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Abstract
We study cooperative games in which some of the coalitions are not viable and 
in addition, there are externalities among the feasible coalitions. These games are 
called here restricted partition function form games. For this class of games, two 
extensions of the Shapley value are proposed and characterized.

Keywords  Restricted games · Games with externalities · Shapley value

1  Introduction

When studying transferable utility (TU) games, it is customarily assumed that the 
worth of all coalitions is known. Nevertheless, in real world applications there are 
coalitions whose worth is unknown or impossible to determine. These situations are 
modeled through restricted games (Faigle 1989), in short R-games, in which not all 
coalitions are assigned a worth.

Among the most recognized solutions for classical TU games is the Shapley 
value (1953), which is supported by three well known axioms: Carrier, Anonim-
ity and Additivity. Regarding R-games, various extensions of the Shapley value 
have been proposed using different approaches beginning with Willson (1993). 
More recently, Aguilera et  al. (2010) and Calvo and Gutiérrez (2015) proposed 
independently the same extension of the Shapley value for R-games from different 
points of view. This extended value is referred to herein as the R-value and was 
characterized in Albizuri et  al. (2022) with three axioms: Carrier, Symmetric-
Partnership and Additivity. That is, the same axioms employed by Shapley (1953) 
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where Anonymity is replaced by Symmetric-Partnership, which is a weaker 
requirement in the context of classical TU games when all coalitions are feasible.

On the other hand, there are situations that present externalities between coa-
litions. Since traditional TU games are not suitable enough for analysis, Lucas 
and Thrall (1963) introduced partition function form games (PFF games). These 
games are based on the notion of embedded coalition, that is, a pair formed by 
a coalition and a partition of the set of players, the coalition being a member of 
the partition. Each embedded coalition is assigned a real number representing the 
worth of the coalition when players are arranged according to the partition.

Due to the richness of PFF games, a plethora of solutions have been proposed 
to extend the Shapley value to these games. For instance, Myerson (1977a) pro-
posed and characterized an extension by means of the same three axioms as in 
Shapley (1953) adapted to PFF games: Carrier, Anonimity and Additivity. In 
Albizuri et al. (2005) an alternative extension is proposed and characterized with 
five axioms: Efficiency, Oligarchy, Anonymity, Embedded-Coalition Anonymity, 
and Additivity. The first two axioms, Efficiency and Oligarchy, are weaker than 
Myerson’s Carrier axiom, and Embedded-Coalition Anonymity is an anonym-
ity property related to embedded coalitions with the same fixed coalition. Other 
scholars have extended the Shapley value by considering different properties of 
this value. To name a few, Bolger (1989), de Clippel and Serrano (2008), McQuil-
lin (2009), Hu and Yang (2010), Grabisch and Funaki (2012), Macho-Stadler 
et al. (2006, 2007, 2018), and Alonso-Meijide et al. (2019). These works use dif-
ferent approaches, and some of them are related to the Dummy Player property 
that is implicit in the original Shapley’s Carrier axiom for TU games, but not in 
Myerson’s Carrier axiom for PFF games.

In this paper, we combine R-games and PFF games by modifying the formu-
lation of a game, and consider restricted partition function form games (R-PFF 
games), that is games in partition function form in which not all embedded coali-
tions are feasible. In addition, we propose and characterize two solutions for these 
games. The first one extends both the R-value and the (Myerson 1977a) value 
of PFF games. We offer a characterization of this value by substituting Axiom 
1 (anonymity) by the Symmetric-Partnership axiom in Myerson’s axiom system 
when adapted to R-PFF games. The second one is simultaneously an extension of 
the R-value and the value of Albizuri et al. (2005) of PFF games. This extension 
is characterized by substituting Oligarchy and Anonymity in the axiom system 
used by these authors adapted to R-PFF games. The first axiom is substituted by a 
very weak dummy player axiom and the second one by Partners-Symmetry.

A lot of research has been done on different types of restricted cooperative 
games. These are some of them. Myerson considered graphs (1977b) and con-
ference structures (1980), Algaba et  al. (2004) antimatroids, van den Brink and 
Gilles (1996) permission structures, Grabisch and Sudhölter (2016, 2018), prec-
edence constraints, and Algaba et  al. (2018) network structures with hierarchy 
and communication.

The contents of the paper are organized as follows. Section 2 is divided into two 
subsections. Section 2.1 contains a brief review of R-games, and Sect. 2.2 is devoted 
to PFF games and R-PFF games. Sections 3 and 4 deal respectively with the two 
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extensions of the Shapley value mentioned above. In Sect. 5, concluding remarks are 
given and future research directions are suggested.

2 � Restricted cooperative games

Throughout this paper, N = {1, 2,… , n} is a fixed set of players. A coalition is any 
subset of N (possibly empty).

2.1 � R‑games

Traditionally, when studying characteristic function form games it is assumed that 
all coalitions can be formed. However, in this paper we will consider the case in 
which some coalitions are not viable.

Denote CL the set of all coalitions of N. Every family K ⊆ CL such that �,N ∈ K 
is called a set system of feasible coalitions. Thus the grand coalition is assumed to be 
always viable.

A restricted game (in short, R-game) on a set system K , is a mapping v which 
assigns each coalition S ∈ K to a real number v(S), such that v(�) = 0 . The real 
number v(S) is the worth of coalition S, and symbolizes what members in S can 
guarantee themselves without the cooperation of the other players.

If K is a set system denote GK the vector space of the R-games on K . The addition 
of two R-games v and w is defined by (v + w)(S) = v(S) + w(S) for all S ∈ K . The 
product of an R-game and a scalar � ∈ ℝ is defined by (�v)(S) = �v(S) for all S ∈ K.

When K = CL we refer to such R-games as full games.
Given T ∈ K , T ≠ ∅ , the unanimity R-game uK

T
 on K is defined by

It is easy to prove that the collection {uK
T
∶ T ∈ K, T ≠ �} forms a basis of GK . 

