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Abstract The study focused on modelling of mac-

ropyte indices against physico-chemical parameters of

waters by artificial neural networks. Several macro-

phyte diversity indices were analysed (species rich-

ness—N, the Shannon index—H0, the Simpson

index—D, and the Pielou index—J) as well as the

ecological status index (the Macrophyte Index for

Rivers—MIR). The aim of the study was to verify

knowledge about potential application of macrophytes

in the environmental monitoring. A Multi-Layer

Perceptron type of network was used in the analyses.

The study included 260 river sites located throughout

Poland. Alkalinity, conductivity, pH, nitrate and

ammonium nitrogen, reactive and total phosphorus,

and biochemical oxygen demand were used as the

explanatory variables. The quality of the constructed

models was assessed using calculated errors (RMSE

and NRMSE) and r Pearson’s linear correlation

coefficient. The neural network for the MIR index

was characterised by the highest quality. Neural

networks for other diversity indices (N, H0, D, and

J) did not provide adequate results for modelling,

which shows their ineffectiveness biological monitor-

ing. Sensitivity analysis revealed the influence of each

variable to the models. It indicated that modelled

values of MIR are most strongly influenced by total

phosphorus and alkalinity.

Keywords Artificial neural networks �
Macrophytes �Water quality � Biological

monitoring �Water framework directive

Introduction

River evaluation and classification by assessing their

ecological status is an approach in monitoring required

by the Water Framework Directive (WFD). Macro-

phytes belong to the groups of organisms considered

by the WFD for river assessment. For the purpose of

monitoring several systems based on aquatic plants

have been developed, of which some have been

integrated into national monitoring programs. Habitat

evaluation based on macrophytes is associated with a

number of physico-chemical characteristics of water

quality, mainly nutrients (Holmes et al., 1999; Haury,
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1996; Schneider et al., 2000; Haury et al., 2006) and

morphological degradation (O’Hare et al., 2006).

Recently some approaches in monitoring have been

critically examined and the existence of strong

correlations between aquatic plants and several quality

determinants has been disputed (Demars et al., 2012).

Therefore macrophyte monitoring requires more sup-

port utilising new databases and implementing addi-

tional statistical techniques.

Advanced data analysis techniques, among which

artificial neural networks have become particularly

popular in recent years, and have been increasingly

used in interpreting the results of environmental

research (Gabriels et al., 2007; Iliadis & Maris,

2007; Samecka-Cymerman et al., 2009; Gevrey

et al., 2010; Penczak et al., 2012). Statistical programs

that are based on artificial neural networks are

applicable where traditional methods of data analysis

do not provide satisfactory results (Lencioni et al.,

2007; Palialexis et al., 2011). ANNs are non-linear

modelling tools based on a biological neuron struc-

tures and the human brain processes. A considerable

advantage of ANNs is that they can have various

structure and they involve various interactive algo-

rithms depending on the problem investigated. This

considerably extends their applicability in solving

complex relationships which are faced in ecosystem

analysis (Lek & Guégan, 1999; Lek et al., 2000;

Özesmi et al., 2006).

Artificial neural networks have been utilised for

several applications in research of different types of

surface waters, both inland (Singh et al., 2009; He

et al., 2011) and marine waters (Lee et al., 2003; Millie

et al., 2012). These techniques have frequently been

used for major groups of aquatic organisms, i.e., fish

(Suryanarayana et al., 2008; Penczak et al., 2012),

macroinvertebrates (Lencioni et al., 2007; Kim et al.,

2008), algae (Lee et al., 2003; Jeong et al., 2006)

whereas macrophyte data have been treated by ANNs

relatively rarely (Samecka-Cymerman et al., 2007).

Neural networks introduced new aspects into analyses

of relationships between organisms and their habitat. It

was the purpose of this study to broaden the knowl-

edge of the indicative value of macrophytes by

introducing artificial neural networks in modelling.

The application of this technique is limited in aquatic

plant ecology research. In our study we modelled

several macrophyte indices against physico-chemical

parameters of water.

Methods and materials

Field surveys

The surveys on aquatic plants were carried out on 260

river sites located throughout Poland. Different river

types were considered including lowland, highland

and mountain rivers. Analysed rivers cover a wide

range of hydromorphological degradation.

The research was based on the Polish method used

in the national monitoring utilising the Macrophyte

Index for Rivers (MIR) (Szoszkiewicz et al., 2010). It

involves a quantitative and qualitative inventory of all

species growing within a 100-m reach of a river.

