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are consecutively presented in this paper rather than the 
typically reviewed division of stress types.

Keywords Tomato · Abiotic stress · Tomato 
transformation

Introduction

Tomato (Solanum lycopersicum L.) is a popular and eco-
nomically important crop plants around the world. It con-
tains a valuable compound, lycopene, which possesses 
anti-oxidative and anticancer properties. Therefore, tomato 
production and consumption are permanently increasing 
(Raiola et al. 2014). In 2013 tomato was 7th in global pro-
duction, achieving a world production of approximately 
164,000,000.00  million tonnes on a total area of nearly 
4.8  million hectares (FAOSTAT 2013). Being a tropical 
plant, tomato is well adapted to almost all climatic regions 
of the world; however, environmental stress factors are the 
primary constraints of this crop’s yield potential. Recently, 
the molecular pathways underlying environmental stress 
tolerance have been studied intensely with much empha-
sis on the tolerance mechanisms pertaining to individual 
stresses. Abiotic stress is a general term, which includes 
miscellaneous stresses e.g. chilling, high temperature, 
osmotic shock, drought, salinity, water logging, wounding, 
exposure to ozone, toxic ions, excessive light and UV-B 
irradiation (Rehem et  al. 2012). Unfortunately, abiotic 
stresses are complex in their nature and controlled by net-
works of different factors (e.g. genetic and environmental) 
that impede crop plant breeding strategies (Da Silva and de 
Oliveira 2014).

While traditional approaches achieve their limit, current 
agriculture must deploy quite novel solutions to meet the 
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demands of the world’s population. Genetic engineering is 
one of the many tools available for creating improved, mod-
ern crop plants. Recently, technological advances in func-
tional genomics have been made and they have helped to 
reveal the numerous gene families and processes, that alter 
adaptation to abiotic stresses and thereby improve yield. 
Since in most cases plants have windows of tolerance to 
surrounding environmental factors, genetic engineering can 
be used to enhance the native adaptation abilities. Genes 
can be placed into various of expression cassettes, and sub-
sequently introduced to plants in which they do not natu-
rally occur. Genetically engineered plants can be employed 
not only as origin of novel cultivars, but can also be help-
ful in analysing and describing the activity and interplay 
of gene networks for abiotic stress tolerance (Kissoudis 
et al. 2015). Given the complexity of stress and its genesis, 
it is rare to meet a single abiotic stress in nature. A great 
number of stress-responsive pathways and components is 
common in reactions to multiple stressors. Consequently, 
instead of the typically reviewed division of stress types, 
we decided to provide a general overview of the molecular 
background i.e. genes, proteins and other molecular com-
pounds, that are considered to be significant for plant func-
tion and response under stress conditions. Its components 
are perceived as targets in “the gene therapy” of plants in 
stress. We present some results of such an approach hop-
ing it will allow the readers to get acquainted with the most 
often engineered target sequences.

Physiological basis of abiotic stress tolerance 
in plants

The concept of stress assumes the occurrence of an exter-
nal factor that disadvantageously influences a plant. It 
can also be understood as a negative deviation of the liv-
ing conditions that are optimal for a plant. Hence, toler-
ance must presume certain plasticity in metabolic reactions 
that let a plant function in an unfavourable environment 
(to avoid, tolerate or recover from the stress conditions). 
This ability to limit the damage triggered by a given stress 
may be defined as plant tolerance. Adaptation of plants to 
abiotic stresses is a complex process, that is characterized 
by activation of multifarious responses engaging compos-
ite gene interplay and ‘crosstalk’ among many molecular 
pathways (Da Silva and de Oliveira 2014). These com-
plex cellular responses were explained by advancements 
made in investigating and comprehension of plant abiotic 
responses at different levels. In general, three stages are 
distinguished during abiotic stress: (1) the stage of alarm; 
(2) the stage of resistance; and (3) the stage of exhaustion 
(Rehem et al. 2012). However, Lichtenthaler (1988) added 
the fourth stage—the regeneration stage. This particular 

stage appears exclusively when the stress factor is elimi-
nated before failure becomes too drastic and enables full or 
partial recovery of the plant’s physiological function. At the 
beginning, any abiotic stress response is the perception of 
stress signals by cell wall receptors, that activate different 
signal transduction events involving different intermediate 
stress genes (Da Silva and de Oliveira 2014). These genes 
could be members of the mitogen-activated protein kinase 
cascade, or calcium dependent protein kinase cascade 
and activate cis-acting elements and transcription factors 
(TFs) that control expression patterns of stress-response 
genes. This leads to plant stress tolerance (Fig. 1). Among 
stress-induced genes three categories can be distinguished: 
the first category includes genes encoding proteins with 
known functions (structural or enzymatic), the second cat-
egory contains transcription factors and regulatory proteins 
and the third comprises proteins with unknown functions 
(Yamaguchi-Shinozaki and Shinozaki 2009).

Biotechnological strategies

Plant in  vitro tissue culture techniques have become a 
prerequisite step to further development of plant transfor-
mation methods. Furthermore, advances in plant genetic 
transformation significantly facilitated progress in the 
recognition of individual genes and enzymes involved in 
plant tolerance to various abiotic stresses. Additionally, 
the advancement of knowledge in the field of genomics of 
tomato’s wild relative species can be exploited in a breed-
ing programs for the introgression of abiotic stress toler-
ance into common, cultivated tomato cultivars (Foolad 
2007; Labate and Robertson 2012).

Methodology of tomato transformation

Over the past two decades, numerous techniques were used 
to introduce foreign genes into both mono- and dicotyle-
donous plants, such as rice, potato, soya bean, tomato or 
common bean (Sahoo et  al. 2011; Gerszberg et  al. 2012; 
Hnatuszko-Konka et  al. 2014). The first protocol for the 
genetic transformation of Solanum lycopersicum was 
reported in the 1980s and since then a significant pro-
gress in this field has been made (McCormick et al. 1986). 
The tested approaches included both direct methods and 
those using bacterial vectors, differing in transformed 
target genome (plastid, nuclear) or in the stability of the 
transformation.

