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Abstract It is well established in the epidemiological litera-
ture that individual behaviors have a significant effect on the
spread of infectious diseases. Agent-based models are increas-
ingly being recognized as the next generation of epidemiolog-
ical models. In this research, we use the ability of agent-based
models to incorporate behavior into simulations by examining
the relative importance of vaccination and social distancing,
two common measures for controlling the spread of infectious
diseases, with respect to seasonal influenza. We modeled
health behaviour using the result of a Health Belief Model
study focused on influenza. We considered a control and a
treatment group to explore the effect of education on people's
health-related behaviors patterns. The control group reflects
the behavioral patterns of students based on their general
knowledge of influenza and its interventions while the treat-
ment group illustrates the level of behavioral changes after
individuals have been educated by a health care expert. The
results of this study indicate that self-initiated behaviors are
successful in controlling an outbreak in a high contact rate
location such as a university. Self-initiated behaviors resulted
in a population attack rate decrease of 17 % and a 25 %
reduction in the peak number of cases. The simulation also
provides significant evidence for the effect of an HBM theory-
based educational program to increase the rate of applying the
target interventions (vaccination by 22 % percent and social
distancing by 41 %) and consequently to control the outbreak.
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1 Introduction

Influenza outbreaks are a significant source of morbidity,
mortality, hospitalization and work loss every year. These
outbreaks lead to approximately 7,000 to 49,000 deaths, 3.1
million hospitalizations and a total economic burden of $87
billion in the United States alone [1]. These data clearly
indicate that preventing and managing seasonal flu can result
in significant public health improvements. Since seasonal
influenza is predictable, it has the potential to be controllable
with evidenced-based management strategies [2, 3]. While
these strategies won’t eliminate flu, better management can
greatly reduce the number of individuals impacted as well as
the severity and duration of illness. The impact of strategies
like vaccination, quarantine and school closures on the control
of these outbreaks has been extensively studied. However, the
approaches that have been studied general fail to consider the
self-initiated protective behaviors that individuals develop in
the face of an infectious disease.

In the event of a disease outbreak with a high attack rate in
a population, it is likely that much of the behavioral control
would be done through personal protective behavior, such as
vaccination or social distancing. Decreasing the amount of
contact between infected and susceptible individuals by en-
couraging them to avoid crowded places or close physical
contact with each other could slow the outbreak and lower
its peak [4, 5]. For instance, during 1918 influenza pandemic,
people developed self-isolation behaviour and avoided places
where they might come into contact with others [6]. A high
rate of personal protective behaviors such as vaccination, self-
isolation, physical distancing, antiviral drugs, masks etc. in a
population could have a significant impact on the severity of
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an outbreak. Therefore understanding the dynamics of these
behaviors could provide decision makers with better strategies
to mitigate influenza.

Mathematical and simulation models have been developed
to understand the dynamics of influenza transmission in terms
of mortality rate, hospitalization rate, total number of infected
individuals, number of newly infected per day, outbreak peak
period, etc. These models, however, do not study the dynam-
ics of influenza transmission at the individual level. Re-
searchers are increasingly using agent based simulations
(ABS) to incorporate the social, environmental, physical,
and economic characteristics of individuals in a population
into influenza transmission models [7, 8]. In this paper we
develop an agent-based simulation to understand the impact of
self-initiated protective behaviors on the spread of influenza
within a university population. This simulation allows us to
study the impacts of population-specific social, environmental
and psychological characteristics on an influenza outbreak.
We then examine the effect of an educational program to
improve the willingness of individuals to apply protective
behaviors and consequently better mitigate the outbreak.

A hallmark of educational experience is the frequent inter-
actions between students which can lead to a high attack rate
not only in school but also in students’ and teachers’ house-
holds. Occurrence of outbreak in schools causes a significant
increase in student health care visits, medication usage, ab-
senteeism and work loss [9]. Given their high attack rates,
schools are an ideal place for the development of interventions
and health promotion programs to prevent influenza [5]. De-
livering such programs in schools can also alleviate many of
the common barriers of community-based treatments, such as
time, location, transportation and cost [10].

One of the challenges in developing an agent-based simu-
lation is to identify the psychological variables that play a part
in individuals’ decision making process to develop these
behaviors. To overcome this challenge we conduct a cross-
sectional study using the Health Belief Model (HBM). Stu-
dents from the Faculty of Engineering and Computer Science
undergraduate population at Concordia University participat-
ed in the study. The objective of the cross-sectional study is to
investigate students’ perceptions of the influenza virus and
identify the factors that impact individual intention to develop
the two main protective behaviors (vaccination and social
distancing) toward influenza. The health-behavior patterns
obtained from this study are then incorporated into the simu-
lation to estimate the probabilities of developing social dis-
tancing and vaccination through the flu season for each indi-
vidual. This simulation model provides policy makers with a
working tool to first understand population behavior toward
influenza in a specific environment and then allow them to
instruct and evaluate educational programs to mitigate flu.

The remainder of the paper is organized as follows. In
section 2, the relevant literature is discussed. Details of the

agent-based simulation and how it can be utilized for influen-
za prevention and control are given in section 3. Results of
experiments with university students are discussed in section
4. Finally, conclusions and proposed future-work are given in
section 5.

