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Abstract The initial step essential in influenza virus
infection is specific binding of viral hemagglutinin to host
cell-surface glycan receptors. Influenza A virus specificity
for the host is mediated by viral envelope hemagglutinin,
that binds to receptors containing glycans with terminal
sialic acids. Human viruses preferentially bind to α2→6
linked sialic acids on receptors of host cells, whereas avian
viruses are specific for the α2→3 linkage on the target

cells. Human influenza virus isolates more efficiently infect
amniotic membrane (AM) cells than chorioallantoic mem-
brane (CAM) cells. N-glycans were isolated from AM and
CAM cells of 10-day-old chicken embryonated eggs and
their structures were analyzed by multi-dimensional HPLC
mapping and MALDI-TOF-MS techniques. Terminal N-
acetylneuraminic acid contents in the two cell types were
similar. However, molar percents of α2→3 linkage prefer-
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entially bound by avian influenza virus were 27.2 in CAM
cells and 15.4 in AM cells, whereas those of α2→6 linkage
favored by human influenza virus were 8.3 (CAM) and
14.2 (AM). Molar percents of sulfated glycans, recognized
by human influenza virus, in CAM and AM cells were 3.8
and 12.7, respectively. These results have revealed struc-
tures and molar percents of N-glycans in CAM and AM
cells important in determining human and avian influenza
virus infection and viral adaptation.
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Abbreviations
AM amniotic membrane
CAM chorioallantoic membrane
DEAE diethylamino ethanol
Gal galactose
GalNAc N-acetylgalactosamine
GlcNAc N-acetylglucosamine
GU glucose unit
HA hemagglutinin
LacNAc N-acetyllactosamine
MALDI-
TOF-MS

matrix-assisted laser desorption
ionization time-of-flight mass spectrometry

MDCK Madin Darby canine kidney
Neu5Ac 5-N-acetylneuraminic acid
Neu5Gc 5-N-glycolylneuraminic acid
ODS octadecyl silica
PA pyridylamino
SiaLac sialyl-N-acetyllactosamine

Introduction

Influenza is caused by enveloped single-stranded negative-
sense RNA viruses, including A, B and C types that differ
in their nucleoproteins and matrix proteins. Influenza B and
C viruses can cause epidemic influenza mainly in humans,
whereas influenza A viruses have caused epidemics and
sometimes pandemics of influenza in both humans and
animals [1, 2]. Influenza viruses are enveloped by glyco-
proteins with antigenic hemagglutinins (HAs; H1–H16
subtypes), which have an important role in binding to
oligosaccharide (glycan) receptors on glycoproteins or
glycolipids of host cell surfaces, triggering endocytosis of
the virus into host cells [1, 3]. Results of a recent in vivo
study have shown that N-glycans are required for influenza
virus infection and entry into host cells of influenza viruses,
at least influenza A (H1N1 and H3N2) and influenza B
viruses [4]. Antigenic HA of human and avian influenza A

isolates recognizes sialic acid with α2→6 and α2→3
linkages respectively, and HA of type B viruses prefers
the α2-6-linked sialic acid [2, 5–7]. HA of influenza C
viruses requires sialic acid with a 9-O-acetyl group for
attachment [8, 9]. Importantly, HAs have been known to be
sugar (glycan)-recognizing proteins that determine trans-
mission and virulence of influenza viruses [1, 2, 10].

Due to the difficulty of obtaining sufficient amounts of
influenza viruses isolated from humans and avians for
studies such as studies on viral biology, vaccine production
and exploration of new antiviral drugs, cultivation of
viruses is needed. Viruses isolated from avian and human
hosts have traditionally been grown in chorioallantoic and
amniotic cavities, respectively, of chicken embryonated
eggs. This is because isolated human influenza viruses
replicate less efficiently if they are not adapted, whereas
isolated avian influenza viruses replicate more efficiently in
a chorioallantoic cavity [11–13]. What is responsible for the
replication requirement of these isolated viruses in their
respective cavity is not known.

Mammalian Madin Darby canine kidney (MDCK) cells
have become routinely used for cultivation of isolated
human influenza viruses, because the newly formed viruses
are antigenically similar to the original isolates [14–16].
Human influenza viruses grown in embryonated chicken
eggs select variants with amino acid mutations in the
receptor-binding site of the HA molecule (host adaptation)
in order to enable the viruses to grow well in these
particular host cells [13, 17–19].