Species cover abundance was assessed with a 9-point

scale (Table 1).

The MIR was calculated with the following formula

(Szoszkiewicz et al., 2010):

MIR ¼
PN

i¼1 ðLi �Wi � PiÞ
PN

i¼1 ðWi � PiÞ
� 10 ð1Þ

where MIR value of the Macrophyte Index for Rivers

at the sampling site, N number of species at the

sampling site, Pi ratio of coverage for i-th taxon, Wi

weighting factor for i-th taxon, and Li indicator value

for i-th taxon.

The lower the MIR value, the more degraded the

watercourse in terms of its trophic status. MIR values

range from 10 for eutrophic rivers up to 100 for rivers

with the best ecological status.

Based on the data collected in the field, in addition

to the MIR index, four other macrophyte metrics

(diversity indices) were calculated, i.e., the number of

species (N), the Shannon index (Shannon & Weaver,

Table 1 The scale of sampling surface coverage by species

used to calculate various metrics

Surface coverage (%) (Pi) [i = 1,…, N]

\0.1 1

0.1–1 2

1–2.5 3

2.5–5 4

5–10 5

10–25 6

25–50 7

50–75 8

[75 9
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1949, H0), the Simpson index (Simpson, 1949, D) and

evenness (Pielou, 1969, J).

Water samples for analyses of physico-chemical

parameters were also collected during the field

surveys. For each sampling site, 8 parameters were

identified: alkalinity, conductivity, reactive and total

phosphorus, nitrate and ammonia nitrogen, pH and

biochemical oxygen demand.

ANN modelling

All the botanical and physico-chemical data were used

in the artificial neural network modelling. The results

of the analyses of water samples were used as

modelling variables to the constructed networks, and

the macrophyte metrics were used as output modelled

variables (Fig. 1). Automated neural networks avail-

able in STATISTICA 9.1 (StatSoft, Inc., 2010) were

used for the statistical analyses. There are different

ranges of values between analysed variables in terms

of their means and standard deviations (Table 2).

Ammonia nitrogen was characterised by the lowest

values (mean = 0.35 mg N–NH4/dm3), while the

MIR it was the largest (mean = 46.6). Variables

having relatively high values might dominate the

model. Therefore, according to many recommenda-

tions (Lee et al., 2003; Nourani & Fard, 2012) all input

and output variables were standardised to improve the

learning process of the neural network. Autoscaling,

which provides the best results (Lek et al., 2000), was

used in our investigation (Eq. 2)

zi ¼
xi � l

r
ð2Þ

where xi ith values of each variable (Alkal., Cond.,

Preact., Ptot., Nitr., Ammon., BOD5, pH; MIR N, H0, D,

J); zi ith standardised value of the variable, l mean of

the variable, and r standard deviation of the variable.

To model all five macrophyte metrics, a multilayer

perceptron type of network was used. It is a network

trained with ‘‘a teacher’’ technique called the delta

rule. This type of network is best known and most

widely used in the practice of network topologies (Lek

et al., 2000). The collected data, which consist of 260

cases, were divided into three sets. The first one

(training set) contained 182 cases, while the second

(validation set) and third (test set) contained over 39

cases each.

The root mean square error (RMSE) and norma-

lised RMSE (NRMSE) were calculated to assess the

usefulness of the models to estimate the MIR, based on

physico-chemical parameters. The following equa-

tions were used:

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK

i¼1 ðMIROi
�MIRMi

Þ2

K

s

ð3Þ

and

NRMSE ¼ RMSE

MIRmax �MIRmin

ð4Þ

where K number of repetitions, MIROi
ith observed

standardised values of the MIR, MIRMi
ith

Table 2 Basic statistics of input and output variables

Variable Shortcode Unit Range Mean Median SD CV (%)

Alkalinity Alkal. mg CaCO3/dm3 0.08–11.28 2.95 2.70 1.77 60

Conductivity Cond. mS/cm 0.03–1.56 0.46 0.38 0.29 63

Reactive phosphorus Preact. mgPO4/dm3 0.01–6.10 0.48 0.27 0.78 163

Total phosphorus Ptot. mgPO4/dm3 0.02–7.85 0.68 0.45 0.95 140

Nitrate nitrogen Nitr. mg N–NO3/dm3 0.02–9.00 1.06 0.60 1.34 126

Ammonia nitrogen Ammon. mg N–NH4/dm3 0.01–7.75 0.35 0.15 0.77 220

Biochemical oxygen demand BOD5 O2 mg/dm3 0.01–14.40 2.60 2.20 1.83 70

pH pH 4.25–9.03 7.75 7.76 0.40 5

Macrophyte Index for River MIR – 16.1–100 46.6 40.7 17.2 37

Number of species N – 1–52 17 17 8 47

Shannon index H0 – 0.00–2.85 1.57 1.61 0.58 37

Simpson index D – 0.00–0.92 0.65 0.72 0.20 31

Evenness (Pielou index) J – 0.00–1.00 0.58 0.60 0.19 33
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standardised values of the MIR calculated by the

