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Abstract The incidence of heart failure and renal failure

is increasing and is associated with poor prognosis.

Moreover, these conditions do often coexist and this

coexistence results in worsened outcome. Various mecha-

nisms have been proposed as an explanation of this inter-

relation, including changes in hemodynamics, endothelial

dysfunction, inflammation, activation of renin-angiotensin-

aldosterone system, and/or sympathetic nervous system.

However, the exact mechanisms initializing and main-

taining this interaction are still unknown. In many experi-

mental studies on cardiac or renal dysfunction, the function

of the other organ was either not addressed or the authors

failed to show any decline in its function despite histo-

logical changes. There are few studies in which the dys-

function of both heart and kidney function has been

described. In this review, we discuss animal models of

combined cardiorenal dysfunction. We show that transla-

tion of the results from animal studies is limited, and there

is a need for new and better models of the cardiorenal

interaction to improve our understanding of this syndrome.

Finally, we propose several requirements that a new animal

model should meet to serve as a tool for studies on the

cardiorenal syndrome.
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interaction � Animal models

Introduction

Recent observations from clinical trials have enhanced the

interest in the interaction between heart and kidney. Renal

dysfunction has been shown an independent risk factor for

the development of cardiovascular (CV) diseases [1, 2] and

is associated with worsened outcome in patients with

hypertension [3], post myocardial infarction (MI) [4, 5],

and a broad spectrum of patients with left ventricular

dysfunction [6, 7]. Moreover, in chronic renal failure, CV

morbidities are the main cause of mortality. Conversely,

cardiac dysfunction, for instance post-MI, leads to a

gradual decrease in renal function as reflected by an

increase in creatinine levels [8]. This interaction between

heart and kidney, where dysfunction of either one of them

leads to disorder of the other, is usually referred to as the

cardiorenal syndrome. It has been proposed that mecha-

nisms of this organ crosstalk include various changes in

hemodynamics, dysregulation of salt and fluid balance,

endothelial dysfunction, inflammation, and activation of

regulatory systems such as the renin-angiotensin-aldoster-

one system (RAAS), and sympathetic nervous system

(SNS) [9, 10]. The described alterations may disturb other

factors and lead to a vicious circle, resulting in further

structural and functional damage in heart and/or kidney.

Commonly used drugs such as RAAS blockers or beta-

blockers may affect not only the targeted system, but may

also cause, via feedback loops or compensatory
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mechanisms, an increase in other factors involved in the

cardiorenal interaction. However, the exact pathophysio-

logical mechanisms behind the cardiorenal syndrome still

remain unclear. The design of most clinical studies on the

cardiorenal interaction does not allow drawing conclusions

and explanations for the heart-kidney interaction. Alter-

natively, this may be achieved by well-designed animal

studies. Many animal studies on cardiac or renal dysfunc-

tion have been performed and described in literature.

However, the authors either did not address the function of

the other organ of interest or the models they used did not

mimic the characteristics of the clinical cardiorenal syn-

drome. There are also few animal models described, which

combine cardiac and renal dysfunction. The objective of

this review is to discuss these combined animal models

used in studies on cardiorenal interaction. To this purpose,

we will briefly describe the main pathophysiological

characteristics of chronic cardiorenal failure and then dis-

cuss the available animal models. Because an adequate

animal model would be instrumental for better under-

standing of this important clinical condition, we also dis-

cuss the need for a new model and characteristics of a new

model, which would help to study the pathophysiology of

the cardiorenal syndrome.

Pathophysiology of the cardiorenal interaction

Cardiorenal interaction is usually defined as a disorder of

heart and kidney where dysfunction of one of the organs

induces disorder of the other. Several pathophysiological

mechanisms have been proposed to underlie the interaction

between heart and kidney in the cardiorenal syndrome [9–

12]. Guyton [13] described a model of complex hemody-

namic connections between heart and kidney. Bongartz

et al. [9] proposed a model based on Guyton’s model and

extended it by 4 cardiorenal connectors responsible for the

progression of the cardiorenal syndrome: the RAAS, the

SNS, inflammation, and nitric oxide/reactive oxygen spe-

cies (ROS) balance. Hemodynamic changes are considered

the main driving force in the pathophysiology of the car-

diorenal syndrome. If the failing heart cannot maintain

cardiac output, this results in reduction in perfusion of

peripheral organs [11], including decrease in renal blood

flow (RBF). Decreased renal perfusion has been shown the

main determinant of reduced glomerular filtration rate

(GFR) in heart failure patients [14]. Recent publications

have shown that GFR reduction in heart failure patients is

also inversely related to central venous pressure (CVP). In

the ESCAPE trial, the only hemodynamic parameter

associated with renal insufficiency was right atrial pressure

[15], suggesting an important role of (renal) congestion.