Several studies have shown that different cell types contain
different amounts, types and linkages of sugar chains by using
sialyl linkage-specific lectins [20–24]. Chorioallantoic mem-
brane (CAM) cells were found to contain Neu5Ac(α2→3)
Gal (5-N-acetylneuraminic acid (Neu5Ac) linked to galac-
tose (Gal) by α2-3 linkage), and amniotic membrane (AM)
and MDCK cells contain both Neu5Acα2→Gal and
Neu5Acα2→Gal [25]. However, there has been no report
in which the quantity and structure of N-glycans present on
these two types of cells are described.

By using a multi-dimensional high-performance liquid
chromatography (HPLC) mapping technique [26–28], we have
been able to carry out N-glycosylation profiling in a
quantitative manner at molecular, cellular, and organ levels.
This prompts us to characterize the N-glycans expressed on
CAM and AM cells of 10-day-old chicken embryonated eggs.

Materials and methods

Preparation of N-glycans from CAM and AM cells

CAM and AM cells of 10-day-old chicken embryonated
eggs were removed carefully using fine forceps from the
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inner shell membrane and the embryo, respectively, washed
thoroughly with cold PBS to remove blood cells, and
lyophilized. Dried CAM (22.5 mg) and AM (20.3 mg) was
taken and their lipid was sequentially extracted from the
cells with 80% ethanol, 100% ethanol, chloroform/metha-
nol (2:1, v/v), chloroform/methanol/H2O (1:2:0.8, v/v/v),
and 80% acetone. The cell residues were proteolyzed with
pepsin and further digested with glycoamidase A to release
N-glycans. The resultant peptidic materials were hydro-
lyzed by treatment with pronase [28, 29]. The glycan
fraction was then purified by a Bio-Gel P-2 column (1 cm
i.d.×30 cm) and evaporated to dryness.

Fluorescent derivatization of N-glycans
with 2-aminopyridine and HPLC mapping

The reducing ends of N-glycans were labeled with a
fluorescent reagent, 2-aminopyridine [30]. The pyridyla-
mino-labeled glycan (PA-glycan) mixture was then purified
by gel filtration on a Sephadex G-15 column (1 cm i.d.×
30 cm) to remove excess reagents. The purified PA-glycan
mixture was firstly subjected to an anion exchange
chromatography [TSKgel diethylamino ethanol (DEAE)-
5PW column; 7.5 mm i.d.×75 mm; Tosoh, Tokyo, Japan].
Each peak fraction from the DEAE column was collected,
evaporated, and analyzed by reverse-phase HPLC using a
Shim-pack HRC-octadecyl silica (ODS) column (6.0 mm
i.d.×150 mm, Shimadzu, Kyoto, Japan). Individual peak
fractions from the ODS column were then isolated using a
size fractionation column, TSK-gel amide-80 (Tosoh,
Tokyo, Japan) as conditions reported previously [28, 29].
The elution times of the individual peaks from the amide-
silica and ODS columns were normalized with respect to
PA-derivatized isomalto-oligosaccharides of polymerization
degree and represented in units of glucose (GU). The
identification of N-glycan structures was based on their
elution positions on three kinds of HPLC columns in
comparison with PA-glycans in the GALAXY database
(http://www.glycoanalysis.info/galaxy2/ENG/systemin1.
jsp) [27].

Exo-glycosidase digestion and matrix-assisted laser
desorption ionization time-of-flight mass spectrometric
(MALDI-TOF-MS) analysis

PA-glycans, which did not agree with any of the N-glycans
so far registered in GALAXY, were trimmed by exo-
glycosidase (α-sialidase, α2,3-sialidase, α-fucosidase, β-
galactosidase and β-N-acetylglucosaminidase) treatment
according to previously described [29] to become identical
to known ones. Then the reaction products were subjected
to MALDI-TOF-MS spectrometric analysis and operated as
described previously [31].