2 Literature review

Psychologists have developed a variety of models to explain
individuals’ attitudes and beliefs toward their health and how
to implement educational strategies to change health behav-
iors. Such models, known as value-expectancy theories, are
based on the idea that individuals expect specific outcomes for
their actions [11]. HBM is one of the most well-known value-
expectancy theories that emphasize two variables: 1) the value
an individual places on a specific outcome; and 2) the likeli-
hood that individual considers for a behavior to result in that
outcome. The following factors are used to construct HBM:
perceived susceptibility to disease, perceived severity of dis-
ease, perceived benefits of protective behavior and perceived
barriers to protective behavior [12]. Perceived susceptibility
measures the extent to which one feels he or she is susceptible
to a disease or condition. Perceived severity measures to what
degree one believes a condition would impact one’s health.
Perceived benefits are the extent to which one believes a given
behavior will reduce susceptibility to, or severity of, a disease.
Perceived barriers measures the level of costs (physical or
psychological) that one believes acting would require. Since
some or all of these factors work together to result in a specific
behavior, they all should be considered to predict or explain
individual behavior. Therefore, it is important to assess and
explore these factors in an individual level to predict and
understand the health related behaviors of a certain
population.

HBM has been previously used to study beliefs and behav-
iors toward influenza virus vaccination [13—15]. Painter et al.
developed a school-based educational program constructed
from the HBM toward seasonal flu vaccination for a year,
which led to a significant increase of vaccination rates among
middle and high school students [16]. Durham et al. investi-
gated the effect of HBM variables on two protective behaviors
toward influenza: vaccination and avoiding crowded places.
This study indicated that all HBM variables except perceived
susceptibility were significant predictors of vaccination while
avoiding crowded places was only correlated with the
perceived benefits of this behavior [17].

Agent-Based Modeling and Simulation (ABMS) is a rela-
tively new approach in modeling infectious diseases. In these
simulations, individuals in a population, known as “agents”,
have distinct behaviors and interact with each other. These
social interactions in turn influence agent behaviors over time.
Modeling the transmission of an infectious disease using
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ABMS helps researchers to understand the effects of such
diversity of behaviors and attributes between individuals and
also the effects that interactions among agents have on the
transmission of disease within the population as a whole. The
first attempts to develop an agent-based pandemic simulation
model were in 1976, when Elveback developed an ABS to
model the 1918 Pandemic Influenza [18]. This study modeled
the interaction of 1000 people in the community, mixed in
different groups such as family, neighborhoods and schools
and defined the transmission risk as a function of contact time
between individuals. Age-specific transmission hazard rates
were obtained from the patterns observed in the 1968 and
1957 pandemics. Behavioral changes such as contact reduc-
tion and quarantine for school children were also considered
in the model. All subsequent studies that adopt an ABMS
approach, or an approach that considers non-homogeneous
population to model an infectious disease outbreak, have
many core features of this study. Another good example of
earlier agent-based models was the model developed by
Halloren et al. in 2002, which estimated the effectiveness of
interventions such as vaccination in keeping the attack rate of
an epidemic below a pre-defined limit in a virtual population
with 2,000 agents [19].

ABMS approaches have been extended to study both the
transmission of disease and the effect of interventions within
larger populations under bioterrorism attack [20-22]. A good
example of such simulations was EpiSimS, developed by Los
Alamos National Laboratory, to simulate the spread of pan-
demic influenza in the Greater Los Angeles area with over 18
million agents in over half a million geographic sub-locations.
The hour-by-hour contact patterns used in EpiSimS were
obtained from the United States National Household Travel
Survey by recording the movement of people through differ-
ent locations during sampled days. EpiSims was used in
several studies to explore the effect of various interventions
strategies on the spread of disease. For example one study
found that school closures did not have a strong effect on a
pandemic's attack rate, rather they delayed the pandemic's
peak [23]. Another study involving EpiSimS showed that
the combination of school closures and antiviral treatments
were successful in significantly reducing the infection rate
before the vaccine became available [24]. Das et al. developed
another large scale epidemic simulation in 2008 with over 1.1
million agents to help healthcare executives develop mitiga-
tion strategies related to vaccination, prophylaxis, social dis-
tancing and hospital admission by incorporating a variety of
decision factors [21].

3 Methodology

In order to test the impact of self-initiated protective behaviors
(vaccination and social distancing) and educational programs
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on seasonal influenza outbreaks, we applied an agent-based
simulation to model a virtual replication of influenza outbreak
in a university setting. The synthetic population was con-
structed to match the population of Concordia University’s
undergraduate engineering students at the time. Other inhab-
itants such as faculty, staff, visitors and graduate students were
not considered in this simulation. Undergraduate student be-
haviors toward influenza and student peer interactions were
studied extensively. Once student behaviors and interactions
with each other on campus were captured, a discrete system
simulation model that imitated the physical geography of the
Montreal downtown campus of Concordia University and the
behaviors and interactions of students on campus was devel-
oped. After verifying the accuracy of the model, two interven-
tion strategies were tested and results were compared. Figure 1
illustrates the development of the proposed agent based influ-
enza control and prevention methodology. The proposed
agent based simulation model relies on thorough understand-
ing of student’s social behavior in and around campus, student
protective behaviors toward influenza and influenza-related
information. This information is collected through three main
sources of input described in Fig. 1; university’s database,
influenza literature and a cross-sectional study within the
target population. Key disease parameters used in the simula-
tion are summarized in Table 1. Below we describe the col-
lected data, development of agent based simulation and vali-
dation of the agent based simulation.