Mostly, Agrobacterium-mediated transformation pro-
cedures for various tomato cultivars have been expanded 
(Gerszberg et al. 2015). The agroinfection process is com-
plex, and its efficiency depends on a broad spectrum of 
elements including the presence of a chemoattractant in 
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the culture or preculture media, the application of nurse 
cells, bacterial factors (culture density, virulence of the 
Agrobacterium strain), the type of plasmid vector and the 
tissue specific factors (the type of explants and the geno-
type), the composition of the culture media (concentration 
of phytohormones), the concentration and kind of selective 
agents and the cocultivation time (Guo et al. 2012; Chetty 
et  al. 2013; Shah et  al. 2015; Sun et  al. 2015). Examples 
of optimisation of aforementioned parameters for tomato 
transformation are presented in Table 1. Despite numerous 
attempts to improve transformation protocols with regards 
to effectiveness, progress in this area is limited due to geno-
type specificity. Notwithstanding this fact, some efforts to 
determine an effective genetic transformation method for 
such “stubborn” cultivars were made (Fuentes et al. 2008). 
Agroinfection-mediated modifications utilized both Agro-
bacterium tumefaciens and A. rhizogenes species. Usually, 
Agrobacterium tumefaciens is the vector of choice for plant 
transformation. Also, in the case of Solanum lycopersicum 

engineering, it was harnessed to produce transgenic plants 
(Hasan et  al. 2008; Chetty et  al. 2013). Yasmeen et  al. 
(2009) evaluated fruit maturity, gene construct type and 
in planta technique (fruit injection and floral dip) for the 
establishment of the optimal protocol of transformation. A 
higher transformation percentage was obtained for mature 
fruits (ca. 15–20 times higher) in comparison to immature 
fruits. To reduce the time of obtaining transgenic plants 
as well as cases of somaclonal variation, in planta meth-
ods were assessed. Yasmeen et al. (2009) tested the floral 
dip procedure for the flower transformation before and 
after pollination. The results were interesting and clearly 
indicated that type of construct and floral stadium are 
important for transformation effectiveness. A higher effi-
cacy of transformation was reported in the case of flow-
ers treated with a bacterial suspension before pollination. 
Despite promising transformation efficiency, some adverse 
changes in the morphology (short and not erected steam, 
curled leaves) of the plants were observed in comparison 

Fig. 1  The plant response to 
abiotic stress. Primary stresses 
are interrelated and provoke 
cellular damage as well as 
secondary stresses. The initial 
stress signal cause activation 
of signalling process as well as 
transcription control. Conse-
quence of this, is initiation of 
stress-responsive mechanism to 
restoration of cellular homeo-
stasis, accompanied by the 
protection and repair dam-
aged proteins and membranes. 
Finally, plant gained tolerance 
or resistance to stress. ABF 
ABRE-binding factor, Athk1 
Arabidopsis thaliana histidine 
kinase-1, bZIP basic leucine 
zipper transcription factor, CBF/
DREB C-repeat-binding factor/
dehydratation-responsive bind-
ing protein, CDPK calcium-
dependent protein kinase, COR 
cold-responsive protein, Hsp 
heat shock protein, LEA late 
embryogenesis abundant, MAP 
mitogen-activated protein; PLD 
phospholipase D – PtdOH, 
phosphatidic acid, PX per-
oxidase, ROS reactive oxygen 
species, SOD super dismutase, 
SP1 stable protein 1
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to wild-type (WT) plants. Although the flowers on these 
plants appeared earlier and were normal, unfortunately they 
were sterile and did not give fruits (Yasmeen et al. 2009). 
So far, this methodology has not been broadly employed in 
tomato transformation. However, Safdar and Mirza (2014) 
performed a comparison of transformation through tis-
sue culture and in planta transformation using an in  vitro 
fruit injection method and in vivo fruit and flower injection. 
The results clearly showed superiority of the in vitro fruit 
injection method in comparison to conventional methods. 
Recently, Shah et  al. (2015) successfully employed an in 
planta method to obtain cold resistant tomato. Optimization 
of the transformation parameters allowed to obtain trans-
formation efficiency of about 8%.

Tomato engineering via A. rhizogenes was reported 
by Widoretno et al. (2012) and regeneration of transgenic 
tomato plants from hairy roots by Peres et  al. (2001) and 
Moghaieb et al. (2004). As the results showed, regeneration 
from hairy roots was possible; however, the considerable 
differences in morphogenic responses were revealed. Hairy 
root-originated plants were characterized by creased leaves, 
shortened internodes, plentiful root system; they produced 
flowers (Peres et al. 2001) and fruits with a reduced num-
ber of seeds (Moghaieb et  al. 2004). Hairy root culture 
appeared as an alternative system for producing biop-
harmaceutical compounds in tomato plants. De Guzman 
et  al. (2011) achieved production of the Escherichia coli 
B-subunit heat labile toxin antigen in tomato hairy root cul-
tures (approximately 10 µg/g blotted weight, BW). Unfor-
tunately, numerous attempts to obtain regenerated plants 
from hairy root cultures were unsuccessful.

In addition to the aforementioned methods, the particle 
bombardment method was also used for tomato transfor-
mation (Cueno et al. 2010). Ruma et al. (2009) performed 
experiments to equalize crucial factors (e.g. firing distance, 
quantity of DNA, concentration of osmoticum, pre-bom-
bardment and post-bombardment culture periods) which 
resulted in significant transformation efficiency in different 
tomato explants.

The particle bombardment approach was also used in 
the elaboration of stable genetic transformation methodol-
ogy of tomato plastids that seemed to be a crucial step in 
the transformation of tomato (Ruf and Bock 2014). This 
recently established transformation technology enabled 
investigation aiming at improvement of the nutrient content 
in tomato (e.g. vitamin A, β-xanthophylls) (Apel and Bock 
2009; D’Ambrosio et al. 2011), as well as biopharmaceuti-
cal production (e.g. HIV antigens p24) (Zhou et al. 2008).

While several protocols for stable transformation of 
tomato plants have been recently developed (Hasan et  al. 
2008; Sharma et  al. 2009; Koul et  al. 2014), there is still 
lack of reliable and effective procedure to help with 
the functional analysis of transgene. To cope with this 

problem, scientists have recruited transient transformation 
methodologies. Such an approach can assure fast imple-
mentation of the functional analysis of the genes of inter-
est (GOI) (Wróblewski et al. 2005; Fernandez et al. 2009). 
Fundamental progress in rapid reverse genetics was accom-
plished by employing RNAi (RNA interference) strategy 
(Orzaez and Granell 2009; Fernandez-Moreno et al. 2013). 
In plants, RNAi can be induced in two ways: by a transgene 
(TIGS, transgene induced gene silencing) or a virus (VIGS, 
virus-induced gene silencing). The first approach was used 
for instance to silence gene vis1 (viscosity) in tomato fruit 
to obtain transgenic lines with delayed ripening under heat 
stress (Metwali et al. 2015). Since VIGS represents a use-
ful tool for the identification of gene function, in the other 
approach different types of viruses (e.g. TRV, Tobacco Rat-
tle Virus) were successfully used as the VIGS vectors and, 
among them, the TRV vector gave the most robust results 
in terms of ease of application, efficiency, and absence of 
disease symptoms (Jaberolansar et al. 2010; Romero et al. 
2011; Wang et  al. 2015). Moreover, Wang et  al. (2015) 
demonstrated that this technology enabled achieving up to 
100% VIGS efficiency in different tomato organs (leaves, 
flowers and fruits). Zhou et al. (2012) applied Potato Virus 
X in VIGC technology (virus-induced gene complemen-
tation) and determined functions of some TFs involved 
in regulation of fruit ripening genes in tomato fruits (rin 
mutant).