Results and discussion

N-glycans released from CAM and AM cells by glyco-
amidase A and labeled with PA were separated by a DEAE
column. Four peaks were eluted at 2, 10–15.5, 21–25.5 and
27–28.5 min (Fig. 1a). These peak fractions were identified
as a neutral glycan (peak 1) and three kinds of acidic
glycans, namely, monosialyated (peak 2), disialyated (peak
3) and disulfated (peak 4) glycan. Each DEAE peak
fraction was further analyzed by ODS column. As shown
in Fig. 1b–e, 13 major peaks (N1–N12′), 11 major peaks
(M1-11), 5 major peaks (D1–D5) and 1 major peak (D6)
were separated from DEAE peaks 1, 2, 3 and 4,
respectively.

Based on the peak areas in the chromatograms shown in
Fig. 1b–e, molar percents of peaks 1, 2, 3 and 4 from CAM
cells were 59.7, 29.5, 9.3 and 1.5, respectively, and those
from AM cells were 56.7, 29.4, 9.5 and 4.4, respectively.
The ratio of molar percent of neutral to acidic glycans was
1.5:1.0 for both CAM and AM cells (Fig. 2). However, the
total amount of N-glycans derived from CAM cells
(114.6 pmol mg−1 dry cells) was 2.4-times than that derived
from AM cells (47.0 pmol mg−1 dry cells).

The PA-oligosaccharide was identified on the basis of
coincidence of elution time normalized in GU with those on
the HPLC map. For example, the major sialo-N-glycan
corresponding to peak M7 was eluted at 14.8 GU on the
ODS column and at 6.8 GU on the amide column. The
elution data set was in good agreement with a known
reference α2→3 sialyl glycan, Galβ1→4GlcNAcβ1→
2Manα1→6(Neu5Acα2→3Galβ1→4GlcNAcβ1→2-
Manα1→3)Manβ1→4GlcNAcβ1→4(Fucα1→6)GlcNAc-
PA (code no. 1A3-210.4 in the GALAXY database). By
co-chromatography and the MALDI-TOF-MS analyses, we
confirmed the structure of this PA-oligosaccharide.

The sialylated PA-glycans corresponding to the fractions
M9, M10, M11 and D4 did not agree with any of the PA-
glycans so far registered in the GALAXY. These PA-
glycans were trimmed by exoglycosidase treatments to
become identical to known ones. Taking into account the
specificities of the exoglycosidases used, the original
structures of these PA-glycans were uniquely determined.

In a similar way, we identified the remaining 27 kinds of
the N-glycans derived from CAM and AM cells, which
consist of neutral and sialyl oligosaccharides, along with
sulfated glycans.

The molar percents of neutral N-glycans detected,
divided into high-mannose-type, galactose-terminal, N-
acetylglucosamine (GlcNAc)-terminal and others, were
18.6, 29.1, 8.2 and 3.8, respectively, in CAM cells, and
30.1, 21.5, 0.0 and 5.1, respectively, in AM cells (Table 1
and Fig. 2). A previous study has shown that human
influenza viruses can react with mannose-binding lectins of
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the collectin family and infect murine macrophages
expressing the mannose receptor and that the infection
was inhibited by yeast mannan [32].

Negatively charged glycans, including sialylated and
sulfated glycans, are the major viral receptors [6]. Influenza
viruses preferentially bind to glycans terminated by sialic
acid, mostly Neu5Ac derivative, either Neu5Ac(α2→3)Gal
or Neu5Ac(α2→6)Gal; human isolates predominantly bind
to Neu5Ac(α2→6)Gal, while avian isolates mainly bind to
Neu5Ac(α2→3)Gal [7, 10, 33–40]. Glycan microarray
analyses detected differences in human and avian influenza
virus HA specificity, such as preferences for fucosylation
and sialylation at positions 2 (Gal) and 3 (GlcNAc,
GalNAc) of the terminal trisaccharide [41], and also
showed that highly pathogenic avian influenza H5N1
viruses bind preferentially to Sia(α2→3)Gal structure [42]