model, MIRmin minimum standardised value observed

of the MIR, MIRmax maximum standardised value

observed of the MIR.

The quality of the constructed models was assessed

using the NRMSE and also the r Pearson’s linear

correlation coefficient between variables modelled by

the networks and calculated on the basis of the

botanical research. The same procedure was per-

formed for macrophyte diversity indices: species

richness, the Shannon index, the Simpson index, and

the Pielou index. The best ANN model for each index

was selected based on the highest r value and the lower

NRMSE values as determined for the testing dataset.

Sensitivity analysis

The impact of individual parameters for each model

was evaluated using global sensitivity analysis. Sen-

sitivity analysis is one of the explanatory methods,

which assesses how ‘‘important’’ are the predictive

variables for the neural network output (Gevrey et al.,

2003). The value obtained for each input variable is

the ratio, of the mean square error of the network

without this variable, to the error of the network with a

set of explanatory variables. The result shows how

much the error of the network will increase if a

particular variable is removed from the model. The

variables yielding in the analysis values close to or

lower than one would not contribute relevant infor-

mation to the network (StatSoft, Inc. 2010).

Results

Modelling of the five macrophyte indices was con-

ducted using artificial neural networks. Different

structures of the optimal models were developed for

each index (Table 3). The models had the same

number of layers (3). Input and output layers corre-

spond to input and output variables, respectively. The

number of neurons in hidden layers varied, which

resulted from the essence of the learning process of

artificial neural networks, in which the network

structure is refined, e.g., using iterative algorithms,

in order to minimize the error (Amirikian, 2009).

Parameters determining the quality of prediction of the

three processes of constructing the model were

calculated for each artificial neural network (Table 3).

Parameters defining the quality of the models at

various stages of network structure optimisation were

calculated for the obtained neural networks (Table 3).

Both Pearson’s correlation coefficient (r) between the

observed and modelled values and the normalised

mean square error indicates a better modelling

network performance for MIR rather than for the

other macrophyte diversity indices investigated. The

correlation coefficient for the MIR testing set was

0.841 (the empirical significance level is lower than

0.01) and the NRMSE was 14.1%, which indicates

accurate prediction of this index value.

When comparing values of estimated parameters of

the obtained neural networks it resulted in correlation

coefficients for macrophyte diversity indices much

lower than for MIR. Similarly, the NRMSE was higher

for the indices when compared to MIR. The correla-

tion coefficients for macrophyte diversity indices in

the tested dataset ranged from 0.322 to 0.478, whereas

NRMSE ranged between 21.1 and 27.8%.

It should be noted that the output variables were

characterised by comparable values of the coefficient

of variation (Table 2). CV for MIR was 37% and for

diversity indices it ranged from 31% (Simpson

index) to 47% (species richness). It follows that the

Table 3 Parameters of artificial neural networks for modelling of macrophyte indices

Model ANN structure r (p) RMSE (NRMSE)

Training Validation Testing Training Validation Testing

MIR 8-4-1 0.883 (\0.01) 0.883 (\0.01) 0.841 (\0.01) 0.461 (9.9%) 0.401 (9.7%) 0.623 (14.1%)

N 8-9-1 0.542 (\0.01) 0.367 (0.220) 0.478 (0.002) 0.851 (15.2%) 0.838 (15.9%) 0.965 (27.8%)

H0 8-10-1 0.338 (\0.01) -0.042 (0.798) 0.452 (0.004) 0.913 (18.7%) 1.065 (22.9%) 1.040 (22.5%)

D 8-7-1 0.269 (\0.01) 0.176 (0.284) 0.322 (0.046) 0.905 (19.9%) 1.092 (24.5%) 1.108 (24.4%)

J 8-7-1 0.345 (\0.01) 0.326 (0.43) 0.408 (0.010) 0.888 (17.0%) 1.088 (21.8%) 0.969 (21.1%)

*p empirical significance level
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variability of the considered macrophyte metrics did

not affect the quality of the obtained models.

