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Abstract
We derive the power spectrum of primordial quantum fluctuations in an infla-
tionary universe for curvature parameter K = 1. This is achieved through a
Born–Oppenheimer type of approximation scheme from the Wheeler–DeWitt equa-
tion of canonical quantum gravity using gauge-invariant variables. Compared to the
flat model, the closed model exhibits a deficit of power at large scales.
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1 Introduction

Observations seem to indicate that our Universe is spatially flat [1]. For this reason,
one mostly uses the flat caseK = 0 in Friedmann models for the present and the early
Universe. This does, of course, not imply that our Universe is spatially exactly flat;
it only implies that potential curvature terms seem irrelevant in the available class of
observations. Still, there is currently a discussion about the correct interpretation of the
data, and indications were found that speak in favour of a spatially closed Universe;
see, for example, [2–4]. This is one of the reasons why we undertake here the task
of calculating the power spectrum for a spherical (K = 1)-model. A closed model
might explain the observed low amplitude of quadrupole and octopole modes [1],
which remains unexplained in the standard ΛCDM model of cosmology. In addition,
an inflationary phase has been invoked to solve the flatness problem; that is, even for
general curvature parameterK the dynamics of the inflation drives the universe toward
flatness, by which we mean a negligible termΩK = −K/a2H2. From this viewpoint,
therefore, considering a universe with curvature (in our case K = 1) is in the context
of inflation more natural than just assuming exact flatness (K = 0).

Another reason for our investigation is to have the formalism ready for future
applications in quantum gravity. The closed case was, of course, addressed before,1

but it is, to our knowledge, the first time that a full analysis from a fundamental
(Schrödinger) picture point of view is performed using gauge-invariant variables.

Studying a closed universe is not restricted to the spherical case. One could also
envisage a three-dimensional torus universe or a topologically more involved model.
To be definite, we shall discuss here only the case of a three-dimensional sphere.

In our paper, we employ cosmic perturbation theory for an inflationary universe;
see, for example, [9, 10], and [11]. Since in such models the perturbations have their
origin in primordial quantum fluctuations, we find it natural to employ the Schrödinger
picture for their formulation. For the flat case, such a descriptionwas used, for example,
in [10, 12], and [13, 14]. As for the initial state of these quantum fluctuations, wemake
the standard assumption that they be in their adiabatic vacuum state, an assumption
that may eventually be justified from a fundamental principle such as the (quantum)
Weyl curvature hypothesis [15]. The extension to excited states is straightforward [16].

Our paper is organized as follows. In Sect.2, we review the cosmic perturbation
theory for a spherical universe. We use gauge-invariant variables, in particular a gen-
eralization of the Mukhanov–Sasaki variable known from the flat case. Curvature
perturbations are introduced in Sect. 3. In Sect. 4, we discuss the quantization of the
modes in the slow-roll approximation using a Born–Oppenheimer type of scheme for
the Wheeler–DeWitt equation of canonical quantum gravity. As initial condition we

1 See, for example, [5–8].
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choose the modes to be in their adiabatic ground state. Section 5 is then devoted to the
calculation of the power spectrum. We compare the result with the power spectrum
for the flat case and show that there is less power for large modes. We end with a brief
conclusion and add some appendices displaying details of the perturbation theory for
the closed case.

2 Hamiltonian formulation for an inflationary Friedmann universe

The construction of a Hamiltonian formulation for general relativity starts with the
foliation of spacetime into three-dimensional spacelike Cauchy hypersurfaces param-
eterized by a time function t (see e.g. [17]). The line element takes the form

ds2 = −
(
N 2 − Ni N

i
)
dt2 + 2Nidx

i dt + hi j dx
i dx j , (1)

where N is the lapse function, Ni is the shift vector, and hi j is the three-metric.
The total action, which is a sum of the Einstein–Hilbert action and the action of a

scalar field, will be rewritten using (1). Afterwards, taking variations of the action with
respect to the lapse function and shift vector leads to the Hamiltonian and momentum
constraints. For the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, see (2)
below, the momentum constraints are trivially satisfied.

2.1 Background Hamiltonian

To describe an inflationary universe, we consider the FLRWmetric coupled to a scalar
field φ with a quadratic potential V(φ) = 1

2m
2φ2. For a closed spherical universe, the

line element reads
ds2 = −N 2(t)dt2 + a2(t)dΩ2

3 , (2)

where dΩ2
3 denotes the metric of the unit three-sphere. We note that the scale factor

a, the Friedmann time t (and thus s) have dimensions of a length, while the remaining
variables are dimensionless.

Redefining the scalar field as φ → φ/
√
2π , the action for the inflationary universe

takes the form

S = 1

2

∫
N dt

[
− 3π

2G

a

N 2 ȧ
2 + a3

N 2 φ̇2 + 3πaK
2G

− 2a3V(φ)

]
, (3)

where the spatial integration was performed over the three-sphere.