Given v ∈ GK , then

where �T can be obtained recursively as follows:

Supposing the grand coalition N forms in the end, the question is how to divide the 
amount v(N) among the players. Given a set system K , define a value to be any map-
ping � ∶ GK

⟶ ℝ
N . The real number �i(v) represents an evaluation of player i of 

her “prospect that will arise as a result of a play” (Shapley 1953).

(1)uK
T
(S) =

{
1, if T ⊆ S;

0, otherwise.

(2)
v =

∑
T∈K∶
T≠�

�Tu
K

T
,

(3)
𝜆T = v(T) −

∑
S∈K∶
T⊋S

𝜆S.
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A well-known value was developed by Shapley (1953) for full games. Aguil-
era et al. (2010) and Calvo and Gutiérrez (2015) proposed independently the same 
extension of the Shapley value for R-games, that later on was characterized in Albi-
zuri et al. (2022). This extension, called here the R-value, is the linear map �K from 
GK to ℝN defined for every unanimity game by

2.2 � Restricted games in partition function form

There are situations where the worth of a coalition depends on how the rest of the 
players are arranged. As a way of mantaining information about externalities among 
the coalitions, Lucas and Thrall (1963) introduced partition function form games.

Before presenting the formal definitions some notation is needed.
Denote P the set of partitions of N, so Π =

{
S1,… , S

�

}
∈ P if and only if

Given S ⊆ N, S ≠ ∅ , and Π ∈ P , denote

that is, the partition that results if agents in S get together, leaving their correspond-
ing coalition in Π . If S = � , denote Π� = Π.

Let Π,Π� be two partitions. Define the partition Π ∧ Π� as follows:

An embedded coalition is any pair (S,Π) , such that Π ∈ P and S ∈ Π or S = �.1
Lucas and Thrall (1963) considered that all embedded coalitions (S,Π) , where 

S ∈ Π ∪ {�} and Π ∈ P are feasible. Thus, players can form any partition of the 
grand coalition N. In this work we consider that not all coalitions of N are feasible 
and therefore, not any partition of N can be formed. In order to represent this situa-
tion, we consider a set system of feasible coalitions K ⊆ CL such that �,N ∈ K and 
{i} ∈ K for all i ∈ N . That is, the singleton coalitions are feasible and the union of 
all these singleton coalitions is also feasible.

An embedded coalition (S,Π) will be feasible if Π ⊆ K.
E(K) will denote the family of feasible embedded coalitions associated with 

K . Note that for all S ∈ K there exists at least one feasible embedded coalition. 
Indeed, if S = N , then Π = {N} , and the grand coalition forms. If S = � , then Π can 

(4)�K

i

(
uK
T

)
=

{
1∕|T|, if i ∈ T;

0, otherwise.

(5)
�⋃
i=1

Si = N, ∀i Si ≠ �, ∀j Si ∩ Sj = � if j ≠ i.

(6)ΠS = {S} ∪ {S��S ∶ S� ∈ Π, S��S ≠ �},

(7)Π ∧ Π� =
{
S ∩ S� ∶ S ∈ Π, S� ∈ Π�, S ∩ S� ≠ �

}

1  For ease of exposition we assume that (�,Π) is an embedded coalition for every partition Π.
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be any partition of N such that Π ⊆ K . And if S ∉ {�,N} , Π can be, for example, 
{S} ∪

{
{i} ∶ i ∈ N�S

}
, players outside S are alone.

Throughout the paper K is fixed, and therefore, we write E instead of E(K).
A restricted game in partition function form (in short, R-PFF game) on a fam-

ily of feasible embedded coalitions E , is any function v ∶ E → ℝ that assigns a real 
number to each (S,Π) ∈ E , such that v(�,Π) = 0 for every (�,Π) ∈ E.

The real number v(S,Π) symbolizes the wealth which coalition S could divide 
among its members if all the players were aligned into the coalitions of partition Π.

The vector space of all R-PFF games on E will be denoted ΓE . The addition of 
two R-PFF games v and w is defined by (v + w)(S,Π) = v(S,Π) + w(S,Π) for 
all (S,Π) ∈ E . The product of an R-PFF game and a scalar � ∈ ℝ is defined by 
(�v)(S,Π) = �v(S,Π) for all (S,Π) ∈ E.

Occasionally, when E contains all embedded coalitions we will refer to such R-
PFF games as a full R-PFF game.

Remark 1  Given a game v ∈ ΓE , if for every S ∈ K the real number v(S,Π) does 
not depend on Π , then this game can be considered as an R-game on K . In this way 
every R-game can be considered as an R-PFF game as well.

As in the case of R-games, define a value on ΓE to be any mapping 
Φ ∶ ΓE

⟶ ℝ
N . The real number Φi(v) represents the evaluation of player i of her 

reward as a result of playing game v.
There have been proposed several values for full R-PFF games. We will focus 

here on the values proposed by Myerson (1977a) and Albizuri et  al. (2005). Our 
goal in the next two sections is to propose and characterize the respective extension 
of these two values to general R-PFF games, which in turn can also be considered as 
an extension of the R-value by Remark 1.

As mentioned before, throughout the rest of the paper E will be a fixed family of 
feasible embedded coalitions.

3 � An extension of the R‑value to R‑PFF games

If (S,Π) and (S�,Π�) are two feasible embedded coalitions of E , following Myerson 
(1977a), we write:

and read (S,Π) covers (S�,Π�).
Given (T ,Σ) ∈ E , T ≠ ∅ define the unanimity R-PFF game u(T ,Σ) on E by

Note that u(T ,Σ)
(
N, {N}

)
= 1 for every (T ,Σ) ∈ E , T ≠ ∅.

A similar proof of the following proposition can be found in Myerson’s (1977a) 
proof of Theorem 1.

(8)(S,Π) ≫ (S�,Π�) if and only if S ⊇ S� and Π ∧ Π� = Π�,

(9)u(T ,Σ)(S,Π) =

{
1, if (S,Π) ≫ (T ,Σ);

0, otherwise.
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Proposition 1  The family {u(T ,Σ) (T ,Σ) ∈ E, T ≠ �} is a basis of the vector space ΓE.