Genetic engineering approaches and achievements

The growing environmental stresses of the modern world 
constitute a serious problem for global productivity of 
crop plants. Obviously, abiotic stress factors unfavourably 
impact the whole physiology of plants by changing their 
metabolism, growth and development (Mishra et al. 2012). 
Therefore, the genetic engineering of crop plants aiming 
at enhancement of tolerance to different environmental 
stresses has recently gained great significance. In contrast 
to the traditional selective breeding, genetic modifica-
tion (GM technology) allows for faster and more effective 
obtaining of plants (including tomato) tolerant to abiotic 
stresses, resulting in increased food supply. To date, there 
have been many attempts to increase plant tolerance to a 
wide range of stress factors (e.g. salinity, drought, heavy 
metals, oxidative stress). These approaches included intro-
duction of various genes involved in regulatory and signal-
ling pathways, as well as stress-mitigating enzymes (Vin-
cour and Altman 2005). Modifications of genes encoding 
functional and structural proteins were also made (Table 2). 
Here, some examples of genetic modifications of target 
sequences encoding molecules involved in stress adaptation 
are presented.
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Mannitol

Mannitol, because of its properties, is widely used in the 
pharmaceutical industry and in food processing. Man-
nitol is a six-carbon, non-cyclic sugar-alcohol playing a 
role in the coenzyme adjustment, free-radical scavenging, 
storage of energy and osmoregulation. This compound 
is synthesised from fructose in plants through the action 
of mannitol-1-phosphate dehydrogenase (mt1D). It has 
been reported that overexpression of the mt1D gene from 
Escherichia coli under control of the CaMV 35 S promoter 
in genetically engineered lines of tomato plants (cv. Pusa 
Uphar) enhanced tolerance to abiotic stresses including 
cold, drought and salinity (Khare et al. 2010). Genetically 
modified plants compared to wild-type ones were charac-
terized by reduced leakage of electrolytes with a simultane-
ous increase in lipid peroxidation. Moreover, it was noticed 
that the levels of activity of antioxidant enzymes (superox-
ide dismutase and catalase) were also substantially boosted.

Glycine betaine

Glycine betaine (GB, N-methyl-substituted derivative of 
glycine) is an organic osmolyte that accumulates in numer-
ous plant species in response to environmental stressors, 
including UV radiation, extreme temperatures, salinity, 
drought and heavy metals. This compound also occurs 
naturally in a variety of animals and microorganisms (Giri 
2011). In plants, GB abundantly occurs in chloroplasts, 
where it has a crucial role in regulation and the preserva-
tion of the thylakoid membrane, hence supporting pho-
tosynthetic efficacy. Glycine betaine is synthesised by a 
two-stage process of choline oxidation followed by its con-
version to betaine aldehyde (BADH) by choline monooxy-
genase (Park et al. 2007). Presumably, in response to abi-
otic stressors, GB acts not only as a molecular chaperone 
but also is responsible for protection of transcription and 
translation machinery and it also stabilises a complex of 
proteins and membranes (Chen and Murata 2011). Further-
more, this compound may indirectly induce  H2O2-mediated 
antioxidant mechanisms, e.g. it may enhance catalase gene 
expression and therefore catalase activity (Park et al. 2006). 
Several studies revealed that two approaches the geneti-
cally modified biosynthetic pathway of glycine betaine 
and the exogenous usage of GB, significantly enhanced the 
response of plants to abiotic stress (Park et al. 2006).

Glutathione

Glutathione (GSH) appears to be one of the crucial anti-
oxidants, having diverse roles in plants. GSH is syn-
thesised from 1-glutamine, 1-cysteine, and 1-glycine 
in two ATP requiring steps catalysed by the enzymes 

γ-glutamylcysteine ligase and glutathione synthetase (Noc-
tor et al. 2012). This low molecular weight thiol acts as a 
protector of cells and tissues against a broad range of per-
oxidases, xenobiotics and heavy metals. It also takes part in 
reducing hydrogen peroxide content (Hossain et  al. 2012; 
Noctor et al. 2012). The redox state of glutathione as well 
as its contents in plants vary during the action of stressors. 
GSH is involved in plant tolerance to abiotic and biotic 
stresses (Noctor et al. 2012).

Interesting studies by Herbette et al. (2011) showed that 
overexpression of glutathione peroxidase (GPx, enzyme 
that uses glutathione as a substrate) made tomato plants 
more tolerant to abiotic stress (mechanical one) and less 
resistant to biotic stress (parasites).

The glyoxalases are enzymes responsible for detoxifica-
tion of methylglyoxal as well as other reactive aldehydes 
that appear during metabolism. The detoxification process 
consists of two steps action of two enzymes i.e. glyoxalase 
І and glyoxalase ІI using glutathione as a catalytic cofac-
tor (Mustafiz et  al. 2010). Some researchers implied that 
overexpression of two genes, GlyI (glyoxalase I) and GlyII 
(glyoxalase II), might remarkably enhance tolerance of 
tomato to salinity, suggesting indirectly the significance of 
glutathione. Both reduction of lipid peroxidation and pro-
duction of  H2O2 were observed in transgenic tomato lines 
treated with high concentration of NaCl (800  mM). Fur-
thermore, control plants were characterized by a significant 
decrease in the chlorophyll a + b content in comparison to 
the transgenic lines (Álvarez-Viveros et al. 2013).

Fatty acid desaturases

Fatty acid desaturases (FADs) are involved in plant 
responses to multifarious abiotic stresses including 
drought, salt and heat. Nevertheless, their function in plant 
resistance to e.g. drought and salt stress remains unknown 
(Zhang et  al. 2012). Wang et  al. (2014) provided clear 
evidence of connection between unsaturated fatty acids 
and tolerance to salt stress. They obtained transgenic 
tomato by overexpressing sense and antisense sequences 
LeFAD3-encoding omega-3 fatty acid desaturase that plays 
an important role in the regulation of the membrane lipid 
unsaturation. Since it converts 18:2 linoleic acid to 18:3 
linolenic acid which presence keeps the membrane intact 
and protects the photosystem, it improves the rate of pho-
tosynthesis providing energy and substrates for growth. 
Therefore, plants bearing the sense sequence and display-
ing higher expression of desaturase, grew and developed 
more vigorously in comparison with the plants bearing 
the antisense sequence showing lower expression. Salt 
stress had also a negative impact on growth of control 
plants (WT). The results also showed that the accompa-
nying increase in SOD and APX may have mitigated the 
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photoinhibition caused by the raised level of ROS in plants 
carrying the sense sequence. The obtained data implied 
that unsaturated fatty acids have an essential role in a plant 
reaction to salinity which corresponds with previous data 
that FAD3 overexpression may contribute to an increase 
in α-linolenic acid (ALA, 18:3) levels in plants (Yu et al. 
2009). Yu et  al. (2009) demonstrated that overexpression 
of tomato omega-3 fatty acid desaturase (LeFAD3) gene 
caused increased tolerance of tomato plants to cold stress, 
which was attributed to the increased level of the 18:3 fatty 
acid that alleviated membrane damage. Likewise, overex-
pression of the FAD3 gene in genetically engineered tomato 
plants resulted in increased fruit flavour and also improved 
the tolerance of plants to chilling stress (Dominguez et al. 
2010). On the other hand, antisense-mediated reduction 
of LeFAD7 improved the high-temperature (HT) toler-
ance of tomato plants through an increased level of fatty 
acids saturation and also mitigated photoinhibition of the 
photosystem (PS) II (Liu et  al. 2010). These results sug-
gest that the increase in HT tolerance in tomato plants with 
antisense expression of LeFAD7 may be increased by fatty 
acid fluxes, which cause a series of physiological changes. 
In contrast to these findings, other results indicated that 
overexpression of LeFAD7 enhanced low-temperature (LT) 
tolerance. This can be attributed to changes in the composi-
tion of membrane lipids in tomato plants (a higher content 
of trienoic fatty acids in comparison to the content of dien-
oic fatty acids) (Liu et al. 2013).

