasive 
bivalves is their water filtration for feeding and res-
piration, which involves water purification, enhance-
ment of water clarity, the rates of nutrient recycling 
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and their sequestration, and decreases in phytoplank-
tonic primary production. These services are particu-
larly relevant in already highly impacted ecosystems.

Biofiltration (water purification)

Mussels filter water for both feeding and respiration. 
As water is moved across their gills, particulates are 
removed from the water column. Both dreissenids 
and the golden mussel feed on organic seston in gen-
eral, including detritus, bacterioplankton, phytoplank-
ton, and zooplankton (reviewed in Karatayev et  al., 
2007a), retaining particles from < 1 to > 750  μm in 
size (Ten Winkel & Davids, 1982; Mikheev et  al., 
1994; Roditi et  al., 1996; Boltovskoy et  al., 2015; 
Rojas Molina et  al., 2015; Xia et  al., 2020). Fil-
tered particles are either ingested (producing feces), 
or rejected (pseudofeces), but in both cases they are 
bound in mucus and deposited on the bottom (Baker 
et  al., 2000; Morton, 2015). Filtration rates vary 
depending on temperature, mussel species and size, 
seston composition and concentration, water veloc-
ity, etc. (Kryger & Riisgard, 1988; Karatayev et  al., 
1997; Baldwin et al., 2002; Elliott et al., 2008; Bol-
tovskoy et al., 2015; Tokumon et al., 2015; Xia et al., 
2020). Karatayev et al. (1997) estimated zebra mussel 

filtration rates at 35–110 mL per g (total wet weight) 
per hour, which is within the range of values reported 
for L. fortunei (Boltovskoy et al., 2015). For quagga 
mussels, similar or higher rates have been reported 
(Ackerman, 1999; Diggins, 2001; Baldwin et  al., 
2002; Naddafi & Rudstam, 2013; Mei et al., 2016).

Consumed particulate organic matter is thus 
metabolized, transformed into mussel tissue and 
shell, becoming available for a wide range of animals 
that cannot feed on small, suspended particles (see 
below). Shell materials (e.g., C, Ca, Na, Cl, K, Mg, 
Ba, Sr, U; Immel et al., 2016) are removed from the 
pelagic system and are recycled or buried after mus-
sel death (reviewed in Karatayev et  al., 1997, 2002; 
Strayer & Malcom, 2007b; Ozersky et  al., 2015). 
However, in South America preservation of dead L. 
fortunei (and native mollusc) shells is restricted by 
the low concentrations of Ca in the water (Boltovskoy 
et al., 2009b; Correa et al., 2015).

In the summer, mussels can potentially filter vol-
umes of water equivalent to those of the entire water-
body in a few days to a few months (Karatayev et al., 
1997, 2007a; Boltovskoy et al., 2009a). Mussel filtra-
tion has dramatic impacts on lakes and rivers yielding 
particulate suspended matter reductions of up to over 
60%, Secchi disc depth increases up to 200%, and 

Fig. 1   Thematic classifica-
tion of publications on Dre-
issena spp. and Limnoperna 
fortunei (according to 
SCOPUS, search performed 
in December 2021). Docu-
ments often covered several 
subjects but were assigned 
to the most relevant cat-
egory only

01020 03020103
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and evolution
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(N=333)
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50–250% increases in light penetration (Karatayev 
et al., 1997, 2018a; Effler & Siegfried, 1998; Strayer 
et al., 1999; Boltovskoy et al., 2009a; Higgins & Van-
der Zanden, 2010; Kelly et al., 2010; Higgins, 2014; 
Mayer et  al., 2014; Barbiero et  al., 2018; Tokumon 
et al., 2018). In Embalse de Río Tercero (Argentina), 
L. fortunei was estimated to potentially be able to fil-
ter the entire volume of the waterbody (0.48 km3) in 
1–2 days (Boltovskoy et al., 2009a). Sediment accu-
mulation rates can double after the invasion (Lvova, 
1977, 1979; Tokumon et  al., 2018), and the percent 
of organic matter in the sediments associated with the 
mussels increase up to threefold (Howell et al., 1996; 
Roditi et  al., 1997; Sardiña et  al., 2008; Tokumon 
et al., 2018).

In economic terms, the services conveyed by the 
mussels’ filtration have been assessed in several sur-
veys providing information on the potential gains 
and losses involved. One measure is based on the 
changes in waterfront property values in association 
with changes in the water clarity of the waterbodies 
involved (Limburg et  al., 2010; Walsh et  al., 2016), 
illustrating that economic impacts can be captured by 
the market economy and used in economic cost–ben-
efit analyses of invasive species (see details under 
“Cultural Services” below).

Economic benefits of mussel filtration are not 
restricted to changes in property values, but can 
also alleviate the costs of drinking water treatment. 
Although clean raw surface water (in this context, 
mussel pre-filtered) is significantly cheaper to pro-
cess than turbid water (Price & Heberling, 2018), to 
the best of our knowledge only one survey attempted 
to evaluate this difference due to filtration by invasive 
mussels in economic terms. Wang et al. (2021) esti-
mated that biofiltration by D. polymorpha in several 
Dutch rivers saves potabilization plants from 110 to 
12,000 € per million m3 of water processed, and under 
a scenario of reduced metal pollution (and, therefore, 
enhanced filtration by Dreissena), these savings were 
estimated to increase by 89 € per million of m3. A few 
studies analyzed the feasibility of using L. fortunei 
beds or their shells for the removal of contaminants 
from water, wastewater, or the mussels’ tissues (Rom-
baldi et  al., 2015; Zhang et  al., 2015; Gomes et  al., 
2018; Cerqueira et al., 2019; Mantovani et al., 2020), 
but none has yet been applied beyond experimental 
settings.

Reduction of phytoplanktonic primary production

Invasive mussels can improve water quality by con-
suming a large fraction of the phytoplanktonic pro-
duction. The last seven decades of changes in the 
North American Laurentian Great Lakes are a prime 
example of this process. In the 1950s and 1960s, 
excessive algal growth due to anthropogenic eutrophi-
cation, caused by increasing human settlement and 
phosphorus loadings, was identified as a major 
threat to the water quality of the Great Lakes (Bee-
ton, 1961, 1965; Ayers, 1962). In attempts to reverse 
this trend, in 1972 the USA and Canada signed the 
Great Lakes Water Quality Agreement (GLWQA; 
International Joint Commission—IJC, 1972), which 
enforced improvements in the treatment of sewage 
and reductions of point sources of phosphorus. The 
target of the GLWQA was to restore the open waters 
of the upper Great Lakes (Superior, Huron, and 
Michigan) to oligotrophic conditions, and lakes Erie 
and Ontario to mesotrophic/oligo-mesotrophic con-
ditions (IJC, 1978). In the early 1970s, none of the 
lakes, except Lake Superior, met the target trophic 
status, but currently the open waters of all these lakes 
(with the exception of the western and central basins 
of Lake Erie) have over accomplished it (Dove & 
Chapra, 2015). This oligotrophication was associated 
with a dramatic decrease in anthropogenic nutrient 
inputs into the Great Lakes, suggesting that the con-
certed binational management actions were a major 
success. However, the most dramatic system-wide 
changes in the Great Lakes occurred only after the 
proliferation of large populations of quagga mussels 
had caused pronounced and long-lasting impacts, 
including increases in Secchi depths, declines in 
total phosphorus, chlorophyll, phytoplanktonic pri-
mary production, and phytoplankton and zooplank-
ton biomass, resulting in the oligotrophication of 
lakes Michigan, Huron, and the eastern basin of Lake 
Erie (Barbiero & Tuchman, 2004; Dobiesz & Negel, 
2009; Dove, 2009; Mida et al., 2010; Barbiero et al., 
2011, 2012, 2018; Evans et al., 2011; Bunnell et al., 
2014; Pothoven & Fahnenstiel, 2014; Reavie et  al., 
2014; Dove & Chapra, 2015; Pothoven & Vander-
ploeg, 2020; reviewed in Karatayev & Burlakova, 
accepted). Significant reductions in phytoplankton 
and/or chlorophyll a concentrations due to L. fortunei 
were also noticed in South America, both in enclo-
sure experiments (Cataldo et al., 2012a), and in field 
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observations comparing before versus after L. fortu-
nei introduction conditions (Boltovskoy et al., 2009a).

The increased water clarity is largely the result of 
mussel grazing of suspended particulate matter and 
its deposition on the bottom bound in mucus (see 
above). In southern Lake Michigan, dreissenids were 
estimated to consume over 50% of the annual net pri-
mary production (Tyner et  al., 2015), and 26–77% 
in the western basin of Lake Erie (Madenjian, 1995; 
Boegman et al., 2008). For organic carbon, the graz-
ing and subsequent quagga mussel-mediated depo-
sition rates of offshore Lake Michigan are 1.4–4.1 
times higher than passive sedimentation. These 
populations can graze 100% of the offshore organic 
material reaching the lake bottom, thus consuming all 
water-borne offshore carbon in 18–42 days, depend-
ing on the season (Tyner et al., 2015).

The ability of zebra mussels to reduce phytoplank-
ton biomass and increase water clarity has long been 
recognized (reviewed in Karatayev et al., 1997, 2002, 
2015a; Higgins & Vander Zanden, 2010), and mus-
sels are used in several European waterbodies for 
biomanipulation purposes to decrease the effects of 
anthropogenic eutrophication (see “Bioremediation” 
below).

Nutrient cycling and sequestration

Benthic filter feeders can exert strong bottom-up 
effects on aquatic systems by altering the stoichiom-
etry and the rates of nutrient recycling, as well as 
the spatial distribution of nutrients (Stanczykowska 
& Lewandowski, 1993; Mellina et  al., 1995; Arnott 
& Vanni, 1996; Naddafi et al., 2009). The nearshore 
shunt hypothesis posits that dreissenids have modi-
fied the physical environment, altered nutrient recy-
cling pathways, and increased nutrient retention in the 
nearshore (Hecky et  al., 2004). In the Great Lakes, 
in recent years the colonization of the mid-depths 
and the profundal zones by quagga mussels have 
expanded these impacts to deeper regions as well 
(Vanderploeg et al., 2010; Karatayev et al., 2021a).

In lakes and reservoirs, phosphorus (P) concentra-
tions are regulated by the balance of P sources and 
sinks, including inputs from the watershed, removal 
with outflow, and net burial in the sediments (Katsev, 
2017; Li et al., 2018a ). In the sediments, a large frac-
tion of the deposited P can be recycled and released 
back to the water column, but the proportions of 

recycled P vary widely. Filter-feeding dreissenids 
remove particulate P from water, and their P deposi-
tion rates are tenfold greater than passive P settling 
rates, which involves a major increase in the rates of 
transfer of P to the benthos, and shorter P residence 
times in the water column (Mosley & Bootsma, 
2015). This may explain the long-term declines in 
total P concentrations in lakes colonized by quagga 
mussels (Mayer et al., 2014; Dove & Chapra, 2015). 
The Laurentian Great Lakes are a dramatic exam-
ple of large scale reorganization of biogeochemical 
cycles due to the impacts of a single benthic species, 
the quagga mussel (Li et  al., 2021). Before dreiss-
enids invaded the Great Lakes, the recycled fraction 
of sedimented P varied from 10% (Lake Michigan) to 
60% (Lake Erie), contributing 15–48% of all (internal 
and external) P inputs to the water column (Katsev, 
2017). On a yearly basis, profundal mussels recy-
cle approximately 10 times more P than the amount 
they sequester in their biomass (Mosley & Bootsma, 
2015). Most of the P is re-mobilized (Stoeckmann & 
Garton, 1997), being either excreted into the water 
in dissolved form, or deposited on the sediment sur-
face as feces and pseudofeces (Arnott & Vanni, 1996; 
Mosley & Bootsma, 2015), where it is eventually re-
mineralized to dissolved P via microbial decomposi-
tion (Giles & Pilditch, 2006). However, given their 
huge densities in the Great Lakes colonized by dreis-
senids, the tissues and shells of quagga mussels now 
contain nearly as much phosphorus as the entire water 
column (Li et al., 2021).

