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Abstract
Faced by a severe shortage of nurses and increasing demand for care, hospitals need to optimally determine their staffing 
levels. Ideally, nurses should be staffed to those shifts where they generate the highest positive value for the quality of 
healthcare. This paper develops an approach that identifies the incremental benefit of staffing an additional nurse depending 
on the patient mix. Based on the reasoning that timely fulfillment of care demand is essential for the healthcare process and 
its quality in the critical care setting, we propose to measure the incremental benefit of staffing an additional nurse through 
reductions in time until care arrives (TUCA). We determine TUCA by relying on queuing theory and parametrize the model 
with real data collected through an observational study. The study indicates that using the TUCA concept and applying 
queuing theory at the care event level has the potential to improve quality of care for a given nurse capacity by efficiently 
trading situations of high versus low workload.
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Highlights 

• The paper focuses on short-term staffing decisions influ-
enced by short-term variations in patient mix and illus-

trates and approach when and where staffing an addi-
tional nurse generates the highest value.

• We apply queuing theory in a neonatal intensive care unit 
and collect data on care event level to parametrize the 
queuing model.

• The case study discusses the implications of different 
staffing levels and reflects on challenges and implications 
for practice.

1 Introduction

Developed countries are facing a severe shortage of nurses. 
Staffing vacancies remain unfilled despite a growing trend 
to “shop” other countries to lure nurses from abroad [1, 2]. 
Meanwhile, health policy regulations have imposed further 
mandatory staffing levels and are gaining dominance [3–7]. 
While these health policy regulations are implemented with 
the best intentions, healthcare providers are struggling to 
comply with these requirements amid a nurse shortage. 
Healthcare providers thus need to staff these scarce person-
nel resources optimally, and the specified number of nurses 
is crucial here. If providers had an unlimited supply of 
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nurses, they could match nurse supply with nursing demand 
to fulfill most patient care.

Yet, supply–demand imbalance prevails. Even when 
healthcare providers enlist a flex pool of nurses to buffer 
short-term demand surges or nurse supply shortages, this 
flex-pool method still has its limits. Staffing nurses from 
a flex pool involves a trade-off: when nurses are staffed in 
one clinical area, these nurses cannot serve alternative clin-
ical areas. Similar considerations also complicate staffing 
decisions within a clinical department: with fixed roster of 
department nurses, more nurses staffed to work the early 
shift means fewer assigned the late shift. Staffing an indi-
vidual nurse can thus not only be expressed as direct person-
nel costs, but also as the opportunity cost of not being able 
to staff the nurse elsewhere.

From a planning and staffing perspective, nurses should 
be staffed to shifts where they generate the highest positive 
value for the quality of healthcare. This requires identify-
ing the incremental benefit of staffing an additional nurse. 
Relying on an innovative application of queuing theory, this 
paper shows how this quantification can be done. We con-
duct a case study in a neonatal intensive care unit (NICU), 
show how to utilize queuing theory to improve staffing deci-
sions, discuss the potential of such an approach, and reflect 
on practical implications and challenges thereof.

Queuing theory has enjoyed notable application in the 
operations community where arrivals and departures of 
patients are typically modeled as stochastic processes (see, 
for instance, the reviews by Bai et al., 2018 [8] or Lak-
shmi and Sivakumar, 2013 [9]). Armony et al. (2017), for 
instance, analyze conditions where step-down units as inter-
mediates add value if set up between critical care units and 
general wards. These authors relied on queuing theory to 
model arrival and discharge at the individual patient level 
to inform strategic capacity decisions [10]. In the context 
of nurse staffing, early applications of queuing theory are 
provided by the work of De Véricourt and Jennings (2011) 
who model excessive delays experienced by patients [11] 
and Yankovic and Green (2011) who model the interrela-
tions between the demand for inpatient beds and nurses [12]. 
The case study presented in this paper complements this 
work by focusing on short-term staffing decisions influenced 
by short-term variations in patient mix. We analyze a more 
operational scheme and apply queuing theory at the level of 
individual-care events. This modelling choice is important 
in the context of critical care where a delayed fulfilment of 
an individual-care event may prove fatal.

Real-world settings usually involve staffing levels fixed 
over time based on the average workload. Yet, such models 
usually do not incorporate dynamic aspects, e.g., patient-
based differences over time. This is problematic since a mis-
match between nurse capacity and patient needs is inevita-
ble, either leading to (opportunity) costs from idle nurse 

capacity in cases of overstaffing or to high workload levels in 
cases of understaffing. Excessive workload and understaffing 
not only negatively affect patient outcomes [13–19]. They 
also correlate with overloaded nurses, which incurs work 
dissatisfaction, burn-out [14] and nurse turnover [20, 21]. 
Therefore, proper alignment of nurse capacity and patient 
demand potentially can also boost the quality of care deliv-
ery indirectly through better working conditions.

For the critical care setting in general and the NICU spe-
cifically, timely fulfillment of care demand is essential for 
the healthcare process and its quality. We therefore propose 
to measure the incremental benefit of staffing an additional 
nurse through reductions in time until care arrives (TUCA). 
We assume that patient-generated care events can be mod-
eled as a stochastic process, set up a queuing model, and 
parametrize this with real data. Our case study specifically 
intends to capture information about potential system-
atic temporal variation in nursing requirements otherwise 
obscured in average workload statistics frequently used in 
patient classification systems [20, 22]. As such, data needs 
to reflect the inherent demand variation both among patients 
and during patient trajectory [23] but this information is 
not directly available from health information systems. To 
parametrize the queuing model with real data, we therefore 
collected this data manually through an observational study. 
Based on this we quantify the potential of flexibly respond-
ing to variations in the expected care demand and analyze 
counterfactual scenarios to establish an efficiency frontier 
that can inform staffing decisions when nurses are scarce. 
We close the paper with reflecting on challenges and impli-
cations for practice.

2  Analyzing the NICU as a queuing system

Assuming that patient-generated care events can be modeled 
as a stochastic process, we analyze the NICU as a queuing 
system. In this section we discuss the main model assump-
tions and briefly list model input and output parameters. We 
subsequently parametrize the queuing model with real data 
in Section 3.

