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Abstract
Veterans suffer disproportionate health impacts from the opioid epidemic, including over-
dose, suicide, and death. Prediction models based on electronic medical record data can 
be powerful tools for identifying patients at greatest risk of such outcomes. The Veter-
ans Health Administration implemented the Stratification Tool for Opioid Risk Mitigation 
(STORM) in 2018. In this study we propose changes to the original STORM model and 
propose alternative models that improve risk prediction performance. The best of these pro-
posed models uses a multivariate generalized linear mixed modeling (mGLMM) approach 
to produce separate predictions for overdose and suicide-related events (SRE) rather than a 
single prediction for combined outcomes. Further improvements include incorporation of 
additional data sources and new predictor variables in a longitudinal setting. Compared to 
a modified version of the STORM model with the same outcome, predictor and interaction 
terms, our proposed model has a significantly better prediction performance in terms of 
AUC (84% vs. 77%) and sensitivity (71% vs. 66%). The mGLMM performed particularly 
well in identifying patients at risk for SREs, where 72% of actual events were accurately 
predicted among patients with the 100,000 highest risk scores compared with 49.7% for 
the modified STORM model. The mGLMM’s strong performance in identifying true cases 
(sensitivity) among this highest risk group was the most important improvement given the 
model’s primary purpose for accurately identifying patients at most risk for adverse out-
comes such that they are prioritized to receive risk mitigation interventions. Some predic-
tors in the proposed model have markedly different associations with overdose and suicide 
risks, which will allow clinicians to better target interventions to the most relevant risks.
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1 Introduction

The national epidemic of adverse events related to opioid abuse continues to be an urgent 
problem despite efforts in recent years to reduce the rate of opioid prescriptions and to 
implement treatment interventions (Centers for Disease Control and Prevention 2019). 
Compared to the general population, Veterans suffer a disproportionate impact from the 
combined effects of chronic pain, opioid use disorder (OUD), and mental health disor-
ders due to their exposure to physical and mental trauma (Seal et al. 2012; Vowles et al. 
2019; Nahin et  al. 2017). The Veterans Health Administration (VHA) implemented the 
Opioid Safety Initiative in 2013; this required steps to achieve lower opioid prescription 
rates and lower mean doses for remaining prescriptions (Gellad et al. 2017). The VHA and 
Department of Defense (DoD) promoted joint guidelines in 2017 for managing chronic 
pain that required careful management of opioid dose and duration (U.S. VHA and DoD, 
2017). Following these initiatives, several key opioid risk indicators for prescription opi-
oids improved. Yet overdose deaths among Veterans continued to increase from 14.47 per 
100,000 person-years in 2010 to 21.08 per 100,000 person-years in 2016, even while the 
percentage who received a prescription opioid within 90 days of overdose death declined 
from 54% in 2010 to 26% in 2016 (Lin et al., 2019). This trend suggested increased use of 
illicit opioids. More recently, the COVID-19 pandemic is likely to further exacerbate this 
negative trend in opioid overdose deaths (Holland et al. 2021), highlighting the continued 
critical importance of VHA programs providing treatment for Veterans with OUD, or who 
are at substantial risk for developing OUD.

The VHA Office of Mental Health and Suicide Prevention (OMHSP) developed a risk 
prediction model in 2018 designed to identify patients most at  risk for overdose (OD) 
and suicide-related events (SREs) related to opioid use. This model became the basis for 
a clinical decision support tool called the Stratification Tool for Opioid Risk Mitigation 
(STORM) (Oliva et al. 2017), and relies solely on electronic medical record (EMR) data 
for risk prediction and stratification. STORM has been implemented throughout the VHA 
as a risk mitigation tool to help prioritize patients at greatest risk for an opioid-related 
adverse outcome. Patients with opioid use have their risk scores updated each night from 
daily electronic medical record extracts; this score helps to drive a dashboard that sum-
marizes the patient’s current risk factors, risk mitigation strategies, non-pharmacological 
pain treatments and the status of healthcare appointments. The model was developed from 
a single year of EMR data (2010), and estimated a patient’s risk for the combined out-
come (OD or SRE) in the following year. The combined OD-SRE outcome was used due to 
concerns that it may be difficult to clinically distinguish the two events. Predictor variable 
categories included demographics, prior outcomes or treatments related to opioid risk, pre-
scriptions (opioid or concomitant medications with known risk), substance use disorders 
(SUD), mental health disorder diagnoses, and medical comorbidities. The STORM authors 
recognized several limitations, including the potential drawbacks for using a combined out-
come for OD and SRE with predictors which may have differing effects for each outcome. 
The authors also suggested that improved model prediction accuracy might be achieved by 
using an expanded set of variable types and data sources (Oliva et al. 2017). Building on 
these observations, we sought to develop alternative models that improve prediction perfor-
mance through the following steps: (1) Improved model design: we used an advanced joint 
model to separately account for each outcome with a covariance structure that allowed for 
capturing the interdependencies within each patient over multiple years. This permitted us 
to simultaneously assess each predictor’s association with the two outcomes, such that one 
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predictor could be strongly associated with one outcome but have a weaker (or even protec-
tive) association with the other outcome. This was expected to help produce improved pre-
diction performance compared to models with a single combined outcome, or compared to 
running separate models for each outcome. (2) Incorporated new predictor variables asso-
ciated with adverse opioid outcomes based on a literature search, including adding chronic 
pain as a comorbid condition, expanding the types of opioid and concomitant medications, 
incorporating positive urine lab screening results and positive screening results for depres-
sion or suicide risk, and expanding the types of variables used to account for a patient’s 
location based on zip code and census tract identifiers. These new predictor variables were 
all expected to improve prediction accuracy due to prior evidence that suggested their asso-
ciation with adverse opioid outcomes. (3) Used more recent (2014–2019) longitudinal data 
for training and validating models which reflects recent trends in improved opioid safety 
policies and the increased use of illicit opioids. This was expected to improve predic-
tion performance since our prediction models would be trained on information that more 
closely matched current day trends. (4) Incorporated Centers for Medicare and Medicaid 
Services (CMS) prescription and healthcare utilization data: evidence suggests Veterans 
who receive opioids from both the VHA and Medicare systems are at greater risk of pre-
scription OD death (Moyo, et al. 2019). By enriching our dataset with risk factors and pre-
vious outcomes from CMS records we expected to have more information about Veterans 
who used both systems. This in turn was expected to drive prediction improvements. Our 
a-priori hypotheses were that substantial gains in prediction accuracy and risk stratification 
could be achieved through these combined measures. Such improvements would provide 
more accurate and actionable information to clinicians for use in mitigating opioid-related 
risks.