Analysis of seven North American and European 
lakes with long-term data (> 15 years) spanning both 
pre- and post-Dreissena periods, and pre- and post-
P input reductions, showed significantly lower total 
phosphorus in the water column after the introduction 
of Dreissena (Mayer et  al., 2014). A meta-analysis 
of data from 57 lakes, 11 rivers, and 18 enclosure 
experiments concluded that in lakes the presence of 
Dreissena is associated with particulate phosphorus 
declines of ~ 21%, total phosphorus declines of ~ 18%, 
but no significant changes in soluble reactive phos-
phorus (Higgins, 2014). The declines were found to 
be persistent for up to ~ 10–20 years after the mussel’s 
invasion.

Johengen et al. (1995) estimated that after dreiss-
enid populations reached a stable density in Saginaw 
Bay (in the early 1990s), between 52 and 682 t of P 
became locked up in the mussels’ tissues. Pennuto 
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et al. (2014) found that mussels accounted for up to 
95% of the benthic biomass (dry weight) in southern 
Lake Erie and sequestered in their tissues approxi-
mately 500 t of P (6.2 mg per g of dry weight), and 
6426 t of N. In nearshore areas of Lake Ontario, 
the amount of P sequestered in mussel tissue was 
around 160 t (Pennuto et  al., 2012). Similar values 
were reported for European waterbodies. Goedkoop 
et  al. (2011) quantified the biomass and accumula-
tion of P and N in zebra mussels in eutrophic Lake 
Ekoln (Sweden), with a total standing stock of dre-
issenid biomass (dry weight) of 362 t, representing 
around 3.4 t of P and 36.6 t of N. Considering an 
average dreissenid life span of 2–3 years, the annual 
retention by mussels was estimated at 1.2–1.8 t of P, 
corresponding to 50–77% of the annual P influx from 
the Uppsala sewage treatment plant to the lake. The 
annual retention of N by zebra mussels was 13–20 t, 
largely equaling the annual input of N from atmos-
pheric sources on the lake’s surface. The authors 
stressed that while these retention rates correspond 
to only a fraction of the annual P load from agricul-
tural sources, the role of zebra mussels in nutrient 
budgets would be much larger if these budgets were 
adjusted for the bias introduced by including the input 
of a large fraction of refractory P (and N) (Goedkoop 
et al., 2011) (see also “Bioremediation" section).

The long-term P (as well as C and N) sink rep-
resented by spent Dreissena shells is also likely an 
overlooked ecosystem service provided by the mus-
sels, as ~ 15–20% of whole mussel P is associated 
with their shells (Goedkoop et al., 2021). Dreissenids 
may produce up to 10 kg dry mass of shells per m2 
annually and, in standing and/or hard waters, shell 
production rates far exceed their rates of decay, fur-
ther enhancing P withdrawal (Strayer & Malcom, 
2007b; Ozersky et al., 2015). Due to the high resist-
ance to erosion of their aragonitic shells (Pathy & 
Mackie, 1993; Meng et  al., 2018), the accumulating 
deposits of spent shells are likely a long-term sink for 
nutrients (Ozersky et al., 2015). In contrast, in South 
America, mollusc shells (including Limnoperna) dis-
solve rapidly after death due to the low Ca concentra-
tions in the water, and very rarely preserve in the sed-
iments (Boltovskoy et al., 2009b; Correa et al., 2015; 
Karatayev et al., 2015b).

The effects of these invasive mussels on nitrogen 
compounds are also complex and highly context-
dependent. In their meta-analysis of lakes (littoral and 

profundal zones), rivers and enclosure experiments 
with and without zebra mussels, Higgins and Vander 
Zanden (2010) estimated differences in the concentra-
tions of N in its various forms. Although in absolute 
terms differences with and without Dreissena were 
often high (up to 73%), due to their large variability 
none of 17 comparisons yielded statistically signifi-
cant figures. After the introduction of L. fortunei in 
Río Tercero Reservoir (Argentina), total N increased 
by ~ 270%, chiefly due to ammonia, whereas the con-
centrations of nitrites and nitrates did not change 
significantly. In experimental conditions, N was 
observed to increase in the sediments (Tokumon 
et al., 2018) and in the water column (Cataldo et al., 
2012a) in response to the presence of L. fortunei, but 
experimental settings may not reflect system-wide 
responses adequately (Higgins & Vander Zanden, 
2010; Higgins, 2014; Tokumon et al., 2018).

While P and N are of particular importance due 
to their relevance for primary producers, Dreissena 
plays a major role in the recycling and sequestration 
of many other elements as well, including As, Ba, C, 
Ca, Cr, Cu, Fe, Ni, Ti, Mg, Mn, Pb, Si, Zn, V, and 
Al (Walz, 1978; Karatayev et  al., 1994a; Wojtal-
Frankiewicz & Frankiewicz, 2010; Schaller & Planer-
Friedrich, 2017; Balogh et  al., 2022). Dreissenids 
can uptake and depurate metals through their interac-
tion with the environment depending on the seasonal 
change in metabolic activity, in a regulated way in the 
case of essential metals and passively in the case of 
non-essential ones (Balogh et  al., 2022). Fish feed-
ing on dreissenids accumulate < 2% of the micro-
elements, and although 37% is released back to the 
water, the rest is buried in the sediments and excluded 
from the cycle for decadal periods (Karatayev et al., 
1994a). Significant reductions in magnesium and 
calcium ion concentrations in the presence of zebra 
mussels, especially during periods of higher and more 
stable temperatures, were found in field experiments 
(Wojtal-Frankiewicz & Frankiewicz, 2010). The 
large lake-wide declines in calcium concentrations in 
Lake Erie and Ontario in the 1990s were likely due 
to calcium uptake by dreissenid mussels. In Lake 
Ontario, these declines in calcium may have fur-
ther reduced the frequency and/or intensity of sum-
mer whiting events, resulting in dramatic increases 
in summer epilimnetic water clarity (Barbiero et  al., 
2006; Chapra et al., 2012). In the Finger Lakes (New 
York state, USA) the introduction of zebra mussels 
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decreased calcite precipitation that began to rise in 
early 1800s due to chemical weathering induced by 
naturally acidic rains falling on freshly deforested 
and tilled landscapes and was further accelerated in 
the 1940s following industrialization and acidic rain-
fall associated with World War II (Lajewski et  al., 
2003).

Habitat modification

Engineering native and invasive organisms can cause 
physical changes of the environment, modifying 
existing and creating new habitats (Crooks, 2002). 
Bivalves have hard, calcium carbonate shells that 
increase the substratum available for other sessile spe-
cies that need hard substrata for survival. Dreissena 
spp. and L. fortunei attach to hard substrata, conspe-
cifics, and other organisms with byssal proteinaceous 
threads, creating complex two- and three-dimensional 
reef-like habitats for a wide range of sessile and 
mobile organisms that would otherwise be absent or 
scarce. Although in marine systems a variety of ani-
mals have a similar function (e.g., mussel beds, bar-
nacles, coral reefs), in freshwaters only dreissenids 
and mytilids play this role (reviewed in Karatayev 
et al., 2002, 2007a; Vanderploeg et al., 2002; Gutier-
rez et al., 2003; Zhu et al., 2006; Sousa et al., 2009; 
Darrigran   & Damborenea,  2011;  Burlakova et  al., 
2012; Sylvester & Sardiña, 2015). These reefs made 
of live mussels and spent shells are used by many 
invertebrates as refuge from predation, and from 
physical (waves, currents) and physiological (tem-
perature, desiccation) stress (reviewed in Karatayev 
et al., 1997, 2002; Stewart et al., 1998, 1999; Gutier-
rez et al., 2003; Burlakova et al., 2012). The effect of 
increased habitat complexity in mussel aggregations 
is reinforced by the trophic subsidy of the mussels 
due to their organic matter-rich feces and pseudo-
feces, partly retained within the colonies, and partly 
dispersed around them on the sediment surface. Field 
studies, sediment trap, mesocosm, and enclosure 
experiments indicate that organic matter, carbon, and 
total mass fluxes to the benthos are strongly increased 
in the presence of these mussels (Gergs et al., 2009; 
Cataldo et al., 2012b; Ozersky et al., 2015; Tokumon 
et al., 2018), enhancing the food subsidy for benthic 
deposit feeders (Karatayev et al., 1994a, 2002, 2007a, 
b; Karatayev & Burlakova, 1992, 1995; Botts & 

Patterson, 1996; Stewart et al., 1998; Burlakova et al., 
2005, 2012; Sylvester & Sardiña, 2015).

Another source of food for benthic invertebrates 
inhabiting the mussels’ beds are the algal and bacte-
rial communities that grow on the shells and in their 
aggregations. Over 150 algal species were identi-
fied in periphyton samples collected from zebra 
and golden mussel shells (Makarevich et  al., 2008; 
Carvalho Torgan et  al., 2009), and the total area of 
additional hard substrate represented by dreissenid 
shells can exceed 11% of the lake surface (Makarev-
ich et  al., 2008). Significant increases in periphyton 
biomass, in association with zebra and golden mus-
sels, were reported in field assessments and enclo-
sure experiments (Cataldo et  al., 2012b; Higgins, 
2014). Compared to bare sediments, dreissenids also 
increase heterotrophic bacterial density dramatically 
(up to ~ 2000%, Higgins & Vander Zanden, 2010), 
and enhance bacterial activity and metabolic diversity 
(Lohner et al., 2007).

Increased water clarity caused by the filtration of 
invasive bivalves favors the growth of submerged 
aquatic vegetation (also ecosystem engineers), which 
in turn affects water flow and provides resources such 
as food and habitat for many animals (Reeders & bij 
de Vaate, 1990; Lyakhnovich et  al., 1988; Skubinna 
et  al., 1995; Lowe & Pillsbury, 1995; Strayer et  al., 
1999), as well as many other ecosystem services 
(Thomaz, 2021). Macrophyte biomass and cover-
age increase as improved light penetration allows the 
plants to colonize deeper layers. One of their sali-
ent effects is the competition with phytoplankton for 
nutrients (Karatayev et al., 1997, 2002; Vanderploeg 
et  al., 2002; Zhu et  al., 2006; Ibelings et  al., 2007; 
Higgins & Vander Zanden, 2010; Mayer et al., 2014; 
Noordhuis et  al., 2016; Wegner et  al., 2019), which 
in lakes, ponds and lagoons often triggers shifts from 
turbid to clear water states (Ibelings et  al., 2007; 
Karatayev et  al., 2014b; Mayer et  al., 2014; Noord-
huis et  al., 2016). A meta-analysis of waterbodies 
invaded by dreissenids concluded that the areal cov-
erage of macrophytes increased by approximately 
180% between pre- and post-invasion periods, and 
the depth of the littoral zone increased by ~ 0.6 m in 
rivers, and 1.1  m in lakes (Higgins, 2014). In some 
waterbodies, however, increased light penetration can 
stimulate the growth of filamentous algae, which can 
be a nuisance for navigation and recreational activi-
ties (see “Disservices, caveats, and unresolved issues” 
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section). Submerged macrophytes associated with 
clearer waters may provide refuge for zooplankton 
(Mayer et al., 2001; Schriver et al., 1995, but see also 
Meerhoff et  al., 2006), enhance the abundance and 
diversity of benthic invertebrates, birds, and fish lar-
vae, providing them with additional food, shelter, and 
substrate (e.g., MacIsaac, 1996; Mayer et  al., 2001; 
Luukkonen et al., 2014; Musin et al., 2015).

Wastewater treatment

The ability of dreissenids to filter and clean water 
from organic pollution and toxic substances, includ-
ing heavy metals, is attracting increasing atten-
tion (Selegean & Heidtke, 1994; Elliot et  al., 2008; 
Binelli et al., 2014; Gomes et al., 2018). Early results 
of experimental trials with zebra mussels exposed 
to diluted activated sewage sludge for 96  h showed 
that the animals removed and biodeposited nearly all 
seston and P, significantly improving the clarity and 
decreasing the biochemical oxygen demand of the 
sludge (Mackie & Wright, 1994). Biofilters consisting 
of zebra mussel-overgrown artificial cage-like mod-
ules were successfully tested for wastewater treatment 
in Germany (Kusserov et al., 2010). Mussels can also 
eliminate pathogenic organisms (e.g., Escherichia 
coli, enteric viruses, Toxoplasma gondii, Giardia 
duodenalis) from wastewaters (Mezzanotte et  al., 
2016; Géba et al., 2020).

