Skip to main content
Log in

Temperature and the size of freshwater phytoplankton

  • COLIN S. REYNOLDS’ LEGACY
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We review the literature on the relationship between water temperature and size of freshwater phytoplankton, to examine the hypothesis that freshwater phytoplankton, like marine phytoplankton and many other groups of organisms, conform to Bergmann’s Rule and become smaller with warming. We provide both experimental and field evidence in support of the above hypothesis, much of this evidence was hidden in studies focused on other issues, but presenting temperature and phytoplankton size data. Freshwater phytoplankton size shrinks with increasing temperature at both the species level (by cells or colonies becoming smaller) and at the community level (shift to smaller species). Exceptions to the Rule do occur but in most cases those exceptions can be explained by indirect effects of temperature on phytoplankton size, via processes such as grazing or nutrient availability. With global warming, freshwater phytoplankton are likely to be of smaller size. This article is dedicated to Colin S. Reynolds, who has had a leading role in our personal education and understanding of phytoplankton ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abonyi, A., É. Ács, A. Hidas, I. Grigorszky, G. Várbíró, G. Borics & K. T. Kiss, 2018. Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biology 63: 456–472.

    Google Scholar 

  • Abonyi, A., K. T. Kiss, A. Hidas, G. Borics, G. Várbíró & É. Ács, 2020. Cell size decrease and altered size structure of phytoplankton constrain ecosystem functioning in the Middle Danube River over multiple decades. Ecosystems 23 (in press).

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, … & G. A. Weyhenmeyer, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

  • Arhonditsis, G., M. T. Brett & J. Frodge, 2003. Environmental control and limnological impacts of a large recurrent spring bloom in Lake Washington, USA. Environmental Management 31: 603–618.

    CAS  PubMed  Google Scholar 

  • Ashton, K. G., M. C. Tracy & A. de Queiroz, 2000. Is Bergmann’s rule valid for mammals? The American Naturalist 156: 390–415.

    PubMed  Google Scholar 

  • Atkinson, D., 1994. Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25: 1–58.

    Google Scholar 

  • Atkinson, D., B. J. Ciotti & D. J. Montagnes, 2003. Protists decrease in size linearly with temperature: ca. 2.5% C−1. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 2605–2611.

  • Bergmann, C., 1847. Uber die Verhaltnisse der warmeokonomie der Thiere zu uber Grosso. Gottinger Studien 3: 595–708.

    Google Scholar 

  • Berven, K. A., 1982. The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution 36: 962–983.

    PubMed  Google Scholar 

  • Blackburn, T. M. & K. J. Gaston, 1996. Spatial patterns in the body sizes of bird species in the New World. Oikos 77: 436–446.

    Google Scholar 

  • Calder, W. A. I. I. I., 1984. Function and Life History. Harvard University Press, Cambridge.

    Google Scholar 

  • Carpenter, R. & J. F. Kitchell, 1984. Plankton community structure and limnetic primary production. American Naturalist 124: 159–172.

    Google Scholar 

  • Chisholm, S. W., 1992. Phytoplankton size. In Falkowski, P. G. (ed.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum, New York: 213–237.

    Google Scholar 

  • Chown, S. L. & K. J. Gaston, 2010. Body size variation in insects: a macroecological perspective. Biological Reviews 85: 139–169.

    PubMed  Google Scholar 

  • Coles, J. F. & R. C. Jones, 2000. Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. Journal of Phycology 36: 7–16.

    CAS  Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.

    CAS  Google Scholar 

  • Durant, J. M., D. O. Hjermann, G. Ottersen & N. C. Stenseth, 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.

    Google Scholar 

  • Edwards, K. T., M. K. Thomas, C. A. Klausmeier & E. Litchman, 2012. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnology and Oceanography 57: 554–566.

    Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fisheries Bulletin 70: 1063–1085.

    Google Scholar 

  • Falkowski, P. G. & M. J. Oliver, 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5: 813–819.

    CAS  PubMed  Google Scholar 

  • Finkel, Z. V., 2001. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnology and Oceanography 46: 86–94.

    CAS  Google Scholar 

  • Finkel, Z. V., A. J. Irwin & O. Schofield, 2004. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton. Marine Ecology Progress Series 273: 269–279.

    Google Scholar 

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.

    CAS  Google Scholar 

  • Flaim, G., E. Rott, R. Frassanito, G. Guella & U. Obertegger, 2010. Eco-fingerprinting of the dinoflagellate Borghiella dodgei: experimental evidence of a specific environmental niche. Hydrobiologia 639: 85–98.