From Proposition 1, every arbitrary game v ∈ ΓE can be uniquely represented 
by means of a function dv ∶ E ⟶ ℝ as follows

The real numbers dv(T ,Σ) can be interpreted as an extension of Harsanyi (1963) div-
idends to R-PFF games. From (9) to (10) we obtain the following recursive formula 
for the dividends dv(T ,Σ):

For full R-PFF games the explicit expression for the dividends is given by Grabisch 
(2010) (Proposition 8).

Define the value ΨE for every R-PFF game v ∈ ΓE as follows:

Example 1  Let N = {1, 2, 3, 4} , K =
{
{1}, {2}, {3}, {4},N, {1, 2}, {3, 4}

}
 and 

v ∈ ΓE defined by

Let us calculate the dividends dv(T ,Σ) for every (T ,Σ) ∈ E.
If |T| = 1 , then it is straightforward that (11) implies dv(T ,Σ) = 0.
If |T| = 2 , there are two cases. If (T ,Σ) =

(
{1, 2},

{
{1, 2}, {3, 4}

})
 , then apply-

ing expression (11)

and therefore dv(T ,Σ) = 1 . If (T ,Σ) ≠
(
{1, 2},

{
{1, 2}, {3, 4}

})
, expression (11) 

implies dv(T ,Σ) = 0.
If T = N , then

(10)v =
∑

(T ,Σ)∈E

dv(T ,Σ)u(T ,Σ).

(11)
dv(T ,Σ) = v(T ,Σ) −

∑
(S,Σ)∈E∶
(T ,Σ)≫(S,Σ)

(S,Σ)≠(T ,Σ)

dv(S,Σ).

(12)ΨE

i
(v) =

∑
(S,Π)∈E∶

i∈S

dv(S,Π)

|S| .

(13)v(T ,Σ) =

⎧
⎪⎨⎪⎩

3, if (T ,Σ) =
�
N, {N}

�
;

1, if (T ,Σ) =
�
{1, 2},

�
{1, 2}, {3, 4}

��
;

0, otherwise.

(14)
dv(T ,Σ) = v({1, 2}, {{1, 2}, {3, 4}}) −

∑
(S,Σ)∈E∶
(T ,Σ)≫(S,Σ)

(S,Σ)≠(T ,Σ)

dv(S,Σ),

(15)
dv(N, {N}) = v(N, {N}) −

∑
(S,Σ)∈E∶

(N,{N})≫(S,Σ)

(S,Σ)≠(N,{N})

dv(S,Σ),
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and hence, dv
(
N, {N}

)
= 3 − 1 = 2.

Therefore, by the definition of ΨE

Similarly, ΨE

2
(v) = 1 . And, again, by the definition of ΨE

and similarly, ΨE

4
(v) = 1.

If E is the set of all embedded coalitons, that is, if K = CL , this value is pre-
cisely the one proposed by Myerson (1977a) for full R-PFF games. Moreover, by 
Remark 1 this solution can also be considered as an extension of the R -value.

Next we are going to characterize the value ΨE with three axioms: Carrier, 
Symmetric-Partnership, and Additivity. Some definitions are needed in advance.

An embedded coalition (S,Π) ∈ E is said to be a zero-embedded coalition in 
v ∈ ΓE if for every (S�,Π�) ∈ E it holds

Thus (S,Π) ∈ E is a zero-embedded coalition if all the feasible embedded coalitions 
covered by (S,Π) have no influence in the game. Note that the feasible embedded 
coalition 

(
{3, 4},

{
{1, 2}, {3, 4}

})
 of example 1 is a zero-embedded coalition. Note 

also that the associated dividend is zero.
A coalition M is a carrier of v ∈ ΓE if for every (S,Π) ∈ E it holds:

Players outside a carrier M cannot modify the worth of any feasible coalition. In 
the case that (S ∩M,ΠS∩M) ∉ E , we require (S,Π) to be a zero-embedded coali-
tion, and hence, no player modifies the zero worth of any embedded coalition cov-
ered by (S,Π) . Note that N is always a carrier since for every (S,Π) ∈ E we have 
(S,Π) = (S ∩ N,ΠS∩N) , and thus v(S,Π) = v(S ∩ N,ΠS∩N) . Furthermore, in the case 
of full R-PFF games, since (S ∩M,ΠS∩M) ∈ E , we are never in second condition 
above  (20) and this definition matches the definition of carrier given in Myerson 
(1977a).

Example 2  In Example 1 only N is a carrier of v. If v
(
N, {N}

)
= 1 (instead of 3), 

then {1, 2} would also be a carrier of v. The coalition {1, 2, 3} would not be a car-
rier of v because condition 2 would not hold when (S,Π) =

(
N, {N}

)
 . Indeed, (

{1, 2, 3},
{
{1, 2, 3}, {4}

})
∉ E and 

(
N, {N}

)
 is not a zero-embedded coalition.

(16)ΨE

1
(v) =

dv
(
{1, 2},

{
{1, 2}, {3, 4}

})
2

+
dv
(
N, {N}

)
4

= 1.

(17)ΨE

3
(v) =

dv
(
N, {N}

)
4

=
1

2
,

(18)(S,Π)≫(S�,Π�) implies v(S�,Π�) = 0.

(19)1. If (S ∩M,ΠS∩M) ∈ E, then v(S,Π) = v(S ∩M,ΠS∩M),

(20)2. If (S ∩M,ΠS∩M) ∉ E, then (S,Π) is a zero-embedded coalition.
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If N = {1, 2, 3, 4, 5} , K = CL�
{
{2, 3}, {4, 5}

}
 , and v = u(T ,Σ), where 

T = {1, 2, 3} and Σ =
{
{1, 2, 3}, {4}, {5}

}
 , then {1, 2, 3} is a carrier of v. 