Mussel shells are composed primarily (> 80%) of 
calcium carbonate and can be used as a P-binding 
agent for the removal of P from wastewater effluents, 
helping to combat eutrophication. In test trials, Dre-
issena shell fragments had the highest phosphorus 
adsorption capacity compared to other media (Van 
Weelden & Anderson, 2003). McCorquodale-Bauer 
& Cicek (2020) suggested the use the zebra mussel 
shells as an alternative source to mined calcium car-
bonate for the production of lime to remove phos-
phorus in wastewater. Experimental trials with zebra 
mussel shells removed over 99% of the P, suggesting 
that they may be an efficient alternative for the pre-
cipitation of P in wastewaters.

Bioremediation

The use of zebra mussels for culling the effects of 
eutrophication were the object of many studies dating 
back to the 1980s, mostly in Europe (Piesik, 1983), 

and particularly in The Netherlands (Smit et al., 1993; 
Waajen et  al., 2016), where many shallow freshwa-
ter lakes suffer from severe algal blooms (Noordhuis 
et  al., 1992; Reeders et  al., 1993). Successful field 
experiments using ponds with and without zebra 
mussels were carried out in the early 1990s (Reed-
ers & bij de Vaate, 1990; Noordhuis et  al., 1992). 
With respect to the control (without mussels), the 
treatment pond (with mussels) experienced a steady 
increase in Secchi disc depths (with a ~ 1  m differ-
ence remaining stable throughout the first year of the 
experiment), declines in both organic and inorganic 
suspended matter, increases in light penetration, 
and did not develop cyanobacterial blooms. Even 
filamentous Cyanobacteria, such as Aphanizome-
non flos-aquae and Oscillatoria spp., too large to be 
consumed by zebra mussels, disappeared from the 
treated pond, likely because water clarification driven 
by the zebra mussels weakened their competitive 
advantage (Noordhuis et  al., 1992). Using an in  situ 
enclosure experiment, Waajen et al. (2016) concluded 
that quagga mussels can reduce the phytoplankton 
(including Cyanobacteria) biomass of a hypertrophic 
urban pond, and induce a clear water state. In a 
review of studies on lake restoration in north-western 
Europe, the use of zebra mussels was suggested as a 
promising approach to curtail phytoplankton, includ-
ing toxic Cyanobacteria, growth (Gulati et al., 2008). 
It should be noticed, however, that the impacts of 
both dreissenids and of L. fortunei on Cyanobacteria 
are still controversial (see “Disservices, caveats, and 
unresolved issues” section).

Dreissenid mussel farming can be a realistic option 
and a potentially profitable industry in coastal waters 
(Stybel et al., 2009; Schernewski et al., 2012; Fried-
land et  al., 2019). Schernewski et  al. (2019) con-
cluded that mussel farming is the most promising 
option for tackling eutrophication and facilitating 
macrophyte restoration to improve the water quality 
of the heavily eutrophicated large Oder (Szczecin) 
Lagoon (southern Baltic Sea). Further, dreissenids 
were found to be an adequate and potentially profit-
able source of food for zoo and farm animals and fish 
aquaculture plants (see “Harvest of mussels for farm 
animal and cultivated fish fodder” section). Goed-
koop et al. (2021) estimated that a single 0.5 ha mus-
sel farm could compensate for the total annual input 
of P from 23 ha of the watershed, or the biologically 
available P from 49 ha of agricultural land. While in 
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their experimental conditions mussel farming and 
harvesting was found economically unsustainable, the 
development of ad hoc industrial methods and eco-
nomic incentives for nutrient reductions in the lake 
could make this approach feasible.

Deterioration of environmental conditions in the 
coastal zone of the Baltic Sea along the Latvian, Lith-
uanian and Kaliningrad coasts during the 1980–1990s 
resulted in declines of major macrobenthic communi-
ties and keystone species (Mytilus edulis, Furcellaria 
lumbricalis, and Dreissena polymorpha in estuaries) 
and affected the spawning grounds of the Baltic her-
ring. Artificial reefs and substrates were constructed 
for the cultivation of Furcellaria, Mytilus and Dreis-
sena to restore these spawning grounds. The spawn-
ing success and survival of herring eggs depended on 
local hydrodynamics, specific materials, and types of 
substrates (Korolevs & Kondratjeva, 2006).

Dreissenids are very efficient at concentrating 
some noxious polluting substances in their shells, 
with very high shell:ambient water concentration 
ratios (e.g., U: 35,897, Ba: 1290, Zn: 800; Immel 
et  al., 2016). Thus, by incorporating these elements 
from the medium and retaining them on the bottom, 
they effectively purify the water-column, but can also 
transfer these toxicants up the food web when pre-
dated upon (see “Disservices, caveats, and unresolved 
issues” section). Bacterial biofilms on L. fortunei 
shells were reported to significantly enhance the deg-
radation of glyphosate, the most widely used herbi-
cide in agriculture worldwide and a major contami-
nant of freshwaters (although this process can also 
favor the release of nutrients and, therefore, eutrophi-
cation; Flórez Vargas et al., 2019).

Environmental monitors and indicators

Invasive mussels are used extensively as model organ-
isms for quality assessment and biomonitoring of 
freshwaters, and some of the major benefits they pro-
vide are often associated with waterbodies impacted 
by human activities, including hazardous chemicals, 
pathogens, and hypoxia.

Hazardous chemicals

The surveillance of chemical contamination of sur-
face waters involves two main objectives: to deter-
mine whether contamination levels are compliant 

with the regulatory environmental standards, and 
to evaluate the temporal trends of contamination in 
different environmental compartments of aquatic 
ecosystems (Besse et  al., 2012). Selecting a proper 
biological model is crucial for both objectives. The 
drawback of biomonitoring lies in the fact that dif-
ferent organisms behave differently, and therefore a 
contaminant that is noxious to one organism may be 
innocuous to many others (Faria et al., 2010).

Mussels are widely used as sentinel organisms 
to monitor chemical pollution in aquatic environ-
ments because they are filter feeding, sessile bottom 
dwellers that bioaccumulate many contaminants with 
little metabolic transformation and provide time-
integrated information of chemical contamination in 
the environment (Roesijadi et  al., 1984). In marine 
ecosystems, Mytilus spp. have historically been used 
as sentinel organisms worldwide to monitor the con-
tamination by some persistent organic pollutants, 
heavy metals, organotin compounds, radionuclides, 
and pharmaceuticals. In freshwaters, dreissenids and 
L. fortunei have all the characteristics required for a 
good model: they have a remarkable filtering capac-
ity which ensures active interaction with the medium; 
are widespread in lentic, lotic and estuarine environ-
ments and are available throughout the year; their size 
makes them easy to collect and manipulate, they are 
sessile and relatively long living (Karatayev et  al., 
2006); and they survive well in laboratory conditions 
(Slooff et  al., 1983; Jenner et  al., 1989; reviewed in 
Borcherding, 1992; Binelli et al., 2015).

In Europe, zebra mussels have been used exten-
sively as model organisms for the quality assess-
ment and biomonitoring of freshwaters since the 
late 1970s. They can accumulate large amounts of 
a wide range of pollutants in their soft tissues and 
shells, making them suitable for biomonitoring of 
heavy metals (Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn, Hg, 
Se), organic compounds such as methylmercury, 
dichlorodiphenyltrichloroethane and several related 
pesticides (DDTs), polychlorinated biphenyls (PCBs), 
polycyclic aromatic hydrocarbons (PAHs), hexachlo-
robenzene (HCB), hexachlorocyclohexanes (HCHs), 
organophosphate insecticides, and even radioactive 
contamination (Neumann & Jenner, 1992; reviewed 
in Binelli et  al., 2015). Moreover, even transplanted 
zebra mussels exposed for a period of six weeks can 
accumulate micropollutants up to levels comparable 
to those measured in resident mussels (Binelli et al., 
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2015). Zebra mussels were found to be good indica-
tors of endocrine disrupting chemicals (Quinn et al., 
2004). Bashnin et  al. (2019) found that bioaccumu-
lated pesticides and metals in transplanted zebra mus-
sels can give an insight not only into their bioavail-
ability in the environment, but also into the ecological 
responses of the benthic communities affected by 
these toxicants.

Dreissenids were selected as target organisms in 
the North American Great Lakes by a country-wide 
program using bivalves for water quality monitoring 
(the National Status and Trends Mussel Watch Pro-
ject, National Oceanic and Atmospheric Adminis-
tration—NOAA, USA) that examines contaminants 
at nearshore sites on a biennial basis providing cru-
cial information for the identification of the levels 
and distribution of toxicants (Apeti & Lauenstein, 
2006). Monitoring of contaminant concentrations in 
dreissenids over time can also be used to assess the 
efficiency of remediation-oriented initiatives (Kim-
brough et al., 2014). In addition to the assessment of 
bioaccumulated contaminants in their bodies, inva-
sive mussels are also intensively used as both in-
vivo and in-vitro biomarkers, and in transcriptomics 
and proteomics studies to provide information on the 
potential impact of pollutants on the health of other 
organisms (reviewed in Binelli et al., 2015).

Monitoring of pollution with the aid of dreissenids 
is not restricted to the assessment of contaminants 
in their tissues and shells. As most bivalves, when 
exposed to stressful conditions, including toxic sub-
stances in the surrounding water, dreissenids shut 
their valves more often and for longer periods than 
normal. This behavior can be monitored automati-
cally in ad hoc flow-through devices with mussels at 
the intake end of water treatment plants, triggering an 
alarm when the proportion of closed shells are above 
predefined threshold values. As of 2006, 13 such 
devices (“Dreissena-Monitors”) were used by Ger-
man drinking water treatment plants and successfully 
functioning as an early warning system for the intake 
of polluted water (Borcherding, 2006).

Although the golden mussel is more resilient to 
adverse conditions than dreissenids, it also has been 
used to monitor the presence of environmental pol-
lutants using chemical and genotoxic assessments 
(do Amaral et al., 2019; El Haj et al., 2019; Balsamo 
Crespo et al., 2020; Gattás et al., 2020; Nunes et al., 
2020; Pazos et al., 2020; Besen & Marengoni, 2021; 

Girardello et  al., 2021; Mendes Sene et  al., 2021; 
Miranda et al., 2021; Oliveira et al., 2021).

Pathogens

Aquatic pollution by pathogenic organisms, includ-
ing viruses such as the ones responsible for the 
COVID-19 pandemic (Le Guernic et  al., 2022), can 
be monitored using dreissenids. Fecal coliforms and 
Escherichia coli are used as bioindicators to evalu-
ate water quality and wastewater treatment efficiency, 
and the use of mussels as indicators of contamina-
tion by fecal bacteria provide advantages compared 
with traditional monitoring methods (Selegean et al., 
2001; reviewed in Gomes et  al., 2018). Zebra mus-
sels were found to host 132 times more E. coli and 
other intestinal enterococci than ambient water for up 
to two days after pulse exposures to the bacteria, thus 
providing a time-integrating and much more sensitive 
indicator of bacterial contamination than water sam-
ples (Bighiu et al., 2019). Bacteria can also be a food 
source for the bivalves (Mikheev et al., 1994), and D. 
polymorpha and Corbicula fluminea (also invasive) 
were found to clear E. coli more rapidly that native 
unionids (Silverman et al., 1997).