Increased CVP in the situation of unchanged systemic

arterial pressure leads to decrease in pressure gradient

across the glomeruli and subsequent decrease in RBF, but

also to increased hydrostatic pressure in the kidney and

subsequently to hypoxia and/or activation of intrarenal

RAAS. It has been suggested that the contribution of CVP

to kidney dysfunction is independent of cardiac output;

however, it occurs only when forward failure is present

[16]. The relationship between CVP and GFR seems to be

bidirectional, as impairment in renal function may lead to

salt and water retention and thus to increased venous

pressures [17].

Hemodynamic changes in heart failure activate multiple

regulatory mechanisms, among which the RAAS is the

most important system. Initially aimed to preserve cardiac

homeostasis, long-term activation of the RAAS eventually

leads to the progression of HF [17], myocardial remodeling

[18], and fibrosis and necrosis in the myocardium [19].

Blocking RAAS reverses histological changes in the

myocardium, improves endothelial function, and reduces

adrenergic tone, resulting in improved prognosis. Less is

however known about the effects of long-term RAAS

inhibition on renal function in HF. It may help to preserve

GFR to some extent [20]; however, long-term RAAS

blockade substantially disables regulatory mechanisms of

the kidney [14].

Progression of heart failure leads also to compensatory

activation of baroreceptors and increase in sympathetic

activity. This on one hand preserves the cardiac output, but

has also adverse effects such as sympathetic overdrive,

cardiomyocyte apoptosis and necrosis, and arrhythmias on

the long term. Sympathetic activation has been also sug-

gested to have direct vascular effects on renal vasculature,

as renal sympathetic denervation may improve GFR [21].

Moreover, the activated SNS interacts with other cardio-

renal connectors, such as the RAAS [22, 23] and the oxi-

dative stress cascade [9].

There is growing evidence that one of the connectors of

the cardiorenal syndrome is oxidative stress. In heart failure

patients, increased oxidative stress has been demonstrated

[24] and impaired NO-mediated endothelial vasodilatation

has been related to reduction in renal perfusion [25]. Lower

availability of NO and increased production of ROS lead to

endothelial dysfunction that has been related to reduction in

renal perfusion [25], inflammation, and organ damage.

Inflammation is considered a risk factor for incidence of MI

and death in uremic patients [26] and a marker of severity

and progression of heart failure [27–30]. Moreover, inter-

action between oxidative stress, inflammation, and activa-

tion of RAAS has been reported [31, 32].

Another observed phenomenon of the relationship

between heart and renal failure is anemia [33]. Presence of

anemia has been shown to be associated with poor prog-

nosis in heart failure [34]. The pathogenesis of anemia in
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heart failure seems to be multifactorial and to some extent

is a result of decreased renal function [35, 36]. The com-

bination of anemia and renal dysfunction in heart failure

patients is associated with much worse outcome suggesting

interaction between those two entities [37, 38]. Correction

of anemia improves cardiac performance in patients with

chronic kidney disease [39, 40] and both cardiac and renal

function in heart failure [41, 42].

The vicious circle of pathophysiological changes in

cardiorenal interaction leads to dysfunction of one or both

organs, accompanied by structural changes in both heart

and kidney. Pathological cardiac remodeling includes

changes in tissue architecture and myocyte/capillary ratio,

increased fibrosis and apoptosis, and occurs not only in

response to cardiac, but also to renal stimuli. Presence of

albuminuria as a sign of glomerular injury has been shown

to be a strong predictor of CV outcome in the general

population [43] and in patients with hypertension [44].

However, the pathophysiology of albuminuria and its

relation with prognosis is unclear in heart failure. There is

also evidence that tubular damage is present in HF popu-

lation [45] and is associated with prognosis [46]. The

pathophysiological mechanisms underlying tubular damage

in heart failure are still unknown, but possible explanations

include regional hypoxia due to decreased RBF and

diuretic therapy.

Pathophysiological connections behind the cardiorenal

interactions are presented in Fig. 1, and the most important

clinical characteristics of this syndrome are summarized in

Table 1.

Animal models for cardiorenal interaction

Only a few animal models have been proposed so far as a

model for further studies on the cardiorenal syndrome in

which both cardiac and renal dysfunction have been

induced (Table 2). They are all based on the use of rodents.