Note that, for example, when (S,Π) =
(
{2, 3, 4},

{
{1}, {2, 3, 4}, {5}

})
 condi-

tion 2 holds. In this case 
(
{1, 2, 3} ∩ {2, 3, 4},

{
{1}, {2, 3}, {4}, {5}

})
∉ E and (

{2, 3, 4},
{
{1}, {2, 3, 4}, {5}

})
 is a zero-embedded coalition.

Axiom 1  (Carrier) Let Φ be a value on ΓE . If M is a carrier of v ∈ ΓE , then

The Carrier axiom requires that players in a carrier allocate the full income of the 
grand coalition between them. This is due to the lack of influence of players outside 
M.

A coalition T ⊆ N , T ≠ ∅ , is said to be a p-type coalition in v ∈ ΓE if for all 
(S,Π) ∈ E such that T ⊈ S the following holds:

Requirement 1 says that the presence in S of players of T do not affect the worth 
of any feasible embedded coalition (S,Π) . This is true when T ⊈ S , that is, when 
players of T are not together. Requirement 1 implies that players of T are indis-
tinguishable. We also require 2 because it may happen that (S�T ,ΠS�T ) ∉ E , and 
therefore, the equality in requirement 1 would be meaningless. But in this case we 
require (S,Π) to be a zero-embedded coalition, and therefore (S,Π) and the other 
feasible embedded coalitions covered by (S,Π) get zero worth. In this case, no play-
ers of S, in particular those of T, affect this zero worth. And again, players of T are 
indistinguishable.

Note that condition (22) above coincides with the definition of p-type coalition 
introduced by Kalai and Samet (1988) to characterize the weighted Shapley values.

Example 3  In Example 1 the coalition {1, 2} is a p-type coalition. Indeed, if 
(S,Π) ∈ E and {1, 2} ⊈ S , then v(S,Π) = 0 . Moreover, 

(
S�{1, 2},ΠS�{1,2}

)
∈ E and 

v
(
S�{1, 2},ΠS�{1,2}

)
= 0 . We are not ever in condition 2.

As for the game u(T ,Σ) in Example 2, {1, 2, 3} is a p-type coalition. 
Note that, for example, if (S,Π) =

(
{2, 3, 4, 5},

{
{1}, {2, 3, 4, 5}

})
 , then 

(S�T ,ΠS�T ) =
(
{4, 5},

{
{1}, {2, 3}, {4, 5}

})
∉ E and (S,Π) is a zero-embedded 

coalition.

Axiom 2  (Symmetric-Partnership) Let Φ be a value on ΓE . If T is a p-type coalition 
in v ∈ ΓE , then

(21)
∑
i∈M

Φi(v) = v
(
N, {N}

)
.

(22)1. If (S�T ,ΠS�T ) ∈ E, then v(S,Π) = v(S�T ,ΠS�T );

(23)2. If (S�T ,ΠS�T ) ∉ E, then (S,Π) is a zero-embedded coalition.

(24)Φi(v) = Φj(v) for all i, j ∈ T .
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Symmetric-Partnership requires the value of the players in a p-type coalition to be 
the same since they are indistinguishable. Note that in full R-PFF games this axiom 
is weaker than Axiom 1 (anonymity) in Myerson (1977a). Actually a requirement 
like Myerson’s Axiom 1 is of little use when dealing with general R-PFF games, 
since a set system of feasible embedded coalitions might be not invariant under a 
permutation of N.

The last axiom is the conventional Additivity axiom.

Axiom 3  (Additivity) Let Φ be a value on ΓE . If v,w ∈ ΓE , then

Theorem 1  There is one and only one solution on ΓE satisfying Carrier, Symmetric-
Partnership, and Additivity, and it is ΨE.

The proof is based on some lemmas and propositions.

Lemma 1  Let v ∈ ΓE , then 
∑

i∈N Ψi(v) = v
�
N, {N}

�
.

Proof  Let v ∈ ΓE . Then we have:

Bearing in mind that 
(
N, {N}

)
≫(S,Π) for every (S,Π) ∈ E we get

	�  ◻

Lemma 2  Let v ∈ ΓE and (S,Π) ∈ E.

(i) If (S,Π) is a zero-embedded coalition in v then dv(S,Π) = 0.

(ii) If M is a carrier of v and S ∩M = � , then dv(S,Π) = 0.

(iii) If M is a carrier of v and S∖M ≠ ∅ , then dv(S,Π) = 0.

Proof  (i) It is straightforward.

(ii) It is consequence of the definition of carrier.
(iii) Assume M is a carrier of v, (S,Π) ∈ E , and S∖M ≠ ∅ . Then we consider two 

possibilities:

(25)Φ(v + w) = Φ(v) + Φ(w).

(26)

∑
i∈N

Ψi(v) =
∑
i∈N

∑
(S,Π)∈E∶

i∈S

dv(S,Π)

|S| =
∑

(S,Π)∈E

dv(S,Π)

=
∑

(S,Π)∈E

dv(S,Π)u(S,Π)(N, {N})

(27)
∑
i∈N

Ψi(v) = v
(
N, {N}

)
.
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1. If (S ∩M,ΠS∩M) ∉ E : By condition (20) we get that (S,Π) is a zero-embedded 
coalition, and the result follows from part (i) of this lemma.

2. If (S ∩M,ΠS∩M) ∈ E : Consider the set A =
{
(S�,Π�) ∈ E (S,Π) ≫ (S�,Π�)

A =
{
(S�,Π�) ∈ E (S,Π) ≫ (S�,Π�) ≠ (S,Π)

}
 . We will show that dv(S,Π) = 0 by 

induction on the cardinality of A . First note that (S ∩M,ΠS∩M) ∈ A.
So assume first that |A| = 1 . In this case A =

{
(S ∩M,ΠS∩M)

}
 . Using expres-

sion (11) we get

where the last equality follows since |A| = 1 . By the definition of a carrier it holds 
v(S ∩M,ΠS∩M) = v(S,Π) , and hence dv(S,Π) = 0 , as desired.