Analyses of pathogenic protists (Cryptosporidium 
parvum, Giardia duodenalis, Giardia lamblia, Toxo-
plasma gondii, Cyclospora sp., Enterocytozoon intes-
tinalis, E. hellem, E. bieneusi) in the water requires 
filtration of large volumes because their densities are 
often low. Mussel filtration concentrates their num-
bers, often proportionally to their values in the water, 
allowing usage of the bivalve’s tissues as indicators 
and a good integrative matrix for biomonitoring of 
these pathogens (Lucy et al., 2008, 2010; Lucy, 2009; 
Conn et al., 2014; Ladeiro et al., 2014; Gomes et al., 
2018; Géba et al., 2020). In addition, due to the diges-
tion of C. parvum and T. gondii oocysts, mussels can 
be used as a bioremediation tool to mitigate contami-
nation by pathogenic protists (Géba et al., 2021a, b). 
Zebra mussels were found useful in assessing viral 
contamination by measuring the accumulation of 
indicators of viral pollution F-specific RNA bacte-
riophages in their tissue (Capizzi-Banas et al., 2021). 
They can also accumulate a low pathogenic form of 
the avian influenza virus H5N1 (Stumpf et al., 2010; 
reviewed in Gomes et  al., 2018). In spiked treated 
municipal wastewater, Mezzanotte et al. (2016) found 
a significant reduction in rotavirus that can cause 
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gastroenteritis, and although the viruses remained in 
the soft zebra mussel tissues or in the liquid phase, 
they were not transmissible to other species. The 
ability to bioaccumulate microcystins by zebra and 
golden mussels can potentially be used for biomoni-
toring of toxic cyanobacteria blooms (Paldavičienė 
et al., 2015; Minillo et al., 2016).

Hypoxia

Hypoxia is a key global stressor in freshwater, estua-
rine and marine benthic ecosystems (Diaz & Rosen-
berg, 2008; Tellier et  al., 2022) that is predicted to 
increase worldwide due to ongoing human-induced 
eutrophication and global warming (Villnäs et  al., 
2012). Both zebra and quagga mussels are intoler-
ant of even moderate hypoxia; thus, monitoring the 
occurrence and length-frequency distribution of 
Dreissena spp. can be an effective tool for mapping 
the extent and frequency of hypoxia in freshwa-
ters (Karatayev et  al., 2018b, 2021b). In contrast to 
pelagic organisms and some motile benthic species, 
dreissenids cannot migrate to escape hypoxia, and 
their planktonic larvae and extremely high fecundity 
allow them to disperse rapidly and recolonize sub-
strates even after large-scale die-offs. Due to their 
long lifespan, their populations usually consist of 
multiyear cohorts allowing the detection of even rare 
hypoxic events. Further, due to their large body size 
and high densities, in clear waters they can be sur-
veyed using remote sensing techniques (e.g., under-
water video), allowing swift collection of informa-
tion on their distribution over large areas, and both 
conventional (bottom grabs) and video surveys 
proved to be efficient tools in mapping hypoxic areas 
(Karatayev et  al., 2018c, 2021b; Burlakova et  al., 
2022), providing a record of the recent history, rather 
than instantaneous snapshots, of hypoxic events.

In contrast to dreissenids, the golden mussel is 
tolerant of very low oxygen concentrations (~ 0.5 mg 
L−1; Karatayev et al., 2007b; Perepelizin & Boltovs-
koy, 2011). In urbanized stretches of the Río de la 
Plata Estuary (Argentina-Uruguay) the golden mussel 
thrives in areas polluted with raw sewage and runoff 
from storm water outlets and in areas where dissolved 
oxygen levels are extremely low (Boltovskoy et  al., 
2006). Although massive die-offs associated with 
system-wide dissolved oxygen drops have also been 
reported (Oliveira et al., 2010), its ability to survive at 

low dissolved oxygen levels limit the use of this mus-
sel as an indicator of hypoxia.

Provisioning services

Food for other species

Food for fishes

Both dreissenid species and the golden mussel pro-
vide an abundant food resource for fishes (Vorobiev, 
1949; Zhadin, 1952; Karatayev et al., 1994b, 2015b; 
Molloy et  al., 1997; Bartsch et  al., 2005; Cataldo, 
2015; Paolucci & Thuesen, 2015). At least 58 spe-
cies of benthivorous fishes in Europe and in North 
America feed on adult dreissenids, and > 50 in South 
America on L. fortunei.

Dreissenids are particularly important in fish diets 
in their native range, where fishes are evolutionarily 
adapted to consume mussels (reviewed in Karatayev 
et  al., 1994b). In the North Caspian Sea about 90% 
of the annual production of mussels (13,000 t, wet 
weight) are consumed by fishes (Yablonskaya, 1985). 
In the Azov Sea, fishes consume annually 13,800,000 
t of benthos, roughly half of which is represented by 
the bivalves (Vorobiev, 1949). Since many European 
fishes are adapted to feed on mussels, the introduc-
tion of zebra mussels into new European waterbodies 
is often associated with increases in fish productivity 
and commercial catches (Lvova, 1977; Lyakhnovich 
et al., 1988; Karatayev & Burlakova, 1995; Karatayev 
et  al., 1997, 2002, 2010a). A vivid example is the 
roach (Rutilus rutilus), the most prominent consumer 
of dreissenids (reviewed in Karatayev et  al., 1994b, 
1997; Molloy et  al., 1997), which in invaded lakes 
is characterized by much higher growth rates, larger 
size, and higher lipid content compared to pre-inva-
sion periods (Lyagina & Spanowskaya, 1963; Pod-
dubny, 1966).

In North America, predation on dreissenid mus-
sels in the Great Lakes has been documented for 
many commercially important native fishes, includ-
ing whitefish (Coregonus clupeaformis) (Pothoven 
& Madenjian, 2008; Madenjian et  al., 2010), lake 
sturgeon (Acipenser fulvescens) (Jackson et al., 2002; 
Bruestle et al., 2018), blue catfish (Ictalurus furcatus) 
and channel catfish (I. punctatus) (Thorp et al., 1998), 
freshwater drum (Aplodinotus grunniens), round 
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whitefish (Prosopium cylindraceum) (Turschak & 
Bootsma, 2015), and yellow perch (Perca flavescens) 
(Morrison et al., 1997; Watzin et al., 2008; Shields & 
Beckman, 2015). In Oneida Lake (New York  state), 
dreissenid mussels are a substantial component of 
lake sturgeon diets, especially for the larger individu-
als (Jackson et al., 2002). Dreissena spp. comprises a 
major part of the diet of the endangered silver chub 
(Macrhybopsis storeriana), having largely replaced 
other bivalves (Sphaeriidae) and Gastropoda (Kocov-
sky, 2019). A similar shift from a pre-invasion diet of 
other benthic littoral invertebrates to zebra mussels 
was recorded for several species of Lepomis (Mol-
loy et  al., 1997; Mercer et  al., 1999; Magoulick & 
Lewis, 2002; Colborne et  al., 2015). Non-dreissenid 
nearshore invertebrates, which have benefited from 
dreissenid-mediated benthification, became the pri-
mary forage of nearly all nearshore fish species 
(Turschak & Bootsma, 2015). After Lake Erie was 
invaded by dreissenids, benthic resources were esti-
mated to support 75–95% of the potential fish produc-
tion (Johannsson et al., 2000). In Lake Ida (USA), 10 
(out of 11) fish species increased the use of littoral 
carbon after the establishment of the zebra mussel, 
with the mean use of littoral carbon increasing from 
43 to 67% (Morrison et  al., 2021). In the Hudson 
River (USA), littoral macrophyte primary produc-
tion doubled after zebra mussel colonized the river 
(Caraco et al., 2000), and many fishes associated with 
vegetated shallows where they feed chiefly on benthic 
invertebrates increased after the invasion, although 
pelagic fishes declined (Strayer et al., 2004). In con-
trast, dreissenid-induced loss of primary production 
and oligotrophication of the Great Lakes resulted in 
large declines in pelagic fish (see “Disservices, cave-
ats, and unresolved issues” section), suggesting the 
need for actions oriented at managing benthic-ori-
ented native fishes, such as coregonids and lake trout, 
better suited to ongoing ecosystem changes (Dettmers 
et al., 2012; Kao et al., 2018). Consequences of dre-
issenid introductions to fisheries in the Great Lakes, 
however, have been much more significant than those 
in other inland lakes (Nienhuis et al., 2014).

In addition to native fish species, several intro-
duced fishes feed on both zebra and quagga mus-
sels, as well as on another Ponto-Caspian invader, the 
round goby (Neogobius melanostomus) (Jude et  al., 
1992; Charlebois et  al., 1997; Molloy et  al., 1997; 
Watzin et  al., 2008). The round goby, which feeds 

intensively on the mussels, provided a very important 
trophic link between dreissenids and commercially 
and recreationally valuable fish species, including 
lake trout (Salvelinus namaycush) (Dietrich et  al., 
2006), burbot (Lota lota) (Madenjian et  al., 2011), 
yellow perch (Perca flavescens) (Weber et al., 2011), 
smallmouth bass (Micropterus dolomieu) (Crane & 
Einhouse, 2016), walleye (Sander vitreus) (Pothoven 
et al., 2017), and lake sturgeon (Acipenser fulvescens) 
(Jacobs et  al., 2017). Lake sturgeon is a species of 
conservation concern in many U.S. states and Cana-
dian provinces (Peterson et  al., 2007). In the lower 
Niagara River, which hosts one of the few remnant 
lake sturgeon populations in New York state, three 
non-native species became dominant in its diet: the 
round goby, the amphipod Echinogammarus ischnus, 
and dreissenids (Bruestle et  al., 2018). Due to their 
high consumption rates of round gobies, adult lake 
sturgeon in the lower Niagara River are now primar-
ily piscivorous, and their recovery is supported by the 
high availability of energetically rich non-native food 
resources (Bruestle et al., 2018).

Of the > 50 fish species that feed on L. fortunei in 
South America (reviewed in Cataldo, 2015), some 
became dependent on this resource almost exclu-
sively (e.g., the boga, Megaleporidens obtusidens; 
Penchaszadeh et al., 2000), whereas others, formerly 
omnivorous, iliophagous, and ichthyophagous spe-
cies, shifted from plants, detritus and other items 
to adult mussels after mussel introduction (Ferriz 
et al., 2000). In Japan and in South America, preda-
tor inclusion/exclusion experiments indicate that up 
to > 90% of the mussel’s production is consumed, 
presumably mostly by fishes (Sylvester et al., 2007a; 
Nakano et al., 2010; Duchini et al., 2018). In the Uru-
guay River (Argentina-Uruguay), stable isotope mix-
ing models (δ13C and δ15N) show that L. fortunei is 
responsible for up to 66% of the biomass of 8 domi-
nant fish species (González-Bergonzoni et al., 2020).

Many midsized fishes that feed on golden mus-
sels are in turn consumed by larger, piscivorous 
fishes with high commercial and recreational value, 
suggesting that mussels are likely to have a positive 
impact on these large species as well (reviewed in 
Boltovskoy & Correa, 2015; Karatayev et al., 2015b). 
In addition, similar to dreissenids, golden mussels 
transfer large amounts of organic matter from the 
pelagic to the benthic domains through their feeding 
and filtering activities and the formation of feces and 
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pseudofeces, which likely boosts the biomass of many 
iliophagous species, including the sábalo (Prochilo-
dus lineatus), an intensively exploited and strictly 
iliophagous species which represents up to > 60% of 
the overall fish catches and biomass in the Río de la 
Plata basin, and ~ 80–90% of Argentine freshwater 
fish exports (Boltovskoy et al., 2006; Scarabotti et al., 
2021).

In Europe and North America, at least 17 species 
of fish (primarily fry) have been reported to con-
sume planktonic larvae of zebra mussels (reviewed 
in Molloy et  al., 1997; Chrisafi et  al., 2007; Watzin 
et al., 2008; Turschak & Bootsma, 2015) as veligers 
represent an abundant and, because of their limited 
dodging capabilities, easily available prey for early 
feeding fish larvae, and may partially offset the appar-
ent low consumption of other prey sources (Marin 
Jarrin et  al., 2015; Withers et  al., 2015). During the 
summer, Dreissena veligers often comprise up to 
73% of total zooplankton density, and up to 40% of 
the zooplankton biomass and production (Wiktor, 
1958; Kornobis, 1977; Lvova et  al., 1994; David 
et  al., 2009; Karatayev et  al., 2010a; Withers et  al., 
2015; Lazareva et  al., 2016; Bowen et  al., 2018). In 
Salto Grande Reservoir (Argentina–Uruguay), in 
2006–2019, golden mussel larvae comprised ~ 80% 
of the combined densities of larvae, Cladocera and 
Copepoda (Boltovskoy et al., 2021a). Consumption of 
golden mussel veligers by fish larvae could be even 
more significant than the consumption of adult mus-
sels (Boltovskoy & Correa, 2015). Golden mussel 
veligers are not only more abundant and easier to cap-
ture than crustacean zooplankton, but they also rep-
resent an energetically more profitable food resource 
yielding significantly higher growth rates than crus-
taceans (Paolucci et al., 2010). Golden mussels have 
been suggested to increase Argentine freshwater fish 
landings and exports significantly (Boltovskoy et al., 
2006), but the multiple variables potentially involved 
in this rise are difficult to tease apart.