Osmotine

Osmotine is a stress-responsive 24-kDa protein which 
abundantly appears in plants during both abiotic and biotic 
stresses. This protein plays a pivotal role in osmotic regu-
lation of cells by inducing synthesis and accumulation of 
certain solutes into cell compartments. Goel et  al. (2010) 
reported that genetically modified tomato plants with over-
expression of the osmotin gene had higher proline and 
chlorophyll content, relative water content (RWC) and leaf 
expansion than control plants under drought stress condi-
tions. It was also clearly demonstrated that the increased 
content of both proline and osmotin during chilling stress 
in transgenic tomato plants made them more tolerant to 
cold (Patade et al. 2013).

Polyamines

Polyamines (PAs) are a class of organic molecules and 
include spermine (Spm), putrescine (Put), tetramine and 
cadaverine (Cad). In plants, polyamines are not only 
involved in response to environmental stresses, but play a 
crucial role in many other physiological processes as well 
e.g. embryogenesis, organogenesis, floral initiation and 

development, fruit development and ripening, leaf senes-
cence (Minocha et al. 2014). Recently it has been reported 
that PAs are interrelated with miscellaneous metabolic 
pathways and involved in hormonal ‘cross-talks’ that 
are important to the plant stress responses (Alćazar et  al. 
2010). Moreover, research on transgenic overexpression 
of loss-function mutants provided clear evidence of the 
preventive role of polyamines in plant response to abiotic 
stress. Putrescine is formed by decarboxylation of ornith-
ine, the reaction carried out by ornithine decarboxylase, 
ODC, or decarboxylation of arginine in indirect pathway, 
the reaction carried out by arginine decarboxylase, ADC. 
It was reported that transgenic tomato lines with overex-
pression of PtADC (a gene from Poncirus trifoliate) dis-
played enhanced tolerance for dehydratation and drought 
stress (Wang et al. 2011). Under the aforementioned stress 
conditions, a remarkable decrease in ROS (their presence 
accompanies the drought stress) in comparison to WT 
plants, was noticed. A lot of research has pointed out that 
introduction of a broad range of genes involved in polyam-
ine biosynthesis, originating from various sources—both 
plants and animals—has resulted in improved tolerance to 
diverse stresses in such plants as tobacco, tomato or rice 
(including osmotic, salt stresses, heat, freezing, drought) 
(Alćazar et  al. 2010). Cheng et  al. (2009) confirmed that 
tomato plants with overexpression of SAMDC gene (SAM 
decarobxylase, catalyses the synthesis of S-adenosylme-
thionine, a substrate in polyamine formation) from Saccha-
romyces cerevisiae showed better tolerance to HT in com-
parison to WT plants. Transgenic lines were characterized 
by a high level of polyamine accumulation (1.7–2.4 times 
more than under normal conditions). Gong et  al. (2015) 
showed that overexpression of S-adenosylmethionine syn-
thetase (SlSAM1, another enzyme in polyamine synthesis) 
in tomato callus conferred tolerance to alkali stress. It was 
accompanied by an increased content of  H2O2 and PA.

Trehalose

Trehalose, a disaccharide molecule ubiquitous in diverse 
groups of organisms (invertebrates, yeast, bacteria) 
exposed to stress conditions, is an effective ‘osmoprotect-
ant’ (Cortina and Culianez-Macia 2005). Trehalose protects 
membranes and proteins and makes cells dehydration tol-
erant. It has some unique physiochemical features such as 
stability at low pH and height temperatures which make it 
a perfect stress protectant. Moreover, unlike other sugars 
(e.g. sucrose), trehalose is not involved in chemical reac-
tion with protein (Maillard reaction) (Lyu et  al. 2013). 
Some tolerance characteristics were obtained with genetic 
engineering by modifying trehalose metabolism. Tomato 
plants overexpressing the ScTPS1 gene (encoding enzyme 
in trehalose synthesis) were more tolerant to drought, salt, 
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and oxidative stresses than the control plants. However, 
they had some pleiotropic changes, including stiff dark-
green leaves, erected branches, thick shoots, abnormal root 
system development. Further, leaves of transgenic tomato 
exhibited chlorophyll and starch contents higher than in the 
control plants (Cortina and Culianez-Macia 2005). Unde-
sirable changes in plant morphology can result from differ-
ences in the accumulation of trehalose-6-phosphate in cells, 
the intermediate metabolite that is responsible for these 
changes.

Ethylene biosynthesis – an example of modification 
of the expression of genes regulating 
phytohormone levels

Phytohormones play crucial roles in plants adaptation to 
environmental stresses by mediating diverse acclimati-
zation responses. The most important are abscisic acid 
(ABA), ethylene (ET), jasmonic acid (JA), cytokinin (CK), 
salicylic acid (SA). ABA, SA, or ET, all of which are 
known to accumulate to higher levels under stress condi-
tions and under the influence of different genes involved 
in defence mechanisms against stresses. Therefore, it is 
fully justified to characterise the molecular mechanism of 
e.g. ET biosynthesis, signalling or action because it would 
greatly facilitate the modification of phytohormone biosyn-
thetic pathways for obtaining genetically modified plants 
with improved resistance to environmental stresses. ACC 
deaminase is one of the important enzymes involved in the 
biosynthesis of ethylene, displaying the ability of cleaving 
the ethylene precursor (ACC) (Glick et al. 2007; Gururani 
et al. 2015). Grichko and Glick (2001) generated transgenic 
tomato lines overexpressing ACC deaminase derived from 
bacteria. These plants revealed a decreased level of ethyl-
ene, enhanced tolerance to salt and water logging de to the 
suppression of ethylene synthesis by ACC deaminase.