2.1  Model input: arrival and service rates

The model relies on basic queuing theory and makes the fol-
lowing assumptions. Each patient issues care-demand events 
through a random process. The expected number of care 
events issued during a defined time period per patient p is 
denoted as λp . In queuing theory, this comprises the arrival 
rate. The average duration of a care event issued by patient p 
is denoted as 1∕μp . Thus, μp describes the expected number 
of care events one nurse could handle during one time period 
– denoted as service rate in queuing theory.
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In this line of reasoning, the NICU consisting of a set 
of patients p ∈ P will issue care events at rate λ with an 
expected duration of 1

/
� using:

While the arrival rate for the unit simply equals the sum 
of the arrival rates of all patients, the expected duration of a 
care event is the expected duration of care events per patient 
weighted by the respective arrival rate [24].

We develop the model based on the assumption that both 
care-event arrivals and the duration of providing care can be 
modelled as Markov processes: the number of care events 
per time period follows a Poisson distribution with station-
ary arrival rates, and the duration of care events follows an 
exponential distribution. We further propose an approxima-
tion to account for deviations from those assumptions.

While the first assumption (Poisson distribution of occur-
rences) has been widely favored in many real-world stochas-
tic settings, the second (exponential distribution of dura-
tions) has often faced challenge. Exponentially distributed 
durations are characterized by high variance (coefficient of 
variation = 1), a heavy proportion of brief durations, and 
few very long durations – attributes that may not match 
typical service processes that instead exert (log) normal 
distributions.

Critical care as provided in the NICU, however, might 
be one example where exponential durations fit reasonably 
well. Most care processes are very brief in nature (such 
as quick checks of routinely monitored cardio-respiratory 
parameters or respirator settings), while some take a medium 
level of time (such as blood sampling, administration of 
drugs, and oral or endotracheal suctioning). Rarely do care 
events demand extended times (such as assisting endotra-
cheal intubation, chest drainage insertion, or establishing 
a central venous access). Thus, exponential durations seem 
apropos for the critical care setting (and we validate this 
for our empirical setting). Assumed Poisson occurrences 
and exponential durations feature quite commonly in the 
research of critical care settings (see, for example, [25–27] 
or a summary in [8]). Please note, however, that those stud-
ies analyzed data at the patient level spotlighting the arrival 
of patients and their lengths of stay in a critical care unit, 
whereas our study models occurrence and duration of care 
events.

As NICUs serve many patients with a variety of care 
demand, these (arrival) rates and care durations for each 
patient need to be estimated and aggregated to derive over-
all system rates (Eqs. 1 and 2). To ensure feasibility, it may 

(1)� =
∑

p∈P
�p

(2)1
�
� =

∑
p∈P

�
�p

�
�p

�

�
.

be useful to categorize patients into types where rates can 
be estimated more easily. An easy categorization of patient 
types needs crafting but results in the following trade-off. 
The greater the patient-type differentiation, the more uncer-
tainty may be reduced within arrivals and service times, but 
this complicates the set-up and operation of the resulting 
policy. Also, patient types must be easily observable before 
making the staffing decision. In Section 3, we will use res-
piratory support to group patients when estimating care-
arrivals and care-durations in a real NICU setting.

Another common assumption is stationarity of the arrival 
process. In the NICU care process, we see two main drivers 
for potential violations of this assumption: First, the clinical 
situation of newborn infants is affected by external factors 
such as general NICU care processes and acoustic levels, 
with the consequences of different levels of need for care at 
day and night [28]. Second, ward policies may change within 
the shifts, for example, certain care events (such as cleaning 
activities) are performed more often during day shifts than 
during night shifts. In this paper, we approach this issue by 
differentiating between shifts, and only assume stationarity 
of arrivals within each shift.

2.2  Model output: time until care arrives

Assuming Poisson arrivals and exponentially distributed 
durations, the system is equivalent to an M/M/c system, 
where c is the number of nurses working in the unit [24]. 
Based on the arrival rate of care events λ , the average event 
duration 1

/
� , and the number of staffed nurses c , we calculate 

the probability that a care event cannot be treated imme-
diately (where all nurses are busy) by applying Erlang’s 
C-Formula,

From this, we derive the expected waiting time of a care 
event, i.e., the expected time until care arrives (TUCA) as:

Using this equation, we calculate the TUCA for each 
arrival rate and expected duration of care events, and the 
tally of nurses staffed (i.e., for any potential situation). As in 
other queuing models, waiting time convexly decreases in c 
(i.e., number of nurses – see Dyer and Proll 1977 for formal 
proof [29]) while convexly increasing in both λ (i.e., arrival 
rate of care events) and 1

/
� (i.e., duration of care events). 

Taking λ and 1
/
� as given, we determine the TUCA for each 
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staffing situation c , thus forming the basis for the approach 
to evaluate potential staffing policies.

One of the benefits of the Markov assumption is that it 
allows for an exact calculation of our performance measure 
(TUCA). However, in some situations, arrival and service 
processes might not exert these properties. For these situa-
tions, we propose a simple adaption of the model based on 
the Kingman Approximation Equation [30] (an extension of 
the original Kingman’s Formula stated in [31]) that allows 
for general distributions of arrival and service processes:

Thus, higher (lower) coefficients of variation for the 
arrival and service process lead to higher (lower) expected 
values of TUCA. According to Weber (1980), marginal anal-
ysis as described in the following section is efficient for G/
GI/c systems as well [32]. Therefore, the approach to evalu-
ate potentially staffing policies may be applied equally well 
based on the approximated values of TUCA, even though 
this generalized model provides only an approximation.