2  Methods

As described in detail below, we developed new prediction models that account for the four 
improvements described above under the generalized linear mixed model (GLMM) and 
multivariate generalized linear mixed model (mGLMM) frameworks. We compared their 
performance to that of a modified STORM model, for which we replicated most aspects of 
the original STORM model. All models were trained and validated with the same longitu-
dinal dataset that incorporated both VHA and CMS data. The modified STORM model’s 
predictor variables were limited to those used in the original STORM model, while the 
GLMM and mGLMM predictors also included a large number of new variables in addition 
to the original STORM variables.

2.1  Population

The study period was January 1, 2014 to December 31, 2019. Veterans were included who: 
(1) had one or more orally administered opioid prescriptions (cough medicines excluded) 
filled by VHA or Medicare part-D pharmacies from January 1, 2014 through December 31, 
2018, or (2) had an OUD diagnosis, or (3) had an overdose involving any drug or prescrip-
tion medication during the study timeframe. The patient’s index date was the date of the 
earliest opioid prescription, OUD diagnosis or overdose during the study period. Each year 
of patient data following the index date was used to predict outcomes in the following year. 
Patients were followed until death or until December 31, 2019.
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2.2  Data sources

National Veterans Health Administration (VHA) Corporate Data Warehouse (CDW) data 
were merged with corresponding CMS Medicare inpatient, outpatient and pharmacy data 
obtained from the VA Information Resource Center (VIReC). Joint VA/DoD Mortality 
Data Repository and VA Suicide Prevention Application Network (SPAN) data were used 
to identify suicide-related events and cause of death (Center of Excellence for Mortality 
Data Repository 2020).

2.3  Outcomes

The outcome variables were suicide-related events (suicide ideation, attempt, or completed 
suicide) and prescription medication overdose (OD). These outcomes were modeled as 
separate binary variables in the multivariate generalized linear mixed model (mGLMM) 
and as a single (combined) binary variable in the modified STORM and GLMM models 
to indicate that either a SRE or OD had occurred. Suicide-related events and prescription 
medication overdose events were identified by ICD-9-CM or ICD-10-CM code definitions 
established by the VA Stratification Tool for Opioid Risk Mitigation (STORM) model 
(Oliva et al. 2017). Note that prescription medication overdose events were not limited to 
those involving opioids; this is consistent with the STORM model. Every suicide related 
event was included regardless of whether it was suspected to be related to an overdose.

2.4  Predictor variables

Variables were defined for each one-year period following a patient’s index date until 
death or censoring. The predictor variables from one year were used to predict outcomes 
in the following year. The selection of the additional variable types used in the GLMM and 
mGLMM models to supplement the original STORM variables was informed by a thor-
ough literature search for predictors likely to be associated with OD or SRE (Centers for 
Disease Control and Prevention 2019; Bohnert et al. 2011, 2014; Lo-Ciganic et al., 2019, 
Cochran et al. 2017); variable selection also depended on their availability within the VHA 
or CMS datasets. Supplemental Table 1 provides comparison listings of the predictor vari-
ables used in the mGLMM and GLMM models versus the modified STORM model.

We considered other variable selection methods, including penalized regression meth-
ods and various machine learning algorithms. However, our earlier research in this area 
demonstrated these methods were not likely to provide substantially improved prediction 
performance over a thorough literature search (Ward et al. 2018).

2.4.1  Demographics

Demographic predictors included age, sex, race-ethnicity, marital status, and percent 
service-related disability. Location variables included the VA station offering primary 
care that was closest to the Veteran’s residence, the Veteran Integrated Service Network 
(VISN), and other variables based on the Veteran’s zip code or census tract. These were 
the rural–urban location based on Rural Urban Commuting Area (RUCA) code classifica-
tions (University of Washington 2019), the Area Deprivation Index (University of Wis-
consin School of Medicine Public Health 2015), the Area Health Resources Files (U.S. 
Health Resources and Services Administration 2019), and County Health Rankings from 
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the University of Wisconsin Population Health Institute (2019). All location variables were 
time-varying, such that we used the patient’s last recorded location in a given year to fix 
location for that year.