and highly pathogenic avian H7N7 viruses from The
Netherlands in 2003 maintain the classic avian-binding
preference for α2→3 linked sialic acids [43]. Recently, it
was reported that a characteristic structural topology
enables specific binding of HA to α2→6 sialylated glycans
and human adapted H1N1 and H3N2 viruses specifically
bind to long sialylated glycans containing tandem lactos-
amine structure such as Sia(α2→6)Gal(β1→4)GlcNAc
(β1→3)Gal(β1→4)GlcNAc(β1→3)Gal-structures [10]. In
CAM and AM, terminal short sialylated trisaccharide
structure of N-glycans, Neu5Ac(α2→3)Gal(β1→4)
GlcNAc-and Neu5Ac(α2,6)Gal(β1,4)GlcNAc-, were
detected, but long tandem N-acetyllactosamine structure
was not found. Some neutral and sialyl-sugar chains of N-
glycans in CAM and AM were fucosylated. The molar
percents of terminal Neu5Ac(α2→3)Gal and Neu5Ac
(α2→6)Gal derived from CAM cells were significantly
different to those from AM cells: 27.2 and 8.3, respectively,
for CAM cells, and 15.4 and 14.2 respectively, for AM cells
(Table 1 and Fig. 2). This is in agreement with the results of
a previous study using a qualitative lectin assay [25] and
explains why CAM cells are susceptible to avian but not
human influenza viruses, while AM cells are recognized by
human influenza viruses. Moreover, the presence of similar
molar percents of Neu5Ac(α2→3)Gal and Neu5Ac(α2→6)
Gal in AM cells may explain why human influenza viruses
grown in AM cells are easily adapted from human-receptor
to avian-receptor specificity with amino acid substitutions
that cluster around the receptor-binding site of the HA
molecule as described previously [13, 18, 19, 25]. Three
subtypes of avian influenza viruses, H9N2, H7N7 and
highly pathogenic H5N1, have been reported in humans in
recent years [44, 45]. Human lower respiratory tissues and

Fig. 1 Comparison of HPLC profiles (a–e) of pyridylamino (PA)
derivatives of N-linked glycans isolated from chorioallantoic
membrane (CAM) and amniotic membrane (AM) cells. The
derivatized N-glycans from CAM and AM cells were separated on
an ion exchange diethylamino ethanol (DEAE) column (a). Peaks 1,
2, 3 and 4 indicate the elution positions of the derivatized N-glycans
with the corresponding negative charged, neutral, monosialylated,
disialylated and disulfated glycans, respectively. Fractions of peaks
1, 2, 3 and 4 were further separated on a reversed-phase octadecyl
silica (ODS) column as described in the text, giving elution profiles
of b–e, respectively. Peaks in profiles b–e are expressed as N1-13
(neutral), M1-11 (monosialylated) and D1-6 (disialylated or dis-
ulfated); their corresponding structures are shown in Table 1. The
epimeric by-products of the pyridylamination reaction are indicated
with a prime, e.g. M2′. Asterisks indicate the fractions containing no
detectable PA-oligosaccharides

R

Fig. 2 Comparison of percent
contents of N-glycans of cells
derived from chorioallantoic
(CAM) and amniotic (AM)
membranes. The data plotted
correspond to percent glycan
content in Table 1
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Table 1 Structures and molar percents of N-linked glycans of chorioallantoic membrane (CAM) and amniotic membrane (AM) cells isolated
from 10-day-old embryonated eggs

Peak
Code No.a

Structure
Relative quantity (mol %)b

CAM AM

Neutral glycans
Peak 1
High-mannose-type glycans

N1
M8.1

4.3 9.7

N2c

M7.2
1.6 3.7

N2c

M9.1
4.3 8.0

N3
M6.1

3.0 3.9

N4
M5.1

3.7 3.3

N5
H5.12

1.7 1.5

Galactose-terminal glycans

N6
200.4

5.4 2.1

N8+8
,

210.4
13.0 4.3

N9
201.4

1.6 2.0

N12+N12
,

211.4
9.1 13.1

N-acetylglucosamine-terminal glycans

N7d

210.1
1.0 -

Manβ4GlcNAcβ4GlcNAc

Manα2Manα2Manα3

Manα6
Manα2Manα6

Manα3

Manβ4GlcNAcβ4GlcNAc

Manα2Manα3

Manα6
Manα2Manα6

Manα3

Manβ4GlcNAcβ4GlcNAc

Manα2Manα2Manα3

Manα6

Manα2Manα6

Manα2Manα3

Manβ4GlcNAcβ4GlcNAc 

Manα2Manα3

Manα6
Manα6

Manα3

Manβ4GlcNAcβ4GlcNAc 

Manα3

Manα6
Manα6

Manα3

Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα3

Manα6
Manα6

Manα3

Manβ4GlcNAcβ4GlcNAc 
Fucα6Galβ4GlcNAcβ2Manα6

Galβ4GlcNAcβ2Manα3

Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

Galβ4GlcNAcβ2Manα3

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

Galβ4GlcNAcβ2Manα3

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

Galβ4GlcNAcβ2Manα3

Fucα6

Manβ4GlcNAcβ4GlcNAc 
Fucα6GlcNAcβ2Manα6

GlcNAcβ2Manα3
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Table 1 (continued)

