Skip to main content
Log in

Small dams decrease leaf litter breakdown rates in Mediterranean mountain streams

  • FORM AND FUNCTION
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The damming of rivers and streams alters downstream habitat characteristics and biotic assemblages, and might thus alter stream functioning, although there is not much direct evidence of this impact. In this study we compared breakdown of alder leaves upstream and downstream from 4 small (<1 hm3) dams in 4 Mediterranean mountain streams with no appreciable impact on water temperature and nutrient concentrations. Despite no effect on water characteristics, dams decreased leaf litter breakdown rates. Abundance and biomass of invertebrates and shredders and hyphomycete sporulation rates did not differ between upstream and downstream bags. However, the structure of invertebrate and hyphomycete assemblages did. Especially evident was a drop in limnephilids, which might explain the slower breakdown of leaf litter below dams. These results may help to explain some of the variability found in the literature on the effects of dams on decomposition rates. If dams increase water temperature and nutrient concentrations they may promote faster decomposition, but if dams do not change water characteristics, their impact on detritivore communities may cause slower decomposition rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, S. E., H. M. Grimshaw, J. A. Parkinson & J. A. Quarmby, 1974. Chemical Analysis of Ecological Materials. Blackwell, Oxford, UK.

    Google Scholar 

  • Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 629–636.

    Google Scholar 

  • Anderson, M. J. & J. Robinson, 2003. Generalised discriminant analysis based on distances. Australian and New Zealand Journal of Statistics 45: 301–318.

    Article  Google Scholar 

  • Baker, D. W., B. P. Bledsoe, C. M. Albano & N. L. Poff, 2011. Downstream effects of diversion dams on sediment and hydraulic conditions of Rocky Mountain streams. River Research and Applications 27: 388–401.

    Article  Google Scholar 

  • Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57: 289–300.

    Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J. D. S. Wite, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Camargo, J. A., A. Alonso & M. de la Puente, 2005. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Water Research 39: 3376–3384.

    Article  PubMed  CAS  Google Scholar 

  • Casas, J. J., C. Zamora-Muñoz, F. Archila & J. Alba-Tercedor, 2000. The effect of a headwater dam on the use of leaf bags by invertebrate communities. Regulated Rivers-Research and Management 16: 557–591.

    Article  Google Scholar 

  • Chung, N. & K. Suberkropp, 2009. Effects of aquatic fungi on feeding preferences and bioenergetics of Pycnopsyche gentilis (Trichoptera: Limnephilidae). Hydrobiologia 630: 257–269.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  • Dangles, O. & B. Malmqvist, 2004. Species richness-decomposition relationships depend on species dominance. Ecology Letters 7: 395–402.

    Article  Google Scholar 

  • Dudgeon, D., 2010. Requiem for a river: extinctions, climate change and the last of the Yangtze. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 127–131.

    Article  Google Scholar 

  • Elosegi, A., J. R. Díez & M. Mutz, 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657: 199–215.

    Article  Google Scholar 

  • Friedl, G. & A. Wüest, 2002. Disrupting biogeochemical cycles—consequences of damming. Aquatic Sciences 64: 55–65.

    Article  CAS  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Giller, P. S. & B. Malmqvist, 1998. The Biology of Streams and Rivers. Oxford University Press, Oxford.

    Google Scholar 

  • González, J. M. & M. A. S. Graça, 2003. Conversion of leaf litter to secondary production by the shredder caddisfly Sericostoma vittatum. Freshwater Biology 48: 1578–1592.

    Article  Google Scholar 

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown, based on biomass estimates. Ecology 83: 1026–1038.

    Article  Google Scholar 

  • Kondolf, G. M., 1997. Hungry water: effects of dams and gravel mining on river channels. Environmental Management 21: 533–551.

    Article  PubMed  Google Scholar 

  • Leberfinger, K., I. Bohman & J. Herrmann, 2010. Drought impact on stream detritivores: experimental effects on leaf litter breakdown and life cycles. Hydrobiologia 652: 247–254.

    Article  Google Scholar 

  • Lemmon, P. E., 1956. A spherical densitometer for estimating forest overstory density. Forest Science 2: 314–320.

    Google Scholar 

  • Marshall, D. W., M. Otto, J. C. Panuska, S. R. Jaeger, D. Sefton & T. R. Baumberger, 2006. Effects of hypolimnetic releases on two impoundments and their receiving streams in Southwest Wisconsin. Lake and Reservoir Management 22: 223–232.

    Article  CAS  Google Scholar 

  • Mendoza-Lera, C., A. Larrañaga, J. Pérez, E. Descals, M. A. Moya, I. Aróstegui & J. Pozo, 2012. Headwater reservoirs weaken terrestrial-aquatic linkage by slowing leaf-litter processing in downstream regulated reaches. River Research and Applications 28: 13–22.

    Article  Google Scholar 

  • Menéndez, M., E. Descals, T. Riera, & O. Moya, 2012. Effect of small reservoirs on leaf litter decomposition in Mediterranean headwater streams. Hydrobiologia. doi:10.1007/s10750-012-1064-6.

  • Merrix, F. L., B. R. Lewis & S. J. Ormerod, 2006. The effects of low pH and palliative liming on beech litter decomposition in acid-sensitive streams. Hydrobiologia 571: 373–381.

