Skip to main content
Log in

Multi-scale temporal dynamics of epilithic algal assemblages: evidence from a Chinese subtropical mountain river network

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Research on multi-scale temporal dynamics of lotic algal assemblages remains scarce. In this study, we analyzed epilithic algae sampled monthly from a Chinese subtropical mountain river network from 2004 to 2007, by using a multivariate time series modeling approach. We hypothesized that (1) multi-scale temporal dynamics exist within algal communities; (2) physical and chemical conditions drive algal temporal dynamics; and (3) tributary sites differ in algal temporal changes. This study revealed 2–4 site-specific algal temporal dynamics, contributed by 23–45% component taxa. Among the time-related taxa, percentages of high profile guild taxa were higher than both the low profile and the motile guild taxa. Several algal temporal dynamics were found to be driven by water temperature, conductivity, or current velocity, within which influences of conductivity at two sites resulted in directional changes in algal communities. Furthermore, tributary sites differed in algal temporal changes when compared to the two mainstream sites. Our findings imply that natural fluctuations and agricultural disturbance together shaped algal temporal dynamics in the studied river network. In conclusion, for accurately tracking algal temporal dynamics, we recommend that long-term and high-frequency biomonitoring protocols are developed. Moreover, both the mainstream and tributary sites should be monitored simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan, J. & M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, New York.

    Book  Google Scholar 

  • Andrén, C. & A. Jarlman, 2008. Benthic diatoms as indicators of acidity in streams. Fundamental and Applied Limnology/Archiv für Hydrobiologie 173: 237–253.

    Article  Google Scholar 

  • Angeler, D. G., 2009. Species-specific and context-dependant disruption of temporal population fluctuations resulting from hypereutrophication events. Environmental Pollution 157: 3174–3182.

    Article  CAS  PubMed  Google Scholar 

  • Angeler, D. G. & R. K. Johnson, 2012. Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification. Ecological Applications 22: 1172–1186.

    Article  PubMed  Google Scholar 

  • Angeler, D. G., O. Viedma & J. M. Moreno, 2009. Statistical performance and information content of time lag analysis and redundancy analysis in time series modeling. Ecology 90: 3245–3257.

    Article  PubMed  Google Scholar 

  • Angeler, D. G., C. Trigal, S. Drakare, R. K. Johnson & W. Goedkoop, 2010. Identifying resilience mechanisms to recurrent ecosystem perturbations. Oecologia 164: 231–241.

    Article  PubMed  Google Scholar 

  • Angeler, D. G., S. Drakare & R. K. Johnson, 2011. Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecology and Society 16: 5.

    Article  Google Scholar 

  • Baho, D. L., H. Peter & L. J. Tranvik, 2012. Resistance and resilience of microbial communities – temporal and spatial insurance against perturbations. Environmental Microbiology 14: 2283–2292.

    Article  PubMed  Google Scholar 

  • Biggs, B., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 31–56.

    Chapter  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., P. Legendre, C. Avois-Jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.

    Article  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York: 227–292.

    Book  Google Scholar 

  • Chinese National Environmental Protection Agency, 2002. Water and Wastewater Monitoring Methods, 4th ed. Chinese Environmental Science Publishing House, Beijing.

    Google Scholar 

  • Collins, S. L., F. Micheli & L. Hartt, 2000. A method to determine rates and patterns of variability in ecological communities. Oikos 91: 285–293.

    Article  Google Scholar 

  • DeNicola, D., 1996. Periphyton responses to temperature at different ecological levels. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 149–181.

    Chapter  Google Scholar 

  • Graba, M., S. Sauvage, F. Y. Moulin, G. Urrea, S. Sabater & J. M. Sanchez-Pérez, 2013. Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Research 47: 2153–2163.

    Article  CAS  PubMed  Google Scholar 

  • Hering, D., A. Haidekker, A. Schmidt-Kloiber, T. Barker, L. Buisson, W. Graf, W. Grenouillet, A. Lorenz, L. Sandin & S. Stendera, 2010. Monitoring the responses of freshwater ecosystems to climate change. In Kernan, M. R., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Wiley-Blackwell, Oxford: 84–118.

    Chapter  Google Scholar 

  • Hu, H. & Y. Wei, 2006. The Freshwater Algae of China: Systematics. Science Press, Beijing, Taxonomy and Ecology.

