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Abstract Invasive species can cause ecological and

economic damage and can be transported by several

vectors, many of which are connected to socioeco-

nomic activities. This research presents a model that

combines introduction likelihood and environmental

suitability to characterize global patterns of invasion

risk in coastal marine areas by identifying where a

species is both likely to arrive and able to survive. The

model projects environmental suitability using Max-

Ent and considers commercial port locations, as a

proxy for commercial shipping, to map patterns of

relative invasion risk on a near global scale. A case

study of five coastal marine crab species is presented.

These models identify several regions that are at risk

of new invasion where modeled environmental suit-

ability and introduction likelihood overlap. The dis-

tribution of large commercial ports is near global but

not evenly distributed; northern hemisphere temperate

locations have a higher density of ports and tend to

have more opportunities for invasion according to

these models. This approach can be adapted to other

marine and non-marine species and to current and

future environmental and socioeconomic conditions,

but it works best when occurrence data are represen-

tative of the complete range of conditions under which

a species can survive.

Keywords Invasive species � Invasion risk � Species

distribution modeling � MaxEnt � Dispersal vectors

Introduction

Invasive species are a major threat to biodiversity and

can result in significant economic costs (e.g., Pimentel

et al., 2005). These species can impact agriculture,

aquaculture, industry, and recreation and have the

potential to significantly alter terrestrial, freshwater,

and marine ecosystems (Ruiz et al., 1997; Kolar &

Lodge, 2000; Bax et al., 2003; Tylianakis et al., 2008).

Socioeconomic pathways, notably merchandise trade,

have been documented as primary routes of species

transport (Westphal et al., 2008), and increased

globalization and international trade are expanding

opportunities for the spread of novel species (Hulme,

2009). In response, there have been many proposed

policy and management strategies to curb species

introductions (Bax et al., 2003) such as the Interna-

tional Maritime Organization’s ballast water exchange
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convention (see Gollasch et al., 2007 for an overview

of this convention). While understanding the variety of

species transport vectors is a priority for regulating

introduction (Hulme et al., 2008; Williams et al.,

2013), the success of efforts to manage existing

vectors and prevent new invasions has been mixed

(Simberloff et al., 2005).

Impacts of introduced species span a wide spectrum

(Molnar et al., 2008), and the impacts caused by non-

native species have been difficult to predict (Ricciardi

et al., 2013). While non-native marine species include

a wide range of taxa, one important taxon in coastal

and estuarine systems is the crustacean class Deca-

poda, including crabs, shrimps, lobsters, and others.

Within this class, Carcinus maenas (Linnaeus, 1758)

and Eriocheir sinensis (H. Milne-Edwards, 1853) are

two of the nine aquatic species listed in the ‘‘100 of the

World’s Worst Invasive Alien Species’’ (Lowe et al.,

2004). The transport of many marine species is often,

though not exclusively, attributed to commercial

shipping in ballast water and hull fouling (Carlton &

Geller, 1993; Rodrı́guez & Suárez, 2001; Williams

et al., 2013). Furthermore, it has been shown that

select decapods can remain viable after transport by

these vectors (Hamer et al., 1998).

The process by which a non-native species invades

a new location can be a complex and multistage event

(Carlton, 1996). This process includes the species in

the source environment through to establishment and

spread. Within the process, there are many stages that

can be pinpointed as management opportunities to

prevent an invasion from occurring (Kolar & Lodge,

2001). Research and management efforts have tar-

geted species when they are exported, in transit,

entering a new environment, after introduction, and

once established. In many cases, it is difficult to

eradicate a species once established, though there are

examples of successful efforts (e.g., see Williams &

Grosholz, 2008), and prevention and early detection

can be the most viable management strategies (Lovell

& Drake, 2009).

Predicting the factors that determine if a non-native

species will successfully become established and

invasive has been difficult. These factors include the

characteristics of the non-native species, biotic inter-

actions, suitability of the environment, and propagule

pressure, among others (Stachowicz et al., 1999; Mack

et al., 2000; Nyberg & Wallentinus, 2005; Kimbro

et al., 2013). Given the complexity of the invasion

process, any foresight into where a species will likely

invade can be used for more judicious and targeted

management (Leung et al., 2004). For species that

arrive in a new location, early detection can increase

the likelihood for successful eradication prior to

establishment and spread, reducing the costs associ-

ated with invasive species (Williams & Grosholz,

2008).