Aquaporins as an example of modification 
of the expression of genes encoding proteins involved 
in water transport

Aquaporins (AQP), membrane channels, are responsible 
for adjustment of water transport in whole plant. Thus, 
these integral membrane proteins function as both  CO2 and 
water channels in plants. Based on numerous studies, AQPs 
were implied to have a pivotal role in water use efficiency 
(WUE) and plant water balance (Li et al. 2014). One of the 
used strategies is overexpression of the aquaporin genes. 
Spectacular results were obtained with SlTIP2:2, a stress-
induced aquaporin of tomato (Sade et  al. 2009). Over-
expression of the tonoplast AQP SlTIP2;2 substantially 
altered water relations, also enhancing transpiration and 

modifying leaf water potential maintenance under drought. 
Expression of this transgene also positively influenced 
plant growth and fruit yield under both control and water 
stress conditions. Furthermore, Sade et al. (2010) revealed 
that overexpression of NtAQP1 gene (originating from 
Nicotiana tabacum) in transgenic tomato lines provoked 
higher levels of net photosynthesis, as well as stomatal con-
ductance and whole plant transpiration under salinity con-
ditions in contrast to WT plants.

Modification of the expression of genes encoding 
ion transport proteins

Several paths have been proposed to enhance tolerance to 
salt stress in susceptible plants. One of the biotechnologi-
cal approaches to enhance drought and salt tolerance in 
plants is modifying the expression of genes engaged in ion 
transport. Pineda et al. (2012) proposed the transformation 
of plants with HAL genes (originating from Saccharomyces 
cerevisiae) to influence cation transport systems  (K+ and 
 Na+). Gisbert et al. (2000) showed that tomato plants car-
rying the HAL1 gene were characterised by enhanced toler-
ance to salinity. Taking into consideration intracellular cat-
ion ratios  (K+ to  Na+), it was found that transgenic tomato 
lines were characterised by higher ability to retain  K+ in 
comparison to control plants under salt stress. Therefore, 
overexpression of the yeast gene HAL5 in tomato improves 
tolerance to salt stress by reducing shoot  Na+ retention for 
a long time. This was the result of reduced transport of  Na+ 
from roots to shoots during the salt stress, regardless of its 
severity. Moreover, maintaining  Na+/K+ homeostasis over 
time was correlated with alteration in the transcript levels 
of cation  (Na+ and  K+) transporters (e.g. SlHKT1;2 and 
SlHAK5) (Garcia-Abellan et al. 2014). Olias et al. (2009) 
revealed that the SISOS1 antiporter is vital for the mainte-
nance of ion homeostasis under salt stress and crucial for 
distribution of  Na+ in the whole plant. Due to the involve-
ment of protein transporters in the transport of ions across 
the tonoplast into vacuoles, the strategy based on overex-
pression of antiporter gene seems to have great potential. 
Leidi et al. (2010) reported that overexpression of AtNHX1 
in tomato plants resulted in increased resistance to salin-
ity. The authors implied that AtNHX1 was responsible for 
the facilitation of active  K+ uptake at the tonoplast and the 
intracellular distribution of  K+. Similarly to these find-
ings, Huertas et al. (2013) observed that LeNHX2 (class II 
NHX transporter), enhanced resistance to NaCl by chang-
ing cytosolic  K+ content or adjusting the activities of  K+ 
transport systems. Alternatively, improvement in salt toler-
ance in genetically engineered tomato by co-expression of 
Arabidopsis  H+-pyrophosphatase and Pennisetum glaucum 
vacuolar  Na+/H+ antiporter was reported (Bhaskaran and 
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Savithramma 2011). Similarly, it was shown that overex-
pression of TaNHX2 (a wheat  Na+/H+ antiporter gene) 
enhanced tolerance to salt stress (100 or 150 mM Na Cl) 
in genetically modified tomato plants (Yarra et  al. 2012). 
Additionally, these results revealed that transgenic tomato 
lines had a substantial relative water and chlorophyll con-
tent under salt stress conditions compared to WT plants. 
Some studies indicated an essential role of vacuolar 
 H+-ATPase (V-ATPase) under drought stress (Hu et  al. 
2012; Dong et  al. 2013; Zhang et  al. 2014). This particu-
lar multisubunit enzyme is responsible for the maintenance 
of cellular stability under stress conditions by stimulating 
secondary transport. It was demonstrated that overexpres-
sion of MdVHA-B (subunit of the V-ATPase from apple) 
in transgenic tomato plants conferred better tolerance to 
drought stress, which was accompanied by RW loss and 
decreased malondialdehyde (MDA) content, with simulta-
neous increase in  H+ ATPase activity and free proline lev-
els in comparison to WT plants (Hu et al. 2012).

Heat shock proteins

Plants are able to synthesise a variety of sHSPs (small Heat 
Shock Proteins) encoded by multigene families. sHSPs pro-
teins are present in different cellular compartments, includ-
ing cytosol, chloroplast, mitochondria and also endoplas-
mic reticulum (ER). Proteins act as chaperones and they 
are directly involved in intracellular protein distribution as 
well as their appropriate folding or degradation. Besides, 
this sHSPs also play a protective role against multifarious 
environmental stresses such as salinity, heat, cold, drought, 
heavy metal and oxidative stress (Al-Whaibi 2011). The 
large variety of plant sHSPs presumably reflects molecu-
lar adaptation to stress. The transcription of HSP encoding 
genes is ordered by regulatory proteins—heat stress tran-
scription factors (HSFs). They occur in an inactive form 
mainly in the cytoplasm. Mishra et al. (2002) studied indi-
vidual HSFs. They obtained genetically modified tomato 
with changed expression of HsfA1, HsfA2, or HsfB1. 
Analyses revealed that HsfA1 played an exceptional role as 
a primary controller in the synthesis of Hsfs A2 and B1 as 
well as Hsps. Furthermore, post-transcriptional silencing 
of the HsfA1 gene also causes severe defects in thermo-
tolerance and plant development at elevated temperatures. 
Kadyrzhanova et  al. (1998) showed that transcription of 
the LeHSP 17.6 gene was heat induced and maintained at 
an enhanced level during subsequent exposure to chilling 
temperature and thus correlated with tolerance to chill-
ing injury. These findings are consistent with the results 
of Sabehat et  al. (1996). They reported that protection of 
tomato from chilling injury afforded by pre-storage heat 
treatment was correlated with the induction of transcription 

of HSP17 and HSP 70 mRNAs and with translation of 
the HSP 17 and HSP 23 proteins, which persisted during 
subsequent storage of the fruit at chilling temperature. 
Certain types of small heat shock proteins are known to 
appear under normal growth conditions and also during 
plant development. Notwithstanding this fact, Nautiyal 
et al. (2005) could not observe the MT-sHSP in WT plants 
at optimum or high temperatures but in transgenic tomato 
plants (harbouring MT-sHSP gene) thermotolerance was 
observed during high temperature stress. A similar positive 
correlation was recorded by Mahesh et al. (2013). The gene 
MasHSP24.4 from wild banana was expressed in different 
tomato plant tissues including root, shoot and stem under 
45 °C treatment. The genetically modified tomato lines dis-
played better growth productivity at the regeneration stage. 
Some data indicated that particular ER-located sHSPs 
in plants may have play the molecular chaperone func-
tions stabilising proteins under stress conditions. Geneti-
cally engineered tomato carrying LeHSP21.5 displayed 
improved tolerance to tunicamycin-ER stress inducer (Zhao 
et al. 2007).