These differences can also be observed in the

scatterplots depicting a relation between observed

values of the five considered macrophyte indices and

their residuals (Fig. 2). The plots show a symmetrical

distribution of values to a linear trend. The observed

relationship between MIR values and residuals shows

complete independence and random distribution

(R2 = 0.191). For diversity indices (N, H0, D and

J) the plots show a linear relationship between values

of indices and the residuals (R2 ranges from 0.783 to

0.942). It shows insufficient fit of the constructed

neural networks models to the data set.

Figures 3, 4, and 5 show a comparison of the

modelled and observed values of the MIR in the three

learning processes of the neural network. Prediction of

the MIR value using the artificial neural network is

relatively accurate. A constructed neural network does

not very often predict extreme (minimum and maxi-

mum) values of the index. A precise estimation of output

variable extreme values could indicate overfitting of a

network, which is undesirable. The lowest NRMSE

(below 10%) was obtained in the training and validation

processes of the network. Slightly higher errors (over

14%) were obtained for testing of the network.

The sensitivity analysis shows a relationship between

the development of aquatic vegetation and physico-

chemical factors (Table 4). It was demonstrated that the

prediction model of MIR is primarily sensitive to

changes in the concentration of total phosphorus in the

water. The mean square error quotient of the network

without the variable describing total phosphorus to the

network error with all variables was 3.177. Alkalinity

had almost the same impact on the modelled MIR value.

Elimination of this variable from the network would

increase the model error over three times (3.069).

Subsequently, conductivity and total phosphorus also

affect MIR, but in these two cases the increase of the

network error is not so large. Other parameters have

values close to one, which indicate no relevant infor-

mation to the model.

The results of the sensitivity analysis of the

networks for the four diversity indices confirm that

modelling of values of these indices on the basis of

physico-chemical parameters of the water is not

feasible. Only conductivity showed some impact on

model predictions of species richness. Sensitivity

analysis values obtained for the other parameters are

close to one. This indicates no relationship between

aquatic vegetation diversity and water quality.

Discussion

The relationships and processes observed in ecological

research are very often complex and non-linear, which

substantially reduces the possibility of using classical

regression methods (Lek et al., 2000; Gevrey et al.,

2003). Non-linear methods of data analysis based on

artificial intelligence were frequently used in many

studies of freshwater ecosystems to provide insight

into the variety of living organisms (Lencioni et al.,

2007; Kim et al., 2008; Penczak et al., 2012).

Therefore, in this study we have decided to use the

model of artificial neural networks to investigate the

relationship between aquatic plants (described by

various macrophyte indices) and water quality. Appli-

cation of sensitivity analysis facilitated more complete

interpretation of the results, which is also indicated as

an advantage of the networks (Özesmi et al., 2006;

Nourani & Fard, 2012).

A lack of a relationship between the four biodiversity

indices and physico-chemical parameters of water

indicates their uselessness in biological monitoring,

which is also often reported in literature (Hering et al.,

2006). However, we found that macrophytes may be

still used for pollution detection, as it has been shown

by the MIR model. This index using the specific reaction

Fig. 1 The concept of artificial neural network for computation

of five macrophyte indices
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of individual taxa to pollution can be utilised to

determine the state of the aquatic ecosystem. This

approach has often been used in several currently

applied bioindication systems for rivers, involving not

only macrophytes, but also other groups of aquatic

organisms (Haury et al., 2006; Willby et al., 2009; Feio

et al., 2012).

The applicability of sensitivity analysis to assess

the impact of each input variable on constructed neural

network models is often shown in similar studies

(Özesmi et al., 2006; Singh et al., 2009). The results of

the sensitivity analysis correspond with other research

on the impact of physico-chemical parameters, includ-

ing nutrients, on the macrophyte metrics of river

degradation (Dodkins et al., 2005; Haury et al., 2006;

Hering et al., 2006; Szoszkiewicz et al., 2006). The

identified major impact of mainly phosphorus and

alkalinity on MIR shows the value of this index as an

indicator of eutrophication, which was shown earlier

by other authors (Szoszkiewicz et al., 2006).