Species distribution modeling (SDM) has received

considerable attention over the past several decades

(Zimmermann et al., 2010). As SDM has evolved,

statistical algorithms and software packages have been

developed to improve predictive capacity, and increas-

ingly complex simulations are being undertaken to

take into account a greater number of predictive

variables (Elith et al., 2006). However, the importance

of considering ecological theory and underlying

assumptions remains paramount, and a balance of

complexity and accuracy is required (Austin, 2002;

Wiens et al., 2009). While prevalence of these models

is increasing, utilization has not been consistent

between realms, with modeling in marine systems

often lagging behind terrestrial counterparts (Robin-

son et al., 2011).

The goal of this project is to develop a model to

assess invasion risk by combining environmental

suitability and the availability of transport vectors to

determine where species can both survive and are

likely to arrive. While this model is not intended to

replace multispecies and vector management, it can

act as an additional tool to help understand regional

and global patterns regarding where individual species

may be able to invade. This project relies on freely

available statistical and environmental modeling soft-

ware and considers the efficacy of using open access

data to generate the predictions.

Methods

This project utilized open access environmental and

occurrence data, which has been supplemented with

occurrence records from published literature, and

freely available modeling and statistical software,

MaxEnt and R, respectively. The methodology can be

easily transferred to other marine and non-marine

species for which occurrence and environmental data

are available, and plausible future conditions, such as

those due to changes in climate and socioeconomic
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infrastructure, could be incorporated to project inva-

sion risk in future scenarios.

Invasion risks for five crab species, all with

documented non-native populations, were modeled.

The five species modeled within are Carcinus maenas

(Linnaeus, 1758), Charybdis hellerii (A. Milne-

Edwards, 1867), Charybdis japonica (A. Milne-

Edwards, 1861), Hemigrapsus sanguineus (De Haan,

1835), and Rhithropanopeus harrisii (Gould, 1841).

These species represent a broad spectrum of invasion

history, habitat preference, biology, and research

focus (see Brockerhoff & McLay, 2011 for more

species details).

Native ranges for these species include the northwest

Pacific Ocean (C. japonica and H. sanguineus), Indo-

Pacific (C. hellerii), and western (R. harrisii) and

northeastern (C. maenas) Atlantic Ocean. Non-native

populations are established around the globe, including

in the Atlantic Ocean (C. maenas in the northwest,

southwest, and southeast; C. hellerii in the Caribbean,

northwest, and southwest; H. sanguineus in the north-

east and northwest; and R. harrisii in the southwest and

northeast) and Pacific Ocean (C. maenas in the

northwest, southwest, and northeast; C. japonica in

the southwest; and R. harrisii in the northeast) (Broc-

kerhoff & McLay, 2011). Additionally, C. hellerii and

H. sanguineus have been documented in the Mediter-

ranean Sea. All five species have shipping related

vectors (wet and dry ballast, hull fouling, and sea

chests) as documented or potential transport mecha-

nisms (McDermott, 1998; Carlton and Cohen, 2003;

Tavares & Amouroux, 2003; Gust & Inglis, 2006;

Roche & Torchin, 2007). Additional vectors, including

seafood and aquaculture trade (e.g., R. harrisii transport

from the eastern USA to the western USA) and natural

dispersal (e.g., C. maenas on the USA West Coast and

between Australia and Tasmania), are cited as respon-

sible for secondary spread (Rodrı́guez & Suárez, 2001;

Darling et al., 2008; Tepolt et al., 2009). While

secondary spread is important for determining species

distributions, this research is focused on predicting risk

from initial introduction based on commercial shipping

as a vector.

Species Environmental Suitability Modeling

Environmental suitability modeling was conducted

using the maximum entropy method employed in the

freely available software MaxEnt 3.3.3 k (available at

http://www.cs.princeton.edu/*schapire/maxent/; Phil-

lips et al., 2006; Elith et al., 2011). MaxEnt relies on

presence only species occurrence data to predict envi-

ronmental suitability based on constraints derived from

the relationship between training occurrence data and

environmental variables (Phillips et al., 2006; Phillips

& Dudı́k, 2008). Several types of input data were

required to train the models including occurrence

records for each species, environmental data, and

sampling bias layers, which, although not required,

were utilized to account for spatial bias in sampling (all

described below). Three feature types (Linear, Qua-

dratic, and Product) were selected out of the five

available in MaxEnt to constrain the relationship

between occurrence probability and environmental

variables (see Elith et al., 2011). Selecting this subset

excluded more complicated models that rely upon

harder to conceptualize relationships between distri-

bution and environmental variables (Syfert et al., 2013).