Advantages of small animals include lower costs, avail-

ability, and housing conditions. There are multiple ways of

inducing cardiac dysfunction in rodent models. They

comprise of volume or pressure overload, myocardial

ischemia/infarction, administration of toxic agents, and

rapid ventricular pacing. The most commonly used tech-

nique of inducing cardiac dysfunction in studies on the

cardiorenal interaction is MI resulting from ligation of the

left coronary artery. Main advantages of this model are

Fig. 1 Pathophysiological

connections in the cardiorenal

syndrome (adapted from Bock

et al. [12])

Table 1 Pathophysiological characteristics of cardiorenal syndrome

Characteristics Clinical manifestation

Forward failure Decreased cardiac output

Reduced RBF

Backward failure Increased venous congestion

Neurohormonal activation Activation of RAAS

Activation of SNS

Oxidative stress Lower availability of nitric oxide

Increased production of ROS

Inflammation Circulating cytokines

Endothelial dysfunction

Anemia Low hemoglobin/hematocrit levels
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simplicity, reproducibility, and its relation to human

pathophysiology. In this model, the cardiac output is sig-

nificantly reduced 3–5 weeks after surgery [47] and the

impairment of left ventricular function is directly related to

the loss of myocardium [48]. Hemodynamic and neuro-

hormonal changes in this model resemble those of heart

failure observed in humans [49] and are also dependent on

the extent of cardiac damage [50–52]. The use of the MI

model has been essential in establishing the beneficial

effects of RAAS blockade [53, 54], which were later

confirmed in clinical trials, underscoring the agreement

between this model and human heart failure with respect to

the pathophysiology and treatment possibilities.

The most commonly used techniques of inducing renal

failure are based on the reduction of viable kidney tissue in

different ways. The main difference between them is the

extent of the removal and thus the degree of renal dys-

function they cause. Unilateral nephrectomy (UNX) leads

to mild renal function impairment without a substantial

increase in proteinuria or histological changes [55],

whereas subnephrectomy (SNX) leads to more severe renal

dysfunction and eventually to uremia and chronic kidney

disease complications similar as in humans [56, 57].

Changes in cardiac tissue architecture have also been

reported in subnephrectomized animals [58–60].

Van Dokkum et al. [55] have described a model of UNX

followed by MI 1 week later. They have shown an accel-

erated renal dysfunction in uninephrectomized rats when

combined with cardiac dysfunction. This has been evi-

denced by increased levels of proteinuria. Also more renal

damage, as measured by focal glomerulosclerosis, has been

reported in animals with combined cardiac and renal

Table 2 Rodent models of combined cardiorenal failure

Model References Cardiac changes Renal changes

UNX ? MI Van Dokkum et al. [55] Increased SBP

Decreased dP/dt max and dP/dt min

LVH

Increased plasma creatinine

Increased proteinuria

FGS

SNX ? MI Windt et al. [57] Increased SBP

Decreased dP/dt max and dP/dt min

LVH

Decreased capillary density

Decreased creatinine clearance

Decreased RBF

Increased proteinuria

FGS

Fibrosis

Dikow et al. [62] Increased SBP

Higher susceptibility to myocardial ischemia

Increased serum urea

Increased serum creatinine

Dikow et al. [56] Increased SBP

Decreased EF

Increased LVEDD

LVH

Fibrosis

Decreased capillary density

Increased serum urea

Increased serum creatinine

SNX ? L-NNA Bongartz et al. [66] Increased blood pressure

Decreased EF

Increased LVEDV

LVH

Fibrosis

Increased plasma creatinine

Increased plasma urea

Decreased creatinine clearance

Increased proteinuria

FGS

Tubulo-interstitial injury

Adriamycin Noiri et al. [70] LVH Increased plasma creatinine

Increased plasma urea

Decreased creatinine clearance

Fibrosis

Tubular damage

UNX uninephrectomy, SNX subnephrectomy, MI myocardial infarction, L-NNA Nx-nitro-L-arginine, SBP systolic blood pressure, dP/dt max
maximal rate of increase of left ventricular pressure, dP/dt min maximal rate of decrease of left ventricular pressure, LVH left ventricle

hypertrophy, RBF renal blood flow, EF ejection fraction, LVEDD left ventricle end-diastolic diameter, LVEDV left ventricle end-diastolic

volume, FGS focal glomerulosclerosis
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dysfunction. Creatinine levels were increased, as expected,

after nephrectomy; however, addition of MI did not lead to

further increase. Interestingly, the decrease in renal func-

tion was more pronounced in animals with large infarcts.