    CAS  Google Scholar 

  • Forster, J., A. G. Hirst & D. Atkinson, 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences 109: 19310–19314.

    CAS  Google Scholar 

  • Gardner, J. L., A. Peters, M. R. Kearney, L. Joseph & R. Heinsohn, 2011. Declining body size: a third universal response to warming? Trends in Ecology & Evolution 26: 285–291.

    Google Scholar 

  • Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.

    PubMed  Google Scholar 

  • Gibson, C. E., 1975. Cyclomorphosis in natural populations of Oscillatoria redekei Van Goor. Freshwater Biology 5: 279–286.

    Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans. Another aspect of interspecific competition in filter-feeding zooplankton. In Kerfoot, W. C. & N. H. Hanover (eds), Evolution and Ecology of Zooplankton Communities. University Press of New England, Lebanon: 282–291.

    Google Scholar 

  • Hewitt B. A., L. S. Lopez, K. M. Gaibisels, A. Murdoch, S. N. Higgins, J. J. Magnuson, A.M. Paterson, J. A. Rusak, H. Yao & S. Sharma. 2018. Historical trends, drivers, and future projections of ice phenology in small North Temperate Lakes in the Laurentian Great Lakes region. Water 10(1): 70. https://doi.org/10.3390/w10010070.

    Article  Google Scholar 

  • Horne, C. R., A. G. Hirst & D. Atkinson, 2017. Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proceedings of the Royal Society B: Biological Sciences 284: 20170238.

    PubMed  PubMed Central  Google Scholar 

  • Huey, R. B. & J. G. Kingsolver, 1980. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology and Evolution 4: 131–135.

    Google Scholar 

  • James, F. C., 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 365–390.

    Google Scholar 

  • Jezberová, J. & J. Komárková, 2007. Morphometry and growth of three Synechococcus-like picoplanktic cyanobacteria at different culture conditions. Hydrobiologia 578: 17–27.

    Google Scholar 

  • Kiørboe, T., 1993. Turbulence, phytoplankton cell-size, and the structure of pelagic food webs. Advances in Marine Biology 29: 1–72.

    Google Scholar 

  • Kraemer, B. M., O. Anneville, S. Chandra, M. Dix, E. Kuusisto, D. M. Livingstone, et al., 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophysical Research Letters 42: 4981–4988.

    Google Scholar 

  • Lindsey, C. C., 1966. Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20: 456–465.

    CAS  PubMed  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution and Systematics 39: 615–639.

    Google Scholar 

  • Litchman, E., O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181.

    PubMed  Google Scholar 

  • Livingstone, D. A., 2013. Global climate change strikes a tropical lake. Science 301: 468–469.

    Google Scholar 

  • López-Sandoval, D. C., T. Rodríguez-Ramos, P. Cermeño, C. Sobrino & E. Marañón, 2014. Photosynthesis and respiration in marine phytoplankton: relationship with cell size, taxonomic affiliation, and growth phase. Journal of Experimental Marine Biology and Ecolology 457: 151–159.

    Google Scholar 

  • Lürling, M. & E. Van Donk, 1999. Grazer-induced colony formation in Scenedesmus acutus (Chlorophyceae): ecomorph expression at different temperatures. Journal of Phycology 35: 1120–1126.

    Google Scholar 

  • Malerba, M. E., M. M. Palacios, Y. M. Palacios Delgado, J. Beardall & D. J. Marshall, 2018. Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytologist 219: 449–461.

    CAS  PubMed  Google Scholar 

  • Marañón, E., 2015. Cell size as a key determinant of phytoplankton metabolism and community structure. Annual Review of Marine Sciences 7: 241–264.

    Google Scholar 

  • Marañón, E., P. Cermeño, D. C. Lopez-Sandoval, T. Rodrıguez-Ramos, C. Sobrino, M. Huete-Ortega, J. M. Blanco & J. Rodriguez, 2013. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecology Letters 16: 371–379.

    PubMed  Google Scholar 

  • Margalef, R., 1954. Modifications induced by different temperatures on the cells of Scenedesmus obliquus (Chlorophyceae). Hydrobiologia 6: 83–91.

    Google Scholar 

  • Moss, B., D. McKee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.

    Google Scholar 

  • Mousing, E. A., S. Ribeiro, C. Chisholm, A. Kuijpers, M. Moros & M. Ellegaard, 2017. Size differences of Arctic marine protists between two climate periods—using the paleoecological record to assess the importance of within-species trait variation. Ecology and Evolution 7: 3–13.