2.4.2  Opioid prescriptions

Opioid dose was calculated by determining morphine equivalent daily dose (MEDD) 
(Centers for Disease Control and Prevention 2018) and reported as mean MEDD and mean 
opioid days per year. Total opioid prescription fills per year for long-acting (LA) and short-
acting (SA) opioids were determined. Cumulative days per year were also determined for 
any opioids and for long-acting (LA) opioids. Fills by opioid type were also determined for 
fentanyl (LA and SA), hydrocodone (LA and SA), hydromorphone (LA and SA), meperi-
dine, methadone, morphine (LA and SA), oxycodone (LA and SA), oxymorphone (LA and 
SA), tapentadol (LA and SA), and tramadol (LA and SA). Annual opioid fills and mean 
MEDD per year from CMS part-D claims were also determined. We also accounted for 
whether a patient received any part-D opioids at any point during the study timeframe.

2.4.3  Other medications

Total annual prescription fills were identified for medications classes that may increase the 
risk for suicide or overdose events when prescribed with opioids. These classes included 
antidepressants, antipsychotics, benzodiazepines, duloxetine, gabapentin, muscle relaxants, 
stimulants, and zolpidem. Total annual cumulative days were determined for antidepres-
sants, benzodiazepines with opioids, and gabapentin.

2.4.4  Medical comorbidities

Elixhauser comorbidities were determined based on previously validated ICD code defini-
tions (Quan et al. 2005). Comorbidities were carried forward from the first year reported; 
for example, if a patient had a diabetes diagnosis at baseline, it was assumed to exist in each 
following year even if the diagnosis code did not recur in a following year. Since comorbid 
chronic pain is frequently seen in Veterans with opioid use, we included it as a predictor 
in our models. Veterans meeting criteria for chronic pain within any 365 day period since 
the index date were identified using a validated algorithm that included the following steps 
(Tian Zlateva and Anderson 2013): (1) a single occurrence of an ICD-9 or ICD-10 code 
shown to be highly likely to represent chronic pain, or (2) two or more occurrences of 
ICD codes shown to be likely to represent chronic pain, separated by at least 30 days, or 
(3) receipt of at least 90 days of opioid medication, or (4) one occurrence of an ICD code 
likely to represent chronic pain AND two or more numeric pain scores of 4 or higher more 
than 30 days apart. Patients were not considered to have chronic pain until 90 days had 
passed after any surgery. The ICD-9 and ICD-10 codes used in the chronic pain algorithm 
are provided in supplemental table 6. Finally, we reported sleep apnea, osteoporosis and a 
history of falls and accidents due to their previous association with increased risk of over-
dose (Oliva et al. 2017).
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2.4.5  Mental health and substance use comorbidities

Mental health conditions included bipolar disorder, post-traumatic stress syndrome 
(PTSD), major depression, and other mental health disorders. Substance use disorders 
(SUD) included opioid, alcohol, tobacco, sedatives, stimulants, cannabis, hallucino-
gens, and other substances. Similar to medical comorbidities, conditions were carried 
forward from the first year reported, with one exception: we distinguished between an 
OUD diagnosis that occurred in a prior year with a newly diagnosed OUD in the current 
prediction year.

2.4.6  Laboratory data

Positive urine lab results were included for cocaine, antidepressants, amphetamines, 
alcohol, benzodiazepines, oxycodone, opiates, cannabis, morphine, methadone, fenta-
nyl, barbiturates, buprenorphine, and phencyclidine.

2.4.7  Prior events

Prior outcomes or treatments in earlier years were used as predictors; these events 
include prior OD, prior SRE, prior SUD treatment, prior inpatient mental health treat-
ment, and prior detoxification treatment.

2.4.8  Healthcare utilization

Annual total numbers of outpatient visits, inpatient stays and emergency department 
visits were determined for both the VHA and CMS systems.

2.4.9  Mental health screening results

Patient Health Questionnaire-9 (PHQ-9) (Kroenke, Spitzer and Williams 2001), the 
Brief Addiction Monitor (BAM) scores (Cacciola et  al. 2013), and Columbia-Suicide 
Severity Rating Scale (C-SSRS) scores (Posner et  al. 2011) were used as predictors. 
PHQ-9 is a measure of depression severity, where a higher score indicates greater sever-
ity. BAM is a measure to assess risk and protective factors related to substance use dis-
orders; the difference between subscale scores for risk factors and protective factors was 
used in our analyses, such that a more positive value indicated risk factors outweighed 
protective factors. Positive suicide risk screening results were collected from C-SSRS 
scores (positive responses to questions 3, 4, 5 or 8 indicated positive risk) and from item 
9 of the PHQ-9 (any score > 0 indicated positive risk).
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2.5  Data analysis

2.5.1  Summary statistics

Summary statistics (mean, proportion, etc.) for the patient demographic and clinical 
characteristics were computed by SRE and OD outcomes. We did not report p values 
because nearly every comparison was highly significant due to the large population size.

2.5.2  Statistical models

Modified STORM model First, we ran a modified version of the original STORM model 
(Oliva et al. 2017) with our longitudinal dataset using the same combined binary outcome 
(OD or SRE) and the same predictor and interaction terms. The original STORM model 
was run on a single year of predictor data (2010), and was based on a GLMM approach 
with a logit link and random effects for VHA station and VISN to account for cluster-
ing by facility. Our modified STORM model differed in several respects from the original: 
our dataset was longitudinal with up to 5  years of data per patient, included both VHA 
and CMS data sources, and included a random intercept for each patient. Finally, we 
expanded the STORM patient inclusion criteria to also include those with a prior OD or 
OUD diagnosis; the original model included those with any opioid prescription. Although 
the modified model did not perfectly replicate the original STORM model design, it served 
as a baseline model against which we could compare potential prediction performance 
improvements.