This might be due to the severity of cardiac dysfunction

and its effect on renal hemodynamics. It has been shown

that in rats after MI, the severity of ventricular dysfunction

and subsequent hemodynamic changes depend on infarct

size [48, 61] as well as time between intervention and

measurements [47, 52]. Decrease in cardiac function due to

small and moderate infarcts, results in either small or no

decrease in RBF [50–52]. When RBF is minimally

decreased, the animal upkeeps its GFR by a compensatory

increase in renal vascular resistance, like in humans [51].

More severe cardiac dysfunction as a result of large

infarction leads to a larger fall in RBF and a subsequent

decrease in GFR despite further increase in venous resis-

tance [51, 52]. However, the data on RBF in this model are

missing, and the only indication of more severe cardiac

dysfunction in the group with larger MI was more advanced

hypertrophy of the heart. No differences in brain natriuretic

peptide (BNP) levels, LV pressures nor contractility or

relaxation between groups have been reported. The blood

pressure was higher in the animals with combined damage in

comparison with other experimental groups. This suggests

that the compensated stage of heart failure was not present in

this model. The more pronounced progression of cardiac

dysfunction due to the concomitant renal dysfunction has

also not been observed. However, it must be remembered

that the renal damage in this model was only mild, and there

was a short period of time between induction of renal and

cardiac damage. This might have resulted in limited effects

of renal dysfunction on heart tissue and its function.

The same group studied cardiorenal interaction in a

combined model with a more severe renal dysfunction,

introduced by means of SNX and 2 weeks later followed

by coronary ligation [57]. In this model, the SNX induced

proteinuria, decreased the creatinine clearance and

increased histological changes, such as focal glomerulo-

sclerosis, fibrosis, and mesangial matrix expansion. Intro-

duction of the cardiac dysfunction on top of existing renal

dysfunction did not influence the levels of proteinuria nor

the histological changes, but led to decrease in creatinine

clearance and RBF. With regard to cardiac function,

combination of renal and cardiac function did not yield

additional effects, different from the effects of SNX or MI

alone. Animals with combined organ damage had high

blood pressure, similar to the animals with renal damage

alone, and decreased contractility and relaxation compa-

rable with the animals that underwent coronary ligation

only. Also, decrease in capillary density was the same as in

the MI alone group, showing no effect of preexisting renal

dysfunction on myocardium. This is somewhat in contrast

to literature findings that showed histological changes in

the myocardium of the subnephrectomized animals [58,

59]. However, again short period of time for the develop-

ment of renal dysfunction and lack of signs of severe

cardiac failure have to be considered. This model has also

been used in studies on the effects of RAAS inhibition on

the cardiorenal interaction. It has been shown that treat-

ment with lisinopril for 6 weeks prevented further histo-

logical changes in the kidney tissue or even reversed some

of them. Moreover, it restored the decreased RBF and

creatinine clearance levels. It also increased capillary

density and reversed the cardiac hypertrophy, proving the

beneficial effects of this treatment and usefulness of this

model in studies on RAAS activation in the cardiorenal

syndrome.

A combined model of MI and SNX has been used by

Dikow et al. [62] to study cardiac histological changes as

an underlying mechanism of progression of cardiac disease

in cardiorenal interaction. In this study with transient cor-

onary ligation followed by reperfusion, it has been shown

that myocardium of the rats with renal dysfunction is more

susceptible to ischemia injury, which may explain the

higher death rate after MI in renal patients. Whereas the

total unperfused area was not different between animals

with and without renal dysfunction, which would be unli-

kely as it reflects the anatomy of the coronary vasculature

in the rat, the infarcted area was significantly higher in

uremic animals. This effect was also present in animals

treated with antihypertensive treatment and low- and high-

salt diet, which excludes the underlying confounding

effects of hypertension, sympathetic overactivity, and salt

retention. The same group analyzed also the myocardial

remodeling in a model of more permanent MI [56]. They

have shown more advanced left ventricular remodeling in a

model with cardiorenal failure as documented by left

ventricular hypertrophy, decreased capillary density and

increased fibrosis. Moreover, these changes were accom-

panied by decrease in cardiac function as assessed by

echocardiography. Interestingly, the presence of anemia

has also been reported in the animals with combined organ

damage. This could be of special interest, since anemia is

being considered one of the cardiorenal connectors [33, 63]

and beneficial effects of treatment for anemia have been

shown in experimental studies. In MI heart failure model,

erythropoietin has been shown to improve cardiac function

and induce neovascularization [64]. On the other hand, in

subnephrectomized rats, anemia seemed to have protective

effect on kidney structure [65]; however, this effect has not

been investigated in a model with concomitant heart fail-

ure. Therefore, this model could also help to understand the

role of anemia in the cardiorenal syndrome.