    PubMed  Google Scholar 

  • Moustaka-Gouni, M., K. A. Kormas, M. Scotti, E. Vardaka & U. Sommer, 2016. Warming and acidification effects on planktonic heterotrophic pico- and nanoflagellates in a mesocosm experiment. Protist 167: 389–410.

    PubMed  Google Scholar 

  • Naselli-Flores, L., T. Zohary & J. Padisák, 2020. Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds. Hydrobiologia. https://doi.org/10.1007/s10750-020-04217-x.

    Article  Google Scholar 

  • Neustupa, J., J. St’astny & L. Hodac, 2008. Temperature-related phenotypic plasticity in the green microalga Micrasterias rotata. Aquatic Microbial Ecology 51: 77–86.

    Google Scholar 

  • Padfield, D., A. Buckling, R. Warfield, C. Lowe & G. Yvon-Durocher, 2018. Linking phytoplankton community metabolism to the individual size distribution. Ecology Letters 21: 1152–1161.

    PubMed  PubMed Central  Google Scholar 

  • Padisák, J., É. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of phytoplankton—an experimental study. Hydrobiologia 500: 243–257.

    Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pulina, S., A. Brutemark, S. Suikkanen, B. M. Padedda, L. M. Grubisic, C. T. Satta, … & A. Lugliè, 2016. Effects of warming on a Mediterranean phytoplankton community. Web Ecology 16: 89–92.

  • Pulina, S., A. Lugliè, M. A. Mariani, M. Sarria, N. Sechi & B. M. Padedda, 2019. Multiannual decrement of nutrient concentrations and phytoplankton cell size in a Mediterranean reservoir. Nature Conservation 34: 163–191.

    Google Scholar 

  • Rasconi, S., A. Gall, K. Winter & M. J. Kainz, 2015. Increasing water temperature triggers dominance of small freshwater plankton. PLoS ONE 10: e0140449.

    PubMed  PubMed Central  Google Scholar 

  • Raven, J. A., 1998. The twelfth Tansley Lecture. Small is beautiful: the picoplankton. Functional Ecology 12: 503–513.

    Google Scholar 

  • Ray, C., 1960. The application of Bergmann’s and Allen’s rules to the poikilotherms. Journal of Morphology 106: 85–108.

    CAS  PubMed  Google Scholar 

  • Rensch, B., 1938. Some problems of geographical variation and species-formation. Proceedings of the Linnaean Society London 150: 275–285.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 384.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/Luhe: 371.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535.

    Google Scholar 

  • Riebesell, U., 1989. Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Marine Ecology Progress Series 54: 109–119.

    Google Scholar 

  • Rothhaupt, K. O. & H. Güde, 1992. The influence of spatial and temporal gradients on phosphorous partitioning between size fractions of plankton: further evidence and possible cause. Limnology and Oceanography 37: 739–749.

    CAS  Google Scholar 

  • Rühland, K. & J. P. Smol, 2005. Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226: 1–16.

    Google Scholar 

  • Rühland, K., A. M. Paterson & J. P. Smol, 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology 14: 2740–2754.

    Google Scholar 

  • Schaum, C.-E., S. Barton, E. Bestion, A. Buckling, B. Garcia-Carreras, P. Lopez, C. Lowe, S. Pawar, N. Smirnoff, M. Trimmer & G. Yvon-Durocher, 2017. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nature Ecology & Evolution 1: 0094.

    Google Scholar 

  • Schlesinger, D. A., L. A. Molot & B. J. Shuter, 1981. Specific growth rate of freshwater algae in relation to cell size and light intensity. Canadian Journal of Fisheries and Aquatic Sciences 38: 1052–1058.

    Google Scholar 

  • Sheridan, J. A. & D. Bickford, 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1: 401–406.

    Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293–308.

    CAS  PubMed  Google Scholar 

  • Sin, Y., R. L. Wetzel & I. C. Anderson, 2000. Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). Journal of Plankton Research 22: 1945–1960.

    Google Scholar 

  • Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Rühland, S. Sorvari, D. Antoniades, S. J. Brooks, M.-A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, É. Saulnier-Talbot, S. Siitonen, N. Solovieva & J. Weckström, 2005. Climate-driven regime shifts in the biological communities of Arctic lakes. Proceedings of the National Academy of Sciences 102: 4397–4402.

    CAS  Google Scholar 

  • Sommer, U., 1985. Seasonal succession of phytoplankton in Lake Constance. BioScience 5: 351–357.

    Google Scholar 

  • Sommer, U., 1988. Some size-relationships in phytoplankton motility. Hydrobiologia 161: 125–131.

    Google Scholar 

  • Sommer, U. & Z. M. Gliwicz, 1986. Long range vertical migration of Volvox in tropical Lake Cahora Bassa (Mozambique). Limnology and Oceanography 31: 650–653.