Let us introduce the variablemP :=
√

3π
2G , which in the quantum theorywill become

the (redefined) Planckmass after setting � = 1. The background Hamiltonian can then
be written in the form

H|0 = N
1

2
e−3α

[
− 1

m2
P

pα
2 + pφ

2 + 2e6αV(φ) − m2
PKe4α

]
, (4)
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where

pα = −m2
Pe

3α α̇

N
and pφ = e3α

φ̇

N
. (5)

We have introduced here the dimensionless quantity α by α = ln a/a0, where a0 is a
reference scale that we shall not write out explicitly (one should keep in mind that it
occurs together with powers of eα). The field equations are

H2 = 1

m2
P

(
2V(φ) + φ̇2

)
− K

a2
, (6)

ä

a
= 1

m2
P

(
2V(φ) − 2φ̇2

)
, (7)

φ̈ + 3H φ̇ + V,φ = 0. (8)

Note that in order to write the above expressions in terms of conformal time η, which
is defined by dη/dt = a−1, one simply has to set N = a(t)/a0. Also, the derivative
with respect to η will be denoted by a prime. Conformal time will be used below.

Solutions of the classical background equations for closed models and quadratic
scalar potential were discussed, for example, in [19] and [18]. In the inflationary
regime, there are no significant differences to the flat case. The main difference lies
in the presence of a recollapse in the closed case. This will be different for the pertur-
bations, which are the main subject of our paper, and to which we now turn.

2.2 Perturbation Hamiltonian

Including perturbations to the metric as well as to the scalar field (see details in
Appendix A.2), the total Hamiltonian can be given as a sum of the background and
perturbation parts [20],

H = N
[
H|0 +

∑
n

Hn|2
]
. (9)

The perturbation part Hn|2 is composed of scalar, vector, and tensor parts,

Hn|2 =
∑
n

[
SHn|2 + V Hn|2 + T Hn|2

]
, (10)

where only the scalar part SHn|2 is of interest here; therefore, the vector and tensor
parts will be ignored. The first-order Hamiltonians

Hn|1 = 0, SHn
_1 = 0, V Hn

_1 = 0 (11)

are the linearized Hamiltonian constraint and the scalar and vector parts of the lin-
earizedmomentum constraints, respectively. Explicit expressions can be found in [20];
the structure of the perturbation scheme is summarized in Sec. II of [13].
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2.2.1 Construction of gauge-invariant variables

TheHamiltonian (9) obtained byHalliwell andHawking in [20] is not gauge-invariant.
A gauge-invariant form was obtained by Langlois in [26]. Applying a method devel-
oped for isolating physical degrees of freedom for Hamiltonian systems with a set
of first-class constraints [28], he obtained gauge-invariant variables and presented
the scalar part s Hn|2 of the perturbation Hamiltonian in gauge-invariant form. This
gauge-invariant variable reads

Qn := −φ′

H (an + bn) + fn, (12)

where an , bn , and fn are the expansion coefficients defined in Appendix B, following
[20]. The gauge-invariant perturbation Hamiltonian assumes the form

s Hn|2 = 1

2
N
{
e−3αUn(α, φ)P2

n + Wn(α, φ)Q2
n

}
, (13)

where

Un(α, φ) = 1 + 3m2
PK

n2 − 4K
(
pφ

pα

)2

, (14)

and

Wn(α, φ) = eα(n2 − K) + e3αm2 + 1

n2 − 4K
1

U2
n

[
3

m2
P

(
n2 − K

)(
1 − n2 − 7K

n2 − 4K

)
e−3α pφ

2

+ 2m2
Pe

9α m
4φ2

pα
2 − 9m2

P
n2 − K
n2 − 4K e−3α pφ

6

pα
4 − 2

(
2n2 − 5K

)
e3αm2φ

pφ

pα

− 6m2
Pe

3αm2φ

(
pφ

pα

)3

− m2
Pe

3αm2
(
pφ

pα

)2

− 6m2
Pe

9αm4φ3 pφ

p3α

+ 4m4
PKe7αm2φ

pφ

p3α
− 3m4

PK
n2 − 4K e3αm2

(
pφ

pα

)4

+ 3
(
n2 − K

)
e3αm2φ2

(
pφ

pα

)2

− 2m2
PKeα

(
n2 − K

)( pφ

pα

)2

− 9m2
P
n2 − K
n2 − 4K e3αm2φ2

(
pφ

pα

)4

+ 6m4
PKeα n2 − K

n2 − 4K

(
pφ

pα

)4
]

. (15)

For the large-wavelength limit, i.e. n → ∞, the perturbationHamiltonian (13) reduces
to

s Hn|2 = N

2

{
e−3αP2

n +
[
eαn2 + e3αm2 + 18

m2
P

e−3α pφ
2

−18e−3α pφ
4

pα
2 − 12e3αm2φ

pφ

pα

]
Q2

n

}
, (16)
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which corresponds to the result for the flat case [26]. We note the occurrence of
momenta pα in the denominator, which can present problems for the general quantiza-
tion, but remains unproblematic for the semiclassical approximaton scheme employed
below.