Other important user defined options included setting

Maximum Background Points to 50,000 to improve

background representation, Cross-validation with ten

Replicates, and increasing Maximum Iterations to

10,000 to ensure models had adequate opportunity to

run to convergence (models required between 300 and

1,240 iterations to converge). Model averages are pre-

sented based on cross-validation with data partitioned

into ten folds that were cycled through using nine for

training and one for testing.

Results are presented in three formats. The logistic

output provides a probability for environmental suit-

ability between zero and one. The remaining two

formats utilize thresholds provided in the MaxEnt

result outputs, minimum and ten percentile (hereafter,

10%) based on training occurrence data, to differen-

tiate between suitable and non-suitable environments.

These are the thresholds at which all or all but 10% of

the training presences are required to be included

within projected suitable environments, respectively.

The area under the receiver operating characteristic

(ROC) curve (AUC) was used to assess the perfor-

mance of the species distribution model. This metric

provides a measure of performance across all possible

thresholds, zero to one, and is presented for the test

occurrence records. The ROC curve is a plot of

sensitivity (also known as the true positive rate) on the

y-axis and 1—specificity (or the false positive rate) on

the x-axis. Details on this metric can be found in

Phillips et al. (2006). In addition to AUC, average test
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omission rates (proportion of test presence sites not

modeled as suitable) are reported for both thresholds.

Occurrence data

This model was built using freely available, open

access data for species occurrences, which were

supplemented by data from a literature review. The

open access data were acquired using the Global

Biodiversity Information Facility (GBIF) data portal

(GBIF, 2014). Data were retrieved by searching the

scientific name of the species of interest and down-

loading the results using the default settings in csv

format in March 2014. Citations for data sources are

available by species in the Electronic Supplementary

Material (ESM). Occurrence data outside of 70�N–

70�S were not considered resulting in the exclusion of

three records. For records that referred to non-marine

locations, the nearest marine raster cell within 2

degrees was identified and the coordinates of this cell

were used.

A literature search was utilized to supplement the

open access data to ensure that the known distribution

for each species was represented. The Thompson

Reuters’ Web of Science database (http://apps.

webofknowledge.com) was used for the literature

search in April 2014. The species name in quotation

marks was entered for the search topic using all

available years (1926–2014), except for C. maenas

(see below). The resulting articles were sorted by title,

with potentially useful articles marked for download.

Occurrence record locations within articles were

obtained as site descriptions, latitude and longitude

coordinates, or maps. Google Earth version 6.2.2.6613

(Google Corporation, 2012) was utilized to determine

latitude and longitude coordinates for site descriptions

and map-based occurrence records. For map-based

records, maps were overlaid onto the Google Earth

projection and coordinates for the occurrence records

were determined. For C. maenas, map-based non-

native occurrence records were obtained from

Compton et al. (2010, p. 247) with a supplementary

search of the literature using Web of Science for 2010

to April 2014.

In order to address issues of spatial autocorrelation,

two methods were employed. All duplicates were

removed so that each species could have a maximum

of one occurrence record per raster cell by converting

all occurrence record coordinates to cell centered

coordinates using the R raster package and removing

duplicates (Hijmans, 2013). The second method for

addressing spatial autocorrelation was to create a bias

grid for each species weighted using a Gaussian

kernel,

weight ¼ expð�d2=2s2Þ;

where d is the least cost distance (see below) in

kilometers between the center of a raster cell with an

occurrence point and the center of a marine background

raster cell, and s is the standard deviation (see Clements

et al., 2012). The standard deviation was set at 20 km as

this was between the distance from one cell center to the

center of a cell two cells north, south, east, or west and

the distance between a cell center and a cell two cells

northwest, northeast, southwest, or southeast. Unique

occurrence records for each of the five species were

used to create the bias grids. To calculate the bias grids,

least cost distance was calculated using the gdistance

package available in R (van Etten, 2012). Least cost

distance was used to ensure that distances followed a

marine only path (as the fish swims). Least cost distance

is particularly important for regions with bays and

islands where the shortest absolute distance (including

overland) differs significantly from the shortest distance

a species could actually travel. For each species,

distances for each marine background raster cell

(N = 428,768) to each of the occurrence points of that

species were calculated and then converted to Gaussian

kernel based weights between zero and one. The

individual weights for each cell were then summed to

create a final weight for each marine background raster

cell. Because MaxEnt requires bias grids to have a

value greater than zero, 0.01 was added to all raster cells

of the bias grid.

Environmental layers

Environmental layers were accessed from Bio-ORA-

CLE as outlined in Tyberghein et al. (2012). The data

package 70�N–70�S Real Values was utilized, which

included 23 raster layers with 5 arcmin resolution.