In addition to the facilitating effects of the con-
sumption of mussel larvae and adults, fishes also ben-
efit from the enhancement of mussel-associated inver-
tebrates (Lyakhnovich et  al., 1983, 1988; Karatayev 
& Burlakova 1992, 1995; Stewart & Haynes, 1994; 
Sylvester et  al., 2007b; Sardiña et  al., 2008, 2011) 
(see “Habitat modification” section).

A major concern associated with mussels con-
sumed by other aquatic animals is whether they 

facilitate the transfer of bioaccumulated contami-
nants up the food web, and if these exotic mussels are 
effectively more deleterious in transferring the con-
taminants than other native or introduced prey species 
(see “Disservices, caveats, and unresolved issues” 
section).

Food for birds

Consumption of dreissenids has been recorded for at 
least 36 bird species, including 21 in Europe and 20 
in North America (ducks, pochards, scaups, coots, 
rails, etc.; reviewed in Karatayev et al., 1994b; Mol-
loy et al., 1997). Zebra mussels are often very abun-
dant, requiring low search and handling times (Leuz-
inger & Schuster, 1970; Kornobis, 1977; Draulans, 
1982; Suter, 1982b; Wormington & Leach, 1992). In 
terms of biomass, zebra mussels are the most abun-
dant macroinvertebrate prey for ducks in the Rhine 
River and in lakes Ijsselmeer and Markermeer (The 
Netherlands), where large numbers of mussel-con-
suming ducks are present from October to April and 
consume up to ~ 30% of the annual zebra mussel 
production (Smit et  al., 1993). Since zebra mussels 
invaded Lake Constance (Germany) in the 1960s, the 
number of overwintering waterbirds increased four-
fold, decreasing mussel biomass in shallow areas 
by > 90%. The birds remove ~ 750 t of mussels per 
km2, or 1390 g (whole wet weight with shell) of mus-
sels per bird per day (Werner et al., 2005). Migrating 
waterfowl can quickly locate areas with dense mus-
sel populations (reviewed in Molloy et al., 1997) and 
forage most commonly on mussels between autumn 
and spring, when flocks are either temporarily present 
during their migrations (Mitchell & Carlson, 1993; 
Hamilton et  al., 1994), or overwintering on site (bij 
de Vaate, 1991; Cleven & Frenzel, 1993). A 92-fold 
increase in scaups (Aythya spp.), and a noticeable 
increase in other waterfowl were recorded in Long 
Point Bay on Lake Erie, one of the most important 
waterfowl staging areas on the Great Lakes, after dre-
issenids colonized the bay (Petrie & Knapton, 1999). 
The use of Lake St. Clair (USA-Canada) by scaups, 
canvasback (Aythya valisineria), and redhead ducks 
(Aythya americana) in U.S. waters during fall migra-
tions increased from 1.1 million use-days before dre-
issenid establishment, to 2.1 million after it. While 
scaups prey on dreissenids directly, canvasbacks 
likely responded to increased submerged aquatic 
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macrophyte food associated with greater water clarity 
due to mussel colonization (Luukkonen et al., 2014). 
The declining European population of greater scaup 
A. marila strongly depends on the non-native zebra 
mussels that constitute > 90% of their food by bio-
mass. In the brackish lagoons of the Odra River Estu-
ary (south-western Baltic Sea), an important area for 
the species during the non-breeding season in Europe, 
greater scaups consume an average of 5400 t of zebra 
mussels annually (Marchowski et al., 2015).

The introduction of zebra mussels was associ-
ated not only with dramatic increases in waterfowl 
numbers, but also affected their migration patterns 
(reviewed in Molloy et  al., 1997). In Swiss lakes, 
prior to the introduction of zebra mussels, water-
fowl fed on aquatic macrophytes and migrated to the 
south in the fall after plant die-back, whereas pres-
ently, large numbers overwinter locally (Leuzinger 
& Schuster, 1970). In winter, however, ice formation 
precludes foraging, except in waterbodies where open 
waters are available year-round as in cooling water 
reservoirs for power plants where large flocks of mal-
lards (Anas platyrhynchos) regularly overwinter and 
consume large quantities of zebra mussels in shallow 
open waters (Karatayev et al., 1994b; Kozulin, 1995). 
In England, the geographical range of the tufted duck 
(Aythya fuligula) expanded due in part to the spread 
of zebra mussels (Olney, 1963). Food abundance 
and availability, particularly Dreissena, were sug-
gested as the main factors governing lake choice by 
overwintering diving ducks in Switzerland (Pedroli, 
1981; Suter, 1994). Soon after the arrival of zebra 
mussels in western Lake Constance in the late 1960s, 
10–50-fold increases in overwintering tufted ducks, 
pochards (Aythya spp.), and coots (Fulica spp.) were 
observed, and goldeneye (Bucephala clangula) began 
to arrive earlier (Suter, 1982b). Conversely, in areas 
where zebra mussel populations declined, diving 
birds showed a tendency to leave overwintering areas 
earlier, likely due to lower food availability (Suter, 
1982a).

In addition to the direct consumption of dreiss-
enids, waterfowl also prey on the invertebrates asso-
ciated with the mussels. The abundance of macroin-
vertebrates (mostly Oligochaeta, Chironomidae, and 
Ephemeroptera) associated with Dreissena colonies 
were significantly reduced in unprotected enclo-
sures in shallow areas of Lake Constance, presum-
ably due to waterfowl predation (Mörtl et al., 2010). 

In addition, birds also benefit from increased mac-
rophyte coverage (see “Habitat modification” sec-
tion). For example, the bay of Lucerne (Switzerland) 
has become an internationally important wintering 
site for red-crested pochard (Netta rufinadue) due to 
recolonization of the lake by stoneworts (Characeae) 
after zebra mussels were introduced in the 1980s 
(Schwab et  al., 2001). Both charophytes and zebra 
mussels are considered keystone species defining eco-
system resilience in some lakes, and careful manage-
ment of these species is as important as the control of 
nutrients (Ibelings et al., 2007).

In South America, areas invaded by the golden 
mussel host hundreds of aquatic bird species, many 
of which feed on submerged organisms. However, 
their consumption of L. fortunei has never been 
studied. Circumstantial observations in Embalse de 
Río Tercero reservoir (Argentina) suggest that, after 
the introduction of the golden mussel, the densities 
of some coot species (Fulica leucoptera, F. armil-
lata) increased significantly, probably in response 
to the growth of aquatic macrophytes, on which the 
birds feed. Birds have also been observed to dive and 
emerge with clusters of L. fortunei in their beaks (M. 
Hechem, pers. comm.), suggesting that they may also 
feed on the mussel, as do other coot species on Dreis-
sena in North America (see above).

Food for other animals

In addition to fishes and birds, several other ani-
mals have been reported to feed on dreissenids. In 
Europe and North America, several species of cray-
fish (Cambarus affinis, C. robustus, Orconectes limo-
sus, O. virilis, O. propinquus) and muskrats (Ondatra 
zibethicus) have been observed eating zebra mussels 
(reviewed in Karatayev et  al., 1994b; Molloy et  al., 
1997). According to Piesik (1974), during the sum-
mer adult stages of the crayfish O. limosus can con-
sume 6000 young dreissenids per crayfish potentially 
limiting their population growth. Blue crabs (Cal-
linectes sapidus) were recorded actively feeding on 
dreissenids in the Hudson River, causing mussels 
populations to crash near Catskill (New York, USA) 
in 1992 (Molloy et al., 1994). Dreissena was found in 
the guts of the mudpuppy salamander (Necturus mac-
ulosus), a declining Laurentian Great Lakes native 
species (Beattie et  al., 2017). Experiments in The 
Zoological Garden of Osnabrück (Germany) showed 
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that mongooses (Mungos mungo) and the oriental 
small-clawed otters (Aonyx cinerea) can feed on zebra 
mussels; raccoons (Procyon lotor) prefer zebra mus-
sels over other food items, while Arctic foxes (Vulpes 
lagopus) feed on mussels reluctantly (Schernewski 
et al., 2019). In Lake Opinicon (Canada), zebra mus-
sels constitute up to 36% of the diet of the northern 
map turtle (Graptemys geographica) which can con-
sume over 3000 kg of zebra mussels per year (Bulté 
& Blouin-Demers, 2008). In addition to G. geo-
graphica, the stinkpot turtle Sternotherus odoratus 
was found to prey heavily on invasive mussels in the 
Laurentian Great Lakes (Lindeman, 2006; Patterson 
& Lindeman, 2009). In trials involving multi-prey 
assemblages, two native mysid species from the St. 
Lawrence middle estuary, Neomysis americana and 
Mysis stenolepis, exhibited high predation rates on 
zebra mussel veligers (Winkler et al., 2007).

Comparisons of L. fortunei densities on unpro-
tected artificial substrates with those on substrates 
protected with 5–40  mm meshes indicate that up to 
over 90% of their yearly production is lost to preda-
tors, presumably fishes and invertebrates (Sylvester 
et  al., 2007a; Nakano et  al., 2010; Duchini et  al., 
2018). In South America, two crab species and one 
turtle have been observed to feed on L. fortunei 
(Bujes et  al., 2007; Torres et  al., 2012; Carvalho 
et al., 2013), but the importance of this item in their 
diets is unknown.

Harvest of mussels for farm animal and cultivated 
fish fodder

The possibility of taking advantage of the large 
biomass of invasive bivalves has been envisioned 
since the 1950s. Zhadin (1952) and Karatayev et  al. 
(1994b) reviewed the Russian literature on the use 
of dreissenids as food for livestock and poultry in 
dry food blends, and to extract vitamins. In terms of 
fresh weight, zebra mussels contain 8.4% of protein, 
0.8% of fat, 0.14% of P, 1.3% of raw ash and 89.3% 
of water (Schernewski et  al., 2019), which makes 
them a potential substitute or additive for protein-rich 
fodder for farm animals. In Tsimlyanskoe Reservoir 
(Russia), the annual production of zebra mussels 
was estimated at 1,000,000 t, or 242,000 t in tissue 
biomass. An annual harvest of only 2% of this bio-
mass (to prevent overharvesting and the ensuing 
eutrophication) can produce 5,000 t of dreissenid 

tissue containing ~ 500 t of protein (Miroshnichenko, 
1990). From 6 to 60 t of molluscs can be harvested 
from one hectare of the reservoir’s bottom. In Pyal-
ovsk Reservoir (Russia), 20–40 kg of mussels can be 
collected from 15 to 20 running meters of the bottom; 
harvesting by hand can yield 100–200 kg h−1, and up 
to 500  kg  h−1 with the aid of motorboats (reviewed 
in Karatayev et al., 1994b). In waterbodies with high 
mussel densities, artificial ad hoc substrates can pro-
duce up to 20–30  kg of molluscs per square meter 
annually (reviewed in Karatayev et al., 1994b).

Zebra mussel shells washed ashore were used as a 
food supplement for chicken (reviewed in Karatayev 
et al., 1994b), as well as for ducks and pigs (Gasunas, 
1959, 1965). Ducks fed with zebra mussels grew bet-
ter than those fed with the traditional food, and the 
farms became more profitable. In 1964 alone, 7000 t 
of dreissenids were harvested for duck farms in the 
Curonian Lagoon (Baltic Sea). Harvested zebra mus-
sels have also been used to produce food for culti-
vated fish. Grinded mussels (raw or boiled) were used 
as a food supplement for several species including 
carp, sterlet, sturgeon, bester, and salmon (Karatayev 
et al., 1994b). Zebra mussels were found to be a pal-
atable food supplement for chickens: their high levels 
of calcium were essential for egg shell formation, and 
mussel-supplemented diets did not show any adverse 
effects (McLaughlan et al., 2014).