We acknowledge that TUCA is an aggregated perfor-
mance indicator that does not differentiate between criti-
cal and non-critical care events. In the NICU setting, some 
care needs will induce prioritization – an urgent need for 
respiratory support will be handled immediately, whereas 
a less urgent event will be handled afterwards. A queuing 
model that differentiated between critical and non-critical 
care needs would show that decreasing staffing levels would 
barely affect the waiting times for critical care events but 
dramatically affect the waiting times for non-critical care 
events. As an aggregated performance indicator, higher 
levels of TUCA indicate strongly increasing waiting times 
for non-critical care events with negative effects on quality 
of care, and to a lesser extend an increasing risk of having 
to wait for critical care events. Thus, we treat TUCA as a 
single-dimensional, easy to understand measure of quality 
of care within the NICU setting.

2.3  Evaluating staffing policies through TUCA 
reduction

As described above, nurses are a scarce resource, and we 
must staff carefully to achieve the best level of care for 
the given capacity. This helps balancing needs between 
departments or within departments over time. We pro-
pose an efficient procedure to determine staffing levels for 
given patient mix scenarios, where efficient means that 
there is no alternative staffing policy with the same num-
ber of required nurses and a lower average value of TUCA 
over all possible patient mix scenarios. Such an evaluation 

(5)E(TUCA) =
cv2
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+ cv2

�
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⋅

1

�

assumes that the arrival rates are known in advance and 
that the number of nurses can be adapted accordingly. 
Obviously, these are strong requirements. In practice, we 
will not face full information and we would have to deal 
with imperfect forecasts since the critical care setting is 
characterized by demand uncertainty. However, the arrival 
of some patients is known some time in advance, e.g. if 
complex procedures are planned that require observation 
at the critical care unit afterwards. And in the neonatal 
care setting it holds that the most vulnerable patients have 
a reasonably high length of stay at the unit – extremely 
low birth weight and very-low birth weight infants have an 
average length of stay of more than 5 weeks (SD: 29 days) 
[33]. The patients and their health trajectories are thus (at 
least partially) known to the unit. The second assumption 
relates to flexible adaptations of staffing levels and while 
this is challenging, it is not infeasible. Float pool of nurses 
and on-call schemes are means to address this and we will 
come back to this while discussing practical implications.

To attain efficient allocation of nurses, hospital manage-
ment should define the value TUCA reduction per addi-
tional nurse staffed. Since TUCA(c, �,�) is non-increasing 
and convex in c , allocation of resources based on marginal 
values [34] adds the next resource to the system where it 
provides the most additional value to achieve the high-
est total reduction in TUCA per given resource consump-
tion. Given that the number of nurses c is an integer, we 
can define the reduction of TUCA per additional nurse 
directly:

This measure can determine the marginal benefit of 
an added nurse for a given setting. In other words, if the 
reduction in TUCA, i.e. ΔTUCA(c, �,�) , is higher than a 
pre-defined threshold ΔTUCAmin , adding a nurse is worth-
while. The approach we propose allocates resources based 
on marginal values, i.e. it adds the next resource to the sys-
tem where it provides the most additional value to achieve 
the highest total reduction in TUCA per given resource 
consumption. This is not the same as minimizing the maxi-
mum wait time. For instance: If adding one nurse could 
reduce TUCA from 1.0 to 0.9 in situation 1 and could 
reduce TUCA from 0.9 to 0.4 in situation 2, the approach 
proposed in the paper allocates the additional nurse to 
situation 2 (leaving the maximum wait time at 1.0). But 
since TUCA(c, �,�) is non-increasing and convex in c, 
both approaches are likely to result in comparable staff-
ing solutions for situations that do not differ substantially 
in demand. Note that this approach requires a ΔTUCAmin 
threshold that states until which reduction in TUCA an 
additional nurse should be staffed. Another practical 
approach (given scarce resources) would be to allocate 

(6)ΔTUCA(c, �,�) = TUCA(c, �,�) − TUCA(c + 1, �,�)
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nurses to situations until the total number of nurses staffed 
caps out. Such an approach adds a nurse to the situation 
with the highest ΔTUCAs until the expected number of 
nurses (weighted for situation likelihoods) reaches the 
target capacity.

3  Parametrizing the model with real data—
the empirical case

3.1  Study setting

The study setting is a pure NICU within a tertiary perina-
tal center in Germany that provides care for preterm and 
sick newborn infants. This NICU is an open-bay station 
using room dividers spaced approximately three meters 
apart where all infant beds are centrally monitored. Regu-
lar capacity of the NICU is 11 beds, and up to two addi-
tional beds may be provided when needed. The NICU uses 
fixed staffing policies with the number of nurses staffed 
depending on the shift time. Early shifts run from 6:30 am 
to 2:30 pm with NICU staffing of five nurses; late shifts 
run from 1:30 pm to 9:30 pm with five nurses staffed, and 
four nurses attend the night shift from 9:00 pm to 7:00 
am. The overall nursing staff of our study unit comprised 
52 nurses (equivalent to 31.5 FTE) – all qualified in line 
with Neonatal Nurse Practitioners (NNPs) and subject to 
joint planning.

3.2  Data collection

As data on nursing care demand is not available within infor-
mation systems, it had to be collected prospectively within 
an observational study that had been approved by the ethics 
review committee and the staff council of the participat-
ing institution. Following Milligan et al. (2008) and Pillay 
et al. (2012) [35, 36], we collected nursing care data through 
passive observations. These observations were conducted 
by study nurses with sufficient medical expertise and back-
ground knowledge. Using a tablet PC and a self-modified 
software application, the study nurses assigned time stamps 
to nurse activities using the following four categories: (1) 
direct care activities, defined as activities performed while 
caring for the infant (e.g., feeding, administration of drugs, 
and documenting the patient’s data); (2) indirect care 
activities (e.g., cleaning equipment), which were defined 
as activities that were not directed to an individual infant; 
(3) administrative activities such as scheduling and central 
documentation; and (4) other activities, such as personal 
needs and staff breaks. The taxonomy is based on the origi-
nal classification used in [35, 36] and only slightly adapted 
where required in the German context. The complete list is 
provided in Appendix A1.

Our analysis focuses on direct care because these are 
time-critical activities that require nurses to respond in 
a timely manner and because direct care activities are 
stochastic and can be neither scheduled nor anticipated 
entirely.