Correlations greater than or equal to 0.91 between

layers cropped to coastal regions were considered to

result in collinearity of the layers and only one of the

collinear layers was considered based on a priori

descriptiveness and relevance to the species. Of the

remaining available layers, ten layers were selected

based on a priori relevance for the considered species:
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Mean Calcite, Chlorophyll Minimum, Chlorophyll

Maximum, Mean Nitrate, Mean pH, Mean Phosphate,

Mean Salinity, Mean Silicate, Sea Surface Tempera-

ture Maximum, and Sea Surface Temperature Mini-

mum. More detail regarding these environmental

layers can be found in Tyberghein et al. (2012) and

at the Bio-ORACLE website (http://www.oracle.

ugent.be/). Layers were masked so that environmen-

tal data were only available for the 80 km immediately

offshore leaving the mid-ocean regions without asso-

ciated data (NA).

Port data/introduction likelihood

Annual data on the world’s largest ports were acquired

for the time period 2008–2010 from the World Port

Rankings available on the American Association of

Port Authorities port statistics page (AAPA, 2013).

These rankings listed the 125 largest ports by both

total cargo volume (tons) and container traffic

(Twenty Foot Equivalent Units—TEUs) for 2008

and 2009 and 150 ports by cargo volume and 128 ports

by container traffic in 2010. Ports were compiled and a

list of 208 unique ports was produced after inland ports

were removed. Geolocations of these ports were

acquired from the 2012 World Port Index (National

Geospatial-Intelligence Agency, 2012). Least cost

distances (as the fish swims) from non-native occur-

rence data points to the nearest port were calculated

for each species using gdistance in R. The likelihood

of observing a species at a specific distance from the

port was calculated as the inverse cumulative proba-

bility. These values were calculated by starting with a

probability of 1 at the port and cumulatively reducing

the probability at a given distance by O/N, where O is

the number of occurrences at a given distance from the

closest port and N is the number of non-native

occurrences for a given species. The inverse cumula-

tive probability was aggregated across all species and

used as a proxy for introduction likelihood.

Invasion risk

Invasion risk was calculated by overlaying the intro-

duction likelihood on a minimum threshold binary

environmental suitability map using the raster package

in R. The minimum threshold was utilized in order to

minimize false negatives and to predict as close to a

species’ fundamental niche as possible.

Results

Environmental suitability

The number of available occurrence records varied

widely between species (N = 67–1,714) as did the

modeled environmental suitability and the minimum

and 10% training presence logistic thresholds

(Table 1; Fig. 1). Test area under the receiver oper-

ating characteristic curve (AUC) (the metric used to

assess model fit across all thresholds) averaged across

runs at 0.676 or higher for each species with three

species (C. japonica, H. sanguineus, and R. harrisii)

returning a test AUC above 0.95. Minimum threshold

ranged from roughly 0.26 to 0.45, and the 10%

threshold ranged from 0.43 to 0.61. Test data omission

rates were close to zero for the minimum threshold and

between 10 and 15% for the 10% threshold. Within the

model, sea surface temperature maximum and mini-

mum (average importance of 30.1 and 44.8% across

all species, respectively; Pearson correlation of 0.9

between cropped sea surface temperature layers) were

the most important environmental layers for dictating

suitability in the models based on permutation impor-

tance. The remaining variables were relatively unim-

portant for the models (importance between 0.69 and

6.0%).

Projected suitable environments for these species

ranged from approximately 16 to 77% of the area

modeled using the minimum thresholds and roughly

6–52% when the 10% thresholds were employed

(Fig. 2). C. japonica had the narrowest range utilizing

the minimum threshold (16.0%), and switching

between thresholds reduced the suitable area to

10.4%. C. maenas and R. harrisii had projected

suitable areas with the minimum threshold of 76.9 and

64.6%, respectively, but their 10% thresholds reduced

this area to 51.7% and only 7.8%. H. sanguineus and

C. hellerii had 19.3 and 43.15% suitable area with the

minimum threshold. For the 10% threshold, suitable

area was reduced to 24.9% for C. hellerii, and H.

sanguineus had the smallest projected suitable area of

only 6.0%.
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Introduction likelihood