    Article  CAS  Google Scholar 

  • Muehlbauer, J. D., C. J. LeRoy, J. M. Lovett, K. K. Flaccus, J. K. Vlieg & J. C. Marks, 2009. Short-term responses of decomposers to flow restoration in Fossil Creek, Arizona, USA. Hydrobiologia 618: 35–45.

    Article  Google Scholar 

  • Munné, A. C., C. Solà & N. Prat, 1998. QBR: Un índice rápido para la evaluación de la calidad de los ecosistemas de ribera. Tecnología del Agua 175: 20–37.

    Google Scholar 

  • Nakano, S. & M. Murakami, 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Science (USA) 98: 166–170.

    Article  CAS  Google Scholar 

  • Nelson, S. M. & R. A. Roline, 2000. Leaf litter breakdown in a mountain stream impacted by a hypolimnetic release reservoir. Journal of Freshwater Ecology 15: 479–490.

    Article  Google Scholar 

  • Nilsson, C., C. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    Article  PubMed  CAS  Google Scholar 

  • Pardo, I., M. Álvarez, J. Casas, J. L. Moreno, S. Vivas, N. Bonada, J. Alba-Tercedor, P. Jáimez-Cuéllar, G. Moyà, N. Prat, S. Robles, M. L. Suárez, M. Toro & M. R. Vidal-Abarca, 2002. El hábitat de los ríos mediterráneos. Diseño de un índice de diversidad de hábitat. Limnetica 21: 115–133.

    Google Scholar 

  • Pascoal, C. & F. Cássio, 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology 70: 5266–5273.

    Article  PubMed  CAS  Google Scholar 

  • Pettit, N., T. Davies, J. Fellman, P. Grierson, D. Warfe & P. Davies, 2012. Leaf litter chemistry, decomposition and assimilation by macroinvertebrates in two tropical streams. Hydrobiologia 680: 63–77.

    Article  CAS  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Science (USA) 104: 5732–5737.

    Article  CAS  Google Scholar 

  • Pozo, J., J. Casas, M. Menéndez, S. Mollá, I. Arostegui, A. Basaguren, C. Casado, E. Descals, J. García-Avilés, J. M. González, A. Larrañaga, E. López, M. Lusi, O. Moya, J. Pérez, T. Riera, N. Roblas & M. J. Salinas, 2011. Leaf-litter decomposition in headwater streams: a comparison of the process among four climatic regions. Journal of the North American Benthological Society 30: 935–950.

    Article  Google Scholar 

  • R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Reiss, J., R. A. Bailey, D. M. Perkins, A. Pluchinotta & G. Woodward, 2011. Testing effects of consumer richness, evenness and body size on ecosystem functioning. Journal of Animal Ecology 80: 1145–1154.

    Article  PubMed  Google Scholar 

  • Richardson, J. S., Y. Zhang & L. B. Marczak, 2010. Resource subsidies across the land-freshwater interface and responses in recipient communities. River Research and Applications 26: 55–66.

    Article  Google Scholar 

  • Schlielf, S. & M. Mutz, 2009. Effect of sudden flow reduction on the decomposition of alder leaves (Alnus glutinosa [L.] Gaertn.) in a temperate lowland stream: a mesocosm study. Hydrobiologia 624: 205–217.

    Article  Google Scholar 

  • Short, R. A. & J. V. Ward, 1980. Leaf litter processing in a regulated Rocky Mountain stream. Canadian Journal of Fisheries and Aquatic Sciences 37: 123–127.

    Article  Google Scholar 

  • Simon, K. S., M. A. Simon & E. F. Benfield, 2009. Variation in ecosystem function in Appalachian streams along an acidity gradient. Ecological Applications 19: 1147–1160.

    Article  PubMed  CAS  Google Scholar 

  • Stanford, J. A. & J. Ward, 2001. Revisiting the serial discontinuity concept. Regulated Rivers: Research & Management 17: 303–310.

    Article  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism. Journal of the North American Benthological Society 29: 118–146.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of lotic ecosystems. Ann Arbor Science Publishers, Michigan: 29–42.

    Google Scholar 

  • Webster, J. R., E. F. Benfield, T. P. Ehrman, M. A. Schaeffer, J. L. Tank, J. J. Hutchens & D. J. D’Angelo, 1999. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshwater Biology 41: 687–705.

    Article  Google Scholar 

  • Wipfli, M. S., J. S. Richardson & R. J. Naiman, 2007. Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association 43: 72–85.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, Dordrecht.

    Book  Google Scholar 

Download references

Acknowledgments

This study was funded by the Spanish Ministry of Science and Innovation project Imparios (CGL2007-66664-C04-03). We are grateful to Fernando Rodríguez, Roberto Velilla, Isaac Navarro and Javier de la Calle for help with field and laboratory work. We thank Arturo Elosegi and anonymous reviewers for helpful comments on the manuscript. We are also grateful to the other participants in the Imparios project in Andalusia, Basque Country and Catalonia for their assistance in improving the study design. The size and volume of dams were obtained from the Inventario de Presas y Embalses compiled by the Spanish Ministry of the Environment and Rural and Marine Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. González.

Additional information

Guest editors: A. Elosegi, M. Mutz & H. Piégay / Form and function: channel form, hydraulic integrity, and river ecosystem functioning

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, J.M., Mollá, S., Roblas, N. et al. Small dams decrease leaf litter breakdown rates in Mediterranean mountain streams. Hydrobiologia 712, 117–128 (2013). https://doi.org/10.1007/s10750-012-1144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1144-7

Keywords

Navigation