Our results reveal a potential of the use of the

macrophyte index to detect phosphorous which can

R² = 0.191
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Fig. 2 A plot of observed

macrophyte indices values

and their residuals from

modelling a the Macrophyte

Index for River (Pielou

index), b the number of

species, c the Shannon

index, d the Simpson index

and e evenness
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have an applications in the assessment of the ecolog-

ical status for the Water Framework Directive pur-

pose. It was argued in literature recently due to a weak

correlation between nutrients and macrophyte indices

(Demars & Edwards, 2009). In our study prediction

models based on artificial neural networks indicated a

strong relationship between MIR and water quality

variables, especially phosphorus concentration. How-

ever, data analysis techniques used in this study differ

significantly from previously used (e.g., Dodkins
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Fig. 3 A comparison of

modelled and observed MIR

values (training set)
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Fig. 4 A comparison of

modelled and observed MIR

values (validation set)
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et al., 2005; Demars & Edwards, 2009). Artificial

neural networks are based on the analysis of non-linear

functions, whereas other methods use eigenvalues and

eigenvectors generated by linear models. The use of

neural networks allowed us to examine the relation-

ships between macrophytes and water quality in a

different way, which is based on the collective signal

(not cumulative) of the complex physical and chem-

ical parameters.

The obtained range of the NRMSE for the MIR

model (14.1%) and range of the correlation coefficient

can be regarded as satisfactory to prove the relationship

between macrophytes and physico-chemical parame-

ters. The level of model quality was often higher in other

studies, as for instance in river water quality modelling

(Singh et al., 2009) or plant sciences (Gago et al., 2010).

Nevertheless the processes in the aquatic ecosys-

tems which were analysed by us are known as

extremely variable. Moreover macrophytes deliver a

signal of the long-term ecological processes, whereas

the hydrochemical parameters indicate momentary

status of the water. The prediction capability in our

model, which was lower than 20% can be regarded as

acceptable.

The analyses showed a particularly strong role of

phosphorus in the development of aquatic plants,

whereas the influence of this element was difficult to

distinguish from other correlated parameters, most

often conductivity (Szoszkiewicz et al., 2006; Demars

& Edwards, 2009). ANN application facilitates precise

non-cumulative assessment of the impact of each

predictor on the explanatory variable, which may be

an indicative value of the macrophyte index, based on

an indicative quantity of individual values taxa.

The undertaken analyses focused on the MIR,

which is used mostly in Poland in the national

monitoring for the purpose of the Water Framework

Directive. However, analysis of the MIR may provide

information on the potential applicability of macro-

phyte methods in any country. The MIR is relevant to

many other European indices such as IBMR (Haury

et al., 2006) used in France, Wallonia and Mediterra-

nean Europe, MTR (Holmes et al., 1999) which was

used for years in the UK and was tested in many other

countries, and RNMI (Willby et al., 2009) which is

under implementation in the UK. These methods are

based on the single metric combining occurrence

(indicator value per taxon) and abundance and they

differ only in a limited number of indicator taxa, which

take account of local aquatic flora. Some of the indices

differ in the abundance scale used in the field survey,

but this element does not have a strong influence.

Moreover, MIR was intercalibrated with other Euro-

pean indices within the Pan-European intercalibration

exercise (Birk & Willby, 2010). The results on the

applicability of some macrophyte metrics for river

monitoring can therefore be extensively used with

respect to the interpretation of macrophyte assessment

used in most EU countries.

Conclusions

We proved that modelling of the macrophyte quality

index (MIR) based on physico-chemical parameters is

possible with the use of artificial neural networks.

Results of the modelling show ineffectiveness of

biodiversity indices (N, H0, D, and J) in biological

Table 4 Sensitivity analysis of ANNs

Parameter Ptot. Alkal. Cond. Preact pH Ammon. Nitr. BOD5

MIR 3.177 3.069 1.655 1.466 1.268 1.154 1.119 1.002

Rank 1 2 3 4 5 6 7 8

N 1.029 1.139 1.446 1.087 1.115 1.000 1.013 1.007

Rank 5 2 1 4 3 8 7 6

H0 0.993 1.201 1.083 1.000 1.023 1.015 0.998 1.004

Rank 8 1 2 6 3 4 7 5

D 1.007 1.127 1.068 1.005 1.020 1.011 1.002 1.011

Rank 6 1 2 7 3 4 8 4

J 1.004 1.168 1.123 1.041 1.010 1.019 1.101 1.104

Rank 8 1 2 5 7 6 4 3
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monitoring because of the weak relationship with

environmental variables, in this case with physico-

chemical parameters of the water.

We confirmed that there is a relationship between

MIR and the concentration of phosphorous in water

and water alkalinity.

We confirmed that the ecological status index (the

MIR) can be applied in river monitoring to detect

specific degradation of aquatic ecosystems.
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