GLMM with new predictors The next model used the same GLMM approach and com-
bined outcome as the modified STORM model, but included the wide range of new pre-
dictors described earlier, including healthcare utilization variables, chronic pain diagnosis, 
mental health screening results, positive urine lab results, additional opioid and other med-
ication classes, and location variables. Like the STORM model, this was a generalized lin-
ear mixed model with a logit link, a single binary outcome (OD or SRE), but also included 
a random intercept for each patient.

Multivariate generalized linear mixed model (mGLMM) This proposed approach used a 
joint modeling design to model both outcomes(OD and SRE) jointly through two GLMMs 
that were linked through a shared random intercept. In addition to the joint effect of an 
exposure on both outcomes, this also provided marginal effects of an exposure on each 
of the outcomes while accounting for their interdependence. This mGLMM approach 
also provided a way to model unobserved heterogeneity in variance caused by subject and 
cluster effects, by correlated repeated measures and by multiple related outcomes. This 
approach may be particularly useful in our case, where the OD and SRE outcomes are 
highly correlated. The joint model has been shown to reduce bias and standard errors when 
compared to models which use a single combined (binary) outcome, or compared to using 
separate models for each outcome (Gebregziabher et al. 2012; Jaffa et al. 2016, Gebreg-
ziabher et  al. 2018). Let yk
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matrix, where q is the dimension of the random effects vector. Here we use a logit link with 
the binary outcomes. For two outcomes (OD and SRE), we induced correlation between 
two responses in the joint model through shared random intercepts:

The shared random intercept model builds an assumption that the OD and SRE out-
comes are related through some latent process. By modeling the two outcomes jointly, 
we are able to simultaneously assess each predictor’s association with the two outcomes, 
such that one predictor could be strongly associated with one outcome but have a weaker 
(or even protective) association with the other outcome. This is expected to help produce 
improved prediction performance compared to models with a single composite outcome, 
or compared to running separate models for each outcome. For example, Liu et al. (2008) 
showed that running independent models that ignored possible correlation between related 
outcomes could result in biased estimates.

2.5.3  Variable selection

For the GLMM and mGLMM models, variable selection steps included checking for col-
linearity between closely-related covariates; for example, annual opioid days, mean MEDD 
and cumulative opioid days were all strongly correlated, and mean MEDD was used in the 
models to represent opioid dose. Potential interactions between key variables were tested 
for significance in exploratory analyses, but were not retained in the final model because 
they did not improve overall prediction performance. In developing prediction models, we 
were less concerned with identifying and eliminating unimportant predictors (model par-
simony). As Steyerberg (2010) discussed, parsimony in prediction models is not an impor-
tant concern when we have large patient cohorts; instead, we are primarily concerned with 
prediction accuracy in patient data that was not used to train the model. Hastie et al. (2009) 
also provided similar conclusions. Parsimony can become important in explanatory models 
when we want the model to be interpretable; parsimony is also needed when the number of 
patients is small relative to the number of candidate predictors: neither condition applies in 
our case.

2.5.4  Prediction performance

We used tenfold cross validation to validate prediction model performance. Model dis-
crimination performance was assessed using validation data following model develop-
ment using training data. Performance statistics included: (1) comparison of area under 
the receiver operator curve (AUC) statistics using the DeLong test (DeLong et al. 1988); 
(2) sensitivity, specificity, positive predictive value, negative predictive value, and number 
needed to evaluate (Romero-Brufau et al. 2015) were reported at the optimized prediction 
threshold as determined by the maximum Youden Index (Youden et al. 1950). The Youden 
Index is based on a balance of sensitivity and specificity and the maximum value occurs 
where the receiver operator curve reaches a maximum height above the diagonal line that 
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represents 50% prediction performance (random chance). While AUC provided a measure 
of overall prediction performance, improvements in sensitivity were also emphasized since 
this is a measure for how well a model can identify true OD and SRE cases while minimiz-
ing the number of missed cases. Measures that assessed how well the model avoided false 
positive predictions (specificity and positive predictive value) were considered less impor-
tant in this setting because correctly identifying cases enables the delivery of potentially 
life-saving interventions, while false positive results added little risk. Model calibration 
performance was assessed by stratifying risk predictions into low risk (below the maxi-
mum Youden Index), medium risk (between the maximum Youden Index and the highest 
10th percentile), and high risk (top 10th percentile). We then compared the models’ actual 
rates for each outcome across the three strata. We also assessed performance when the risk 
stratification cutpoint was set such that the patients with the highest 100,000 predicted risk 
scores were screened in order to compare how many OD or SRE events would be correctly 
identified at this cutpoint (sensitivity) versus how many would be false negative or false 
positive predictions. Finally, we assessed prediction performance for subgroups by race-
ethnicity, sex, and age groups to evaluate whether predictions for these groups were less 
effective, and to what degree. All analyses were performed using SAS, version 9.4 (SAS 
Institute, Inc.).

2.5.5  Net benefit analysis

We conducted net benefit analysis (also called decision curve analysis) to compare models 
in terms of their screening benefit. The net benefit (NB) for treatment is defined as:

where n is the total number of patients, TP and FP are the number of true or false positives, 
and pt is a risk threshold (Vickers 2006). NB could be viewed as the difference between the 
benefit for screening the correct group (true-positives) and the weighted cost for screening 
the wrong group. Vickers et al. (2006) wrote that this approach is intended to determine if 
a new model provides any clinical benefit, and should not be considered a strict measure of 
predictive performance.