Modification of the expression of genes encoding 
enzymes in the antioxidant system

Glutharedoxins

Maintenance of intracellular redox homeostasis depends 
upon oxidoreductases—glutharedoxins (GRXs). Recently, 
it has been reported that tomato plants with AtGRX gene 
(originating from A. thaliana) expression were better 
adapted to chilling stress in comparison to WT plants. In 
transgenic lines no undesirable changes in morphology of 
plants (growth and development) were observed. (Hu et al. 
2015a).

Catalase

Catalase (CAT), an antioxidant enzyme, belongs to ROS 
scavengers which are responsible for decomposing  H2O2 
to water and oxygen. The catalase (catE) gene originating 
from Escherichia coli has higher affinity to hydrogen per-
oxide compared with plant catalase, and it was introduced 
into the chloroplasts of tomato leaf (Mohamed et al. 2003). 
The results clearly demonstrated that transgenic tomato 
with overexpression of the catE gene were more tolerant to 
oxidative stress caused by the herbicide paraquat. Further-
more, genetically engineered plants displayed increased tol-
erance to oxidative damage resulting from cold or drought 
stress.
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Ascorbate peroxidase

Ascorbate peroxidase (APX) converts  H2O2 into  H2O, 
with ascorbate as an electron donor. So far several diverse 
APX isoforms have been found in individual sub-cellular 
compartments (e.g. peroxisome, mitochondria, chloro-
plasts) and cytosol. The expression of APX genes can be 
switched on by environmental stressors. Thus, they are 
directly engaged in protecting plants against unfavourable 
environmental conditions. Wang et  al. (2006) found that 
genetically engineered tomato plants with overexpression 
of the cAPX gene had improved tolerance to heat stress and 
UV-B, while overexpression of LetAPX (tomato thylakoidal 
ascorbate peroxidase gene) in tomatoes increased the toler-
ance to cold stress, which was accompanied by a significant 
reduction in chlorophyll as well as GSH contents, and APX 
activities in comparison to the control plants (Duan et  al. 
2012). Moreover, the transgenic tomato lines were char-
acterised by decreased MDA content, levels of hydrogen 
peroxide  (H2O2) and ion leakage, higher maximal photo-
chemical efficiency of PSII (Fv/Fm) and higher net photo-
synthetic rate (Pn) (Duan et al. 2012). These findings sug-
gest that overexpression of LetAPX has a pivotal role both 
in mitigating photoinhibition and improving plant resist-
ance to cold stress.

Superoxide dismutases

In higher plants superoxide dismutase (SOD) acts as an 
antioxidant enzyme and a scavenger of ROS which is 
responsible for catalysing production of  O2 and  H2O2 from 
superoxide radicals. Plant cells contain several isoforms 
of SOD differing in the metal  (Fe2+,  Mn2+, and  Cu2+) in 
the active site of the enzyme, as well as their localisation 
in sub-cellular compartments including cytosol, mito-
chondria, peroxisomes and chloroplasts (Wang et al. 2007; 
Aydin et  al. 2014). The impact of elevated expression of 
Mn superoxide dismutase (Mn-SOD) on salt stress toler-
ance was investigated using transformed tomato plants 
(Wang et  al. 2007). This research indicated significantly 
improved tolerance to both salt stress and to herbicide, 
methyl viologen (MV). Additionally, transgenic plants dis-
played decreased electrolyte leakage in comparison to con-
trol plants, implying that overexpression of Mn-SOD in the 
genetically modified plants reduced cellular damage caused 
by reactive oxygen species.

In transgenic tomato lines, the FeSOD gene from A. thal-
iana enhanced the stability of the photosynthetic apparatus 
of plants during oxidative stress caused by UV irradiation. 
Moreover, expression of the FeSOD gene had a significant 
influence on changes of cell ultra-structure sub-compart-
ments of tomato leaves (Baranova et  al. 2010). Baranova 
et  al. (2014) examined the impact of expression of the A. 

thaliana FeSOD1 gene on the dark respiration rate of trans-
genic tomato regenerants without salinity as well as under 
chloride and sulphate salinity. It was observed that trans-
genic tomato reacted differently to NaCl and  NaSO4 treat-
ments. Moreover, it was shown that expression of FeSOD1 
essentially affected the dark respiration rate (DRR).

Modifications of the expression of regulatory genes 
engaged in abiotic stress tolerance

To obtain the improved tolerance to a broad range of envi-
ronmental stresses, modifications of the expression of a 
single gene engaged in tolerance response have been devel-
oped. However, such an approach may have a limited effec-
tiveness. Therefore, both modifications of transcription fac-
tors alone or their interference with different single gene 
manipulations (another than TF), appear a more favour-
able solution. Since transcription factors trigger cascades 
of gene expression that respond to various stress stimuli 
enhancing tolerance towards different stresses, a single 
modification of a TF gene results in simultaneous multi-
ple responses (multiple function/pathway affecting). That 
makes TFs an attractive target category for regulon biotech-
nology to work on improving adaptation.

Transcription factors (TFs)

Transcription factors (sequence-specific DNA-binding fac-
tors) are a large group of proteins involved in gene expres-
sion and they are classified into particular families (Shino-
zaki and Yamaguchi-Shinozaki 2007). Some of TFs were 
known to act during plant adaptation to stresses e.g. during 
drought response: CCAAT-binding (e.g. C3H2 zinc fin-
ger protein ZFP), NAM (no apical meristem), ATAF1-2, 
CUC2 (cup shaped cotyledon), NAC (e.g. stress-responsive 
NAC—SNAC), bZIP (e.g. ABA responsive element bind-
ing protein/ABRE binding factor—AREB/ABF), AP2/
EREB (e.g. DRE binding protein/CRT binding factor—
DREB/CBF) (Yang et  al. 2010). Since numerous studies 
have indicated the transcription factors and cis-acting ele-
ments involved in gene regulation strictly connected with 
response to stress, genetic manipulation at this level would 
seem highly desirable.