    Google Scholar 

  • Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.

    PubMed  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archives für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Sommer, U., U. Gaedke & A. Schweizer, 1993. The first decade of oligotrophication in Lake Constance. II: the response of phytoplankton taxonomic composition. Oecologia 93: 276–284.

    PubMed  Google Scholar 

  • Sommer, U., F. Sommer, B. Santer, C. Jamieson, M. Beorsma, C. Becker & T. Hansen, 2001. Complementary impact of copepods and cladocerans on phytoplankton. Ecological Letters 4: 545–550.

    Google Scholar 

  • Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annual Reviews of Ecology, Evolution and Systematics 43: 429–448.

    Google Scholar 

  • Sommer, U., E. Charalampous, S. Genitsaris & M. Moustaka-Gouni, 2017a. Costs, benefits and taxonomic distribution of phytoplankton body size. Journal of Plankton Research 39: 494–508.

    CAS  Google Scholar 

  • Sommer, U., K. H. Peter, S. Genitsaris & M. Moustaka-Gouni, 2017b. Do marine phytoplankton follow Bergmann’s rule sensu lato? Biological Reviews 92: 1011–1026.

    PubMed  Google Scholar 

  • Trainor, F. R., 1992a. Cyclomorphosis in Scenedesmus communis Hegew. Ecomorph expression at low temperature. British Phycological Journal 27: 75–81.

    Google Scholar 

  • Trainor, F. R., 1992b. Cyclomorphosis in Scenedesmus armatus (Chlorophyta): an ordered sequence of ectomorph development. Journal of Phycology 28: 553–558.

    Google Scholar 

  • Trainor, F. R., 1993. Cyclomorphosis in Scenedesmus subspicatus (Chlorococcales, Chlorophyta): stimulation of colony development at low temperature. Phycologia 32: 429–433.

    Google Scholar 

  • Trainor, F. R., 1998. Biological aspects of Scenedesmus (Chlorophyceae)—phenotypic plasticity. Nova Hedwigia 117: 1–367.

    Google Scholar 

  • Turpin, D. H. & P. J. Harrison, 1979. Limiting nutrient patchiness and its role in phytoplankton and its role in phytoplankton ecology. Journal of Experimental Marine Biology and Ecology 39: 151–166.

    CAS  Google Scholar 

  • Verburg, P., R. E. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507.

    CAS  PubMed  Google Scholar 

  • Visser, M. E. & C. Both, 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proceedings of the Royal Society of London B 272: 2561–2569.

    Google Scholar 

  • Walsby, A. E., 1972. Structure and function of gas vacuoles. Bacteriological Reviews 36: 1–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsby, A. E. & C. S. Reynolds, 1980. Sinking and floating. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford: 371–412.

    Google Scholar 

  • Winder, M. & U. Sommer, 2012. Phytoplankton response to a changing climate. Hydrobiologia 698: 5–16.

    Google Scholar 

  • Winder, M., J. E. Reuter & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society of London B 276: 427–435.

    Google Scholar 

  • Yom-Tov, Y. & H. Nix, 1986. Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnean Society 29: 245–262.

    Google Scholar 

  • Yvon-Durocher, G., J. M. Montoya, M. Trimmer & G. U. Y. Woodward, 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology 17: 1681–1694.

    Google Scholar 

  • Yvon-Durocher, G., A. P. Allen, M. Cellamare, M. Dossena, K. J. Gaston, M. Leitao,, … & M. Trimmer, 2015. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biology 13(12): e1002324.

  • Zohary, T., 2004. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biology 49: 1355–1371.

    Google Scholar 

  • Zohary, T., Y. Z. Yacobi, A. Alster, T. Fishbein, S. Lippman & G. Tibor, 2014. Phytoplankton. Chap. 10. In Zohary, T., A. Sukenik, T. Berman & A. Nishri (eds), Lake Kinneret: Ecology and Management. Springer, Heidelberg: 161–190.

    Google Scholar 

  • Zohary, T., T. Fishbein, M. Shlichter & L. Naselli-Flores, 2017. Larger cell or colony size in winter, smaller in summer—a pattern shared by many species of Lake Kinneret phytoplankton. Inland Waters 7: 200–209.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Zohary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Judit Padisák, J. Alex Elliott, Martin T. Dokulil & Luigi Naselli-Flores / New, old and evergreen frontiers in freshwater phytoplankton ecology: the legacy of Colin S. Reynolds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021). https://doi.org/10.1007/s10750-020-04246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04246-6

Keywords

Navigation