To limit disturbances in the care process and to con-
form with the data collection requirements posed by the 
participating institution, we refrained from continuous 
observation and instead relied on random sampling tech-
niques and randomized observation intervals [35, 36]. We 
designed observation blocks of three hours, each block 
containing 12 observation intervals of 10 min each, with 
5-min breaks in between (to allow the study nurse to rest). 
For each workday, we randomly selected one of the three 
shifts (early, late, night) as well as a random starting point 
within the shift ensuring that each observation block falls 
completely into the shift to exclude handover activities. 
This gave us a random sample of each type of shift as well 
as random times within each shift.

Each observation block contained multiple observation 
intervals. For each observation interval, one of the nurses 
on duty (and who gave consent to participate in our study) 
was randomly selected for being observed. This design 
allowed us to observe a representative random sample of 
nursing workload at the NICU in our partnering hospi-
tal. This resulted in observing one nurse at a time, and 
the recorded tasks represented the tasks performed by an 
“average” nurse. According to our approved study pro-
tocol, we aimed for 80–90 observation days. Since the 
observations had to be done by study nurses who also had 
regular nursing duties, we had to give the study nurses the 
possibility to combine their research and regular nursing 
activities. Therefore, we generated a sample with poten-
tial observation days and randomized starting times (as 
described above) for which study nurses could register on 
a first-come-first-served basis. Due to short-term unavail-
ability of study nurses, we ended up having 84 observation 
days between 06/2015 and 11/2015. Observations took 
place during each day of the week and started 33.33% of 
the time in early shifts, 45.24% in late shifts, and 21.43% 
in night shifts yielding an unbiased sample. On some 
observation days, study nurses stopped the observations 
before the three-hour block was reached due to sickness, 
being called off from their research activities, or technical 
failure of the equipment. In some instances, the obser-
vation of individual nurses was not permitted because 
the nurse did not provide consent, or the nurse provided 
palliative care and the observation was not permitted for 
ethical reasons. For these reasons, the total observation 
time amounted to 155 h. During the study period, the aver-
age monthly demand was almost identical to the average 
monthly demand of the year before. Therefore, we are 
confident that for the study NICU, the choice of the study 
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period did not undermine its generalizability beyond the 
study period.

3.3  Patient‑based care demand and durations

To parameterize the model, we need the NICU’s arrival 
rate and the expected duration of care events (Eqs. 1 and 
2). Care events vary between and within patients. Ideally, 
we would enlist patient-specific, time-varying parameters 
were this not practically infeasible. To sidestep time- and 
patient-specific rates, we require a patient indicator easily 
observable ex ante that well discriminates varying levels of 
care intensity. From a medical perspective, patient risk and 
severity indicators might serve best since patients suffering 
more severe conditions demand greater nurse attention and 
may trigger more and/or longer care events that correlate 
with more time providing direct care.

Within the NICU, several patient risk and severity indi-
cators exist, such as birth weight, gestational age [37–39], 
CRIB score [40], and Apgar score [41]. These factors are 
routinely collected after birth and offer easy access. Yet, in 
this case, their static-per-patient nature limits prediction of 
care intensity variation over time. We thus decided to use 
respiratory-support type as an indicator of a patient’s level of 
care intensity, which is dynamic and easily observable [42]. 
Regarding respiratory support, the highest medical severity 
is recorded when infants require intubation and mechanical 
ventilation.

While mechanical ventilation has been applied more often 
in the past, noninvasive forms are currently replacing their 
invasive counterparts in medical outcomes [43, 44]. Non-
invasive forms, such as nasal continuous positive airway 
pressure (nCPAP) and high-flow cannulas, support infant 
respiration with the prerequisite an infant can spontane-
ously breathe on her own. Therefore, noninvasive forms of 
respiratory support, in general, reflect a better cardiorespi-
ratory condition and lower severity levels than mechanical 
ventilation.

In the NICU, a noninvasive respiratory-support type is 
the first-line therapy. Where intubation is inevitable, the 

primary goal is expedited extubation and transfer to nonin-
vasive respiratory support. Consequently, we may assume 
infant respiratory-support type to indicate cardiorespiratory 
condition that reflects severity differences for both between 
and within infants along their health trajectories. This study 
distinguishes four forms of respiratory support: (1) mechani-
cal ventilation (i.e. invasive with endotracheal intubation or 
non-invasive), (2) nCPAP (nasal or pharyngeal CPAP), (3) 
high-flow cannula, and (4) a miscellaneous category describ-
ing all infants without respiratory support.

Beyond patient-related factors, structural features inher-
ent in the NICU’s current roster, such as shift types (early, 
late, and night), likely affect care demand when shifts differ 
regarding their care procedures. Planned procedures, such as 
exchange of respiratory support material, routine ultrasound, 
blood sampling, and scheduled C-sections, occur more often 
in early shifts. Also, dayshift noise from many health care 
practitioners and visitors on the ward might irritate infants to 
the point of triggering care events, i.e. apnea or bradycardia 
[28]. An empirical analysis demonstrating that a patient’s 
total care demand differs between shifts and respiratory type 
can be found in the Appendix A2.1 and A2.2. The case study 
thus incorporates two aspects relevant for care demand, i.e. 
shifts (early, late, night) and patient types (four types of 
respiratory support) and therefore features 3 × 4 different 
parameters each for arrival rate and expected duration of 
care events serving as inputs to the model.

To derive the parameters for the model we need to look 
at the observation procedure in detail. The data collection 
process and the resulting data pattern are illustrated in Fig. 1.