An example can be found among a class of bZIP TFs, 
ABF/AREB (activated by ABA) (Sarkar and Lahiri 2013). 
AREBs were recognized to be engaged in response to abi-
otic stress in Solanum genus (Yanez et  al. 2009). It was 
reported that the expression of TF encoding gene, SlAREB, 
in tomato and tobacco leaves upregulated the expression of 
stress-responsive genes, including the LEA genes, RD29B 
gene and trehalose-6-phosphate phosphatising gene. In fur-
ther studies, it was proved that genetically modified tomato 
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plants with overexpression of SlAREB1 showed improved 
tolerance to water and salt stress (Yanez et al. 2009; Hsieh 
et al. 2010; Orellana et al. 2010). Similarly, the cytokinin 
response factors (CRFs), a subgroup of AP2/ERF transcrip-
tion factors, were shown to take part in tomato response 
to diverse abiotic stresses, including oxidative, flooding, 
osmotic, temperature and drought ones. Since SlCRF3 and 
SlCRF5 genes varied in regulation controlled by cytokinins 
under unfavourable conditions, their role as regulators dur-
ing stress is implied (Gupta and Rashotte 2014). Other 
studies demonstrated that also the group of EFR (Ethylene 
Response Factor) TFs was involved in plant stress response 
(Lorenzo et  al. 2003). Biochemical analyses showed that 
TERF1 overproduction in tobacco plants affected the ini-
tiation of the expression of ethylene-inducible genes (con-
taining GCC box, a well conserved region of their promot-
ers) and improved their tolerance to osmotic stress. Further 
research demonstrated that TRF1 transgenic tomato lines 
were salt tolerant as well. These data implies that TERF1 
acts as a linker between the ethylene and osmotic responses 
coupling two pathways of responses (Huang et  al. 2004). 
Similarly, the analysis of Sl-ERF.B.3 (the ethylene response 
factor B.3 originating from tomato) revealed its engage-
ment in response to a wide range of stresses, including 
flooding, heat, cold, drought as well as salinity (Klay et al. 
2014). Its expression is up- or downregulated by the afore-
mentioned stresses.

Moreover, transcription factors can act as linkers of 
signals from diverse pathways combining responses to 
abiotic and biotic stressors. Seong et  al. (2007) studying 
the transgenic tomato with overexpression of the CaKR1 
gene (encoding an ankyrin repeat domain zinc finger) 
revealed increased resistance to biotic stress (Phytophthora 
infestans) and tolerance to abiotic stress (oxidative and salt 
stress). The transgenic tomato with overexpression of the 
rice Osmyb4 gene coding for the MYB transcription factor, 
displayed enhanced tolerance to drought conditions as well 
as resistance to the Tomato Mosaic Virus (ToMV) (Vannini 
et al. 2007).

Interesting findings were reported by Meng et al. (2015) 
regarding the overproduction of LeAN2 transcription factor 
in tomato plants. These results clearly show improved toler-
ance to heat stress and an increased level of anthocyanins. 
Moreover, LeAN2 had an important function in maintain-
ing low ROS levels and alleviating photoinhibition of PSII 
and membrane damage when plants were subjected to high 
temperature stress.

The presented results show how transcription factors 
can work as master molecular switches controlling clus-
ters of genes induced in response to a variety of stressors 
(found also among genes encoding key tolerance proteins 
described in other sections). Therefore, considering them 
as target candidates for genetic engineering aiming at 

counteracting the effects of abiotic stress seems completely 
justified. Examples of interesting modifications of tomato 
plants can be found in a number of papers, e.g. by Hsieh 
et  al. (2002), Singh et  al. (2011), Mishra et  al. (2012), 
Miura et al. (2012), Patade et al. (2013), Rai et al. (2013a, 
b), Shah et al. (2013), Li et al. (2015), Shah et al. (2015) 
and Zhao et al. (2015).

Modifications of expression of genes encoding 
various proteins

Systemins

Systemin is considered as a signal peptide engaged in 
the response to abiotic stress in Solanaceae plants. This 
eighteenth-amino-acid-long molecule was isolated from 
tomato leaves, where it is synthesized as a protein precur-
sor—prosystemin (Coppola et  al. 2015). Grafting experi-
ments showed that, in tomato plants containing prosys-
temin transgene (transformed rootstock), a systemic signal 
responsible for production of high content of proteinase 
inhibitor in undamaged leaves (nontransformed scion) 
was present (McGurl et  al. 1994). These findings proved 
the function of systemin as a mobile wound signal. It was 
reported in the other studies that both jasmonic acid and 
systemin were engaged in wound-induced salt stress tol-
erance in tomato plants (Orsini et  al. 2010). The results 
showed that overexpression of prosystemin reduced of sto-
matal conductance. Nevertheless, transgenic tomato plants 
preserved a higher stomatal conductance in response to salt 
stress in comparison to nontransformed plants.

Expansins

Expansins (EXP) are a group of small proteins (25–27 kDa) 
found in plant cell walls. They are responsible for proper 
extension of the plant cell wall during plant growth caus-
ing wall stress relaxation and irreversible wall extension 
(Xu et  al. 2014). Some data suggest that expansins may 
be important in regulating plant tolerance to a variety of 
abiotic stresses (Gao et  al. 2010; Xu et  al. 2014). Over-
production of the expansin gene TaEXPB23 in transgenic 
tobacco promoted drought tolerance (Li et al. 2011). Over-
expression of the expansin coding sequence CsExp1 from 
cucumber in transgenic tomato plants caused complex 
changes of their appearance (mature plants characterized 
by dwarfish, shortened internodes and leaves) in compari-
son to WT plants. Dark-grown seedlings displayed altered 
(short and wide) hypocotyl (Rochange et al. 2001). Further-
more, transgenic plants overexpressing CsExp1 displayed 
impairment under salt and ABA stress. These findings sug-
gest that this group of proteins affect cell wall organisation 
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under stress conditions and therefore helps plants adapt to 
unfavourable environments.

Modifications of protein potentially involved 
in abiotic stress tolerance

Genetic modifications aiming at obtaining stress-tolerant 
crops are based on regulation or transfer of various genes 
which products are engaged in stress response and toler-
ance. Among them LEA proteins (Late Embryogenesis 
Abundance) or signal transduction proteins can be found 
(Goel et  al. 2011; Muñoz-Mayor et  al. 2012; Álvarez-
Viveros et al. 2013).