3  Results

3.1  Patient characteristics

Table 1 provides a summary of patient demographic variables and a history of prior events 
stratified by prescription OD or SRE outcomes. There were 1,744,667 Veterans in the cohort, 
of which 165,680 (9.5%) had at least one prescription medication overdose during the study 
period, and 97,688 (5.6%) had at least one SRE (Table 1). Most variables were strongly asso-
ciated with both outcomes but in some cases with opposing effects. For example, in the old-
est age group (> 65) a larger percentage had at least one OD compared to those under age 
30 (12.3% vs. 4.5%), but a smaller percentage had at least one SRE (2.8% vs. 10.1%). Simi-
larly, men were more likely to experience at least one OD but less likely to experience a SRE 
compared to women. Nearly 85% of the full cohort met the chronic pain definition, and these 
patients were more likely to experience an OD or SRE: 7.8% and 17.5% with ‘likely’ or ‘highly 
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likely’ chronic pain experienced at least one OD, compared with 4.3% among those without 
chronic pain. For SREs, these values were 4.3%, 11.6%, and 1.9%, respectively. Patients with 
a prior OD or SRE were significantly more likely to have future events. For example, 29.7% of 
those with a prior SRE had at least one overdose event, and 50.5% had at least one additional 
SRE. Among patients with a previous inpatient mental health treatment, 32.7% had at least 
one post-treatment OD event and 64.9% experienced at least one SRE. Veterans with opioids 
from Medicare sources were somewhat more likely to experience an OD (14.8%) or a SRE 
(7.1%) compared to the overall population. Supplementary tables 2–5 provide a full listing of 
the distributions of predictor variables used in the GLMM and mGLMM models stratified by 
prescription OD or SRE outcomes; similar to Table 1, there are often distinct differences in 
these distributions when outcome groups are compared.

Table 1  Population characteristics*

*Percentages in OD and SRE columns represent proportion of that subgroup having the outcome; percent-
ages in total column represent that subgroup’s proportion of the full population

 ≥ 1 overdose N(%)  ≥ 1 suicide- 
related event 
N(%)

Overall N(%)

Group size 165,680 (9.5) 97,688 (5.6) 1,744,667

Race-ethnicity non-Hispanic white 122,429 (10.2) 64,073 (5.3) 1,203,231 (69)
non-Hispanic Black 31,688 (8.4) 23,681 (6.3) 375,726 (21.5)
Hispanic 6738 (6.9) 6207 (6.4) 97,052 (5.6)
Other 4525 (6.6) 3727 (5.4) 68,658 (3.9)

Sex Female 12,866 (8) 11,772 (7.3) 160,905 (9.2)
Male 152,514 (9.6) 85,916 (5.4) 1,583,762 (90.8)

Age Under 30 3468 (4.5) 7806 (10.1) 76,982 (4.4)
30–50 18,185 (5.3) 27,567 (8.1) 341,299 (19.6)
51–65 61,206 (9.4) 43,441 (6.6) 653,531 (37.5)
Over 65 82,521 (12.3) 18,874 (2.8) 672,855 (38.6)

Service-related disability  < 50% 87,999 (9.6) 42,347 (4.6) 913,268 (52.3)
 ≥ 50% 77,381 (9.3) 55,341 (6.7) 831,399 (47.7)

Marital status Unmarried 87,299 (10) 64,118 (7.3) 877,311 (50.3)
Married 78,081 (9) 33,570 (3.9) 867,356 (49.7)

Urban rural location Rural or highly rural 60,120 (9.7) 30,717 (5) 619,142 (35.5)
Urban 105,260 (9.4) 66,971 (6) 1,125,525 (64.5)

Prior events

Prior suicide-related event 22,977 (29.7) 39,087 (50.5) 77,401 (4.4)
Prior overdose 52,033 (40.5) 22,093 (17.2) 128,479 (7.4)
Prior MH treatment 12,518 (32.7) 24,816 (64.9) 38,264 (2.2)
 rior SUD treatment 14,391 (23.6%) 24,037 (39.4%) 60,952 (3.5%)

Opioids from CMS partD 31,090 (14.8) 14,852 (7.1) 209,716 (12)
Chronic pain Not diagnosed 11,768 (4.3) 5096 (1.9) 272,190 (15.6)

Likely 84,331 (7.8) 46,802 (4.3) 1,077,561 (61.8)
Highly likely 69,281 (17.5) 45,790 (11.6) 394,916 (22.6)
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3.2  Prediction performance

Table 2 summarizes prediction performance statistics from the modified STORM, GLMM 
and mGLMM models. The 95% confidence intervals for area under the ROC curve (AUC) 
do not overlap, and indicate the mGLMM model has significantly better prediction perfor-
mance (AUC 0.837, 95% CI: 0.836, 0.838) compared to the GLMM (AUC 0.801, 95% CI: 
0.800, 0.802) and modified STORM (AUC 0.774, 95% CI: 0.772, 0.776) models. Results 
from Delong tests for differences in AUC between each model pairing were highly sig-
nificant (p < 0.0001 for all). A comparison of ROC curves (Fig. 1) provides a similar con-
clusion. The mGLMM model’s sensitivity and specificity are superior as determined at 
the optimized Youden score cutpoint, but precision, negative predictive value results are 
slightly lower but roughly similar to the comparison models.