3.1 University database

The flow of students through a university involved a modest
number of decision points. Therefore, students were assigned
specific daily activities, including both their routine course
schedules and their activities during free time on campus.
Students’ course schedules were obtained from Concordia’s
undergraduate course database. To acquire data on student
activities on campus during their free time, a questionnaire
survey was conducted. A total of 260 questionnaires were
collected from undergraduate engineering students at
Concordia University. Students were asked to rank the fre-
quency of their visits to places on campus (gym, library,
laboratories, student lounge, other places on campus) and off
campus visits from: never, sometimes, often and very often.
Gym, library, laboratories and student lounge were chosen as
the most frequently visited. Students were given the option to
provide other choices in their response to questionnaires,
however, they offered very few alternate locations which were
not statistically significant compared to the main locations
(only 2 out of 260 respondents suggested different location).
These data were inputted into the simulation database to build
student activity patterns. According to the collected data stu-
dents were more likely to spend their free time on campus in
the library, laboratories, student lounge and gym. Also some
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Fig. 1 Modeling structure Flu literature
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preferred to spend their free time off campus. In the simula-
tion, whenever a ‘student’ finished a scheduled class, he/she
was given the option to select the next location based on these
activity patterns. The geography of each of these locations
(including classrooms, library, laboratories and student
lounge) were obtained from Concordia’s security department
and was incorporated into simulation to build the
environment.

3.2 Influenza parameters

In this simulation once a susceptible person was exposed to
the influenza virus, s/he entered latent and incubation stages
followed by a symptomatic or asymptomatic infectious peri-
od. During the latent period the individual was infected but not
yet able to transmit the virus. The incubation period was
considered to be one day longer than the latent period for
influenza and was the period between the exposure to virus
and the onset of symptoms of the disease. The duration of
latent period is assumed to be 1 day with probability of 0.3,
2 days with probability of 0.5 and 3 days with probability of
0.2. for infectious- symptomatic period this distribution is 0.3
for 3 days of infection, 0.4 for 4 days of infection, 0.2 for
5 days of infection and 0.1 for 6 days of infection [18]. Each
individual is assigned a health status attribute at a given time
which is associated with one of those timelines. The probabil-
ity of developing symptoms, given that the individual be-
comes infected, is 0.67. We assume that an infected person

Cross-sectional study University database

Health related behaviors Student class schedule

*  Vaccination Geography of
*  Social distancing e Classrooms
¢ Self-isolation ¢ Library

Social behaviors * Laboratories

* Student lounge

Simulation Platform

who does not become ill is 50 % less infectious than one who
has, but the incubation and infectious period duration are the
same as in those who exhibit symptoms [25].

3.2.1 Influenza transmission

One of the most crucial parameters that need to be quantified
when simulating an infectious disease is the probability of
virus transmission between any infectious and susceptible
person. There are several modes of influenza transmission,
and despite vast experimental and epidemiological literature
on the matter, there is no conclusive assurance on the relative
importance of those modes. Consequently, it is not possible to
validate how transmission risk should be quantified [26]. In
agent-based models such as ours, probability of the transmis-
sion of disease between two people in close contact over time
is typically assumed to be captured with a hazard rate [26].
Although this hazard rate could vary according to factors such
as temperature, humidity, ventilation, individual susceptibili-
ty, etc., we assume an average population hazard rate for
influenza transmission [20]. These infectious contacts are
believed to occur only within a specific radius of the infectious
person [26]. The probability that a contact between a suscep-
tible individual (i)and an infectious one () leads to exposure
to the virus could be obtained using per minute hazard rates
estimated by Haber et al. [20] for contacts between two
adults(\ = 0.00032). The probability that a susceptible indi-
vidual becomes infected during interactions within a specific

Table 1 Disease Parameters

Disease parameter Value Reference

Latent period Distribution specified in text Elveback et al. [18]
Infectious-symptomatic period Distribution specified in text Elveback et al. [18]
P(Asymptomatic | Infected) 0.67 Longini et al. [25]
Hazard rate (per minute) 0.00032 Haber et al. [20]
Specific radius for hazard rate 1.88 m Brankston et al. [26]
Vaccine efficiency 87 % Longini et al. [22]
Social distancing efficiency 50 % Mniszewski et al. [24]
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radius (1.888 m for influenza) could be calculated by trans-
mission probability of per minute contact with any infectious
individual that one comes into contact with:

P(infection) = 1-¢* (1)

where ¢ is the duration of interaction. Since the number of
people at a location at any time varies widely, once a suscep-
tible person arrives in a location, s/he might interact with more
than one infectious person at a time. Therefore in this simula-
tion once a susceptible person decided to leave a sub location
in the model the probability of infection was calculated based
on the period of contact for all the infectious interactions s/he
made in that sub location:

P(infection) = l—e’A(tH’%m) o)

3.3 Cross-sectional study

We constructed an HBM based questionnaire to understand
students’ health related behaviors. To consider all the possible
barriers and benefits that individuals might perceive for each
intervention and possible perceptions about influenza which
could be defined as their perceived severity and susceptibility,
we included 2 to 3 questions for each factor. A 25-item
questionnaire was developed to assess the study objectives.
(Appendix I) The first part of the questionnaire contains 20
questions, separated into a five-point Likert scale (1=strongly
disagree to S=strongly agree) based on HBM factors (per-
ceived susceptibility and severity toward influenza and the
perceived benefits and barrier of its interventions). The second
part of the questionnaire contains questions investigating stu-
dents’ history for applying the interventions, (3 items). (See
Appendix I for more information). The survey was adminis-
tered in two different sections of the same engineering course.
The first section administered was a control and the second
one involved a treatment consisting of a health promotion
specialist talking to students about influenza and its interven-
tions for 20 min. The educational program focused on the core
HBM variables: Susceptibility of people to the influenza
virus, severity of influenza, benefits and barriers of vaccina-
tion, benefits and barriers of social distancing. A summary of
the primary results of the questionnaire including descriptive
statistics and multivariate logistic regression is illustrated in
Appendix II. Data were analyzed using SPSS/PC software
Version 13.0. Response categories for the 17 HBM questions
were put into binary categories: either low (the five-point
items between levels 1-2) or high (those between levels 3—
5). “No interventions” were considered as the reference cate-
gories and p-values less than 0.05 were considered as statisti-
cally significant. Alpha coefficient was calculated as a
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measure of consistency for HBM variables assessed with
more than one question. A multivariate logistic regression
analysis was performed to identify significant predictors of
the target preventive behaviors. Odds ratios (ORs) for each
predictor were estimated from the logistic regression. Results
of regression for the control indicate that all HBM variables
but perceived severity of disease are significantly correlated
with vaccination. Results of multivariate regression for the
treatment group indicate that vaccination is highly correlated
with all the HBM variables. Regression results for the control
group indicate that all HBM variables are correlated with self-
isolation, but the perceived benefit of self-isolation is not
significant. Regression results for the treatment group indicate
that perceived susceptibility, benefits and barriers are correlat-
ed with self-isolation, but the perceived benefit of self-
isolation and perceived severity of influenza are not correlat-
ed. (Summary of the results are provided in Table 2 and more
detailed information on the result of this cross sectional study
is provided in Appendix II).