Now assume that |A| ≥ 2 . From expression (11) we have:

By the induction hypothesis the third term in this summation vanishes. Hence we 
get

where the last equality follows since (S ∩M,ΠS∩M) ∈ E and expression (11).
Since M is a carrier of v, then v(S ∩M,ΠS∩M) = v(S,Π) , and hence dv(S,Π) = 0 , 

as desired. 	�  ◻

Proposition 2  The value ΨE satisfies the Carrier axiom on ΓE.

Proof  Let M be a carrier of v ∈ ΓE , and i ∉ M . If (S,Π) ∈ E is such that i ∈ S , by 
parts (ii) and (iii) of Lemma 2, it must be dv(S,Π) = 0 . So ΨE

i(v) = 0 for all i ∉ M.
Consequently, by Lemma 1 we get

and the proof is complete. 	� ◻

(28)
v(S,Π) = dv(S,Π) +

∑
(S�,Π�)∈E∶

(S,Π)≫(S� ,Π�)≠(S,Π)

dv(S
�,Π�)

= dv(S,Π) + dv(S ∩M,ΠS∩M),

(29)
v(S,Π) = dv(S,Π) +

∑
(S�,Π�)∈E∶

(S,Π)≫(S� ,Π�)≠(S,Π)

dv(S
�,Π�)

(30)
= dv(S,Π) +

∑
(S�,Π�)∈E∶

(S,Π)≫(S� ,Π�)≠(S,Π)

S�⊆S∩M

dv(S
�,Π�) +

∑
(S�,Π�)∈E∶

(S,Π)≫(S� ,Π�)≠(S,Π)

S��M≠�

dv
(
S�,Π�

)

(31)
v(S,Π) = dv(S,Π) +

∑
(S�,Π�)∈E∶

(S∩M,ΠS∩M )≫(S� ,Π�)

dv(S
�,Π�) = dv(S,Π) + v(S ∩M,ΠS∩M),

(32)
∑
i∈M

ΨE
i(v) =

∑
i∈N

ΨE
i(v) = v

(
N, {N}

)
,
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Lemma 3  Let T be a p-type coalition of v ∈ ΓE , and (S,Π) ∈ E . If T ∩ S ≠ � and 
T ⊈ S , then dv(S,Π) = 0.

Proof  By induction on |S|. If |S| = 1 , then S�T = � . Since T is a p-type coalition 
v(S,Π) = v(S�T ,ΠS�T ) = v(�,Π�) = 0 , and hence dv(S,Π) = 0.

Now assume that |S| ≥ 2 . By expression (11) we have:

By the induction hypothesis the third term in the summation vanishes. So

Consider two cases:
1. If (S�T ,ΠS�T ) ∈ E : Taking into account expression  (11), equality  (34) above 

becomes

Since T is a p-type coaliton it holds v(S,Π) = v(S�T ,ΠS�T ) , and hence dv(S,Π) = 0.
2. If (S�T ,ΠS�T ) ∉ E : Since T is a p-type coalition, then (S,Π) is a zero-embed-

ded coalition. From Lemma 2 we get dv(S,Π) = 0 , as desired. 	� ◻

Proposition 3  The value ΨE satisfies the Symmetric-Partnership axiom on ΓE.

Proof  Let T be a p-type coalition in v ∈ ΓE , and i ∈ T  . If (S,Π) ∈ E , i ∈ S and 
T ⊈ S , from Lemma 3 it holds dv(S,Π) = 0 . Consequently

But the last term in this expression is the same for every i ∈ T  , so the proof is com-
plete. 	�  ◻

Proposition 4  The value ΨE satisfies the Additivity axiom on ΓE.

Proof  It is enough to observe that for all (S,Π) ∈ E it holds: 
dv+w(S,Π) = dv(S,Π) + dw(S,Π) . 	�  ◻

Proposition 5  Let Φ ∶ ΓE
→ ℝ

N be a solution satisfying Carrier and Symmetric-
Partnership. Let also c ∈ ℝ , and (T ,Σ) ∈ E , then

(33)
v(S,Π) = dv(S,Π) +

∑
(S�,Π�)∈E∶

(S,Π)≫(S� ,Π�)≠(S,Π)
S�⊆S�T≠�

dv(S
�,Π�) +

∑
(S�,Π�)∈E∶

(S,Π)≫(S� ,Π�)≠(S,Π)

S�∩T≠�

dv(S
�,Π�)

(34)
v(S,Π) = dv(S,Π) +

∑
(S�,Π�)∈E∶

(S,Π)≫(S� ,Π�)≠(S,Π)

S�⊆S�T

dv(S
�,Π�)

(35)v(S,Π) = dv(S,Π) + v(S�T ,ΠS�T ).

(36)ΨE

i
(v) =

∑
(S,Π)∈E∶

i∈S

dv(S,Π)

|S| =
∑

(S,Π)∈E∶
T⊆S

dv(S,Π)

|S| .
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Proof  Note first that T is a carrier and a p-type coalition in c ⋅ u(T ,Σ) . By the Car-
rier axiom it follows 

∑
i∈T Φi(c ⋅ u(T ,Σ)) = c . On the other hand, T is a p-type 

coalition in c ⋅ u(T ,Σ) , so from the Symmetric-Partnership axiom it holds 
Φi(c ⋅ u(T ,Σ)) = Φj(c ⋅ u(T ,Σ)) for every i, j ∈ T  . Combining these two facts we con-
clude that Φi(c ⋅ u(T ,Σ)) = c∕|T| for every i ∈ T .

Furthermore, N is a carrier of c ⋅ u(T ,Σ) , and since 
∑

i∈T Φi(c ⋅ u(T ,Σ)) = c it fol-
lows 

∑
i∉T Φi(c ⋅ u(T ,Σ)) = 0 . In addition N∖T  is a p-type coalition of c ⋅ u(T ,Σ) , 

hence from Symmetric-Partnership we have that for every i, j ∈ N�T  it holds 
Φi(c ⋅ u(T ,Σ)) = Φj(c ⋅ u(T ,Σ)) . Therefore Φi(c ⋅ u(T ,Σ)) = 0 for every i ∈ N�T  and the 
proof is complete. 	�  ◻

Proof of Theorem 1  In propositions  2, 3 and 4 it is shown that � satisfies the axioms. 
From propositions 1 and 5 together with the Additivity axiom, we can conclude that 
� is the only solution that satisfies them. 	�  ◻

4 � An alternative extension of the R‑value for R‑PFF games

In Albizuri et al. (2005) a solution for full R-PFF games is proposed that is an extension 
of the Shapley value different from that of Myerson (1977a). This section is devoted to 
characterize its natural extension to R-PFF games.