3.2.1  Prediction performance in subgroups

Supplemental Fig. 1 a provides a comparison of AUC performance by race-ethnicity, sex, 
and age groups for the modified STORM model (results shown in gray) and mGLMM 
(results in color). STORM AUC values range from 0.738 to 0.822 (difference of 8.4%), and 
mGLMM values range from 0.818 to 0.859 (difference of 4.1%). Performance differences 

Fig. 1  Area under the ROC curve comparison for mGLMM, GLMM and STORM replication models, with 
AUC values in parenthesis
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by race-ethnicity were reasonably small for all groups: performance for non-Hispanic 
Blacks and other race-ethnicity groups was slightly better than for the whole group; for 
Hispanics performance was slightly improved in STORM but slightly lower in mGLMM. 
Similarly, for females, performance was slightly better in STORM but slightly lower in 
mGLMM. The largest subgroup differences occur by age group: performance was better 
for those younger than 65, but was 1.9% worse in mGLMM and 4.9% worse in STORM.

3.3  Net benefit analysis

Supplemental Fig. 1b provides net benefit results. This approach is another way to balance 
the gains from correctly identifying cases (TP) against the costs for incorrectly predict-
ing patients are high risk (FP). When measured at the actual incidence of SRE or OD, the 
net benefit (NB) from screening is the vertical distance along the dashed line between the 
green and red curves. The NB values are strongly positive for both models, but are largest 
for mGLMM.

Fig. 2  We assessed prediction performance when the risk stratification cutpoint was set such that the 
patients with the highest 100,000 predicted risk scores were screened in order to compare how many over-
dose or suicide events would be correctly identified at this cutpoint (sensitivity) versus how many would 
be false negative or false positive prediction. For each model’s predictions in a validation cohort, we show 
numbers of true and false positives (TP, FP), true and false negatives (TN, FN), with corresponding sensi-
tivity (SENS), specificity (SPEC), and positive predictive values (PPV). In the mGLMM model predict-
ing SRE, SENS = 72%, meaning nearly 3 of 4 actual SREs were correctly identified in the validation data, 
compared with 50% in the modified STORM model. For OD, the mGLMM and STORM models produced 
very similar results (49.3% and 50%, respectively). Since the mGLMM model produced two predictions 
per patient (OD and SRE), we combined them using rules that prioritized true positives and false nega-
tives (see footnote). The combined mGLMM OD-SRE predictions included 21,440 TP results, or 17.3% 
more than from modified STORM (18,240 TP) and 12.1% more than GLMM (19,129 TP). False positive 
(FP) results were 140,043, 80,872, and 81,715 for mGLMM, GLMM, and STORM, respectively, indicating 
more patients would be unnecessarily screened using the mGLMM approach in order to produce the gains 
in TP cases
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3.4  Risk stratification performance

Figure 2 provides a comparison of prediction performance when the risk stratification cut-
point was set such that the patients with the highest 100,000 predicted risk scores were 
all screened; this allowed us to compare how many overdose or suicide events would 
be correctly identified at this cutpoint (true positives) versus how many would be false 
negative or false positive predictions when we focused on this highest risk group. In the 
mGLMM model predicting SRE, 72% of the actual SREs were correctly predicted in the 
validation data, compared with 50% in the modified STORM model. For OD, the mGLMM 
and STORM models produced very similar results (49.3% and 50%, respectively). Since 
the mGLMM model produced two predictions per patient (OD and SRE), we combined 
them using rules that prioritized true positives and false negatives; for example, patients 
with a true positive(TP) prediction for either OD or SRE were counted as TP overall, 
while patients with any false negative (FN) without any TP were counted as FN overall. 
Other rules assigned results when there was not a TP or FN result (see Fig. 2 footnotes). 
As shown in the summary table of Fig. 2, the combined mGLMM OD-SRE predictions 
included 21,440 TP results, or 17.3% more than from modified STORM (18,240 TP) and 
12.1% more than GLMM (19,129 TP). False positive (FP) results were 140,043, 80,872, 
and 81,715 for mGLMM, GLMM, and STORM, respectively, indicating substantially 
more patients would be unnecessarily screened using the mGLMM approach in order to 
produce the important gains in TP cases. Supplemental Fig. 1.c shows the distribution of 
patients among the top 100k risk groups from the STORM and mGLMM models. There 
were a total of 97,776 patients from the 3 high risk groups (STORM, mGLMM-OD and 
mGLMM-SRE), with 21,013 (21.5%) common to all groups. Note that one patient could 
be screened more than once due to the longitudinal design. Most of the STORM patients 
(93%) were accounted for by the other models (4208 were unique to STORM), while 41% 
of the full group were only accounted for by the mGLMM model. This indicated that the 
mGLMM predicted a substantial number of other patients were at high risk while also 
accounting for most STORM high risk patients. Supplemental Fig. 1.d provides a compari-
son of calibration performance, which was satisfactory for all models.

3.5  Case examples comparing model predictions

Figure 3 provides two case examples that demonstrate differences in STORM and mGLMM 
model responses as each patient’s risk profile increases from one year to the next. For each 
patient, results are also shown for 4 different age ranges since changes in OD and SRE 
risks are different as a patient ages. The left side of each arrow shows the first year’s pre-
dicted risk percentile, and the right side shows the model’s estimate from the current year. 
At each point, a patient’s risk score was calculated using each model’s parameter estimates 
and the associated predictor variable values; the inverse logit function was applied to this 
linear predictor to produce the risk score estimate. Risk scores were expressed as percen-
tiles to indicate relative risk among all patients in the opioid risk population.