3.3.1 Influenza intervention strategies and individual
behavior

According to Durham et al. in an agent-based model, partic-
ular protective health behavior of individuals could be incor-
porated into the simulation using the standard logistic regres-
sion equation which is expressed in term of odds ratio derived
from the multivariate logistic regression analysis of HBM
variables [17]. Therefore student protective behaviors (vacci-
nation and social distancing) were estimated using the four
core domains of the HBM: perceived susceptibility and
perceived severity of influenza and perceived benefits and
perceived barriers of the protective behavior. The proba-
bilities of social distancing and vaccination for each indi-
vidual incorporated into the simulation as the health-
behavior pattern were derived from the standard logistic
regression equation expressed in terms of odds ratios.
These odds ratios are provided in Table 2. (Further
details are provided in Appendix II)

OR,*IT,ORY"
3)

behavior(vaccination or social distancing))———————
P ( 2w OR,*IT,OR"

To determine if an individual would engage in a specific
behavior, a threshold value (p(i)) was generated in ARENA
according to equation (3). If p(i) > p(behavior), the individ-
ual “engages in behavior”, otherwise, the individual “does not
engage in behavior”. OR; is the value of relative odds ratio
which corresponds to the multivariate logistic regression. In
equation (3), x; is a binary variable representing the state of the
corresponding HBM domain, with a value of 1 indicating a
‘high’ state of the HBM domain and a value of 0 indicating a
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Table 2 Summary of HBM variables multivariable logistic regression odds ratio for influenza interventions

Interventions HBM variables Odds ratio Interventions HBM variables Odds ratio

Vaccination Perceived susceptibility 2.6 Vaccination Perceived susceptibility 341
Perceived severity NS Perceived severity 1.73
Perceived benefits 2.58 Perceived benefits NS
Perceived barriers 0.421 Perceived barriers 0.632

Social- distancing Perceived susceptibility 1.243 Social- distancing Perceived susceptibility 1.541
Perceived severity NS Perceived severity 2.623
Perceived benefits 2.564 Perceived benefits 4.6
Perceived barriers 0.371 Perceived barriers 0.762

‘low’ state. Finally, OR, functions as a constant that
defines the probability of the behavior when all x;
variables are in their ‘low’ states [16]. For example
for an individual in the control group with low per-
ceived susceptibility (x; =0), high perceived severity
(xo = 1), high perceived benefit of vaccination (x5 = 1),
high perceived barrier for vaccination (x, = 1), the probabil-
ity of vaccinating himself/herself against the flu is:

0.35 x (2.6° x 2.58' x 0.421")

=0.47
1+0.35 % (2.6” x 2.58' x 0.421")

p(vaccination) =

Note that since perceived severity is not a significant predictor
of vaccination, it is not considered in the calculation of vacci-
nation probability. Since we must calculate the probability of
vaccination and social distancing for 4484 agents within our
simulation, we calculate the probability of HBM variable
combinations within both groups and expand it to all agents.

Longini et al. estimates the efficiency of vaccine to prevent
infection to be 87 % [22]. Those that were vaccinated and
became infected had their infectiousness hazard rate reduced
by a factor of 50 %, relative to unvaccinated cases. In addition,
vaccination reduces the infectious period by one day [22].
Social distancing (avoidance of close physical contact) was
employed in the model as a reduction in the probability
of infection. Social distancing was assumed to reduce
both the susceptibility and infectiousness of the popula-
tion [24]. Self-isolation was employed in the model as
an option for infectious people to go home as soon as
the symptom of disease appear and stay there until they
are recovered [10]. The rate of self-isolation is captured
from the survey results.

3.4 Simulation platform

We created a virtual replication of an influenza outbreak
in a university setting using an agent-based simulation.
Simulation software Arena, version 14.0, by Rockwell