Given v ∈ ΓE , define an R-game on K as follows

where E(S) =
{
(S,Π) ∈ E

}
 . That is, ṽ(S) is the average of the worth of the embedded 

coalitions of the form (S,Π).
Then define the value ΛE on ΓE by

where �K is the R-value on GK.
Next we are going to characterize the value ΛE using some new axioms.

Axiom 4  (Efficiency) Let Φ be a value on ΓE , then

Since N is always a carrier of the game, this axiom is weaker than the Carrier 
axiom.

(37)Φi(c ⋅ u(T ,Σ)) =

{
c∕|T|, if i ∈ T;

0, if i ∉ T .

(38)ṽ(S) =
1

|E(S)|
∑

(S,Π)∈E(S)

v(S,Π),

(39)ΛE(v) = 𝜓K(ṽ),

(40)
∑
i∈N

Φi(v) = v
(
N, {N}

)
.
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A coalition T such that E(T) ≠ � is said to be an oligarchy of v ∈ ΓE if for every 
(S,Π) ∈ E it holds:

Note that if T is an oligarchy in v ∈ ΓE , then it is also a carrier. But a carrier is not 
necessarily an oligarchy.

Axiom 5  (Oligarchy Dummy Player) Let Φ be a value on ΓE . If T is an oligarchy 
then

Example 4  The game in Example 1 has only one oligarchy, N. If v
(
N, {N}

)
= 1 

instead of 3, then {1, 2} would be a carrier of the game but N remains the only oli-
garchy. Since v

(
{1, 2},

{
{1, 2}, {3}, {4}

})
= 0 ≠ v

(
N, {N}

)
 , then {1, 2} would not 

be an oligarchy. If v
(
N, {N}

)
= 1 and v

(
{1, 2},Π

)
= 1 for every 

(
{1, 2},Π

)
∈ E , 

then {1, 2} would be an oligarchy. Note that if {1, 2} ⊈ S , then (S,Π) would be a 
zero-embedded coalition, and thus requirement 2 would be satisfied. Oligarchy 
Dummy Player requires Φ3(v) = 0 and Φ4(v) = 0.

Remark 2  This axiom is weaker than several axioms existing in the literature of full 
R-PFF games about dummy players.

De Clippel and Serrano (2008) define a player i ∈ N to be a weak null player in 
v if v(S,Π) = v

(
S�{i},Π{i}

)
 for all (S,Π) such that i ∈ S . So i leaves S and remains 

alone. The weak null player axiom requires Φi(v) = 0 . Note that if T is an oligarchy 
and i ∈ N�T  , the worth v(S,Π) does not change when i leaves S. And hence, i is a 
weak null player in v.

De Clippel and Serrano (2008), as well as Macho-Stadler et al. (2006) and (2007), 
define i ∈ N to be a strong null player in v if v(S,Π) = v

(
S�{i},Π�

)
 for all (S,Π) and 

(S,Π�) such that Π{i} = Π
�

{i}
 , that is, i leaves his or her coalition in Π and remains 

alone or joins any other coalition in Π . As a result, Π� is formed. The strong null 
player axiom requires Φi(v) = 0 . This axiom is weaker than the previous one. Note 
also that if T is an oligarchy and i ∈ N�T  , v(S,Π) and v

(
S�{i},Π�

)
 coincide, they are 

zero or one. And therefore, i is a strong null player in v.
Alonso-Meijide et al. (2019) introduced a weaker axiom than the previous two. In 

this case, in addition it is considered a third type of movement. A player i ∈ N is a 
complete null player in v if v(S,Π) = v

(
S�{i},Π�

)
 for all (S,Π) and (S,Π�) such that 

Π{i} = Π
�

{i}
 or

where T1, T2 ∈ Π�{S} and i ∈ T1 ∪ T2 . So T1 and T2 , where i ∈ T1 ∪ T2 , can join. 
The complete null player axiom requires Φi(v) = 0 . As Alonso-Meijide et al. (2019) 

(41)1. If T ⊆ S, then v(S,Π) = v(N, {N});

(42)2. Otherwise (S,Π) is a zero-embedded coalition.

(43)Φi(v) = 0 for all i ∈ N�T .

(44)i ∉ S and Π� =
(
Π�{T1, T2}

)
∪ {T1 ∪ T2},
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(Proposition 5) proved, the existence of a complete null player implies that v is a 
game without externalities. Again if T is an oligarchy and i ∈ N�T  , v(S,Π) and 
v
(
S�{i},Π�

)
 coincide, and i is a complete null player in v.

Therefore, as written above, for full R-PFF games, Oligarchy Dummy Player is 
weaker than the previous three null player axioms.

We prove that for full R-PFF games ΛE does not satisfy the weak and strong null 
player axioms. For this we consider two counterexamples.

Let N = {1, 2, 3} , K = CL , and v ∈ ΓE such that

Player 2 is clearly a weak null player. From expression   (38), we get ṽ
(
{1}

)
= 1 , 

ṽ
(
{2}

)
= 0 and ṽ(S) = 2 if � ≠ S ∉

{
{1}, {2}

}
 . Hence, from   (39) we have 

ΛE

2
(v) = Sh2(ṽ) = 1∕6 , where Sh denotes the Shapley value for classical TU games. 

Consequently, ΛE does not satisfy the weak null player axiom. Note that player 2 is 
not a strong player because v

(
{1, 2},

{
{1, 2}, {3}

})
≠ v

(
{1},

{
{1}, {2, 3}

})
.