Nurses are observed over predefined intervals. For exam-
ple, the observation of Nurse 1 starts at  ts1 and ends at  te1. At 
 ts1, the observer records that Nurse 1 is currently providing 
direct care for patient  D1. At  t1, Nurse 1 switches to patient 
 D2 and provides care until  t2, when she proceeds with indi-
rect care activities. At  t3, Nurse 1 switches activities again 
and provides care for patient  D1. This observation pattern 
has the consequence that not every care event is observed 
in its entirety and that some are subject to censoring. For 
instance, at  ts1, we observe Nurse 1 providing direct care for 

Fig. 1  Observation pattern
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patient  D1; however, the event started before the observation 
interval, i.e., the event is left-censored. As is the case at 
 te1, the observation interval stops, but the care continues, in 
which case the event is right-censored. Finally, we may have 
cases where nurses continuously provide care for one patient 
 (D5) throughout the entire observation interval, as illustrated 
in the case of Nurse 3. Here, we observe neither the exact 
start nor the exact ending of the care event. Although it is 
challenging to identify the exact duration of care events, this 
observation pattern allows us to determine the proportion of 
time that each nurse spends on direct care provision.

To derive the arrival rates of care events, we must calcu-
late the number of care events per minute and patient. To do 
so, we start by estimating the number of care events within 
the observed timespan. We require one fixed point to identify 
individual care events. As a straightforward fixed point, we 
may consider either the start of the care event or the end 
of the care event. As described above, we do not observe 
nurses and the care that they provide in a continuous fashion; 
hence, we do not observe every care event completely but, 
for some of them, only the start or the end. Therefore, we 
consider the arithmetic mean of the observed starts and ends 
as an unbiased estimate of the number of care events treated 
by one nurse. To obtain the average number of care events 
per minute and patient, i.e., the arrival rate, we divide this 
figure by the total number of observed minutes (leading to 
the average number of care events for one nurse per minute), 
multiply by the average number of nurses (leading to the 
number of care events for the complete NICU), and divide 
by the average number of patients (leading to the average 
number of care events per minute and patient).

We illustrate this approach with an example: For infants 
with nCPAP respiratory support in the early shifts, we 
observed 131 starts and 117 ends during the observed time 
interval of 2,847 min (the total observation time in early 
shifts). To determine the expected number of care events 
per nurse and minute, we divide 124 (i.e., the arithmetic 
mean of 131 and 117) by 2,847 min and obtain an average 
of 0.04 care events from nCPAP infants per minute treated 
by one nurse. On average, 4.78 nurses were present during 
our observation periods in early shifts; thus, the complete 

NICU experienced on average 0.21 care events from nCPAP 
infants per minute. Given that 7.04 nCPAP infants were pre-
sent on average, one nCPAP infant leads to 0.03 care events 
per minute. The left part of Table 1 summarizes the occur-
rence rate of care events for each patient i differentiated by 
shift and type of respiratory support. We assume that the 
NICU’s arrival of care events follows a Poisson process with 
an arrival rate of λ equal to the cumulated arrival rate across 
all infants ( � =

∑
p∈P λp).

Analogous to the arrival rates, we determine the aver-
age duration of one care event for each combination of 
respiratory support and shift. For this purpose, we divide 
the cumulated observed duration of care events in min-
utes by the estimated number of care events within the 
observed timespan. For instance, as stated above, for 
infants with nCPAP respiratory support in early shifts, we 
identified 124 care events, encompassing a total timespan 
of 1,051 min. Thus, the average duration of one care event 
equals to 8.48 min. We proceed similarly for the other 
shift-respiratory support type combinations and estimate 
the average service times of care events and summarize 
those in the right part of Table 1. We assume that the dura-
tions of NICU’s care events follow an exponential distri-
bution with an expected duration of 1/ µ across all infants 
( 1
�
� =

∑
p∈P

�
�p

�
�p

�

�
) . As stated in Section 2, NICU might 

be one of rare settings where the assumption of exponen-
tially distributed service processes is justified due to a 
high number of very brief processes. Following the logic 
of Litvak et al. [25], we assume the number of NICU’s care 
events per time unit to follow a Poisson distribution, while 
the duration of NICU’s care events follows an exponential 
distribution for each patient mix per shift.

As indicated in Table 1, depending on shift type and 
respiratory support, patient care demand varied 0.8 to 2.3 
times per hour (arrival rates of 0.014 to 0.038 care events 
per minute), and expected care-event duration ran 6.47 to 
30.11 min. These parameters serve as basic input parameters 
for our queuing model that aggregates a patient type’s care-
event arrival rates ( λp ) and durations ( 1∕μp ) on the unit level 
applying Eqs. 1 and 2. In the following section, we deter-
mine the patient mix, i.e., the number of patients per type.

Table 1  Input parameters for queuing model

Average number of care events (arrival rate) per infant per minute Average duration of care events in minutes

Respiratory 
support / 
Shift

Mechanical nCPAP High-flow 
cannula

Miscellane-
ous

Mechanical nCPAP High-flow 
cannula

Miscellaneous

Early 0.034 0.030 0.022 0.017 10.76 8.48 7.81 30.11
Late 0.037 0.025 0.017 0.020 8.93 8.54 9.66 15.28
Night 0.038 0.022 0.014 0.029 6.87 6.47 12.25 7.30
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3.4  Patient mix – aggregation across patients 
and patient distribution

Parameters in Table 1 represent the arrival rate and duration 
of care events initiated by an individual patient of a specific 
respiratory type during a specific shift. To analyze the NICU 
as a queuing system, we need to consider the cumulative 
arrival (and service) rate across all patients per given patient 
mix.

The data shows wide variety in utilization and patient 
mix. Generally, we see potential states of the NICU rang-
ing from 0/0/0/0/13 (0 mechanical, 0 nCPAP, 0 high-flow, 0 
miscellaneous, 13 empty beds) to 13/0/0/0/0 (13 beds occu-
pied by mechanically ventilated patients). For each patient 
mix, we can calculate the NICU’s arrival rate and expected 
duration via the specified patient-type rates in Table 1. When 
validating the Markov assumptions for occurrences and 
durations of care events (see Appendix A3), we conclude 
that the Markovian features seem to apply for early and late 
shifts. For night shifts, we rely on the general approximation 
stated in Section 2.2.