Automation was used. All experiments were conducted
on a personal computer with 64 bit operating system,
3.40 GHz Intel Core i7-2600 CPU and 16.0 GB RAM.
Below, details of the simulation model are discussed.
The developed simulation model is based on campus
geometry and classroom design, interaction between sub-
jects (students in our case), and conditions for transfer-
ring virus. While physical configuration of the campus
and the student dynamics are modeled based on exten-
sive study of campus and subjects, virus spreading con-
ditions are modeled as suggested in literature. The uni-
versity was represented physically by a set of sub-
locations in which students were more likely to interact
with each other. The locations were reasonably isolated
from students of other majors. Each student moved from
location to location throughout a typical day defined by
his/her schedule. Each location in the simulation was
described by a matrix of seating orders. Students were
assigned to an element of the matrix randomly, upon
their arrival to a location. For susceptible individuals,
all the nearby elements which were within the attack
radius were monitored for infectious contacts and once
that person decided to leave the location the probability
of infection were calculated. If infectious contacts were
effective the health status was changed to exposed-non-
infectious. Sub-locations (including, classrooms, labora-
tories, libraries and student lounge) in Arena were de-
signed as stations. Each sub-location has its unique seat-
ing configuration and distances between seat-pairs are
known. Let S; be the address of seat i in station c.
Consequently, the distance between seats i and j in a
station is known, dfj Students walk between stations
based on their schedules. Once they arrive at a station,
they select a seat randomly. Some students may select
isolated seats as a preventive strategy. Such behavior is
replicated in the model based on the probabilities obtain-
ed from survey results. If students have free time be-
tween two consecutive classes, they are routed to various
locations (cafeteria, library, gym etc.) based on their
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preferences (determined from the survey). Social interac-
tion during off class hours were modeled based on the
results obtained from the survey. Once agents leave the
school, keeping track of their actions was not possible in
the simulation. Hence the probability that transmission
occurred during their absence was calculated for each
susceptible person based on the average number of con-
tacts made in their community or household, using the
estimated duration of contacts and number of contacts in
the household or community by a susceptible person
with the age between 19-64, estimated by Haber et al.
[20]. The overall architecture of the simulation model is
illustrated in Fig. 2.

3.4.1 Stations and influenza transmission in Arena model

Stations are used to represent physical locations in the
university campus such as classrooms, laboratories, li-
brary and the student-lounge. The distances between
locations are incorporated in the model to simulate
travelling times. Since each station has different charac-
teristics, seating arrangements and capacity of stations

are inserted in to the simulation model from an excel
file. Due to their commonalities, we grouped locations
(stations) in five sets: classrooms, library, other loca-
tions on-campus, off-campus locations and finally the
students’ homes. In Fig. 3, classrooms as 157 different
stations in Arena simulation model is shown. Once
students arrive to a station (e.g. a classroom), an avail-
able seat is randomly assigned and probability of infec-
tion is calculated based on the disease-state of agents
sitting within the influenza attack distance and attack
duration and hazard rate. The Arena simulation modules
that are on the right of Fig. 3 are used to determine the
seat allocation and infection probabilities. Similarly in
Fig. 4, Arena simulation modules that represent the
library and other on-campus locations that have a high
impact on influenza spread are illustrated. Due to sim-
ilarities between these physical locations, a single deci-
sion making process (Arena modules located right of
Fig. 4) is used in the simulation model to determine the
influenza spread.

In our study, an agent’s interaction with others while he/she
is off-campus is not modeled explicitly. Instead, the

Create ST Create
locations .
sub- eeoeraphical environmental
locations geograpil structure
information
Does
number
Read agent
Read agent = of
Create states of Move agents to
profiles form . generated .
agent protective start station
database . agents
behaviors
exceed
48849
Change the Is the
move agent disease status of next Send agent to
Start the flu to] agent scheduled Tts schoduled
Stason decision if incubation of activity sub-location
station infectious period within
is over ampus
~
1
Evaluate Assign Evaluate disease Evaluate disease
agent social location to Evaluate status of agents Delay patient status of agents
distancing agent upon disease status around (within 1.88 based on around (within 1.88
— status arrival m)for susceptible scheduled time m)for susceptible
agent agent
Evaluate agent .
. Calculate Agent is
protective LS| robability of exposed Change agent
“>{  behavior P v p{) disease status
exposure ?
status

Fig. 2 Flow of agents within the simulation
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Classrooms: 157 different classrooms
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Fig. 3 Classrooms and influenza spread

probability of infection is computed according to the recom-
mendations of current literature.

Finally, the home station is used to simulate the
behavior of an agent at his/her home. In this station,
disease state of agents is checked. If an agent is in
latent or infectious state and the latent or infectious
period is passed, disease state is changed to Infectious-
Asymptomatic/Infectious-Symptomatic or Recovered, re-
spectively. If the agent disease state is Susceptible the

University Library: 63 possible destinations within the library

T

probability of infection is calculated. Figure 5 provides
the Arena modules that are used to simulate the agent’s
behavior at his/her home.

3.4.2 Agent routing: decision stations
Decision stations are used to regulate agent flow in the simu-

lation model. Once an agent finishes his/her activity, he/she
enters a decision station to be routed to the next activity. If the

Fig. 4 Library and other on-campus locations and influenza spread
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Fig. 5 Home stations

next activity is a scheduled class starting within 20 min, the
agent is held in the decision station until the activity starts. If
the agent has more than 20 min to start his/her next activity,
then the agent is routed to one of the following stations:
library, laboratory, student lounge, home or off- -campus,
based on the probabilities captured from the survey. Figure 6
provides the Arena modules used for determining agent’s next
event.

3.5 Model validation

Validation of agent based epidemiological models is
notoriously difficult [8]. Reliable data sources on influ-
enza transmission that could provide strong evidence for
the accuracy of simulation results are scarce. Therefore

transmission models are generally validated by compar-
ing simulation results with similar agent based simula-
tions. Consistent with previous agent-based simulations,
a baseline scenario is modeled and the results are com-
pared with that of similar studies. The baseline scenario
was defined without consideration of individual protec-
tive behaviors. As in Longini et al. we assume that
33 % of individuals who became infected withdrew
from their daily activity schedules once they became
ill, and remained at home through their symptomatic
period. This assumption is based on an estimate of the
probability of severe cases of influenza within the pop-
ulation [22]. Two approaches have been considered to
validate the proposed simulation model: i) duration to
reach peak infection ratio; ii) Ry.