Introduction likelihood was calculated based on non-

native occurrence locations by plotting the least cost

distance from the nearest major world port to each

occurrence record. C. maenas was found farthest from

a port (*2,000 km), and C. japonica was the most

limited (131 km) (Fig. 3). For global introduction

likelihood, aggregated data for all five species showed

a nearly linear decline to approximately 500 km and

then a long tail that ended at roughly 2,000 km. The

regions with the greatest density of ports and highest

continuous introduction likelihood are Europe, East

Asia, India, the Gulf of Mexico, and southeastern

Table 1 MaxEnt results for average test area under the receiver operating characteristic curve (AUC) with standard deviation (SD)

in parentheses

Species AUC (SD) GBIF/Lit MinT (Omm) 10%T (Omm)

Carcinus maenas 0.6755 (0.012) 1,533/181 0.3543 (0.00) 0.4254 (0.1057)

Charybdis hellerii 0.8847 (0.0379) 59/42 0.3342 (0.04) 0.4433 (0.1491)

Charybdis japonica 0.9594 (0.0139) 46/21 0.3966 (0.0143) 0.5387 (0.1333)

Hemigrapsus sanguineus 0.9677 (0.0062) 113/103 0.4503 (0.0091) 0.6108 (0.1113)

Rhithropanopeus harrisii 0.9568 (0.0107) 182/110 0.2638 (0.0035) 0.5748 (0.1203)

Each average is based on ten cross-validated runs. Number of occurrences by source (Global Biodiversity Information Facility, GBIF,

or Literature, LIT), as well as, minimum (MinT) and 10 percentile (10%T) training presence logistic thresholds with their respective

test omission rates in parentheses (Omm) are provided

Fig. 1 Logistic output for environmental suitability (ES) based

on MaxEnt models for each species. Scale is from low suitability

(blue) to high suitability (red). A Carcinus maenas; B Charybdis

hellerii; C Charybdis japonica; D Hemigrapsus sanguineus;

E Rhithropanopeus harrisii
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United States (Fig. 4). Other regions have lower

densities of ports and had non-continuous regions of

high introduction likelihood. The only regions without

any large ports are the higher northern and southern

latitudes, Indo-Pacific, southern South America, east-

ern Africa, and southwestern Australia. As such, these

regions have very low to zero modeled introduction

likelihood.

Invasion risk

The modeled results for invasion risk varied widely

between species. C. maenas had a broad invasion risk,

which included several locations that already have

documented non-native populations. These regions

included the East and West Coasts of the United States

and Canada, Australia, South Africa, and Japan

(Fig. 5A). Other regions with high invasion risk

included China, the Korean Peninsula, South America,

northern New Zealand, and small regions of northern

Fig. 2 Binary environmental suitability (ES) showing suitable

habitat based on minimum only (green) and minimum and 10%

(red) training presence logistic thresholds by species.

A Carcinus maenas; B Charybdis hellerii; C Charybdis

japonica; D Hemigrapsus sanguineus; E Rhithropanopeus

harrisii

Fig. 3 Introduction likelihood presented as the inverse cumu-

lative probability of non-native occurrence records by distance

to nearest port for each species. The solid black line is based on

non-native occurrence data for all five species; the solid gray

line is for native and non-native occurrence records for all

species. The line for ‘All Records (Native and Non-native)’ is

restricted to records with distances to ports\2,000 km
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and eastern Africa. While select higher northern

latitudes were modeled as suitable, there are fewer

ports in this region for introduction to occur. Much of

the tropical and far southern latitudes were modeled as

not suitable, regardless of introduction likelihood.

Charybdis hellerii had high invasion risk around

the equatorial band reaching as far north as the

Mediterranean Sea and as far south as Australia and

eastern South America. (Fig. 5B). Hotspots of inva-

sion risk included the regions currently reported to

Fig. 4 Introduction likelihood (IL) applied to world’s largest

208 ports using the inverse cumulative probability of non-native

occurrence records by distance to nearest port aggregated for all

five species. Scale is from low introduction likelihood (blue) to

high introduction likelihood (red). Black dots represent port

locations

Fig. 5 Invasion risk (IR) for species calculated by overlaying

introduction likelihood for the world’s largest 208 ports on a

binary suitability map based on the minimum training presence

logistic threshold. Scale is from low invasion risk (blue) to high

invasion risk (red). Black represents areas not predicted suitable

based on minimum threshold; brown represents areas suitable

but with zero introduction likelihood. A Carcinus maenas;

B Charybdis hellerii; C Charybdis japonica; D Hemigrapsus

sanguineus; E Rhithropanopeus harrisii
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have established invasions for this species, namely the

southeastern United States, eastern South America,

and the eastern Mediterranean Sea. As this species has

a broad native distribution across the Indian and

Pacific Oceans, there were fewer novel regions that

had invasion risk. Novel regions for this species with

relatively high risk of invasion were the western

Mediterranean and western coasts of Central America.