N7d

201.1
1.9 -

N10
501.1

1.9 -

N11
301.1

3.4 -

Others 3.8 5.1

Total 59.7 56.7

Acidic glycans
Peak 2
Monosialylated glycans

M1
1A1-200.4

1.3 1.3

M2 + M2’
1A3-200.4

4.2 2.0

M3
1A4-200.4

1.5 0.8

M5
1A1-201.4

- 1.4

M6 + M6’
1A1-210.4

3.1 3.1

M7 + M7’
1A3-210.4

12.8 7.0

M8
1A4-210.4

1.4 1.7

M9
1A1-211.4

0.8 2.5

M9
1A4-310.8

0.8 -Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6 Fucα6

Galβ4GlcNAcβ4

NeuAcα3Galβ4GlcNAcβ2
Manα3

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 

GlcNAcβ2Manα6

GlcNAcβ2Manα3

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 
GlcNAcβ4

GlcNAcβ2

GlcNAcβ2Manα6

Manα3

GlcNAcβ2

GlcNAcβ2

Manα6GlcNAcβ4

GlcNAcβ6

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc

Manα3
GlcNAcβ4

Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

NeuAcα6Galβ4GlcNAcβ2Manα3

Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

NeuAcα3Galβ4GlcNAcβ2Manα3

Galβ4GlcNAcβ2Manα3

Manβ4GlcNAcβ4GlcNAc 

NeuAcα3Galβ4GlcNAcβ2Manα6

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

NeuAcα6Galβ4GlcNAcβ2Manα3

Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

NeuAcα6Galβ4GlcNAcβ2Manα3

Fucα6

Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

NeuAcα3Galβ4GlcNAcβ2Manα3

Fucα6

Manβ4GlcNAcβ4GlcNAc 

NeuAcα3Galβ4GlcNAcβ2Manα6

Galβ4GlcNAcβ2Manα3

Fucα6

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 

Galβ4GlcNAcβ2Manα6

NeuAcα6Galβ4GlcNAcβ2Manα3

Fucα6

Peak
Code No.a

Structure
Relative quantity (mol %)b

CAM AM
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Table 1 (continued)