Fig. 6 Determine agent’s next event in Arena
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First, the peak period of the outbreak was obtained from the
smoothed number of infected individuals per day in the sys-
tem with the baseline scenario of 4864 susceptible students.
The number of infections and the attack rates of influenza with
95 % confidence intervals for the baseline scenario from 20
simulations are shown in Table 3. The peak infection rate
occurred from days 24 to 30 after the start of the outbreak
with the average rate of 165 new cases per day (Fig. 7). By the
day when the peak new case rate occurs, the cumulative
number of infections reaches the average of 1813.6. The
simulation was conducted through day 60, by which time an
average of 2735 people had been infected and the overall
attack rate was 55 % (in a population with 4884 suscep-
tible individuals and no protective behaviors).These results
were consistent with the study of Yang and Atkinson
(2004) in a characteristically similar population with the
peak time between 20 and 25 days and overall attack rate
of 50.6 % [8].

Second, we validate the model by deriving the value for R,
the number of secondary infections of individuals in a suscep-
tible population resulting from the introduction of a single
infectious individual. Traditionally Ry was estimated from
event-based mathematical (Susceptible-Infected-Recovered)
models. Values of Ry, from these traditional models of influ-
enza vary from 0.9 to 2.1 with a mean of 1.3 [27-30]. The
approach for validating agent-based models such as ours
was developed by Longini et al. This method calculates
the number of secondary infections after entering only
one infected individual in the simulation [22]. Longini
et al. estimates the value of Ry to be 1.68 [22]. In our
simulation we took the same approach and entered one
infected individual to system. The value of R, after 20
simulations was estimated to be 1.45. This value is also
consistent with that of Yang and Atikson’s agent-based
simulation and that of Mao [8, 31].

4 Experiments and results

In this section, we present two experiments (control and
treatment) that we designed and analyzed through the agent-

Table 3 Summary of simulation results

based simulation and discuss the numerical results of our
analysis. In the first experiment, we use the result of multivar-
iate logistic regression of the HBM study for the control
group. The probabilities of developing self-initiated be-
haviors (vaccination and social distancing) obtained
from HBM study are incorporated into the simulation.
In the second experiment, we again use the result of
HBM multivariate logistic regression to incorporate the
probabilities of developing such behaviors for treatment
group that were the subject of an educational program
on influenza and its interventions. To obtain insight into
the model, we analyze the results of these experiments
through influenza outbreak characteristics (such as total
number of infection, infection rate, peak period of out-
break and rate of new cases in the peak period) and
individual characteristics (such as total number of indi-
viduals who developed both behaviors, total number of
individuals who just applied one behaviors, rate of
infection for individuals who developed the behaviors).

4.1 Health-related protective behaviors (control group)

The first scenario included the HBM variables, which
were used to calculate the probability of developing the
protective behaviors (social distancing and vaccination)
for each agent in the system and also the probability of
self-isolation based on the result of cross sectional study
for the control group. It should be noted that individuals
who applied social distancing in their contacts with
others when they were sick reduced the probability of
infection for others. An average of 1614 *11 cases of
influenza was observed with the attack rate of approx-
imately 34 %. We run the simulations for 70 days,
which is the average duration of a typical influenza
season. The peak of the outbreak was also delayed by
an average of 6 days and the average rate of new cases
in the peak period was 123 per day. Of the average of
488 +9 people who developed both protective behaviors
only 18 43 did not escape infection. Of 603+ 8 indi-
viduals who just vaccinated themselves against influenza
62 +3 got sick with flu and from 628 +11 students who

Statistics Baseline scenario Control group Treatment group

(no protective behavior)

N 95 % CI N 95 % Cl N 95 % CI
Total Cases 2735.17 +31.61 1614.61 +11.34 987.12 +16.35
Peak Cases 165.44 123.31 87.5
Peak Day 20-25 26-34 37-45
Self-Isolation Cases 896.31 +17.81 483.41 +9.21 383.41 +11.34
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just applied social distancing on their contacts with
others 289 43 still got sick with flu. The self-initiated
protective behaviors of the population toward influenza
were able to reduce the attack rate by more than 16 %.
483 +6 people preferred to stay at home when they
were sick with flu. The difference between the protec-
tion efficiency of vaccination and social distancing ex-
plains the significant difference between the rate of
people who got infected even though they were vacci-
nated and those who applied social distancing in their
contacts. A total of 1721 (approximately 35 %) students
developed at least one self-initiated protective behavior
toward influenza. Therefore an average of 75 % percent
of people who got sick during flu season were the
people with no self-initiated protective behavior toward
influenza. These results illustrate that considering the
current state of individuals perceived susceptibility and
severity of influenza along with the perceived benefits
and perceived barriers of interventions could have a
significant effect on the attack rate of influenza.
(Table 4)

4.2 Educational program (treatment group)

The second scenario includes the protective behaviors
that individuals developed after receiving a treatment in

1 21

10 4tk
1

Number of new infections per day

31 41 51
Days

the form of an educational program designed to increase
students’ willingness to get vaccinated or apply social
distancing in their social contacts with others in case of
an influenza outbreak in the university. The multivari-
able logistic regression of HBM variables provided us
with individual health-related activities during a flu sea-
son. From 20 simulation runs for this scenario, the
result illustrates that only an average of 987 +6 (attack
rate of 21 %), cases of influenza occurred. Of the 598
+12 people (on average) who developed both protective
behaviors only 21 +5 did not escape the infection. Of
the 1013+£22 whom just vaccinated themselves against
influenza 9544 were sick with flu and from 928+16
students who just applied social distancing on their
contacts with others, only 273 +9 were sick with flu.
283 +6 people preferred to stay at home when they
were sick with flu. The total attack rate of influenza
decreased by approximately 12 % after the educational
program, which was the result of a 20 % increase in the
number of vaccinations and a 42 % increase in devel-
oping social distancing by students. The peak of the
outbreak was shifted by an average of 8 days and the
total number of new infected cases in the peak of the
outbreak decreased by 34 %. The summary of results
extracted from simulations for both scenarios is de-
scribed in Table 4.

