Skip to main content
Log in

Influence of operational parameters on nutrient removal from eutrophic water in a constructed wetland

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The present study offers several management strategies in order to improve the performance of a free water surface constructed wetland that treats mainly eutrophic water and which is also designed to improve and increase the biodiversity of habitat and wildlife. To attain these goals, it has been necessary to analyze the influence of certain operational parameters and environmental factors on the mass removal rates (MRRs) and the mass removal efficiencies (MREs), depending on if the objective is to maximize nutrient removal or to achieve low effluent concentrations. The system, referred to as FG, operated in a range of hydraulic loading rates (HLRs) from 7 to 58 m year−1 and removed phosphorus (P) and nitrogen (N) at an average rate of 7.15 g P m−2 year−1 and 60.07 g N m−2 year−1. P and N removal varied seasonally, mainly due to input concentrations (C in), but inlet mass loading and HLRs also strongly influenced MRRs. Based on these results, we propose to maintain a mean HLR of 58 m year−1 in winter and 25 m year−1 in summer to increase annual nutrient removal and thereby barely affecting pumping costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FWSCWs:

Free water surface constructed wetlands

FG:

The FWSCW studied

MRRs:

Mass removal rates

MREs:

Mass removal efficiencies

HLRs:

Hydraulic loading rates

P:

Phosphorus

N:

Nitrogen

C in :

Input concentrations

IML:

Inlet mass loading

AV Lake:

l’Albufera de València Lake

AVNP:

l’Albufera de València Natural Park

CWs:

Constructed wetlands

BP:

Barranco del Poyo

DIN:

Dissolved inorganic nitrogen

DIP:

Orthophosphates

n-DIP:

Non-orthophosphate phosphorus

DO:

Dissolved oxygen

References

  • APHA, 1991. Standard Methods for the Examination of Water and Wastewater, 17th ed. American Publish Health Association, Washington DC.

    Google Scholar 

  • Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology 35(5): 11–17.

    Article  CAS  Google Scholar 

  • CHJ, 2012. (Ed.). Memoria de investigación del Tancat de la Pipa. Technical report for the Spanish Water Authorities.

  • Comín, F. A., J. A. Romero, O. Hernández & M. Menéndez, 2001. Restoration of wetlands from abandoned rice fields for nutrient removal, and biological community and landscape diversity. Restoration Ecology 9(2): 201–208.

    Article  Google Scholar 

  • Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and Management of Lakes and Reservoirs, 2nd ed. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Coveney, M. F., D. L. Stites, E. F. Lowe, L. E. Battoe & R. Conrow, 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering 19: 141–159.

    Article  Google Scholar 

  • Dunne, E. J., M. F. Coveney, E. R. Marzolf, V. R. Hoge, R. Conrow & R. Naleway, 2012. Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from lake Apopka, Florida. Ecological Engineering 42: 90–100.

    Article  Google Scholar 

  • Dunne, E. J., M. F. Coveney, E. R. Marzolf, V. R. Hoge, R. Conrow, R. Naleway, E. F. Lowe, L. E. Battoe & P. W. Inglett, 2013. Nitrogen dynamics of a large-scale constructed wetland used to remove excess nitrogen from eutrophic lake water. Ecological Engineering 61: 224–234.

    Article  Google Scholar 

  • Dunne, E. J., M. F. Coveney, V. R. Hoge, R. Conrow, R. Naleway, E. F. Lowe, L. E. Battoe & Y. Wang, 2015. Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water. Ecological Engineering 79: 132–142.

    Article  Google Scholar 

  • Fleming-Singer, M. S. & A. J. Horne, 2006. Balancing wildlife needs and nitrate removal in constructed wetlands: the case of the Irvine Ranch Water District’s San Joaquin Wildlife Sanctuary. Ecological Engineering 26: 147–166.

    Article  Google Scholar 

  • García, J., B. F. Green, T. Lundquist, R. Mujeriego, M. Hernández-Mariné & W. J. Oswald, 2006. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresource Technology 97: 1709–1715.

    Article  PubMed  Google Scholar 

  • Gersberg, R. J., B. V. Elking, S. R. Lyong & C. R. Goldman, 1986. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research 20: 363–367.

    Article  CAS  Google Scholar 

  • Hernández-Crespo, C., N. Oliver, J. Bixquert, S. Gargallo & M. Martín, 2016. Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia 774: 183–192.

    Article  Google Scholar 

  • Hey, D. L., A. L. Kenimer & K. R. Barret, 1994. Water quality improvement by four experimental wetlands. Ecological Engineering 3: 381–397.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Jiang, C., X. Fan, G. Cui & Y. Zhang, 2007. Removal of agricultural non-point source pollutants by ditch wetlands: implications for lake eutrophication control. Hydrobiologia 581: 319–327.

    Article  CAS  Google Scholar 

  • Jing, S. R. & Y. F. Lin, 2004. Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan. Environmental Pollution 127: 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Kadlec, R. H., 1999. The limits of phosphorus removal in wetlands. Wetlands Ecology and Management 7: 165–175.

    Article  Google Scholar 

  • Kadlec, R. H., 2006. Free surface wetlands for phosphorus removal: the position of the Everglades Nutrient Removal Project. Ecological Engineering 27: 361–379.

    Article  Google Scholar 

  • Kadlec, R. H. & R. L. Knight, 1996. Treatment Wetlands. CRC/Lewis Publishers, Boca Raton FL: 893.

    Google Scholar 

  • Kadlec, R. H. & K. R. Reddy, 2001. Temperature effects in treatment wetlands. Water Environment Research 73: 543–557.