Although L. fortunei reaches very high densities 
too, harvesting mussels for commercial purposes has 
never been reported, and would probably be economi-
cally unviable given their very patchy distribution. On 
the other hand, cleaning of industrial facilities and 
fish farms often produces huge amounts of dead mus-
sels, which have occasionally been evaluated for the 
production of farm animal or cultivated fish fodder 
(Almeida et al., 2006; Bayerle et al., 2017; Wachholz 
et al., 2017), and for the neutralization of soil acidity 
and the supply of nutrients for plants (Barbosa, 2009; 
Silva, 2016). Although some results are encouraging, 
none has yet been applied on industrial scales, and 
the presence of contaminants in the mussels’ residues 
were often considered a major obstacle (see “Disser-
vices, caveats, and unresolved issues” section).

Materials

Mussel shells are composed primarily (> 80%) of cal-
cium carbonate (Immel et al., 2016), and thus can be 



2829Hydrobiologia (2023) 850:2811–2854	

1 3
Vol.: (0123456789)

used as a source of this salt. Most calcium carbonate 
is sourced from mined limestone. Calcium carbonate 
is widely used in medical and nutritional applications 
(Feldman, 1996; Chang et al., 2007), and in agricul-
ture as a soil pH neutralizer and buffer (Oates, 2008). 
In construction it has a variety of uses, including 
crushed limestone as a road aggregate, and especially 
in the production of lime (calcium oxide), widely 
used in the manufacturing of cement, several adhe-
sives, and steel slag (Oates, 2008). The use of zebra 
mussel shells washed ashore or derived from clean-
ing industrial facilities was suggested as an alterna-
tive source for calcium carbonate (McCorquodale-
Bauer & Cicek, 2020).

Dreissenids and L. fortunei can be also used as a 
fertilizer, soil amendment, or mulch in agriculture 
(Barbosa, 2009; Mackie & Claudi, 2010; Silva, 2016). 
Mussel shells have occasionally been used to raise the 
pH of soils. Ontario Hydro (Toronto, Canada) and 
the Monroe Power Plant (Michigan, USA) used the 
zebra mussel remains removed from their biofouled 
pipes for composting to cover a landfill on the prop-
erty. At Detroit’s Edison Monroe power plant (USA), 
zebra mussels remains and associated debris were 
mixed, piled into windrows, and spread onto grounds 
where coal used to be piled to enhance grass growth 
(McDonnell, 1996). Cornell University  researchers 
tested recipes for composting zebra mussel shells and 
found that a mixture of 1:14:17:18 parts by weight of 
peat, sawdust, poultry litter and water, mixed 1:1 with 
zebra mussel remains helped to maintain a good pore 
structure and enhanced air flow. After three months 
of maturing, the compost was mixed with topsoil in 
various proportions, and tomatoes and radishes were 
grown in the mixtures. Most seedlings grew better 
than on topsoil alone (McDonnell, 1996).

Cultural services

Aesthetics, leisure, and property values

The effects of invasive species on cultural services, 
defined as non-consumptive attributes of an ecosys-
tem (i.e., recreation, tourism, history, education, sci-
ence, heritage, inspiration, spirituality and aesthet-
ics), are difficult to assess because they are based on 
personal and local value systems (Pejchar & Mooney, 
2009; Cassini, 2020). Invasive species can alter these 

cultural services, either negatively or positively, and 
sometimes in opposition to their impacts on other 
services.

As discussed above, suspension-feeding bivalves 
significantly enhance water transparency, particularly 
in already highly impacted ecosystems. Improve-
ments in water clarity increase its aesthetical percep-
tion, reduce some negative impacts such as odor and 
toxic cyanobacterial blooms (but see “Disservices, 
caveats, and unresolved issues” section), and facili-
tate most water-related recreational activities. Divers 
enjoy the increased visibility in the Great Lakes, and 
the scuba diving industry has boomed around the 
lakes as a result (https://​www.​shipw​recke​xplor​ers.​
com/​invas​ive-​speci​es/). Improved water clarity has 
had a strong impact on visitors of the Thunder Bay 
National Marine Sanctuary, an area of 4,300 square 
miles of Lake Huron off the coast of Alpena, Michi-
gan, where nearly 100 shipwrecks have been identi-
fied (Williams, 2020), and the wrecks and the clear 
waters made Thunder Bay an important attraction 
for scuba divers from around the world. Steve Kroll, 
a 69  year-old retired math teacher from Alpena, 
remembers what it was like to dive the wrecks before 
the mussels, when underwater visibility was often 
poor: “A good day of diving was when you could see 
5–7 feet. Now if you have 5–7 feet of visibility there 
are probably some people thinking we shouldn’t be 
diving…Now I think if we went back, we’d lose a lot 
of divers.” (Williams, 2020).

By clarifying the water, invasive bivalves can 
increase the property value of neighboring real estate 
since waterfront, water-view and neighboring prop-
erty owners benefit more than the general public from 
increases in surface water quality (Jakus et al., 2013). 
With respect to changes in property values, the ser-
vices conveyed by the mussels’ filtration have been 
assessed in a few surveys. In the vacation region of 
North Central Wisconsin (USA), increased lake water 
clarity associated with the presence of dreissenids 
was suggested to increase property values by about 
10% (Johnson & Meder, 2013). In Otter Tail and 
Becker Counties (Minnesota, USA), the presence of 
zebra mussels in the lakes per se did not affect lake-
shore property values, suggesting that buyers and sell-
ers in the lakeshore housing market were not being 
swayed by the presence or absence of zebra mussels 
in their purchasing decisions (Mcgrew, 2013).

https://www.shipwreckexplorers.com/invasive-species/
https://www.shipwreckexplorers.com/invasive-species/
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Walsh et al. (2016) estimated that the decrease of 
the water clarity of Lake Mendota (USA) by ~ 1  m 
(due to the invasion of the zooplanktivorous spiny 
water flea—Bythotrephes longimanus—which deci-
mated algae-grazing zooplankton), produced an over-
all loss in neighboring properties of US$ 140 mil-
lion. Using the method and assumptions employed by 
Walsh et  al. (2016), we performed a rough estimate 
of the benefits conferred to properties around some of 
the Great Lakes by the increased water clarity from 
dreissenid filtration. In lakes Michigan and Huron, 
mussels increased Secchi depths from < 10  m in the 
1980–1990s, to ~ 20 m in 2015–2019 (Barbiero et al., 
2018; Bunnell et al., 2021; U.S. Environmental Pro-
tection Agency’ Great Lakes National Program Office 
1983–2019 long-term monitoring water quality data, 
https://​cdx.​epa.​gov/). A 9 m in Secchi depth increase 
and the same increase (i.e., willingness to pay) in 
neighboring property value per meter of extra water 
clarity as the one used by Walsh et  al. (2016) (in 
decreased value due to water turbidity) yields US$ 
767.52 per house (adjusted to present values). Lake 
Michigan’s shoreline hosts ~ 12 million people (Lake 
Michigan Facts, https://​www.​lives​cience.​com/​32011-​
lake-​michi​gan.​html), and 3 million Americans and 
Canadians (ca. 50% each) live on Lake Huron (Lake 
Huron Basin Statistics, https://​www.​glerl.​noaa.​gov/​
educa​tion/​ourla​kes/​lakes.​html). The average U.S. 
household hosts 2.5 people (https://​www.​stati​sta.​com/​
stati​stics/​183648/​avera​ge-​size-​of-​house​holds-​in-​the-​
us/), and 2.9 in Canada (https://​www.​stati​sta.​com/​
stati​stics/​478954/​avera​ge-​family-​size-​in-​canada-​by-​
provi​nce/). Thus, the combined potential economic 
gain for properties on both lakes would have been 
over 37 billion US$. While admittedly very crude, 
these estimates suggest economically large benefits 
and call for more precise calculations of benefits to be 
included in overall cost–benefit analyses.

Several studies analyzed the relationships between 
property values and water clarity based on sur-
veys of owners of waterfront property. The underly-
ing assumption is that the market value of lakefront 
properties is tightly associated with the lake’s water 
quality, which in turn is chiefly perceived through 
the lake’s water clarity (Steinnes, 1992; Michael 
et al., 1996, 2000; Leggett & Bockstael, 2000; Gibbs 
et al., 2002; Boyle & Bouchard, 2003; Krysel et al., 
2003; Ara et al., 2006; reviewed in Jakus et al., 2013). 
Indeed, water clarity is the second most important 

lake characteristic for property purchasers (the over-
all scenic beauty of the lake being the first), affect-
ing market prices around 5–23%, depending on the 
market group (Michael et  al., 2000). A one-meter 
improvement in lake water clarity increases property 
prices from $11 to $382 per foot of water frontage 
(Steinnes, 1992; Michael et  al., 1996; Jakus et  al., 
2013), and an overall property increase of 0.9–6.6% 
(Gibbs et al., 2002; Boyle & Bouchard, 2003).

The increased water clarity due to dreissenid fil-
tration can in turn induce the growth of macrophytes 
and bottom algae (see “Habitat modifications” above, 
and “Disservices, caveats, and unresolved issues” 
section). While increased water clarity can be clas-
sified as an ecosystem service (in terms of human 
enjoyment), the nuisance due to filamentous algae 
can represent a disservice. To quantify the human 
perceptions of the effects of these beneficial and 
baneful impacts, and examine how they translate into 
economic terms (i.e., changes in property values), 
Limburg et al. (2010) surveyed business owners and 
homeowners along the shores of Lake Ontario to the 
western end of the St. Lawrence River (New York 
state, USA) to calculate the effects of dreissenids on 
property values due to both increased water quality 
and nuisance filamentous algae. The authors scaled 
up their results by multiplying the number of coastal 
households by the average increase in property value 
(approximately US$ 3500 due to increased water clar-
ity) and subtracted the losses due to filamentous algae 
(approximately US$ 750 per household), concluding 
that the net benefit would be in the multiple millions 
of dollars. Thus, the benefits were ranked signifi-
cantly higher than the losses by both business owners 
and homeowners, indicating that mussels produced 
mixed, but dominantly beneficial, impacts.

In these examples water clarity was used as a proxy 
for a variety of ecosystem functions (such as biotur-
bation, nutrient cycling, and phytoplanktonic primary 
productivity), but using a proxy response variable 
for ecosystem functions may overlook other key eco-
system processes, and does not provide information 
on the magnitude, direction, or rate of change to the 
underlying ecosystem functions (reviewed in Flood 
et  al., 2020). These simple calculations also do not 
take into account changes in global markets, regional 
differences in housing values, geographic differences 
in the degree of impact, and many other factors, but 
despite all the shortcomings, they illustrate the point 

https://cdx.epa.gov/
https://www.livescience.com/32011-lake-michigan.html
https://www.livescience.com/32011-lake-michigan.html
https://www.glerl.noaa.gov/education/ourlakes/lakes.html
https://www.glerl.noaa.gov/education/ourlakes/lakes.html
https://www.statista.com/statistics/183648/average-size-of-households-in-the-us/
https://www.statista.com/statistics/183648/average-size-of-households-in-the-us/
https://www.statista.com/statistics/183648/average-size-of-households-in-the-us/
https://www.statista.com/statistics/478954/average-family-size-in-canada-by-province/
https://www.statista.com/statistics/478954/average-family-size-in-canada-by-province/
https://www.statista.com/statistics/478954/average-family-size-in-canada-by-province/
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that positive economic impacts can be captured by the 
market economy.

In addition to recreation and aesthetics, mussels 
can be valued or reviled for their role in symbolic 
(inspiration, spirituality, religion, ceremony and tra-
dition) services. The impacts of invasive mussels on 
these important cultural components are obviously 
less relevant than those of many much more char-
ismatic organisms, such as trees, birds, reptiles or 
mammals, but conceivably not negligible, although 
their significance is difficult to quantify.