Patient #1. Last year, patient #1 had a baseline history of PTSD with diagnoses 
that were consistent with ‘likely chronic pain’, and had used short-acting hydrocodone 
(MME 25 mg/day) for more than 90 days. In the current year, numerous additional risks 
were added: chronic pain is now ‘highly likely’, severe depression concurrent with an 
elevated PHQ-9 score and antidepressant prescriptions were added, and short-acting 
hydromorphone was prescribed. While the STORM (shown in blue) and MGLMM-OD 
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risk estimates (orange) were generally similar in year one (left side of arrows), the 
mGLMM-SRE risk (purple) was substantially higher if the patient were younger than 
65. In the current year, the mGLMM model predicts risks for both SRE and OD have 
increased substantially, but suicide risks are again highest except for those 65 and older. 
These differences in OD and SRE risks given a patient’s age could inform clinical 
intervention decisions. The mGLMM risk estimates are consistently much higher than 
STORM estimates because chronic pain, PHQ-9 scores, hydromorphone, and outpatient 
visits are not accounted for by the STORM model, but have a strong combined impact in 
the mGLMM model.

Patient #2. This patient had a baseline history of arthritis, chronic obstructive pulmo-
nary disease, and diabetes with complex complications, and had taken a short-acting opioid 
(MME 19 mg/day) for at least 90 days. This year, the patient has a new diagnosis of meta-
static cancer, is highly likely to have chronic pain, had an inpatient stay and increased out-
patient utilization, has a long-acting morphine prescription, and a severe depression diag-
nosis with an antidepressant prescription. As expected, both models predict substantial risk 
increases, but the mGLMM model provides additional insights which could inform clinical 
decisions. OD risk (orange) is now higher than suicide risk (purple) in all age groups; this 
difference is relatively small in the youngest group (91% vs. 81%) but is much larger in the 
oldest group (93% vs. 51%).

Fig. 3  Case examples. These examples demonstrate differences in model responses as each patient’s risk 
profile increases from one year to the next. For each patient, results are also shown for 4 different age 
ranges. The left side of each arrow shows the first year’s predicted risk percentile, and the right side shows 
the model’s estimate from the current year after new risk factors were added. At each point, a patient’s 
risk score was calculated using each model’s parameter estimates and the associated predictor variable val-
ues; the inverse logit function was applied to this linear predictor to produce the risk score estimate. Risk 
scores were expressed as percentiles to indicate relative risk among all patients in the opioid risk popula-
tion. STORM model results are shown in blue; mGLMM OD results in orange, and mGLMM SRE results 
in purple
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3.6  mGLMM model results

Supplementary Figs.  2–7 show the estimated effects for mGLMM model predictors for 
each outcome as odds ratios and 95% confidence intervals; overdose and suicide results 
are shown in blue and gold, respectively. The relative effect sizes give an indication for 
the magnitude of change expected in a patient’s risk score should that predictor appear in 
the medical record. The predictors most strongly associated with suicide risk were new 
engagement in substance use disorder treatment, a prior suicide event, a new OUD diag-
nosis, a diagnosis for chronic pain, new inpatient MH treatment, mental health conditions 
(depression, bipolar disorder and other MH conditions), and positive screening for sui-
cide risk via PHQ-9 item 9 or C-SSRS. For overdose, the strongest predictors were newly 
diagnosed OUD, prior OD event, a new engagement in substance use disorder treatment, 
‘highly likely’ chronic pain, metastatic cancer or lymphoma, and amphetamine use disor-
der. Conversely, a prior engagement in substance use disorder treatment was strongly pro-
tective for both outcomes; treatment with MOUD or a positive urine lab result for metha-
done were similarly protective.

There were distinct risk differences by outcome for some predictors; for example, inpa-
tient mental health treatment in the year prior to the outcome was significantly associated 
with higher suicide risk in the following year, but posed a somewhat reduced overdose risk 
(Suppl. Figure 2). There were also distinct differences in outcome risks by age group and 
race-ethnicity (Suppl. Figure 7). Medical comorbidities generally were most strongly asso-
ciated with overdose risk while suicide risk was often lower (Suppl. Figure 3). Conversely, 
suicide risk was often stronger for mental health conditions and substance use disorders 
(Suppl. Figure  4). Among concomitant medication classes, antidepressants, antipsychot-
ics, benzodiazepines, and duloxetine were all strongly associated with both outcomes, but 
were strongest for SRE (Suppl. Figure 6). Among opioid classes, short acting hydrocodone 
was associated with suicide risk but the overdose risk was smaller. Long- and short acting 
morphine were significant overdose risks, where the risk was highest in the long-acting 
version. Zolpidem and long-acting fentanyl were also strongly associated with OD. Short-
acting tramadol was associated with suicide risk but the overdose risk was substantially 
lower.

In some cases, risks were substantially different when a predictor was newly observed 
compared to an earlier occurrence. For example, an OUD diagnosis in a prior year was pro-
tective for both outcomes, possibly associated with treatment, while a new (current-year) 
OUD diagnosis was among the strongest predictors for either outcome (Suppl. Figure 2). 
As mentioned earlier, a similar trend was seen for prior versus new SUD treatments.