    Article  CAS  PubMed  Google Scholar 

  • Kadlec, R. H. & S. D. Wallace, 2009. Treatment Wetlands, 2nd ed. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Kadlec, R. H., S. B. Roy, R. K. Munson, S. Charlton & W. Brownlie, 2010. Water quality performance of treatment wetlands in the Imperial Valley, California. Ecological Engineering 36: 1093–1107.

    Article  Google Scholar 

  • Kadlec, R. H., J. S. Bays, L. E. Mokry, S. Andrews & M. R. Ernst, 2011. Performance analysis of the Richland-Chambers treatment wetlands. Ecological Engineering 37: 176–190.

    Article  Google Scholar 

  • Li, L., Y. Li, D. K. Biswas, Y. Nian & G. Jiang, 2008. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology 99: 1656–1663.

    Article  CAS  PubMed  Google Scholar 

  • Mander, Ü., K. Lõhmus, S. Teiter, T. Mauring, K. Nurk & J. Augustin, 2008. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Science of the Total Environment 404(2): 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Martín, M., N. Oliver, C. Hernández-Crespo, S. Gargallo & M. C. Regidor, 2013. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecological Engineering 50: 52–61.

    Article  Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 2000. Wetlands, 3rd ed. Wiley, New York.

    Google Scholar 

  • Mitsch, W. J., B. Bernal, A. M. Nahlik, Ü. Mander, L. Zhang, C. J. Anderson, S. E. Jørgensen & H. Brix, 2013. Wetlands, carbon, and climate change. Landscape Ecology 28(4): 583–597.

    Article  Google Scholar 

  • Moustafa, M. Z., T. D. Fontaine, M. Guardo & R. T. James, 1998. The response of a freshwater wetland to long-term ‘low level’ nutrients loads: nutrients and water budget. Hydrobiologia 264: 41–53.

    Google Scholar 

  • Nairn, R. W. & W. M. Mitsch, 2000. Phosphorus removal in created wetland ponds receiving river overflow. Ecological Engineering 14: 107–126.

    Article  Google Scholar 

  • Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. Water Pollution Control Federation 55(5): 495–505.

    CAS  Google Scholar 

  • Phipps, R. G. & W. G. Crumpton, 1994. Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads. Ecological Engineering 3: 399–408.

    Article  Google Scholar 

  • Phillips, G., A. Bramwell, J. Pitt, J. Stansfield & M. Perrow, 1999. Practical application of 25 years’ research into the management of shallow lakes. Hydrobiologia 395(396): 61–76.

    Article  Google Scholar 

  • Picot, B., S. Moersidik, C. Casellas & J. Bontoux, 1993. Using diurnal variations in a high rate algal pond for management pattern. Water Science and Technology 28(10): 209–215.

    Google Scholar 

  • Pomogyi, P., 1993. Nutrient retention by the Kis-Balaton Water Protection System. Hydrobiologia 251: 309–320.

    Article  CAS  Google Scholar 

  • Reddy, K. R., R. H. Kadlec, E. Flaig & P. M. Gale, 1999. Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology 29(1): 83–146.

    Article  CAS  Google Scholar 

  • Reilly, J. F., A. J. Horne & C. D. Miller, 2000. Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge. Ecological Engineering 14: 33–47.

    Article  Google Scholar 

  • Richardson, C. J. & S. S. Quian, 1999. Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environmental Science and Technology 33(10): 1545–1551.

    Article  CAS  Google Scholar 

  • Rodrigo, M. A., M. Martín, C. Rojo, S. Gargallo, M. Segura & N. Oliver, 2013. The role of eutrophication reduction of two small man-made Mediterranean lagoons in the context of a broader remediation system: effects on water quality and plankton contribution. Ecological Engineering 61: 371–382.

    Article  Google Scholar 

  • Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24: 201–207.

    Article  PubMed  Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    Article  CAS  PubMed  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–507: 135–145.

    Article  Google Scholar 

  • Sollie, S., H. Coops & J. T. A. Verhoeven, 2008. Natural and constructed littoral zones as nutrient traps in eutrophicated shallow lakes. Hydrobiologia 605: 219–233.

    Article  CAS  Google Scholar 

  • Spieles, D. J. & W. J. Mitsch, 2000. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems. Ecological Engineering 14: 77–91.

    Article  Google Scholar 

  • Tang, X., S. Huang, M. Scholz & L. Jinzhong, 2009. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water air Soil Pollution 197: 61–73.

    Article  CAS  Google Scholar 

  • Tanner, C. C., J. S. Clayton & M. P. Upsdell, 1995. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands – II. Removal of nitrogen and phosphorus. Water Research 29: 27–34.

    Article  CAS  Google Scholar 

  • Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380: 48–65.

    Article  CAS  PubMed  Google Scholar 

  • Zamparas, M. & I. Zacharias, 2014. Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Science of the Total Environmental 96: 551–562.

    Article  Google Scholar 

Download references

Acknowledgements

Núria Oliver acknowledges the scholarship provided by the Generalitat Valenciana, Spain (VALi + D PhD Program). The authors are also grateful to the Confederación Hidrográfica del Jucar (CHJ, MMARM) for the financial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Núria Oliver or Carmen Hernández-Crespo.

Ethics declarations

Ethical approval

This manuscript has been prepared according to the ethical rules of Hydrobiologia and it has not been submitted to other journals.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, N., Martín, M., Gargallo, S. et al. Influence of operational parameters on nutrient removal from eutrophic water in a constructed wetland. Hydrobiologia 792, 105–120 (2017). https://doi.org/10.1007/s10750-016-3048-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3048-4

Keywords

Navigation