Information and knowledge

The value of exotic mussels as a tool in the area of 
intellectual and experiential (scientific and educa-
tional) services has received limited recognition. 
Our analysis of the literature, however, revealed that 
almost a third of the publications in the Ecosystem 
function and services category are centered on the 
application of mussels as biomonitors and bioindi-
catiors (see “Wastewater treatment”, “Bioremedia-
tion” and “Environmental monitors and indicators” 
sections).

The biochemical processes involved in the pro-
duction and adhesion of byssus threads are investi-
gated to prevent biofouling and to gain insights into 
the challenging task of engineering adhesive bonds 
underwater, anticorrosives, metal-sequestering rea-
gents, and novel biomimetic polymers (Rzepecki & 
Waite, 1995; Brazee & Carrington, 2006; Luo et al., 
2006; Andrade et  al., 2015; Ohkawa & Nomura, 
2015; Li et al., 2018b, c). The stable isotope C and O 
composition of zebra mussel shells has been used as a 
proxy of paleoclimatological and palaeolimnological 
variations (Wurster & Patterson, 2001; Apolinarska, 
2013).

The accumulated knowledge on exotic mussel 
ecology, spread, distribution and competition, as well 
as mussels themselves as easy obtainable test organ-
ism, are used widely in K-12 and higher education 
(e.g., https://​nsgl.​gso.​uri.​edu/​ilin/​ilinf​96001/​ilinf​
96001.​htm; https://​www.​hws.​edu/​fli/​lesso​ns_​teach_​
quagga.​aspx; Kean & Enochs, 2001). A variety of les-
son plans using zebra mussels are offered by Teachers 
Pay Teachers Program to a community of more than 7 
million educators (https://​www.​teach​erspa​yteac​hers.​
com/​Browse/​Search:​zebra%​20mus​sels).

Disservices, caveats, and unresolved issues

A major economic impact of these byssate exotic 
bivalves is the fouling of human-made facilities, 
including industrial plants, water conveyance struc-
tures, fish culture cages, and watercraft. Mussels clog 
water intakes and conduits, sieves and filters, heat 
exchangers, and many other components, requiring 
costly maintenance operations. Several assessments 
of the expenditures involved have been produced at 
various spatial and temporal scales (Roberts, 1990; 
Office of Technology Assessment, 1993; Khalanski, 
1997; O’Neill, 1997; Pimentel, 2005; Connelly et al., 
2007; Rebelo et  al., 2018), and although the values 
reported have been questioned (Lovell et  al., 2006; 
Connelly et al., 2007; Ram & Palazzolo, 2008), they 
most probably range in the hundreds to thousands of 
millions US$ per year worldwide.

Exotic mussels are known to have negative effects 
on some species due to their overgrowth and/or com-
petition for food (e.g., other filter-feeding bivalves 
such as Unionidae, Sphaeriidae, and the deep-water 
amphipod Diporeia). Probably the most notori-
ous and best studied negative effect of dreissenids is 
that on native bivalves (Mackie, 1991; Haag et  al., 
1993; Gillis & Mackie, 1994; Schloesser & Nalepa 
1994; Ricciardi et  al., 1996; Schloesser et  al., 1996; 
Karatayev et al., 1997, Burlakova et al., 2000, 2014; 
Aldridge et  al., 2004; Strayer & Malcom, 2007a; 
Lucy et  al., 2014). Although in some cases unionid 
populations have been almost or completely extir-
pated (Ricciardi et al., 1998), the largest impacts are 
typically found in lentic habitats, where dreissenids 
attain the highest densities, while native mussels 
are most abundant and diverse in streams and rivers 
(Karatayev et al., 2018d; Vaughn & Hoellein, 2018). 
Further, in some cases the impact on native bivalves 
seems to be a transient event (Strayer & Malcom, 
2007a;  Burlakova et  al., 2014). Similar negative 
effects were reported for L. fortunei (Darrigran, 2002; 
Mansur et al., 2003; Ezcurra de Drago, 2004; Lopes 
et al., 2009; Karatayev et al., 2010b; Rojas Molina & 
Williner, 2013), but the impacts on the hosts have not 
been quantified.

Except for these rather clear-cut negative economic 
and ecological effects, many others are largely mixed, 
being positive for some species and processes, and, 
simultaneously, negative for others (Karatayev & Bur-
lakova, accepted; Dermott and Kerec, 1997; reviewed 

https://nsgl.gso.uri.edu/ilin/ilinf96001/ilinf96001.htm
https://nsgl.gso.uri.edu/ilin/ilinf96001/ilinf96001.htm
https://www.hws.edu/fli/lessons_teach_quagga.aspx
https://www.hws.edu/fli/lessons_teach_quagga.aspx
https://www.teacherspayteachers.com/Browse/Search:zebra%20mussels
https://www.teacherspayteachers.com/Browse/Search:zebra%20mussels
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in Karatayev et  al., 1997, 2010b; Higgins & Vander 
Zanden, 2010). These effects result in direct and indi-
rect changes, both positive and negative, in species 
diversity, and in promoting biogenic homogenization 
(Sardiña et al., 2011; Burlakova et al., 2012). A vivid 
example are the mixed effects of dreissenids on ben-
thic communities, where collector and scraper species 
(e.g., isopods, amphipods, gastropods, oligochaetes, 
and chironomids) typically increase in association 
with mussel beds due to direct and indirect positive 
interactions (Karatayev et al., 1997; Burlakova et al., 
2005, 2012), but native deep-water amphipods and 
suspension feeders including sphaeriids, unionids, 
and some chironomids can be outcompeted (Lvova-
Kachanova & Izvekova, 1978; Karatayev et al., 1997, 
2002; Burlakova et  al., 2005, 2012, 2018; Ward & 
Ricciardi, 2007; Barbiero et al., 2011). Mixed effects 
also involve planktonic communities, where mussels 
may selectively consume some species at the expense 
of others (Cotner et al., 1995; Fahnenstiel et al., 2010; 
Barbiero et al., 2012; Rojas-Molina et al., 2015).

Among the impacts of both dreissenids and of L. 
fortunei on the phytoplankton, the most controversial 
is their effect on Cyanobacteria (reviewed in Kelly 
et  al., 2010; Karatayev et  al., 2015a, b; Boltovskoy 
et  al., 2015; Reynolds & Aldridge, 2021). While 
most European, South American and some North 
American studies found that these mussels feed on 
Cyanobacteria, including toxic Microcystis strains 
(Reeders & bij de Vaate, 1990; Strayer et  al., 1999; 
Baker & Levinton, 2003; Dionisio Pires et al., 2005; 
McLaughlan & Aldridge, 2013; Boltovskoy et  al., 
2015; Noordhuis et al., 2016; Reynolds & Aldridge, 
2021), a number of reports suggested that they may 
facilitate toxic blooms of Microcystis spp. by selective 
grazing and promotion of colony formation, rejection 
of toxic strains, and/or enhancement of nutrient load-
ings (Makarewicz et  al., 1999; Vanderploeg et  al., 
2001, 2009; Conroy et  al., 2005a, b; Cataldo et  al., 
2012b). Opposite impacts seem to be very species- 
and context-dependent, and even depend on variations 
in median Microcystis colony size (White & Sarnelle, 
2014). In North America, the positive effect of dre-
issenids on Microcystis spp. seems to be restricted 
to lakes with low to moderate total phosphorus con-
centrations (< 25 µg total P L−1), whereas those with 
high nutrient loadings are not affected (Vanderploeg 
et  al., 2001; Nicholls et  al., 2002; Sarnelle et  al., 
2005; Knoll et al., 2008). On the other hand, in South 

America L. fortunei can promote cyanobacterial 
blooms at total phosphorus > 50–100 µg L−1 (Cataldo 
et  al., 2012b). Clearly, the effects of exotic bivalves 
on Cyanobacteria require further investigation in dif-
ferent systems.

Another important effect with mixed consequences 
recorded in many lakes is the proliferation of bot-
tom filamentous algae and macrophytes, usually as 
a result of enhanced water clarity and the concomi-
tant increase in colonizable depth, increasing sub-
strate for attachment, and higher bioavailability of 
nutrients due to less competition with phytoplankton 
(Arnott & Vanni, 1996; Conroy et  al., 2005a, b). In 
the lower North American Great Lakes (Erie, Michi-
gan, Ontario) Cladophora blooms, common from the 
1950s through the early 1980s, were largely eradi-
cated through the implementation of the Great Lakes 
Water Quality Agreement, but returned in the mid-
1990s due to the expansion of dreissenids (reviewed 
in Higgins et  al., 2008). It should be noticed that 
while these plants are generally perceived as a nui-
sance for recreational activities (Limburg et  al., 
2010), they have many positive impacts on the fauna 
(see above).

Although clarification of the water due to the mus-
sels’ filtration activity is usually recognized as an 
environmental and economic asset, and an important 
ecosystem service, mussel beds along the coast, as 
well as their fouling of recreational watercraft, can be 
a nuisance for leisure activities, including potential 
injuries to bathers and, in the case of massive die-offs, 
the organic matter pollution and odor of dead, decom-
posing animals. Further, changes from turbid to 
clear waters are not free from ecosystem disservices, 
as they can involve higher CO2 effluxes (Jeppesen 
et al., 2015). The oligotrophication of the Laurentian 
Great Lakes due to dreissenids over the benchmarks 
intended by the Great Lakes Water Quality Agree-
ment was suggested to be “excessive”, and negative 
for zooplankton phenology and abundance (Pothoven 
& Vanderploeg, 2020, 2022), pelagic fish prey and 
predatory fishes (Pothoven et al., 2001; Hoyle et al., 
2008; Nalepa et  al., 2009a, b; Nalepa, 2010). The 
extent of light penetration modifies the depth of the 
euphotic layer, and the ensuing growth of vegeta-
tion may affect fish habitats. Higher water clarity can 
also increase the penetration of ultraviolet radiation 
affecting the survival or distribution of some organ-
isms, induce changes in fish schooling, reproductive 



2833Hydrobiologia (2023) 850:2811–2854	

1 3
Vol.: (0123456789)

behavior, territoriality (Bunnell et  al., 2021), and 
even modify temperature and dissolved oxygen verti-
cal stratification patterns (Yu & Culver, 2000). While 
nutrient sequestration from the water column by inva-
sive bivalves, especially in lakes, has been well docu-
mented, studies of changes in their concentrations (in 
particular P and N) in the water yielded quite dissimi-
lar results, with both increases and decreases having 
been reported, as well as differences in the changes of 
their various compounds (see “Nutrient cycling and 
sequestration” section; Lindim, 2015), suggesting that 
these impacts are context-dependent.

Another major concern associated with exotic 
filter feeding bivalves consumed by a large num-
ber of fishes, birds and other aquatic animals, is 
whether they facilitate the transfer of contaminants 
up the food web by providing a novel route for the 
less accessible sediment-deposited toxicants (Bruner 
et al., 1994; Roper et al., 1996; Johns & Timmerman, 
1998; Robertson & Lauenstein, 1998; Kwon et  al., 
2006; Schummer et  al., 2010). As described above 
(“Environmental monitors and indicators”  section) 
mussels bioaccumulate many toxicants, which upon 
consumption can be transferred to other animals, and 
eventually to humans. Although bioaccumulation and 
trophic transfer vary among species (Matthews et al., 
2015) and pollutant types (Perez-Fuentetaja et  al., 
2015), the key issue is whether invasive mussels are 
effectively more noxious in this respect than other 
prey. We are not aware of large-scale, comprehensive 
studies on this problem, but although some contami-
nants were reported to bioaccumulate very signifi-
cantly in the mussels’ tissue or shells (see “Environ-
mental monitors and indicators” section), for others 
(e.g., PBDEs—polybrominated diphenyl ethers) the 
bioaccumulation rates have been found to be much 
lower than for zooplankton and amphipods (Perez-
Fuentetaja et  al., 2015), which may decrease the 
levels of these compounds in mussel-feeding fishes 
(Hahm et  al., 2009). Thus, while the bioaccumula-
tion of contaminants by exotic mussels may indeed 
be a major problem, most aquatic organisms bioac-
cumulate pollutants, and further research is needed in 
order to assess whether these mussels are effectively 
more harmful in transferring contaminants than other 
native or introduced prey species.