Bongartz et al. [66] have recently developed a new

animal model of combined cardiorenal failure. This model

Heart Fail Rev (2012) 17:411–420 415
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is based on the hypothesis that oxidative stress and the

dysbalance between nitric oxide (NO) and ROS are one of

the cardiorenal connectors [9, 63]. The inhibition of NO

synthase in rats has already been shown to cause hyper-

tension, cardiac dysfunction, and glomerular damage [67,

68]. In the MI model, oxidative stress has been proven to

decrease endothelial-dependent relaxation [50], whereas

antioxidant therapy prevents cardiac structure alterations

[69]. In the described model, renal dysfunction has been

induced by means of SNX, whereas cardiac dysfunction

was a result of NOS inhibition with Nx-nitro-L-arginine

(L-NNA). The combination of the above led to severe

cardiac dysfunction with increased blood pressure, end-

diastolic volume, and decreased ejection fraction. Signs of

congestion, increased cardiac fibrosis, and myocyte

hypertrophy accompanied the functional changes. With

regard to the kidney function, the combination of SNX and

L-NNA resulted in increased plasma urea and creatinine

levels and proteinuria. However, only the latter was sig-

nificantly higher than in animals with SNX alone. On the

histological level, combined cardiorenal damage was

characterized by increased FGS and tubulointerstitial

injury. Interestingly, the above changes had permanent

character and were not reversed even when treatment with

L-NNA was stopped. This model proves the importance of

oxidative stress in cardiorenal interaction and might serve

as a promising tool for further investigation of cardiorenal

connectors.

An alternative model, which does not require surgical

intervention, is the model of adriamycin-induced renal

damage. It has been shown that administration of adria-

mycin leads not only to deterioration of kidney function,

but heart function is also affected [70]. Both cardiac and

renal dysfunction resulting from adriamycin administration

are characterized by many features observed in humans

with cardiorenal failure—both on functional as well as on

the histological level [71–73]. However, the dose required

to induce the cardiac cardiomyopathy is much higher than

the one resulting in severe kidney dysfunction. Therefore,

the possibilities for investigation of dysfunction of both

organs at the same time are limited. Moreover, it is

important to mention that many of those changes are rather

the effect of the toxicity of adriamycin than involvement of

known cardiorenal connectors.

Discussion and future perspectives

In this review, we summarized the available data on animal

models used in the studies on cardiorenal interaction. The

choice of a proper model is crucial, because results

obtained in experimental studies may contribute to better

understanding of this important clinical syndrome and help

in establishing new treatment strategies. At this moment,

this translation is limited, because none of the models

described above entirely reproduce the pathophysiology

and characteristics of the cardiorenal syndrome observed in

humans. Therefore, there is a need for better models of

cardiorenal interaction that not only should mimic clinical

characteristics of this syndrome by cardiac, renal, hemo-

dynamic, and neurohumoral alterations, but also allow

evaluation of the effectiveness of treatment. Such a model

should consist of combined renal and cardiac injury char-

acterized by progressive deterioration of function of both

organs. With regard to the cardiac function, it should be

characterized by systolic dysfunction confirmed by echo-

cardiography or hemodynamic measurements, resulting in

decrease in cardiac output and subsequent reduction in

RBF. Also, increased end-diastolic pressure and venous

congestion should be present in order to further investigate

latest findings from clinical observations. On the histolog-

ical level, cardiac injury should be characterized by

hypertrophy and fibrosis and preferably with cardiomyo-

cyte/capillary mismatch. With regard to renal injury, such a

model should be characterized by a progressive decrease in

renal function reflected in increased levels of creatinine and

proteinuria or increased albumin excretion and decreased

GFR/creatinine clearance. The presence of glomeruloscle-

rosis and interstitial fibrosis should be documented.

Important in developing a new model is to reduce the

function of both organs to such a degree that leads to

development of significant dysfunction as well as to provide

enough time for its development. Both organ failures should

also preferably develop gradually to allow studies on

treatment for advanced stages as well as more preventive

treatment strategies. This can help in drawing conclusions

and give more insight into pathophysiology behind car-

diorenal interaction on different stages of its development.