    Google Scholar 

  • Jao, C., 1988. Flora Algarum Sinigrum Aquae Dulcis (Tomus I): Zygnemataceae. Science Press, Beijing.

    Google Scholar 

  • Kampichler, C. & H. P. van der Jeugd, 2013. Determining patterns of variability in ecological communities: time lag analysis revisited. Environmental and Ecological Statistics 20: 271–284.

    Article  Google Scholar 

  • Kennen, J. G., D. J. Sullivan, J. T. May, A. H. Bell, K. M. Beaulieu & D. E. Rice, 2012. Temporal changes in aquatic-invertebrate and fish assemblages in streams of the north-central and northeastern US. Ecological Indicators 18: 312–329.

    Article  CAS  Google Scholar 

  • Korhonen, J. J., J. Soininen & H. Hillebrand, 2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91: 508–517.

    Article  PubMed  Google Scholar 

  • Korhonen, J. J., P. Köngäs & J. Soininen, 2013. Temporal variation of diatom assemblages in oligotrophic and eutrophic streams. European Journal of Phycology 48: 141–151.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre, P. & O. Gauthier, 2014. Statistical methods for temporal and space–time analysis of community composition data. Proceedings of the Royal Society B: Biological Sciences 281: 20132728.

    Article  PubMed  PubMed Central  Google Scholar 

  • Legendre, P., D. Borcard, G. Blanchet & S. Dray, 2010a. PCNM: PCNM spatial eigenfunction and principal coordinate analyses. R package version 2.1/r82.

  • Legendre, P., M. D. Cáceres & D. Borcard, 2010b. Community surveys through space and time: testing the space-time interaction in the absence of replication. Ecology 91: 262–272.

    Article  PubMed  Google Scholar 

  • Li, S. & L. Bi, 1998. Flora Algarum Sinicarum Aquae Dulcis (Tomus V): Ulothricales Ulvales Chaetophorales Trentepohliales Sphaeropleales. Science Press, Beijing.

    Google Scholar 

  • Miller, M. P., J. G. Kennen, J. A. Mabe & S. V. Mize, 2012. Temporal trends in algae, benthic invertebrate, and fish assemblages in streams and rivers draining basins of varying land use in the south-central United States, 1993-2007. Hydrobiologia 684: 15–33.

    Article  Google Scholar 

  • Passy, S. I., 2006. Diatom community dynamics in streams of chronic and episodic acidification: the roles of environment and time. Journal of Phycology 42: 312–323.

    Article  CAS  Google Scholar 

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.

    Article  Google Scholar 

  • Passy, S., 2008. Species size and distribution jointly and differentially determine diatom densities in US streams. Ecology 89: 475–484.

    Article  PubMed  Google Scholar 

  • Passy, S. & C. Larson, 2011. Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microbial Ecology 62: 414–424.

    Article  CAS  PubMed  Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States (exclusive of Alaska and Hawaii). Volume One: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. The Academy of Natural Sciences, Philadelphia.

  • Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States (Exclusive of Alaska and Hawaii), Vol. Two. Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. The Academy of Natural Sciences, Philadelphia, Part One.

    Google Scholar 

  • Philibert, A., P. Gell, P. Newall, B. Chessman & N. Bate, 2006. Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions. Hydrobiologia 572: 103–114.

    Article  CAS  Google Scholar 

  • Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.

    Article  CAS  Google Scholar 

  • Qi, Y., 1995. Flora Algarum Sinicarum Aquae Dulcis (Tomus IV): Bacillariophyta Centreae. Science Press, Beijing.

    Google Scholar 

  • Reid, M. A., M. C. Thoms & F. J. Dyer, 2006. Effects of spatial and temporal variation in hydraulic conditions on metabolism in cobble biofilm communities in an Australian upland stream. Journal of the North American Benthological Society 25: 756–767.

    Article  Google Scholar 

  • Rosemond, A. D., P. J. Mulholland & S. H. Brawley, 2000. Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients, and herbivores. Canadian Journal of Fisheries and Aquatic Sciences 57: 66–75.

    Article  Google Scholar 

  • Schneck, F. & A. S. Melo, 2013. High assemblage persistence in heterogeneous habitats: an experimental test with stream benthic algae. Freshwater Biology 58: 365–371.