To optimally allocate nurses across multiple shifts and 
days, we need to estimate the likelihoods that a given patient 
mix occurs. Using the 84 observation days, we estimate the 
distribution for number of occupied beds, and the probability 
for each possible respiratory type. Assuming a multinomial 
distribution for those input parameters, we can estimate the 
probability for each possible patient mix. The most frequent 
situations utilize 11 beds for seven to nine patients under 
non-invasive respiratory support, and the remaining two to 
four patients under invasive respiratory support. This distri-
bution allows determination of the overall performance for 
a certain staffing policy by calculating the average TUCA 
and number of staffed nurses.

3.5  Analysis of TUCA improvements

Based on the model discussed in Section 2 and the input 
parameters from Section 3.3 and 3.4, we now assess the 
impact of different staffing scenarios for the NICU. We 
engage the following questions for the case study: How 
much gain in quality of care is achievable using a more flex-
ible staffing policy? Or, alternatively, can the NICU use a 
more flexible staffing policy that maintains the current qual-
ity of care level with fewer nursing hours? Analyzing these 
two scenarios maps out an efficiency frontier.

The first reference point is the status quo at NICU where a 
fixed number of nurses attends early shifts (c = 5), late shifts 
(c = 5), and night shifts (c = 4). For this status quo scenario 
(5–5-4) and the estimated patient-mix distribution (see prior 
Section 3.3), the expected time until care arrives (TUCA) 
across all situations is 1.15 min. We scaled all subsequent 
outcomes according to this status quo.

We next proceed with alternative staffing levels for 
fixed staffing scenarios. Here, we use a constant number 
of nurses staffed per given shift regardless of the unit’s 
patient mix (shaded grey in Fig. 1). Unsurprisingly, adding 
resources, i.e., increasing the total nursing hours, improves 
expected quality of care, while withdrawing resources 
impairs quality. A 6–5-4 policy, for instance, cuts average 
TUCA by 41% compared to the status quo, while a 5–4-4 
policy increases average TUCA by 61%. Note that we dis-
play only the lowest average TUCA for the same number 
of staffed nurses across shifts (e.g., we do not report plans 
like 2–5-6 yielding higher average TUCA staffing the same 
total nurses (13) as 5–4-4).

In the flexible staffing approach, the number of staffed 
nurses depends on the patient mix during that specific shift. 
We assume that the information on the number of occupied 
beds and infant respiratory type is known before the shift 
onset (note that this assumption is relaxed in Section 4) and 
that the number of nurses can be adapted accordingly. We 
follow the threshold approach of Section 2.3 where an indi-
vidual nurse is added to a specific shift as long as the new 
nurse saves more TUCA than a threshold value. To repre-
sent a large range of potential staffing levels, we varied the 
threshold value from 0.65 min to 3.60 min, and draft an effi-
ciency frontier. Due to the convexity of TUCA in the number 
of staffed nurses, there is no allocation of nurses that leads 
to a lower TUCA without increasing the number of staffed 
nursing hours. The result of the flexible nurse allocation sce-
narios is depicted in light grey in Fig. 2.

As a result, the flexible staffing allocation can achieve 
the average status-quo TUCA using 97% of its nursing 
hours (Point B). In other words, by flexibly adjusting the 
number of nurses to the patient mix, the unit could have 
maintained the same quality of care level incurring 97% 
of the direct nursing costs. Fewer nursing hours that main-
tain quality of care is interesting not only from a cost-con-
tainment view, but also because the current skill shortage 
impairs hospital staffing. Alternatively, we also see that 
the unit could have curbed average TUCA by 18% while 
maintaining its current nurse-hours (see Point A). Note that 
every point between A and B represents a flexible staffing 
policy that offers better care at less direct nursing cost, 
that is, a lower average TUCA plus lower expected nursing 
hours. The reason for the flexible staffing outperformance 
lies in averting situations of extremely high TUCAs. Of 
course, avoiding high-TUCA situations by staffing nurses 
who would have otherwise been squandered in shifts with 
relatively low TUCAs means that lower TUCAs must rise 
in response for these less busy situations. Note that the cost 
savings described above only pertain to the direct nursing 
costs. Decision-makers wondering whether to implement 
such a policy might attribute value to a full cost–benefit 
analysis. In our case, the benefit of decrease of TUCA is 
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easier to measure than the costs, as this is also influenced 
by the workforce, flexibility in contracts, and possible 
shift patterns – all of those being outside the scope of our 
paper. Besides, it would be valuable to identify and quan-
tify all direct and indirect consequences for all affected 
stakeholders in addition to the implementation and oper-
ating activities (equipment, training, maintenance, etc.). 
We feel that measuring consequences such as satisfaction 
and well-being of professional staff, a holistic assessment 
of the patient health status, etc. is worth analyzing in a 
separate study.

From a clinical perspective, it is worthwhile to consider 
that the NICU might face limited flexibility in its staffing 
policy. Notably, within the NICU context, the qualifica-
tion level of nurses is a constraint, i.e. a critical care unit 
cannot rely on a general flex pool to supply nurses lacking 
the required expertise to work in the NICU environment. 
Let’s say that deviations from the status quo policy (5–5-4) 
may never exceed ± one nurse. From a practical perspec-
tive, adding one nurse could be achieved through calling 
in staff being on standby whereas withdrawing one nurse 
could imply that the nurse is assigned to other non-direct 
care activities (or deployed in a distinct but related clini-
cal area). Adding such a constraint still leads to substantial 
improvements. Restricting the variability to ± one nurse, 
average TUCA could still be improved by 17% – a large 
share of the improvement potential of 18%. Taken together, 
the results show that applying queuing theory at the care 
event level has the potential to improve quality of care for a 
given nurse capacity by efficiently trading situations of high 
versus low workload.