4  Discussion

We sought to develop alternative risk prediction models that improve on the original 
STORM model’s performance among Veterans with current opioid use, a history of OUD, 
or a prior prescription medication OD. Based on comparisons using tenfold cross valida-
tion, our proposed mGLMM model exhibited significantly better AUC results based on 
highly significant Delong tests, with corresponding gains in sensitivity when compared 
against a modified STORM model and a GLMM that incorporated a multitude of new pre-
dictors. There was a 3.5% increase in AUC between STORM and GLMM, and a 4.5% 
increase between GLMM and mGLMM, or 8.1% overall. This suggests the performance 



291Health Services and Outcomes Research Methodology (2022) 22:275–295 

1 3

improvements in mGLMM came from both adding new predictors (STORM to GLMM) 
and adding an advanced joint model (GLMM to mGLMM). The mGLMM performed par-
ticularly well in identifying patients at risk for SREs, where 72% of actual events were 
accurately predicted among patients with the 100,000 highest risk scores compared with 
49.7% for the modified STORM model. The combined mGLMM OD-SRE predictions 
for this highest risk cohort correctly identified 17.3% more true cases than the modified 
STORM model. The mGLMM’s strong performance in identifying true cases (sensitiv-
ity) among this highest risk group was the most important improvement given the mod-
el’s primary purpose for accurately identifying patients at most risk for adverse outcomes 
such that they are prioritized to receive risk mitigation interventions. On the other hand, 
the mGLMM model had a lower positive predictive performance, meaning more patients 
were falsely identified as high risk such that some intervention resources would be used on 
patients who may not need them. However, this drawback is less important since false posi-
tive screenings add little, if any patient risk.

These prediction gains were achieved by modeling the OD and SRE outcomes sepa-
rately in the joint model such that the association between each predictor and both out-
comes was assessed simultaneously. The STORM authors had used a combined OD-SRE 
outcome due to concerns that it may be difficult to distinguish the two events clinically; our 
results suggest that the two outcomes were in fact distinguishable in the administrative data 
such that a patient’s predicted risk for one outcome was often substantially different than 
for the other.

Although the mGLMM is more complex and less parsimonious than the STORM 
model, the performance gains justify the added costs of obtaining more predictor variables 
and requiring greater computational power, both of which are readily available within the 
VHA systems. Since the model’s primary purpose is to predict patient risks rather than to 
explain associations, parsimony and interpretability are less important. The largest com-
putational cost is incurred only once, when parameter estimates are determined, such that 
frequently updated predictions for new patients can be determined very rapidly from those 
estimates.

Our work replicated the original STORM model conclusions concerning risk factors for 
OD and SRE, but also provided new important insights. By examining OD and SREs sepa-
rately, we demonstrated that some risk factors could have markedly different associations 
with each outcome and thus a patient could be at substantially greater risk for one out-
come over the other. Our model may enable clinicians to target interventions based on the 
most pertinent outcome, which is notable because risk mitigation options for SREs and OD 
can differ. For instance, examples of evidence-based interventions for SREs may include 
patient outreach, warm hand-offs or enhanced recruitment efforts into mental health treat-
ment programs, and means reduction efforts; while for OD, examples include naloxone 
kits, SUD treatment programs, medication for opioid use disorder (MOUD), opioid dose 
reduction, and alternative approaches to pain control (Oliva et al. 2017).

We demonstrated that prediction performance lagged in certain subgroups, most nota-
bly for those older than age 65 (4.9% worse in STORM and 1.9% worse in mGLMM); 
this group comprised nearly 39% of the risk population. The STORM authors noted that 
multiple tailored models for subgroups were not used (Oliva et al. 2017). Our results sug-
gest that prediction models tailored to subgroups would improve equity in risk screening. 
Further research is needed to better explain these differences.

Our work has several limitations. First, our modified STORM model had the same pre-
dictor variables and interaction terms as the original model but we used a newer 5-year 
longitudinal Veteran cohort, and there is no guarantee that the predicted risk scores are 
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identical to actual STORM scores based on the 2010 dataset. However, comparisons of 
effect sizes, risk stratification and calibration results from the original model (Oliva et al. 
2017) provide evidence that our modified version is a reasonably close approximation. 
Next, there is a multi-year lag in cause of death data that could contribute to missed over-
dose or suicide deaths. There is also a time-lag for the availability of CMS data, and we 
used a single variable to capture any prior CMS opioid provision throughout the study 
period since these data would not be available on the daily basis needed for STORM imple-
mentation. Our study cohort is generally comprised of older men (76.1% were older than 
50 and 90.8% were men), and our results may not be readily generalizable to other popula-
tions. Finally, we did not use electronic medical record text notes in these analyses, and 
substantial prediction gains are likely if new information involving OD and SRE risks were 
captured from this source.

There are numerous areas for future work. As discussed above, further research is 
needed to improve prediction performance among subgroups, particularly those 65 and 
older. Related to this, our work predicted Veterans were at increased risk for overdose if 
they had opioids from a Medicare source at any point during the study period; this result 
should be studied in further depth in a sub-group analysis limited to Veterans who are 65 
or older. Similarly, given the presence of non-VA opioid prescriptions from Medicare was 
a strong predictor, future studies should explore incorporating other non-VA opioid data 
sources into the STORM model (e.g., prescription data from commercial insurers or data 
from state prescription drug monitoring programs). Next, work by Lo-Ciganic et al. (2019) 
suggests that machine learning methods may provide some additional prediction gains, 
and we are interested in developing an ensemble of top-performing models, such that each 
member ‘votes’ on a patient’s risk prediction. It may also be useful to examine patients’ 
risk trajectories over time to determine if key factors can be identified that predict a rapid 
escalation in risk.

In conclusion, our findings show that the proposed mGLMM prediction model is a bet-
ter alternative to the current STORM model for identifying patients at high risk for adverse 
health outcomes related to opioid use due to refinements added with the mGLMM model 
design and the inclusion of new predictors. These refinements, paired with targeted timely 
clinical interventions, could further reduce mortality and morbidity in a Veteran population 
that is especially vulnerable to the expanding opioid epidemic.
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