Charybdis japonica had the narrowest predicted

distribution with the Caribbean, Mediterranean, and

Black Seas, Persian Gulf, eastern United States, and

parts of Atlantic Europe all registering invasion risk in

non-native regions (Fig. 5C). The one region that has

an established invasive population, New Zealand, had

a small region of high invasion risk modeled near the

Ports of Auckland.

Hemigrapsus sanguineus had a predominately

temperate distribution with invasion risk occurring in

the Mediterranean and Black Seas, northern Europe,

eastern South America, and both coasts of North

America (Fig. 5D). New Zealand also had regions on

both the North and South Islands of higher and lower

invasion risk, respectively. Reported established non-

native populations are along the East Coast of the

United States and Atlantic Europe, which were

included in the regions modeled as having high

invasion risk.

Rhithropanopeus harrisii had a broad invasion risk

similar to C. maenas, with many regions having

modeled suitability and associated invasion risk

(Fig. 5E). The northern Atlantic was nearly devoid

of environmental suitability and introduction likeli-

hood, though parts of coastal Northern Europe had low

invasion risk. Established populations have been

reported extensively from around Europe, including

the Atlantic, northern, and Mediterranean coasts,

inland seas, including the Baltic, Black, Aral, and

Caspian Seas, and the west coast of the United States.

These regions were modeled to have moderate to high

invasion risk. Additionally, regions in South America,

Africa, Asia, Australia, and New Zealand had regions

that were modeled to have relatively high invasion risk

that are yet to have reported establishments.

Discussion

Identifying regions that are susceptible to invasion is

an important goal to understand where non-native

species may cause problems. The models presented

within this study utilized a combination of modeled

environmental suitability, based on maximum

entropy, and likelihood of introduction, using ports

as a proxy for commercial shipping, to inform our

understanding of potential global patterns of invasion

risk. For the five species presented here, this modeling

approach has implications for invasion risk assessment

and for the components of the models, environmental

suitability and introduction likelihood. The models

show considerable overlap between environmental

suitability and proximity to ports, and there are several

regions that are currently not invaded despite having

high invasion risk.

Two of the species were projected to have primarily

temperate suitable environmental distributions (C.

japonica and H. sanguineus), C. hellerii was projected

to have a tropical suitable distribution, and C. maenas

and R. harrisii had very wide projected suitability with

the exception of some and much of the Indo-Pacific

region, respectively. These distributions are important

as estimates of where the species will be able to

survive upon arrival. Environmental suitability calcu-

lated here is dependent on the selection of environ-

mental layers and the availability of occurrence data

for the species of interest. Selecting environmental

layers is limited to data availability at the scale of

modeling, and having more detailed global coverage

could likely improve the model. Environmental layers

were selected based on their potential relevance either

directly to the species being modeled or in the case of

nutrient inputs to their prey species. While several of

the environmental variables contributed a small

amount of information to the ultimate models, max-

imum and minimum sea surface temperatures were the

most important variables for dictating range limits for

these species at this scale. While either summer or

winter temperatures may limit species distribution,

these two layers are highly correlated in coastal

regions (Pearson correlation of *0.9).

While occurrence data were abundant for one

species, C. maenas, and representative for the native

and invasive ranges for three additional species, C.

hellerii, H. sanguineus, and R. harrisii, very few

occurrence records were available for C. japonica,

especially in the open access data. Test AUC values

for four species suggest a high fit for these models

based on the constraints provided by the occurrence

data (C. maenas models had a moderate AUC value).
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Values for test omission rates reflected the thresholds

used for determining suitability, though omission rates

at the 10% threshold were consistently higher than

10%. This discrepancy is likely in part because of the

paucity of data for some of the species resulting in

higher omission rates due to the significance of each

test data point. Based on the higher test omission rates,

models using the 10% threshold have the potential to

wrongly characterize suitable regions as not suitable.

To minimize false negatives, the more generous

minimum threshold was utilized to calculate invasion

risk in this study.

All five of these species were represented in the

open access data utilized, at least in their native range.