4  Robustness against deviations 
from the true patient mix

In the main analysis presented in the paper, we assume that 
the information on the number of occupied beds and infant 
respiratory type is known before the shift onset and that the 
number of nurses can be adapted accordingly. In this section 
we test the robustness of the results when this assumption is 
relaxed. Specifically, we consider scenarios in which the true 
patient mix is different than the a priori assumed patient mix 
upon which the number of nurses is staffed. The true patient 
mix can deviate for two reasons: i) because the number of 
patients turns out to be different than the anticipated number 
or ii) because the respiratory types turn out to be differ-
ent than the anticipated ones. To test the robustness of the 
results, we conduct a comparative analysis based on different 
scenarios in which the true patient mix does not resemble the 
planned patient mix used for adjusting staffing levels. The 
baseline scenario is the status quo, i.e. the observed patient 
mix with fixed staffing levels. We then simulate deviations 
from the observed patient mix. For each simulated patient 
mix we derive the NICU’s expected arrival rate, expected 
service duration, staffing level and TUCA. Each of the simu-
lated scenarios presented below relies on 1,000 repetitions.

4.1  Mis‑specified number of patients

On a typical day in the NICU that we studied, 11 beds are 
utilized and 1.1 patients arrived/departed from the unit per 
day (i.e. 0.37 patients per shift). We thus cannot rule out that 
the realized patient volume differs from the expected one, 

Fig. 2  Efficiency frontier
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but it is quite unlikely that the patient volume differs by more 
than one patient. We now consider different scenarios in 
which the expected number of patients differs from the real 
number of patients. With probability p the actual number of 
patients is mis-specified by one patient, that is, either one 
patient higher or one patient lower than the planned number 
of patients with a probability of p/2 each. Staffing levels are 
determined based on the expected number of patients and 
Fig. 3 shows the expected TUCA for flexible staffing. We see 
that TUCA increases with the probability of misestimation 
by one patient but the figure also indicates that the flexible 
staffing policy outperforms the fixed staffing rule, even in the 
scenario in which the planned patient volume is off by one 
patient all of the time.

4.2  Mis‑specified patient severity

Another reason why the realized patient mix can deviate 
from the expected one is due to wrongly assessed respira-
tory types. The scenarios presented in Fig. 4 outline the 
consequences of having misestimated the respiratory type 
of 1–9 patients. In the simulation we randomly choose 1–9 
patients to be potentially mis-specified. The distribution 
of the random draw follows the empirical distribution of 
respiratory types observed in our data set. Again, we see 
that expected TUCA increases with the number of patients 
whose respiratory types was estimated incorrectly. How-
ever, the flexible staffing policy still outperforms the fixed 

Fig. 3  Robustness of flexible 
staffing policy against mis-spec-
ified number of patients

Fig. 4  Robustness of flexible 
staffing policy against mis-
specified patient severity
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staffing rule, even when the respiratory types turn out to be 
potentially different for a substantial number of patients.

4.3  Mis‑specified number of patients and patient 
severity

In this section we explore the boundary conditions of the 
approach by simulating TUCA for scenarios that combine 
both types of deviations from planned to realized patient 
mix. Each scenario is characterized by two features: (i) 
a 50% probability of having mis-specified the number of 
patients by one patient (either one patient higher or one 
patient lower), and (ii) having mis-specified the respiratory 
type of n patients, with n = 1 (2,…,9) in case of scenario 1 
(2,…,9). Figure 5 shows the expected TUCA for these differ-
ent scenarios and indicates that minor mis-specifications do 
not seem to cause severe implications on TUCA. However, 
we find that a mis-specification of eight or more patients 
combined with an under- or overestimation of the number of 
patients leads to a TUCA that exceeds the TUCA of the fixed 
staffing regime. Thus, in cases with very low information on 
the patient mix, the fixed staffing system is more robust than 
the flexible staffing policy.

5  Discussion and conclusion

This case study features efficient nurse allocation and 
improved staffing decisions for healthcare providers. 
With providers struggling to fill nurse vacancies and staff 
effectively, it is of growing importance that they identify 
and exploit situations where staffing an additional nurse 

generates the maximum benefit. We claim that, in the criti-
cal care context, the reduction of expected waiting times 
until care arrives (TUCA) for patients serves as a valid 
indicator for assessing the benefit of staffing an additional 
nurse. Based on that reasoning, we set up a queuing model 
that treats demand as a stochastic process that mitigates 
the shortcomings of mere average workload statistics. This 
approach allows us to determine TUCA for different staff-
ing scenarios to then identify situations where nurses yield 
the most benefit. The queuing model is based on a granular 
level of care-events to adequately reflect the care intensity 
variation among patients and within patients over time. Par-
ametrizing the queuing model with real data allows us to 
quantify the implications of different staffing levels, as well 
as to map efficiency frontiers for a range of staffing scenarios 
that illustrate the trade-off between better care and lower 
direct nursing costs.

We argue that TUCA can serve as a proxy for process 
quality and that flexible staffing scenarios may well improve 
care effectiveness. From an operations management perspec-
tive, it might not be surprising that a flexible versus fixed 
staffing level leads to a better quality of care-costs trade-off. 
From a clinical perspective, though, this is essential since 
a flexible staffing policy especially averts ultra-high TUCA 
values that compromise patient safety. A flexible staffing 
policy would thus level nursing workload and thereby reduce 
the risk that essential care practices are omitted [45, 46].

No research is free of limitations and the results should 
be interpreted this light. Within the queuing model, we 
assume a full pooling of care events; that is, no dedicated 
nurse(s) will handle a given care event. In clinical practice, 
nurses are often assigned to individual patients at shift onset. 

Fig. 5  Robustness of flexible staffing policy against mis-specified number of patients and patient severity
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While nurses may assist other patients when required – their 
own workloads permitting – they mainly provide care for 
their assigned patients. Obviously, assuming inflexibly 
dedicated nurses would lead to huge increases in time until 
care arrives, while full pooling clearly rules out continuity 
of care. Detailed discussion of this trade-off is beyond the 
scope of our study, but it does offer an interesting avenue 
for future research.

We further acknowledge a lack of distinction within a 
group of care events. Naturally, this limitation in the queuing 
model reflects a critical care setting characterized by inci-
dents that demand immediate response by health care pro-
fessionals, and the average waiting times we report should 
be interpreted subject to this issue. While prioritization of 
critical care events keeps the waiting times for critical inci-
dents, such as respiratory arrest, at lower levels than the 
average TUCA, noncritical incidents will consequently incur 
extended waiting times. To a certain extent, a rise in TUCA 
should, therefore, not automatically presume serious detri-
mental effects. Still, quality of care suffers when long wait 
times often delay care for non-critical events.