LEA proteins, abundantly occurred due to osmotic stress 
or desiccation, are involved in many actions including pre-
vention of membrane leakage, membrane and protein sta-
bilisation, protection of cytosolic structures, maintenance 
of water balance and ion sequestration (Olvera-Carrillo 
et al. 2011). It has been proved that a novel class of LEA in 
plants is involved in freezing tolerance (Sasaki et al. 2014). 
Common characteristics of this group of proteins generally 
include hyper hydrophilicity, heat stability, internally disor-
dered and transcriptionally regulated and ABA-responsive 
gene expression (Sasaki et al. 2014). With respect to amino 
acid sequences, LEA proteins were divided into several 
classes (Olvera-Carrillo et al. 2011). One of them are dehy-
drins (DHNs), which additionally possess chaperone-like 
and detergent properties. LEA genes have been genetically 
modified in many crop plants in order to enhance tolerance 
to drought or salt stress. It was reported that tomato plants 
with overproduction of a dehydrin, (from tas14 gene), 
acquired higher long-term tolerance to salinity and drought 
stress. Moreover, constitutive expression of this gene did 
not impact plant growth under normal conditions (Muñoz-
Mayor et  al. 2012). This is a desirable feature, since the 
constitutive overexpression of most stress-associated genes 
has adverse influence on growth and yield of plants under 
normal condition. Additionally, under salinity, the plants 
overexpressing the tas14 gene are able to transport  Na+ 
ions between young and old leaves, a feature that is closely 
associated with resistance to the action of a hydrochloric 
stressor. It also should be emphasised that the aforemen-
tioned tolerance is strictly correlated with the capabil-
ity of plants to quickly elevate ABA production after they 
detect dehydration. Other studies considering adaptation 
of plants to stress conditions clearly pointed out the pleio-
tropic effect of ShDHN under cold stress (Liu et al. 2015). 
It has been shown that, in comparison to the sensitive S. 
lycopersicum, the overexpression of the ShDHN gene (orig-
inating from wild tomato species S. habrochaites) in the 
cold-tolerant S. habrochaites was adjusted by exogenous 
signalling molecules and other abiotic stresses including 

osmotic, salt, drought ones. Therefore, overexpression of 
ShDHN in tomato plants significantly improves tolerance 
to the aforementioned types of abiotic stresses. Overex-
pression of ShDHN gene affected expression of antioxidant 
enzymes and hence was also responsible for the reduction 
of the level of ROS under cold conditions. Additionally, it 
triggered expression a few genes engaged into jasmonate 
signalling pathway and ROS scavenging.

Another target to be modified while working on plant tol-
erance are signal transduction proteins e.g. kinases (Mishra 
et al. 2012; Li et al. 2013). The mitogen-activated protein 
kinases (MAPKs) are known to play a crucial role in tol-
erance-related signaling networks correlated with different 
stress conditions (e.g. drought stress) (Huang et al. 2012). 
It was proved that SpMPKs (the MAPKs from Solanum 
pimpinellifolium) genes significantly improved drought 
tolerance of tomato lines. Li et  al. (2016) reported that 
overexpression of SlMPK7 was positively correlated with 
improved tolerance of tomato to chilling stress. Another 
multigene plant characteristic family are the calcium-
dependent protein kinases (CDPKs) which like MAPKs are 
engaged in responses to a broad range of abiotic stresses 
(Gao et al. 2014). For example, the expression of LeCRK1 
gene—an isoform of  Ca2+-dependent protein kinase, is 
stimulated by different factors such as salicylic acid, eth-
ylene and also mechanical injury and cold (Leclercq et al. 
2005). Recently it has been reported that MdSOS2L1 (an 
apple derived CIPK kinase) had positive impact on salt tol-
erance both in tomato and apple by increasing the level of 
antioxidant metabolites (Hu et al. 2015b).

Conclusions

It is beyond doubt that abiotic stresses adversely influence 
crop yield affecting growth, development and productiv-
ity. They cause disorders at all levels of plant organiza-
tion and, when extreme, may cause death. However, plants 
have powerful mechanisms to counteract stress—the ability 
of adaptation. Elucidation of the mechanism of tolerance 
at biochemical, physiological and morphological levels 
remains one of the greatest challenges facing contemporary 
plant physiology. On the bases of the knowledge concern-
ing adaptive strategies and components involved, putative 
genetic targets for enhancing crop stress tolerance have 
been determined and some examples of their use are pre-
sented in this paper. At the cellular level, the target mol-
ecules and pathways to be modified can be found among 
those involved in responses of the membrane system, cell 
wall architecture, adjustments of the cell cycle and division, 
and in synthesis and metabolism of endogenous molecules. 
They can be found among structural and functional proteins 
as well, including stress tolerance proteins (such as LEA, 
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late embryogenesis abundant proteins or chaperones) and 
stress response proteins. As it presented, the modifications 
of the genes behind these processes have allowed plants 
displaying increased tolerance to abiotic stresses to be pro-
duced (Yu et  al. 2009; Khare et  al. 2010; Muñoz-Mayor 
et  al. 2012). The use of genetic engineering made further 
research on enhancement of plant tolerance possible, even 
when conventional breeding reached its limits. Molecular 
biology techniques allow to introduce precise gene changes 
without eliminating native genetic traits at the same time, 
which might be the case during traditional field or pure 
in vitro screening. Also their time effectiveness and appli-
cability to a wide range of species are among their obvi-
ous advantages (Gerszberg et al. 2015). However, there are 
some questions regarding research on genetically induced 
tolerance as well, since the abiotic stresses are in a way 
interrelated in their nature and they usually affect plants 
almost simultaneously. Consequently, it would perhaps be 
justified to develop a more multi-target strategy for chang-
ing plant responses, instead of focusing on a single genetic 
event (affecting one separate function). Here, the engineer-
ing of genes encoding transcription factors involved in the 
regulation of stress-responsive genes seems to be the strat-
egy of choice. Not only the multidirectional activity of the 
transcription factors can be used, but also their overexpres-
sion connected with simultaneous modifications of other 
target sequences (e.g. genes of mannitol synthesis and 
accumulation pathways of). Such an approach would prob-
ably also address the objection of the limited effectiveness 
observed when only a single modification (not referring 
to TFs) was introduced. However, no matter how effec-
tive the genetic strategies would be, there is one drawback 
very difficult to overcome, its genetic character. Although 
transgenic crops are subject to much stricter safety tests and 
regulations before sale to the market in comparison to non-
transgenic crops, they are being questioned in many parts 
of the world raising strong public concerns (Eisenstein 
2013; Chow et  al. 2016; Smart et  al. 2016). In this field, 
alternative methods, such as conventional breeding, in vitro 
screening or Molecular Marker Assisted Breeding (MAS) 
can be used. Among them, MAS, supported by phenomics, 
is a particularly promising approach for this kind of crop 
improvement (Ashraf et  al. 2012). It was widely studied 
in different crop species (Jiang 2013) proving its superior-
ity over conventional breeding and in vitro screening. The 
confirmed presence of the molecular marker, here a desired 
gene involved in stress tolerance, assures that plants with 
desirable profiles are investigated from the early stages of 
research. Moreover, the important advantage is the possi-
bility of MAS application regardless of the stage of devel-
opment of the tested plants. Unfortunately, it also has some 
potential drawbacks such as: high costs of implementa-
tion, modifications of traits presented only in a given crop 

species or the limited effectiveness in the case of crops hav-
ing long generation times. In this context, genetic engineer-
ing of “tolerance sequences” appeared to be much more 
precise and displaying much wider spectrum of action. 
Moreover, as opposed to the competitive methods, most of 
its weaknesses can be minimized or overcome.
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