There are multiple ways of inducing cardiac [74, 75] and

renal dysfunction [76] in rodents, which can be combined

for the development of a new model of cardiorenal inter-

action. They all have their advantages and drawbacks, and

none of them presents all the above-mentioned features of

the ideal model. Most of the models require surgery

intervention or administration of exogenous substances,

which already reduces their similarity to the clinical situ-

ation. Furthermore, the surgical interventions, such as MI

or reduction in kidney tissue, are performed on healthy

organs in a situation where the regulatory mechanisms are

not being activated. In humans, on the other hand, the

failure is usually preceded by gradual loss of the function

of chronically affected organs. The acute onset of the organ

failure substrate is one of the common drawbacks that limit

the clinical relevance of many popular models, such as

transverse aortic constriction. An important issue in the use

of animal models is also the severity of the induced organ
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failure. Moderate interventions result either in the devel-

opment of mild organ dysfunction or the organ failure will

develop only in a subset of the animals [48, 55, 75]. A more

severe approach leads to the development of overt organ

failure [48, 77], but results in high mortality rates [78] and

more acute onset of the heart failure substrate. This limits

the clinical relevance of such models. The usefulness of the

models based on surgical interventions is also limited by the

fact that they lead to significant reduction in remaining

tissue mass, like in the SNX model or the MI model. This

reduces the potential target and the effects of treatment, as

well as possibilities for molecular analysis. Important to

remember is also that the differences in response to surgical

interventions have been reported between different genders

[79] or animal strains [80, 81]. Above-described drawbacks

of available animal models might question the possibility of

designing one perfect animal model of the cardiorenal

syndrome. However, it should be remembered that heart

and renal failure are heterogeneous disorders that result

from multiple underlying diseases and involve various

regulatory mechanisms. Due to the complexity of the

pathophysiology of heart and/or renal failure alone and in

combination, its proper understanding might as well require

the use of more than one animal model and the choice must

be made depending on the research question. The hetero-

geneous character and origin of cardiorenal failure require

also that all potential new models as well as the models

already known, including those described in this review,

should be studied in more detail. Not only well-established

cardiorenal connectors, but also new findings in the car-

diorenal interaction, such as increased venous congestion,

anemia, and tubular damage need further investigation and

should be addressed in these models. Only then, the use-

fulness of these models in studies on the cardiorenal syn-

drome can be evaluated.

Interesting alternative for the models described above

might be the use of genetic models of cardiac and renal

dysfunction. One of the biggest advantages of such models

is that they do not require surgery or pharmacological

intervention for induction of the disease. The onset of the

stimulus for organ failure is more gradual, which allows

studies on progression of the disease and prevention ther-

apy. Well-studied genetic models of heart failure are the

spontaneously hypertensive rat (SHR) [82] and the Dahl-

salt-sensitive rat [83]. However, both strains require long

time before they develop overt heart failure, which is their

main drawback. The Munich Wistar Fromter (MWF) rats

present many of the clinical characteristics of renal dys-

function [84]. However, again an extended period of time is

required for the development of the renal failure. Moreover,

some gender differences have been reported [85].

The genome of rodents has recently been well charac-

terized, which provides new opportunities in finding a new

better model for cardiorenal interaction. The ability of

genetic manipulation offers multiple possibilities for estab-

lishing new valuable models. Knocking out or overexpres-

sion of specific genes or proteins as well as transgenesis may

lead to the development of new models of organ failure

[86–89]. This approach gives a good insight into role of a

given gene or protein in the pathophysiology of the disease.

Knock-out models can help also in understanding the path-

ophysiology of the diseases preceding the onset of organ

failure, such as atherosclerosis [90]. However, the genetic

manipulation does not allow control over the time of the

occurrence or the level of intervention. Change in the

expression of specific proteins may also influence their

biological properties and function [91] as well as activate the

compensatory mechanisms at very early stages.

Conclusion

There are only few animal models proposed for further

studies on the cardiorenal syndrome. They all represent to

some extent clinical characteristics of this syndrome and were

used in experimental studies to better understand the patho-

physiological connections between kidney and the heart.

However, the heterogeneous character of heart and renal

failure in humans limits the possibilities of complete repro-

duction of this syndrome in an animal model. Moreover, the

induction of the organs failure in animals has usually an acute

character, whereas heart and/or kidney dysfunction in

humans usually develop over years. The recent developments

in molecular techniques provide promising possibilities of

developing a new animal model, which could be used as a tool

for better understanding of the pathophysiology and treat-

ment targets in the cardiorenal syndrome.
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