Collecting additional occurrence records from pub-

lished literature was possible and necessary for

underrepresented species and regions, but this collec-

tion increased both the time and resources needed to

collect the data. While this added burden may be

unnecessary for species that are well documented in

the open access datasets such as C. maenas, C.

japonica is a good example of a species that is

underrepresented in the open access database, which

lacked records for its non-native occurrences in New

Zealand. When run without additional records, New

Zealand was not modeled as suitable for C. japonica

and not predicted as having invasion risk in that

location (ESM Fig. 1C). Including records from the

supplemental literature search resulted in a model that

projected suitable environments near Auckland, New

Zealand. Overall, there were slight changes to suitable

environment projections using the minimum threshold

(modeled increases between \1 and *23% suitable

area) when additional records were utilized (Fig. 2,

ESM Fig. 1). In some cases, like C. maenas in

Greenland, additional records resulted in the loss of

environment that was classified as suitable when

modeled with fewer records. In addition to the number

of occurrence records, the inclusion of a bias grid was

important to the projected environmental suitability. It

was more important for species with regions of high

occurrence record density, such as C. maenas and R.

harrisii (Fig. 2, ESM Fig. 2A, F). However, the

impact seemed to be lower for species with fewer

occurrence records and narrower distributions (C.

japonica, C. hellerii, and H. sanguineus).

Introduction likelihood for these five species illus-

trates two important findings. First, all non-native

occurrence records considered in this study occurred

within 2,000 km of one of the 208 major world ports.

Furthermore, 50% occurred within *200 km from a

port and 90% within *840 km (Fig. 3, ESM Fig. 3).

The assumption made in this research is that the

clustering of non-native occurrence records near ports

is due to the likelihood that these species are

introduced via commercial shipping into ports (Drake

& Lodge, 2004), at least in primary transport, and

secondary spread will occur via intraregional transport

mechanisms (Wasson et al., 2001). Given the extra

steps involved and time lag to spread from the initial

point of introduction (Crooks & Soulé, 1999; Byers

et al., 2002), densities are expected to be highest close

to ports in near term post invasion timescales with

densities at distances scaling with time since invasion.

In this study, results show that C. maenas, which has

the longest invasion history, has been able to spread

the farthest from ports, and C. japonica, the species

with the shortest invasion history, has spread the least.

While there are additional possible primary vectors for

these species (e.g., historic oyster trade for R. harrisii

between the East and West Coasts of the United States;

see Roche & Torchin, 2007), commercial shipping is

considered a likely vector for the spread of all five

species. Additionally, even if these occurrences were

not the result of commercial shipping, these records

suggest that introductions are occurring near ports,

which often coincide with significant human popula-

tions and other socioeconomic activities.

An alternate explanation for the observed pattern of

occurrence record densities is that observation effort is

not evenly distributed, and greater effort is undertaken

near ports resulting in higher densities of occurrence

records (e.g., Wasson et al., 2001). Recent research

has shown that non-port embayments can be highly

invaded, despite not having direct interregional ship-

ping pressure, through intraregional boat traffic,

aquaculture, or natural spread vectors (Wasson et al.,

2001; Cohen et al., 2005). While greater observation

effort may be supported by the similar trend in

distance to nearest major port for the combination of

native and non-native occurrence records (50% within

*150 km and 90% within 530 km; Fig. 3), this

pattern is likely driven by the density of ports around

Europe and the East Coast of the United States

(Fig. 4). These regions are also the locations of the

densest occurrence records, primarily for C. maenas

and R. harrisii, which account for 71.7 and 12.2% of

the records, respectively (ESM Fig. 3). In both cases,
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the surveys for these species, as well as H. sanguineus,

appear to be systematic and representative of the

regions as opposed to limited to port locations. While

there does not appear to be oversampling of port locals

within these regions, higher observation effort in these

regions in general may systemically bias the data. In

this case, it is likely that density of ports and

observation effort are both correlated with develop-

ment status and location of institutions with higher

education and natural history foci.

The second important point regarding introduction

likelihood is that the abundance and distribution of

major commercial cargo and container ports provides

a nearly global, though spatially biased, transport

mechanism for these species. Within the modeled

region, only the Antarctic, Arctic, and Indo-Pacific

have significant regions that fall outside of 2,000 km

from a port. Smaller regions that are farther from one

of these major ports also exist on the coasts of western

Africa, southwestern Australia, southern South Amer-

ica, and many of the smaller island nations around the

globe. There are also regions that have many ports that

are close together representing hotspots of potential

introduction. Introduction hotspots can be seen in

China, Europe, and the Gulf Coast of the United

States. For regions that do not have a major world port,

it is possible that smaller regional ports could also act

as primary introduction points or avenues for second-

ary spread. Regional models could be constructed to

show relative introduction likelihood or secondary

spread of these species by incorporating regional

ports. Additionally, the construction of new ports has

the potential to alter introduction likelihood and

ultimately impact the invasion risk for these species.