Reverse ecosystem changes due to mussel 
population crashes

The ecosystem-wide changes caused by invasive 
mussels may not be permanent, as their populations 
can decline or be extirpated due to pollution, oxy-
gen declines or other factors (Noordhuis et al., 2016; 
Karatayev et  al., 2018a). After Lake Lukomlskoe 
(Belarus) was colonized by zebra mussels in the late 
1960s, summer Secchi depths increased from 1.8 
to > 4 m, seston and phytoplankton densities declined, 
macrophyte coverage increased, and the lake switched 
from eutrophic to meso-oligotrophic (Lyakhnovich 
et al., 1988; Karatayev & Burlakova, 1992; Karatayev 
et al., 1997). However, a tenfold decline in zebra mus-
sel biomass occurred 30 years after mussel numbers 
peaked, most likely driven by an increase in nutrient 
loads and oxygen depletion caused by the fish hatch-
ery launched in the lake in 1989 (Mitrakhovich et al., 
2008). This decline was associated with a relapse of 
almost all environmental parameters to pre-invasion 
values, returning the lake to a turbid water state 
(Mitrakhovich et al., 2008; Karatayev et al., 2021c).

Effects of domestic and industrial wastewater dis-
charges into the Rhine River watershed became evi-
dent in the second part of the nineteenth and first 
part of the twentieth century, resulting in strong 
population reductions and large scale extinctions of 
many riverine organisms, including the extinction 
of zebra mussels in the late 1960s. After measures 
were undertaken to improve the water quality, signs 
of recovery of macroinvertebrate and fish communi-
ties became apparent in the second half of the 1970s 
(bij de Vaate et al., 2006). In Lake Veluwe (The Neth-
erlands) the increased nutrient load of the late 1960s 
to early 1970s caused a shift from a clear to a turbid 
water state, along with sharp declines in macrophytes 
and Secchi depths, increases in chlorophyll concen-
trations, and extirpation of zebra mussels (Ibelings 
et  al., 2007). After reductions in phosphorous loads 
and manipulation of fish (reduction in bream density), 
clear water was re-established allowing the return of 
zebra mussels, whose high filtration capacity helped 
in maintaining clear waters (Ibelings et  al., 2007; 
Noordhuis et  al., 2016). Similar changes, including 
shifts from clear to turbid water states and extirpa-
tion of zebra mussels, were recorded in several other 
lakes, including Lake Eem (The Netherlands), due 
to an increase in external nutrient loads (Noordhuis 
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et al., 2016). Again, reduction in nutrients loads and 
increased catches of benthivorous bream triggered a 
change to a clear water state, that was facilitated by 
the recolonization by zebra mussels in 1996, and 
especially by quagga mussels in 2010, leading to 
a strong increase in transparency and macrophyte 
abundance, and a decrease of cyanobacterial blooms 
(Noordhuis et al., 2016).

Reverse changes in environmental parameters were 
also observed in the central basin of Lake Erie, asso-
ciated with a decline in the biomass of quagga mus-
sels due to the return of hypoxic conditions around 
2000. The decline in dreissenid densities in the basin 
was concomitant with a decrease in spring dissolved 
silica concentrations and an increase in total phos-
phorus and near-bottom turbidity, neither of which 
were recorded in the western or eastern basins. This 
sharp decline of Dreissena coincided with a shift 
from clear to turbid waters, indicating that dreissenid-
related shifts in the water quality of the waterbodies 
invaded are reversible (Karatayev et al., 2018a). Fur-
ther, although in many Northern Hemisphere lakes 
and rivers quagga mussels tend to replace earlier 
invasions by zebra mussels (Karatayev et al., 2011a, 
2015a; bij de Vaate et al., 2014; Strayer et al., 2019), 
a reversal to zebra mussel dominance has also been 
noticed (Rudstam & Gandino, 2020; Karatayev et al., 
2021b), which may likely involve important ecologi-
cal changes.

Coastal wetlands associated with the Great Lakes 
are critically important to a diverse array of wetland-
dependent organisms, but only half of the wetlands 
remain intact due to both historic and contemporary 
wetland losses. In the Inner Long Point Bay of east-
ern Lake Erie submerged aquatic vegetation (SAV) 
provides food and habitat for a diversity of fish and 
wildlife, and its abundance and community structure 
serve as indicators of ecosystem health. Colonization 
by zebra mussels in the early 1990s increased water 
clarity and has been associated with changes in SAV 
abundance, distribution, and community composition 
(Petrie & Knapton, 1999). Between 1992 and 2009, 
dreissenid populations declined over 90%, likely due 
to increased eutrophication, sediment loads and pre-
dation by both fish and waterfowl. Declines in the 
abundance of filter feeding mussels and the associ-
ated increase in phytoplankton reduced light avail-
ability and induced declines of the five most abundant 
SAV species, lowering the bay’s carrying capacity for 

waterfowl, fish and other wildlife (Churchill et  al., 
2016).

The loss in filtration services provided by inva-
sive dreissenid mussels following a mass mortality 
event was estimated in the river Meuse in the Neth-
erlands in 2016–2017. During the summer, the filtra-
tion capacity of dreissenids was sufficient to filter up 
to over 12% of the discharge in a 25 km impounded 
stretch of the river. This service was completely lost 
for 17 months following a mass mortality, until recol-
onization restored the filtration capacity (Collas et al., 
2020).

In the Great Lakes, the impacts of dreissenids on 
nutrients suggest that, while monitoring of external 
phosphorus loads remains important, the monitor-
ing of dreissenid populations is now more important 
than ever. Even if P concentrations in the water col-
umn remain low, accumulation of P in the mussels’ 
biomass involves a high risk of large and unpredict-
able changes in the system if mussel densities decline 
releasing P into the water column (Li et al., 2021).

Records of long-term changes of L. fortunei densi-
ties are very few. In the Lower Delta of the Paraná 
River, occasional visual observations of mussel bed 
densities on coastal revetments suggest periodic vari-
ations, but no quantitative data are available. In the 
reservoir Embalse de Río Tercero (Argentina), adult 
densities (~ 900–1000 ind./m2 in 1996; Boltovskoy 
et  al., 2009a) started collapsing dramatically around 
2014, allegedly due to the blooms of another inva-
sive species, the dinoflagellate Ceratium spp. (C. fur-
coides, C. hirundinella; Mariñelarena et  al., 2016), 
but the timings of Ceratium blooms and the decline 
of L. fortunei do not match, and the dinoflagellate 
has never been reported to be harmful to the mus-
sel. Presently these populations have recovered, but 
the reasons for the decline are unknown. In Brazil’s 
Pantanal wetland, total population wipeouts are a 
recurring event due to seasonal hypoxic events, but 
recolonization is swift (Oliveira et  al., 2010). Mass 
mortalities of L. fortunei have also been observed in 
Japan (Uchida et al., 2007), but the reasons involved 
are unclear.

Concluding remarks

In this paper we summarized the most salient eco-
system and economic services provided by three 
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widespread freshwater exotic bivalves (Fig.  2), and 
highlighted the major caveats and exceptions asso-
ciated with them. One important conclusion of this 
work is that, with few exceptions (e.g., biofouling of 
industrial facilities), the effects of the invasive mus-
sels reviewed are mixed; facilitation of a given pro-
cess, community or species almost invariably occurs 
at the expense of a different process, community, 
or species. Our appreciation of the net outcome is 
largely anthropocentric, insofar as we confer a higher 
value to some organisms and ecosystem characteris-
tics than to others. Higher values are often associated 
with a more pristine state, the one that characterized 
the system decades or centuries ago and did not host 
these introduced species. But when these species help 
to reverse other natural or human-induced undesirable 
effects (e.g., eutrophication vs. water clarification), 
or yield resources for exploitable or otherwise valued 

organisms (fishes, birds), our perception changes. We 
advocate for a broader and more holistic outlook of 
biological invasions in general, which should provide 
a more objective perspective of their impacts on the 
environment and on human well-being (Tassin & 
Kull, 2015; Boltovskoy et al., 2022). In this respect, 
novel ecosystems (Hobbs et  al., 2013) deserve par-
ticular interest. This notion involves viewing the role 
of alien species more pragmatically, and even con-
sidering some “new” species as desirable elements 
(Hui & Richardson, 2017), as shown in the examples 
above. At the same time, we should make it abun-
dantly clear that we do not argue in favor of biological 
introductions, and do not deny the need to eradicate 
some clearly baneful invasives, or to pursue success-
ful policies aimed at culling new introductions. We 
agree with the notion that the invasion risks involved 
are too high, and the results are unpredictable and 

Biofiltration (water purification)
Reduction of phytoplankton

Bioremediation

ISSUE
PROCESS

OUTCOME BENEFITS

Nutrient cycling
,and sequestration

water clarification

Sequestration of nutrients
Less phytoplankton/clearer water
More macrophytes (food & shelter

for other organisms)

P N

Higher
waterfront
propery value

Recreational
activities

Lower
porabilization
costs

Wastewater
treatment

Bioremediation

Purification of wastewaters

Environmental monitoring
using mussels

(hazardous chemicals
pathogens, hypoxia)

High sensitivity
Time-integrating

Turbid water/polluted Clear/clean water

Turbid water, nutrients
in the water column

Clear , nutrientswater
in the sediments, macrophytes

Wastewaters

Cleaner freshwaterbodies
Easier/cheaper
p tiotabiliza on

Toxicants, pathogens

Bare substrates, few invertebrates Mussel-colonized substrates Many invertebrates

Enhanced
food supply
for other
animals

Fig. 2   Schematic summary of the most salient ecosystem and economic services provided by the invasive mussels Dreissena spp. 
and Limnoperna fortunei 



2836	 Hydrobiologia (2023) 850:2811–2854

1 3
Vol:. (1234567890)

occasionally disastrous, but also with the fact that 
while invaded systems differ from those that pre-
vailed historically, they are not necessarily less desir-
able than the latter (Hobbs et al., 2006) and, as shown 
above, there are many examples where these invaders 
have been responsible for the amelioration of major 
ecosystems impacted by human activities and helped 
the recovery of declining native species.

This review includes three freshwater invasive 
mussels. As noticed above, the volume of informa-
tion on the zebra mussel is much larger than those 
on the quagga mussel, and especially on the golden 
mussel. Because the three species share many impor-
tant traits (see “Introduction”  section), comparisons 
between them are inevitable, but they also display 
major biological differences, and the areas invaded 
by dreissenids are ecologically very dissimilar from 
those invaded by the golden mussel (Karatayev et al., 
2007a, 2015b). Thus, extrapolations of the impacts of 
the zebra mussel to the quagga mussel, and especially 
the golden mussel, can often be misguiding. Further, 
because impacts are strongly context-dependent, even 
the same invader can have very different effects in dif-
ferent environments (Karatayev et  al., 2021a) and at 
different times, and the effects measured often depend 
on the methodological approach employed (Boltovs-
koy et  al., 2021b). Because differences in coverage 
between the three species are very large, vacant areas 
of knowledge are also dissimilar. However, in all 
cases the long-term behavior of their populations still 
poses major questions.

In closing, we would like to stress the need to 
recognize the benefits conferred by invasive mus-
sels, and particularly to include their economically 
quantifiable services in the assessments of their eco-
nomic impacts. Damage estimates by invasive species 
attract more attention than their benefits (Jernelöv, 
2017; Guerin et al., 2018), and assessments of dam-
age only are dominant in the literature (Perrings et al., 
2001; Pimentel, 2011; Diagne et al., 2021). However, 
as shown above, these invasive species do have siz-
able benefits, many of which involve major economic 
gains, but their ecosystemic and economic benefits 
are normally ignored, minimized, or deemed “non 
monetizable” (Boltovskoy et  al., 2022). Given the 
widespread distribution of invasive mussels and the 
long-term focus of scientists and managers on the 
negative aspects of their dispersal, it is important to 
assess quantitatively their positive ecological effects 

and economic benefits. This assessment should not 
be interpreted as a rejection of the fact that invasive 
mussels have negative impacts on some communities 
and, in particular, on productive activities, but “rather 
as an opportunity to provide an additional piece of 
information for scientists, managers and policymak-
ers” (Vimercati et al., 2020).
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