Let N = {1, 2, 3, 4} , K = CL , and v ∈ ΓE such that

Player 2 is a strong null player but not a complete null player since 
v
(
{4},

{
{1, 2}, {3}, {4}

})
≠ v

(
{4},

{
{1, 2, 3}, {4}

})
. Taking into account expres-

sion   (38), we have ṽ
(
{2}

)
= 0 , ṽ

(
{4}

)
= 4∕5 , ṽ

(
{2, 4}

)
= 1 and ṽ(S) = 2 if 

� ≠ S ∉
{
{2}, {4}, {2, 4}

}
 . Therefore,  (39) implies ΛE

2
(v) = Sh2(ṽ) = 1∕60 . Hence, 

the strong null player axiom is not satisfied by ΛE.
As for the complete null player axiom, it is satisfied by ΛE for full R-PFF games. 

As written before, if there exists a complete null player i, then v is a game without 
externalities. Moreover, i becomes a null player, and (39) implies ΛE

i
(v) = Shi(v) = 0.

Next a pair of players i, j ∈ N are called partners if for all (S,Π) ∈ E it holds

If two players i and j are partners in v, then each of them individually makes no con-
tribution to any coalition to which neither of them belongs. Note also that if i and j 
are partners then {i, j} is a p-type coalition in v, but not vice versa.

Example 5  In Example 1 players 1 and 2 are partners. To prove that players in a 
p-type coalition {i, j} are not always partners, consider N = {1, 2, 3} and K = CL . 
Let v ∈ ΓE such that v(S,Π) = 1 if 3 ∈ S and v(S,Π) = 0 otherwise. Then S = {1, 2} 

(45)v(S,Π) =

⎧
⎪⎨⎪⎩

0 if S = � or S = {2};

0 if (S,Π) =
�
{1},

�
{1}, {2, 3}

��
;

2 otherwise.

(46)v(S,Π) =

⎧⎪⎨⎪⎩

0 if S = � or S = {2};

0 if S = {4} and Π ∉
��

{1, 3}, {2}
�
,
�
{1, 3, 2}

��
;

2 if S = {4} and Π ∈
��

{1, 3}, {2}
�
,
�
{1, 3, 2}

��
;

2 otherwise.

(47)|{i, j}�S| = 1 implies (S,Π) is a zero-embedded coalition.
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is a p-type coalition but 1 and 2 are not partners. Note that |{1, 2}�{1, 3}| = 1 and 
v
(
{1, 3},

{
{1, 3}, {2}

})
≠ 0.

Axiom 6  (Partners-Symmetry) Let Φ be a value on ΓE . If i and j are partners in 
v ∈ ΓE , then

Since two partners make no contribution individually, the two players play the 
same role. Therefore, Partners-Symmetry requires that they receive the same value. 
Moreover, since a couple of partners forms a p-type coalition this axiom is weaker 
than Symmetric-Partnership, and hence weaker than Axiom 1 in Myerson (1977a) in 
the case of full R-PFF games as well.

Axiom 7  (Embedded-Coalition Anonymity) Let v,w ∈ ΓE and (S,Π), (S,Π�) ∈ E . If 

(a)	 v(S,Π) = w(S,Π�),
(b)	 v(S,Π�) = w(S,Π) , and
(c)	 v(T ,Σ) = w(T ,Σ) for every (T ,Σ) ∈ E�{(S,Π), (S,Π�)}

then

Assume that (S,Π) and (S,Π�) are two feasible embedded coalitions, that only 
differ in the way in which the players out of S are rearranged. This axiom requires 
that in the game that results from exchanging the worth of these two embedded 
coalitions, all else being the same, the solution assigns to the players in S the 
same total payoff as in the original one. Alternatively, one can think that this 
axiom requires invariance of the total payoff assigned to S, under permutations of 
the set of embedded coalitions in which S is the first component of the pair. Thus 
this axiom is a very weak version of an anonymity property among embedded 
coalitions relative to coalition S.

Theorem  2  There is a unique solution on ΓE that satisfies Efficiency, Oligarchy 
Dummy Player, Partners-Symmetry, Embedded-Coalition Anonimity and Additivity, 
and it is ΛE.

This theorem follows from Propositions 6 to 7.

Proposition 6  The value ΛE satisfies Efficiency, Oligarchy Dummy Player, Partners-
Symmetry, Embedded-Coalition Anonimity and Additivity.

Proof  Since the R-value 
∑

i∈N 𝜓K

i
(N) = ṽ(N) , it is straightforward to see that ΛE sat-

isfies Efficiency. Similarly, since �K is linear, then ΛE satisfies Additivity as well.

(48)Φi(v) = Φj(v).

(49)
∑
i∈S

Φi(v) =
∑
i∈S

Φi(w).
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Let us show that ΛE satisfies Oligarchy Dummy Player. Let T be an oligarchy in 
v ∈ ΓE . The corresponding R-game ṽ on K of expression (38) is

Since E(T) ≠ � then ṽ = uT , i.e. ṽ is the unanimity game uT ∈ GK . So by the defini-
tion of �K in expression (4), we get 0 = 𝜓K

i
(uT ) = 𝜓K

i
(ṽ) = ΛE

i
(v) for every i ∈ N�T  

as desired.
Now let us show that ΛE satisfies Partners-Symmetry. Let i, j ∈ N partners in v. 

Considering the decomposition of v in unanimity games given in (10) we get

Since i, j are partners dv(T ,Σ) = 0 whenever i ∈ T  and j ∉ T  . So

Analogously we can deduce that

Taking into account that since i, j ∈ T  it holds �K

i
(u(T ,Σ)) = �K

j
(u(T ,Σ)) , we get 

ΛE

i
(v) = ΛE

j
(v) as desired.