The case study illustrated the potential of using queu-
ing theory to inform staffing decisions and the ques-
tion instantly arising is how to actually implement the 
approach. The queuing model assumes that the number of 
patients and patient mix are known prior to the shift, thus 
providing the required data to assess marginal benefits 
of staffing another nurse while permitting nurse capacity 
adjustment. Therefore, a fundamental prerequisite for suc-
cessful implementation is a reliable forecast of expected 
demand. Relying on demand forecast, however, means 
that we cannot level demand surges at all times. But with 
adequate forecasts we will be able to reduce the risk of 
excessive workload situations. Real-time data on patient 
mix is therefore a must for successful implementation. For 
hospitals using IT systems that collect (daily) patient-level 
data electronically with the ability to implement informa-
tion systems specifically for intensive care units [47], the 
technical prerequisites appear in place. However, which 
patient data must be integrated and how frequently the 
model must be updated to yield adequate forecasts remain 
a fruitful avenue in future practice-oriented research, bear-
ing in mind that new information technology might lead 
to additional staffing requirements [48]. Having data on 
care-event level in large quantities also allows for more 
granular queuing models, and for challenging our assump-
tions of Markov arrivals and stationarity, and potentially 
for developing more suitable models.

The approach we describe in the paper requires a thresh-
old that states until which reduction in TUCA an additional 
nurse should be staffed. This threshold symbolizes the 
required value of an additional nurse: how many minutes of 
TUCA reduction do we want to achieve in order to invest in 

an additional nurse? Thus, this threshold should be derived 
from the hospital’s aspired service level, which basically 
describes how much the hospital is willing to pay for a unit 
reduction in TUCA. The literature is rich with suggestions 
how to measure willingness-to-pay [e.g., 49, 50]. But these 
approaches come with strengths and weaknesses that deci-
sion-makers need to assess given their organizational context 
and the question whether such a threshold is determined 
top-down as opposed to having affected professionals par-
ticipating in setting the threshold. An alternative approach 
to defining a threshold value is to define a maximum level 
of TUCA for all situations and to staff nurses until this level 
is reached. Finally, one could adjust the approach by using 
different objective functions such as, e.g., minimizing the 
range in waiting times [51].

Assessing the marginal benefits of one more nurse and 
staffing effectively calls for some flexibility in aligning 
staffing levels with anticipated care demand. Having highly 
specialized nurses on call to be staffed on short notice (or 
releasing nurses on short notice) may incur additional costs 
that detract from achieved benefits. A related issue for 
implementation is whether such flexible staffing regimes are 
acceptable to nurses and align with human resource policy. 
From an economic perspective, we might argue that flexible 
policies win nurses favor when their flexibility is rewarded 
in their compensation [52] (one approach that has been pro-
posed by Fortin and Douglas (2006) is bidding for additional 
shifts [53]). However, extensive consultations with clinicians 
and practitioners from related organizations indicated that 
the willingness to take on extra shifts seems to be decreas-
ing despite considerable higher tariffs paid for extra shifts. 
Higher tariffs do not necessarily imply a higher commit-
ment to take on extra shifts, nurses seem to favor a reduction 
in working hours instead. Our consultations also revealed 
mixed experiences with implementing on-call schemes that 
are not undisputed among nurses. Some organizations fail to 
implement such schemes due to severe pushback, whereas 
other organizations succeed to overcome opposition. These 
observations underline the importance of a thorough imple-
mentation strategy and the role of leadership when commu-
nicating and implementing strategic changes such as on-call 
schemes [54].

Another attempt to increase flexibility in staffing is 
through setting up float pools of nurses [55]. These float 
pools seek to satisfy two goals. First, float pools flexibly 
offset staff absenteeism. Second, they enhance employer 
attractiveness by offering individual choice in the work 
schedule. Float nurses receive predictable work schedules 
in terms of shift times that correlate with work satisfaction 
[56]. Still, they are flexibly staffed in terms of location and 
tasks. In the event of no shift shortage, these float nurses can 
be assigned to alternative tasks that need regular attention 
after neglect in times of high workload. Such a float pool 
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not only compensates for absenteeism but also adjusts staff-
ing to match patient mix. This does not appear to be at odds 
with human resource policies, provided that float nurses 
have the required knowledge and education to work in these 
units and are highly committed to the units. In the NICU 
context, specific aspects are important to ensure high satis-
faction and commitment—a major goal of nurses is being 
able to primarily focus on the needs of patients and parents 
[57]. Whether organizations can set up float pools effectively 
is likely contingent on the organizational context. Larger 
organizations, for instance, may find it easier to enlist a flex-
ible staffing regime with a float pool of nurses that exploits 
economies of scale and pooling benefits. Organizations then 
need to decide strategically how many nurses to hire for 
each unit and for the float pool, how to translate nurse pref-
erences into rosters, and how to allocate pool nurses to the 
units [58]. The queuing application outlined in this paper 
could be informative for the latter but might require adjust-
ments if transferred to different contexts. Different wards/ 
settings probably have different key indicators that trigger 
care events, which need to be identified and estimated to 
parametrize the model. Whether one requires manual data 
collection for this or whether alternative approaches (e.g. 
webcams, tracking devices, etc.) might be suitable for data 
collection depends on the setting and needs to be assessed 
case by case.

The case study presented in this paper thus highlights the 
potential and scientific merits of using queuing theory to 
improve staffing decisions while simultaneously identifying 
the practical challenges. Therefore, our long-term goal is to 
design an implementation study that transfers our learning 
into practice to evaluate the approach empirically. Imple-
menting the approach in practice means that we intend to 
change staffing policies – with direct implications for the 
patient care process. Such an intervention thus requires a 
different study protocol and approval process than those for 
the observational study. Logically, the implementation step 
must follow separately.
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