Table 4 Comparisons of control

and treatment scenarios Statistics Control group Treatment group
N 95 % CI N 95 % CI
Total number of hybrid behaviors 488 +9 598 +12
Total infected cases with hybrid behaviors 18 +4 21 +5
Total number of vaccination 603 +8 1013 122
Total infected cases for vaccination 62 +3 95 +4
Total number of social distancing 628 +11 928 +16
Total number of infected cases with social distancing 289 +7 273 +9

@ Springer



Effect of individual protective behaviors on influenza

329

4.3 Discussion of results

The agent-based simulation model presented in this pa-
per is the first of its kind to incorporate the effect of
instinctive protective behaviors that individuals develop
on the spread of an infectious disease within a struc-
tured population. The evaluation of results indicate that
such behaviors were successful in controlling the out-
break within a high contact rate place such as a univer-
sity, with a large decrease on the attack rate (approxi-
mately 17 %) of disease among the population and a
reduction in peak outbreak level of 25 %. This result
highlights the importance of considering self-initiated
behaviors that individuals develop to protect themselves
in case of an outbreak. It should be noted that both
protective behaviors (social distancing and vaccination)
are dependent on each other, which may explain the
enhancing effect of these behaviors on controlling the
outbreak, compared to other studies which have incor-
porated influenza interventions as independent parame-
ters into their simulation [20-22]. Characteristics of
influenza virus transmission as an airborne virus ex-
plains the effect of social distancing on controlling the
transmission since individuals have to be within a cer-
tain distance of each other for a contact to be effective.
The output of our simulations also provide evidence
that, along with vaccination, non-pharmaceutical inter-
ventions such as social distancing are able to control the
outbreak of disease, which could help individuals with
perceived high barriers of vaccination to protect them-
selves against influenza. The simulation also provides
significant evidence for the effect of an HBM theory-
based educational program to increase the rate of apply-
ing the target interventions among populations (vaccina-
tion by 22 % percent and social distancing by 41 %)
and consequently to control the outbreak. Although the
probability that a person develops a protective behavior
cannot be entirely controlled, studies have demonstrated
that providing information which targets different as-
pects of disease and its interventions could have a
significant effect on such probabilities [7]. For example,
our study in Concordia University illustrates the positive
correlation between providing students information on
influenza and its interventions and developing protective
behaviors.

The modeling approach used to simulate the trans-
mission of influenza provides a novel representation of
the real world by considering aspects of both social and
health related individual behavior patterns, which could
be applied to different circumstances of other infectious
diseases or other population structures. Although a

university environment was defined as the target popu-
lation in this simulation, the model could be applied to
larger case studies, provided sufficient data resources for
both individual activity patterns and health behaviors
(by conducting HBM on populations with more charac-
teristics diversity such as age, race and education level).
Despite the advantages of this study such as understand-
ing individual behavior and its effect on the spread of
disease along with the efficiency of educational pro-
grams to shape behavior; some of the characteristics of
this model such as the massive data collection required
to develop the social activity patterns, the uncertainty of
influenza transmission probability calculation and the
limitations of HBM to explore other factors that might
influence decision making such as fear and population
diversity, could lessen the efficiency of this simulation
on larger case studies. Instead, lessons learned from
models at this scale may need to be generalized for
larger populations.

5 Conclusions

This paper demonstrates how agent based simulation
can be utilized to study influenza outbreak and assess
various prevention strategies. A case study among engi-
neering students at a university campus was considered.
The results show that the impact of vaccination and
education on influenza prevention can accurately be studied
using simulation. Using such tools, policymakers can
plan the distribution of limited funds on various pre-
vention strategies to optimize cost and public health.
Through design of experiments, contributions of indi-
vidual interactive prevention strategies on influenza
prevention can be estimated and trend-lines can be
derived. Finally, the case study can be expanded to
study other social systems such as corporations, hospi-
tals and even entire cities. Our results also show that
educational programs and information distribution
could be very helpful in changing individual attitudes
and beliefs toward influenza, which could in turn lead
to developing protective behaviors. In addition, we
expect to see benefits from policies aimed at reducing
the costs of vaccination and increasing accessibility in
places such as university-based health centers. More-
over, policies to minimize the costs and consequences
of missing work and school in order to support self-
isolation during outbreaks may be a key to reducing
the seasonal influenza outbreaks.
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Appendix I: Questionnaire

Gender

O Female O Male

Status

O Undergraduate Student O Graduate Student O Faculty O Staff O Other
Faculty

O ENCS O IJMSB O Fine Arts O Arts & Science O Other
Strongly Disagree Disagree Neutral Agree Strongly