M10
1A3-211.4

0.5 1.8

M11
1A2-211.4

0.7 1.3

Monosulfated glycans
M4 + M4 (Hex)4(HexNAc)5(DeoxyHex)1(HSO3)1

e 1.6 4.8

Others 0.8 1.7

Total 29.5 29.4

Peak 3
Disialyated glycans

D1
2A1-200.4

0.7 0.8

D2
2A4-200.4

1.0 0.5

D4
2A3-210.4

0.8 -

D5 + D5
2A4-210.4

4.6 1.6

Monosialylated and monosulfated glycan

D3 + D3 (Hex)4(HexNAc)5(DeoxyHex)1(HSO3)1(NeuAcα2,6)1
e 1.3 3.8

Others 0.9 2.8

Total 9.3 9.5

Peak 4
Disulfated glycan

D6 + D6 (Hex)3(HexNAc)6(DeoxyHex)1(HSO3)1
e 0.9 4.1

Others 0.6 0.3

Total 1.5 4.4

NeuAcα3Galβ4GlcNAcβ2Manα6

NeuAcα6Galβ4GlcNAcβ2Manα3

Fucα6

Manβ4GlcNAcβ4GlcNAc 

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 
Galβ4GlcNAcβ2Manα6

NeuAcα3Galβ4GlcNAcβ2Manα3

Fucα6

GlcNAcβ4-Manβ4GlcNAcβ4GlcNAc 

NeuAcα6Galβ4GlcNAcβ2Manα6

Galβ4GlcNAcβ2Manα3

Fucα6

Manβ4GlcNAcβ4GlcNAc 

NeuAcα6Galβ4GlcNAcβ2Manα6

NeuAcα6Galβ4GlcNAcβ2Manα3

Manβ4GlcNAcβ4GlcNAc 

NeuAcα3Galβ4GlcNAcβ2Manα6

NeuAcα3Galβ4GlcNAcβ2Manα3

Manβ4GlcNAcβ4GlcNAc 

NeuAcα3Galβ4GlcNAcβ2Manα6

NeuAcα3Galβ4GlcNAcβ2Manα3

Fucα6

Peak
Code No.a

Structure
Relative quantity (mol %)b

CAM AM

‚

‚

‚

‚

Hex hexose, HexNAc N-acetylhexosamine, DeoxyHex deoxyhexose, HSO3 sulfate group
aPA-oligosaccharides are coded according to the literature [27]
bMolar percent of glycan content in CAM and AM cells was calculated on the basis of peak area in Fig. 1b–e by comparison with total glycan content in
CAM and AM cells, respectively
cFraction N2 from the ODS column was separated into two subfractions on the amide column. The molar percent of each glycan was calculated on the basis
of peak areas in the elution profile on the amide column
dMolar percent of each glycan was calculated on the basis of peak intensity in the MALDI-TOF-MS spectrum
eCarbohydrate composition was estimated on the basis of MALDI-TOF-MS data
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lungs to which mainly these viruses attached have been
shown to contain both 2→3 and 2→6 linkages by lectin
staining [21–24]. Although several factors may be required
for crossing host restriction [44, 45], surveillance of
transmission between humans or emergence of new
pandemic strains has to be increased because they are
RNA viruses capable of rapid evolution [1, 2].

Another sialic acid derivative, N-glycolylneuraminic
acid (Neu5Gc), an additional receptor of some human and
animal influenza A viruses [38, 46, 47], could not be
detected in N-linked glycans of both CAM and AM cells.

The sialic acid with 9-O-acetyl, which serves as a
specific primary receptor for influenza C viruses [8, 9]
and is recognized by avian (duck) influenza A virus [46],
could not be detected in N-linked glycans of both CAM and
AM cells. However, AM cells have been shown to be
susceptible to influenza C viruses [25, 48]. These findings
indicate that 9-O-acetyl sialic acid may be carried on O-
linked glycoproteins or glycolipids, such as gangliosides [8,
49], in AM cells of chicken embryonated eggs.

Unlike sialic acid, little is known about the relationship
between sulfated glycans and influenza viruses. There is
evidence that some chicken and mammalian influenza A
viruses display a high binding affinity for sulfated sialyl-
glycan receptor, and this binding affinity is decreased after
treatment of cells with sulfatase [50]. The presence of
sulfated Neu5Ac(α2→6)Gal in CAM and AM cells (1.3%
and 3.8%, respectively, Table 1) may facilitate human
influenza virus infection of AM cells. A 6′-HSO3 LacNAc
probe without sialic acid was also shown to bind to human
influenza type A and B viruses with affinity comparable to
that of a 6′-SiaLac probe [51]. The difference in molar
percents of sulfated glycans detected in CAM cells (2.5)
and AM cells (8.9; Fig. 2) may be a reason why human
influenza viruses are more efficiently cultivated in AM cells
than in CAM cells.

In summary, by using highly sensitive and efficient
analytical techniques, we have identified N-glycan struc-
tures and have confirmed the presence of both α2→3 and
α2→6 linkages in N-glycans, known to be important for
efficient virus entry and infection. CAM and AM cells have
different ratios of molar percent of Neu5Ac(α2→3)Gal to
Neu5Ac(α2→6)Gal (3.3:1.0 and 1.1:1.0 in CAM and AM
cells, respectively) reflecting distinctions in susceptibility of
these cells to different influenza virus species and account-
ing for the binding of viruses cultivated in chicken
embryonated eggs to shift to Neu5Ac(α2→3)Gal specific-
ity. Our data have also shown that CAM and AM cells
contain N-glycans with terminal mannose and sulfate
residues capable of binding to influenza viruses. However,
Neu5Gc and 9-O-Acetyl sialic acid, recognized by some
influenza viruses, were not detected in N-glycans of CAM
and AM cells.
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