    Article  Google Scholar 

  • Seeber, C., H. Hartmann & L. King, 2010. Land use change and causes in the Xiangxi catchment, Three Gorges Area derived from multispectral data. Journal of Earth Science 21: 846–855.

    Article  Google Scholar 

  • Shi, Z., 2004. Flora Algarum Sinicarum Aquae Dulcis (Tomus XII): Bacillariophyta Gomphonemacea. Science Press, Beijing.

    Google Scholar 

  • Smucker, N. J. & M. L. Vis, 2011. Acid mine drainage affects the development and function of epilithic biofilms in streams. Journal of the North American Benthological Society 30: 728–738.

    Article  Google Scholar 

  • Soininen, J. & P. Eloranta, 2004. Seasonal persistence and stability of diatom communities in rivers: are there habitat specific differences? European Journal of Phycology 39: 153–160.

    Article  Google Scholar 

  • Stenger-Kovács, C., E. Lengyel, L. O. Crossetti, V. Üveges & J. Padisák, 2013. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecological Indicators 24: 138–147.

    Article  Google Scholar 

  • Stevenson, J., 2014. Ecological assessments with algae: a review and synthesis. Journal of Phycology 50: 437–461.

    Article  Google Scholar 

  • Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed. U.S. Environmental Protection Agency; Office of Water, Washington, DC: 1–23.

    Google Scholar 

  • Tan, X., X. Xia, Q. Zhao & Q. Zhang, 2014. Temporal variations of benthic diatom community and its main influencing factors in a subtropical river, China. Environmental Science and Pollution Research 21: 434–444.

    Article  PubMed  Google Scholar 

  • Tang, T., 2003. Studies on Charasteristics of Epilithic Algae and Ecosystem Management of the Xiangxi River, PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan.

  • Tang, T., S. Niu & D. Dudgeon, 2013a. Responses of epibenthic algal assemblages to water abstraction in Hong Kong streams. Hydrobiologia 703: 225–237.

    Article  CAS  Google Scholar 

  • Tang, T., N. Wu, F. Li, X. Fu & Q. Cai, 2013b. Disentangling the roles of spatial and environmental variables in shaping benthic algal assemblages in rivers of central and northern China. Aquatic Ecology 47: 453–466.

    Article  Google Scholar 

  • Tornés, E., V. Acuña, C. N. Dahm & S. Sabater, 2015. Flood disturbance effects on benthic diatom assemblage structure in a semiarid river network. Journal of Phycology 51: 133–143.

    Article  Google Scholar 

  • Virtanen, L. K., P. Köngäs, S. Aitto-Oja & J. Soininen, 2011. Is temporal occurrence of diatoms related to species traits, local abundance, and regional distribution? Journal of Phycology 47: 1445–1453.

    Article  Google Scholar 

  • Wang, J., B. Wang & Z. Luo, 1997. Dictionary of the Yangtze River. Wuhan Press, Wuhan.

    Google Scholar 

  • Wood, S., 2014. Package ‘mgcv’. Online at http://cran.r-project.org/web/packages/mgcv/mgcv.pdf.

  • Yang, G., T. Tang & D. Dudgeon, 2009. Spatial and seasonal variations in benthic algal assemblages in streams in monsoonal Hong Kong. Hydrobiologia 632: 189–200.

    Article  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis, 4th ed. Prentice Hall Inc., New Jersey.

    Google Scholar 

  • Zhu, H., 2007. Flora Algarum Sinicarum Aquae Dulcis (Tomus IX): Cyanophyta Hormogonophyceae. Science Press, Beijing.

    Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Xiaodong Qu, Naicheng Wu, and Xiaocheng Fu for fieldwork assistance and Ruiqiu Liu for chemical analyses. We are grateful to Yangdong Pan for valuable comments on the early draft of this manuscript and Alissa Cohen for English improvement. This research was funded by the National Natural Science Foundation of China (No. 31470510), Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07104-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Tang.

Additional information

Handling editor: Judit Padisák

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Jia, X., Jiang, W. et al. Multi-scale temporal dynamics of epilithic algal assemblages: evidence from a Chinese subtropical mountain river network. Hydrobiologia 770, 289–299 (2016). https://doi.org/10.1007/s10750-015-2603-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2603-8

Keywords

Navigation