Finally we turn to show that ΛE satisfies Embedded-Coalition Anonimity. Let 
v,w ∈ ΓE and (S,Π), (S,Π�) ∈ E such that v(S,Π) = w(S,Π�) , v(S,Π�) = w(S,Π) , 
and v(T ,Σ) = v(T ,Σ) for (T ,Σ) ∈ E�{(S,Π), (S,Π�)} . Then for the corresponding 
R-games of expression (38), it holds ṽ = w̃ . So 𝜓K

i
(ṽ) = 𝜓K

i
(w̃) for every i ∈ T  , and 

hence 
∑

i∈T Λi(ṽ) =
∑

i∈T Λi(w̃) , and the proof is concluded. 	�  ◻

The following games are useful for the proof of the next proposition.
Given (T ,Σ) ∈ E , define the game u∗

(T ,Σ)
∈ ΓE by

It is clear that these games form a basis for ΓE.

Proposition 7  There exists at least one value that satisfies Efficiency, Oligarchy 
Dummy Player, Embedded-Coalition Anonimity, Partners-Symmetry and Additivity.

(50)ṽ(S) =

{
v
(
N, {N}

)
, ifT ⊆ S;

0 otherwise.

(51)
ΛE

i
(v) = 𝜓K

i
(ṽ) =

∑
(T ,Σ)∈E∶

i∈T

dv(T ,Σ)𝜓
K

i
(u(T ,Σ))

(52)
ΛE

i
(v) =

∑
(T ,Σ)∈E∶

i,j∈T

dv(T ,Σ)�
K

i
(u(T ,Σ)).

(53)
ΛE

j
(v) =

∑
(T ,Σ)∈E∶

i,j∈T

dv(T ,Σ)�
K

j
(u(T ,Σ)).

(54)u∗
(T ,Σ)

(S,Π) =

{
1, if(S,Π) = (T ,Σ);

0, otherwise.
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Proof  Let Φ be a value that satisfies the axioms above. By Additivity it is sufficient 
to show that Φ

(
c ⋅ u∗

(T ,Σ)

)
 is determined for every (T ,Σ) ∈ E and all c ∈ ℝ . We will 

use backward induction on |T|.

If |T| = n , then (T ,Σ) =
(
N, {N}

)
 . But any couple of players are partners in 

c ⋅ u∗
(N,{N})

 , and by Efficiency and Partners-Symmetry we get Φ
(
c ⋅ u∗

(N,{N})

)
= c∕n 

for all i ∈ N.
Let us suppose that Φ(c ⋅ u∗

(T ,Σ)
) is determined whenever |T| > k . So fix T such 

that |T| = k and consider the game c ⋅ u∗
(T ,Σ)

∈ ΓE . We consider two cases.

	 (1) 	 First, we will show Φi(c ⋅ u
∗
(T ,Σ)

) is determined for all i ∈ T  . For that, consider 
the game

Note that T is an oligarchy in v, so Φi(v) = 0 for every i ∈ N�T  . By Efficiency 
we have

And by Additivity

Moreover if (T ,Π), (T ,Π�) ∈ E , by Embedded-Coalition Anonimity it holds ∑
i∈T Φi(u

∗
(T ,Π)

) =
∑

i∈T Φi(u
∗
(T ,Π�)

) . So by combining expressions (56) and (57) 
we get

where E(T) =
{
(T ,Π) ∈ E

}
 . Now by the induction hypothesis the second term 

in the right side of the equality above is determined. Hence 
∑

i∈T Φi(c ⋅ u
∗
(T ,Σ)

) 
is also determined.

Furthermore, every pair of players of T are partners in c ⋅ u∗
(T ,Σ)

 , and hence by the 
Partners-Symmetry it holds Φi(c ⋅ u

∗
(T ,Σ)

) = Φj(c ⋅ u
∗
(T ,Σ)

) for all i, j ∈ T  . Combining 
this with the fact that 

∑
i∈T Φi(c ⋅ u

∗
(T ,Σ)

) is determined, we can conclude that 
Φi(u

∗
(T ,Σ)

) is fully determined for every i ∈ T .

(55)
v =

∑
(S,Π)∈E∶

T⊆S

c ⋅ u∗
(S,Π)

(56)
∑
i∈T

Φi(v) = v
(
N, {N}

)
.

(57)
∑
i∈T

Φi(v) =
∑

(S,Π)∈E∶
T⊆S, T≠S

∑
i∈T

Φi(c ⋅ u
∗
(S,Π)

) +
∑

(T ,Π)∈E

∑
i∈T

Φi

(
u∗
(T ,Π)

)
.

(58)
v(N, {N}) −

∑
(S,Π)∈E∶
T⊆S, T≠S

∑
i∈T

Φi

(
c ⋅ u∗

(S,Π)

)
= |E(T)| ⋅∑

i∈T

Φi

(
c ⋅ u∗

(T ,Σ)

)
,
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(2)	  Now we will show that Φ(c ⋅ u∗
(T ,Σ)

) is also determined for all i ∈ N�T . Note that 
if i, j ∈ N�T  then they are partners in c ⋅ u∗

(T ,Σ)
 . Then by Efficiency and Partners-

Symmetry axioms and the fact Φi(c ⋅ u
∗
(T ,Σ)

) is also determined for every i ∈ T  , 
we can conclude the proof. 	�  ◻

5 � Concluding remarks

In this paper we have considered restricted games in partition function form. These 
games are particularly suitable to study situations in which some coalitions may not 
be able to form, and in addition there are externalities. Two extensions of the Shap-
ley value for these games have been proposed and characterized by means of stand-
ard axioms.

These two extensions of the Shapley value, are in turn the corresponding exten-
sions of the Myerson (1977a) and Albizuri et al. (2005) values for PFF games. An 
open problem is to extend other values for PFF games mentioned in the Introduction 
to R-PFF games, using alternative approaches.

In our model of restricted games, the players form a partition of N, as in full R-
PFF games. This is possible because all individual coalitions are feasible. It would 
also have been possible to define the restricted games with externalities without 
requiring that a partition forms. In this case, we would not require individual coali-
tions to be feasible. We have chosen the first model to maintain the formation of a 
partition and because we think that it makes sense that individual coalitions are fea-
sible. Also mention that it might also have been possible to model restricted games 
considering a general family E of embedded coalitions such that 

(
N, {N}

)
∈ E and 

(�,Π) ∈ E for every Π ∈ P.
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