Inclusion of future port locations could provide an

understanding of how introduction likelihood could

change over time. It would also be possible to replace

ports as the proxy and rerun the analysis for an

alternate vector, such as aquaculture or ornamental

trade, if a suitable proxy is identified.

The primary output of interest is the relative

invasion risk maps presented for each species, which

allow for regions of high relative threat for new

invasions to be identified. For example, C. maenas has

several regions that are at risk for new invasions based

on this model, including regions near Brazil and in

New Zealand. Additionally, while this species is

already reported as successfully established in Japan

(Carlton & Cohen, 2003), additional nearby regions

are modeled to have high invasion risk. Similar non-

invaded regions exist for the other four species.

However, knowing the limitations of this model is

extremely important to the relative confidence placed

in the specificity of these invasion risk models. C.

japonica is a good example where the limited

availability of occurrence data could have resulted in

not having an accurate representation of the species

plausible range and ultimately under predicting envi-

ronmental suitability. Additionally, it is evident from

this research that data collection effort is not evenly or

randomly distributed between species or locations.

While bias can be addressed using spatial corrections

as conducted here, increases in data collection and

reporting for underrepresented species and regions

would benefit the ability to accurately conduct this

type of modeling. Non-analogous conditions (condi-

tions not represented in existing occurrence data), may

not be identified as suitable if occurrence data is not

available for the entire suitable range even if the

species could survive in the conditions present. These

non-analogous regions can represent either regions

that are suitable but not represented in the existing

range/occurrence records or regions with conditions

that the species can adapt to. Species could be absent

because of a lack of opportunity to access the region or

range restriction due to another reason such as biotic

limitation. These models are restricted in their ability

to predict a species’ fundamental niche as they are

being trained on the realized niche conditions. To the

extent possible, this limitation is alleviated by utilizing

both native and non-native occurrence records to

estimate the potential niche of the species (Jiménez-

Valverde et al., 2011). Environmental data accuracy

and availability is also a potential limitation of this

type of modeling. Using variables that are at a global

scale and averaged across years can be used to

describe global patterns, but may not provide infor-

mation regarding conditions present at small scales

and extreme events that could restrict species’ distri-

butions. While the decision to not incorporate latitudes

above and below 70� north and south (Tyberghein

et al., 2012) did not meaningfully restrict occurrence

data (only three records for C. maenas in Norway were

outside the modeling window), it has implications for

invasion risk as increases in access to shipping and

future climate modification to the high arctic could

alter susceptibility to invasion in this region (Ware

et al., 2014).
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Open access data and free software have the

potential to increase access to this type of modeling,

so long as existing data are available and representa-

tive of the complete range of the species of interest.

Literature review should be used to assess the

accuracy of occurrence records and to supplement

open access data when needed. Additionally, as new

collections of occurrence records are undertaken,

researchers and research institutions should consider

posting to open access data sharing and biodiversity

repositories to improve modeling accuracy and reduce

the need to seek additional occurrence records from

literature sources that may not be readily available for

all stakeholders. Repositories also need to continue to

improve quality control efforts to ensure that occur-

rence data are reliable. Climate change and the

modification of transport vectors have the potential

to alter the environmental and socioeconomic land-

scapes, which could modify existing and potential

future ranges. By incorporating scenarios for these

potential changes, alterations to invasion risk in the

future could be predicted.

In summary, environmental suitability and intro-

duction likelihood are both integral components of the

invasion cycle and to understand invasion risk.

Modern modeling tools are useful in predicting where

species will be able to survive, but they are limited by

the availability of data to train the model. Of primary

importance is the consideration that the model will

only be able to predict novel environments based on

the constraints imposed by current distribution rather

than truly predicting the fundamental niche of a

species; there is a high risk that environmental

conditions that are suitable but not analogous to

conditions represented by existing occurrence records

will be modeled as false negatives. Using open access

data has many benefits in terms of time and accessi-

bility, but the results can under predict environmental

suitability for species that are not well represented in

these databases (e.g., C. japonica). Using literature

based data in conjunction with open access data can

help to ameliorate this limitation, but overall, these

models work best for well-studied species. Non-native

occurrence records for these five species mainly occur

within close proximity to major world ports (90%

within 840 km), suggesting that these ports act as a

good proxy for introduction likelihood. These ports

are spatially biased with the majority occurring in the

northern hemisphere primarily in temperate regions.

By combining these two components, it is clear that

there are large regions of overlap where these species

could survive and are likely to be introduced. While

the limitations to this type of modeling must be

considered, these models show that it is possible to

identify global patterns of invasion risk. Finally, this

type of model can be used for other marine and non-

marine species under current and future conditions.
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