Agree

If I get the influenza virus, I will get sick. O @) O O O
If I get the influenza virus, it will disrupt my O @) O O O
studies.
If I get the influenza virus, others in my home @) O O O O
will get sick.
I am at risk of getting the influenza virus by (@) @) (@) O O
going to the university.
My family members are at risk of getting the O ©) O ©) ©)
influenza virus.
I feel knowledgeable about my risk of getting the @) @) O O O
influenza virus.
If I get the influenza vaccine, I will not get sick @) ©) O O O
from the influenza virus.
If I get the influenza vaccine, I will have side O @) (@) O O
effects.
It is inconvenient to get the influenza vaccine. O ©) O ©) ©)
I will recover faster if I rest at home as soon as (@) @) (@) O O
influenza symptoms develop.
Staying at home when I am sick has a negative @) ©) O O O
effect on my studies.
My professors do not consider illness as an (@) @) O O O
excusable reason for absence.
Avoiding crowded places reduces my likelihood @) O O O O
of catching influenza.
Avoiding physical contact with sick people O O O O (@)
reduces my likelihood of catching influenza.
It is difficult to avoid close physical contact with O ©) O O ©)
my friends when I am sick.
It is difficult to avoid crowded places at the O ©) @) ©) ©)
university.
My knowledge about influenza and its O ©) O ©) ©)
interventions is sufficient.
I will use medication if I get the influenza virus. ©) ©) ©) O O
Where do you prefer to spend time when you have a gap between lectures?

Never Sometimes Often Very Often
Off Campus @) @) O O
Le Gym O O O O
Library @) O O O
Laboratories O O O O
Student Lounge in Hall Building O @) O O
Other (Please specify): O O O O
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How often do the following resources provide you with information about influenza?

Very
Never Sometimes Often Often
TV ©) ©) O O
Newspaper O O O O
Family member or friend ©) O O O
Pharmacist ©) @) O O
Nurse 'e) 'e) 'e) 'e)
Posters around university O O O O
Internet o) ') ') O
Other (Please specify): ®) e) '®) 'e)
How likely are you to use the following to prevent influenza?
Very
Very Unlikely Unlikely Likely Likely
Vaccine ©) O O O
Avoiding physical contact @) @) O O
Using masks O O O @)
Using hand sanitizer @) @) @) @)
Antiviral drugs O O O O
Other (Please specify): @) @) O O

Have you been vaccinated against influenza this year?
OYes ONo

Have you ever been vaccinated against influenza?
OYes O No

Does someone with a compromised immune system live in your home (e.g., infants, elderly, pregnant
women)? O Yes O No
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Appendix I1: Survey results

Table 5 Summary of Health Belief Model responses of survey participants

Items Control group (n=120) Treatment group (n=140)
HBM variables Mean(SD) Alpha Mean(SD) Alpha
Perceived Susceptibility: 3.07(0.76) 0.67 3.87(0.82)* 0.72
If I get the influenza virus, I will get sick.
T am at risk of getting the influenza virus by going to the university.
My family members are at risk of getting the influenza virus.
Perceived Severity 3.02(0.79) 0.61 3.12(0.89) 0.59
If T get the influenza virus, it will disrupt my studies.
If I get the influenza virus, others in my home will get sick.
Vaccination Perceived Benefits 3.05(0.72) 3.16(0.63)
If I get the influenza vaccine, I will not get sick from the influenza virus.
Vaccination Perceived Barriers 3.87(0.8) 0.63 2.33(0.88)** 0.57
If T get the influenza vaccine, I will have side effects.
Self- Isolation Perceived Benefits 3.72(0.92) 3.78(0.93)
I will recover faster if I rest at home as soon as influenza symptoms develop.
Self- Isolation Perceived Barriers 3.97(0.85) 0.83 3.51(0.62) 0.71
Staying at home when I am sick has a negative effect on my studies.
My professors do not consider illness as an excusable reason for absence.
Physical Distancing Perceived Benefit 3.51(0.78) 0.69 4.23(0.89)* 0.61
Avoiding crowded places reduces my likelihood of catching influenza.
Avoiding physical contact with sick people reduces my likelihood of catching influenza
Physical Distancing Perceived Barriers 3.72(0.79) 0.73 3.78(1.12) 0.54

It is difficult to avoid close physical contact with my friends when I am sick.

It is difficult to avoid crowded places at the university.

All above questions are scaled from 1 to 5: strongly disagree, disagree, neutral, agree and strongly agree

The significance of differences between answers of control and treatment group are indicated: * for p<0.05; ** for p<0.01

Table 6 Multivariate logistic regression of HBM variables attitudinal variables associated with influenza interventions

Vaccination

Physical Distancing

Control group Treatment group Control group Treatment group
Odds ratio P-value Odds ratio P- Value Odds ratio P-value Odds ratio P-value

Perceived Susceptibility

strongly agree, agree and neutral 1 1 1 1

strongly disagree and disagree 2.6 0.003** 341 0.041%* 1.243 0.032%* 1.541 0.0118*
Perceived Severity

strongly agree, agree and neutral 1 1 1 1

strongly disagree and disagree 1.42 0.58 1.73 0.0032%* 1.426 0.0566 2.623 0.015*
Vaccination Perceived Benefits

strongly agree, agree and neutral 1 1 NA NA NA NA

strongly disagree and disagree 2.58 0.0061%* 2.62 0.086 NA NA NA NA
Vaccination Perceived Barriers

strongly agree, agree and neutral 1 1 NA NA NA NA

strongly disagree and disagree 0.421 0.012%* 0.632 0.021%* NA NA NA NA
Physical Distancing Perceived Benefit

strongly agree, agree and neutral NA NA NA NA 1 1

strongly disagree and disagree NA NA NA NA 2.564 0.041* 4.6 0.0056%**
Physical Distancing Perceived Barriers

strongly agree, agree and neutral NA NA NA NA 1 1

strongly disagree and disagree NA NA NA NA 0.371 0.026* 0.762 0.0036**

* p<0.05; **p<0.01; ***p<0.001; NA (Not Applicable)
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