Using the Hamilton equations

Q̇n =
∂
(
s Hn|2

)

∂Pn
= Ne−3αUn(α, φ)Pn, (17)

Ṗn = −
∂
(
s Hn|2

)

∂Qn
= −Ne−3αWn(α, φ)Qn, (18)

We obtain the equations of motion for the gauge-invariant variable Qn ,

Q̈n + b(n, α, φ)Q̇n + c(n, α, φ)Qn = 0, (19)

where

b(n, α, φ) = 1 − Ṅ

N
− U̇n(α, φ)

Un(α, φ)
and c(n, α, φ) = N 2e−3αUn(α, φ)Wn(α, φ).

(20)

2.2.2 Canonical transformation

We now perform a canonical transformation (Qn, Pn) → (ṽn, p̃n) to get a more com-
pact form for the perturbation Hamiltonian (13). Moreover, we will use the conformal
time η in the following calculations. We use the generating function F3(Pn, ṽn, η),
which is a function of the old momenta and the new coordinates.

Using the relations

Qn = −∂F3
∂Pn

, (21)

p̃n = −∂F3
∂ṽn

, (22)

the new Hamiltonian in terms of (ṽn, p̃n) is obtained via

Hnew = Hold + ∂F3
∂η

. (23)

We now apply this transformation scheme to our particular case. We relate the new
variables (ṽn, p̃n) and the old variables (Qn, Pn) by

ṽn = a√
Un

Qn, (24)
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p̃n =
√
Un

a
Pn +

(
H − 1

2

U ′
n

Un

)
ṽn, (25)

where a dimensionless Hubble parameter H is defined by H = a′/a. Let us call the
new variable ṽn a generalized Mukhanov–Sasaki variable. From this, we obtain the
generating function

F3 = −g−1ṽn pn − g′

g

ṽ2n

2
. (26)

Substituting the time derivative of the generating function into (23), we find theHamil-
tonian in terms of the generalized Mukhanov–Sasaki variable ṽn and its conjugate
momentum p̃n ,

s Hn|2 = 1

2

[
p̃2n + ω2

n(η)ṽ2n

]
, (27)

where

ω2
n(η) = 1

a
Wn Un − H2 − H′ + HU ′

n

Un
− 3

4

U ′
n
2

Un
2 + 1

2

U ′′
n

Un
. (28)

In the large-wavelength limit we have ṽn = aQn , and the perturbation Hamiltonian
(16) assumes the form (27) with

ω2
n = n2 − z′′

z
, and z = aφ′

H . (29)

This corresponds to the well-known result for the flat case [12].

3 Curvature perturbations

Let us introduce now a gauge-invariant variable ζBST
2 which can be written in terms

of a gauge-invariant metric potential Φ defined below in (34), as follows:3

ζBST = −2

3

H2

(1 + w)(H2 + K)

{
H−1Φ ′ +

[
1 − K

H2 + 1

3

(
k

H
)2]

Φ

}
− Φ, (30)

where w is the barotropic index in the equation of state p = wρ. We emphasize that
ζBST is a conserved quantity during the evolution for super-Hubble modes (k � H).
Due to this property, it plays an important role in relating the power spectrum of scalar
perturbations at the end of inflation to the temperature anisotropies of the CMB.

In the literature, another parameter ζ is usually taken as a conserved quantity; here,
however, it does not serve this purpose because it is conserved only for the spatially

2 Named after Bardeen, Steinhardt, and Turner [29].
3 See, for example, [11], Eq. (5.154), or [30], Eq. (4.12).
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flat case. The two parameters are related as4

ζ = ζBST − 1

3

ΔΦ

H′ − H2 , (31)

and for the super-Hubble modes we have ζ � ζBST.
Let us express now ζBST in terms of ṽn . This will allow us later to obtain the power

spectrum of ζBST from the spectrum of ṽn . First, we expand ζBST and Φ in scalar
harmonics as X =∑n,l,m 6−1/2XnQn

lm .
5 Next, using relations (12), (14) and (5), we

write the explicit form of ṽn defined by (24),

ṽn = a√
Un

Qn = a

[
1 + 3K

n2 − 4K
(

φ′

H
)2
]−1 (

−φ′

H (an + bn) + fn

)
. (32)

Since ζBST is expressed in terms of the potential Φ, we have to relate functions an , bn
and fn to it as well. For that purpose, let us recall the line element for a FLRWmetric
plus scalar perturbations as described by functions A, B, C , E (see e.g. [9]),

ds2 = a2(η)
{− (1+ 2A)dη2 + 2B|i dxi dη + [(1+ 2C)γi j + 2E|i j

]
dxidx j}. (33)

where γi j is the metric on the unit three-sphere.
Combining the above-mentioned functions, one can construct the following two

gauge-independent quantities,

Ψ ≡ −C − H (B − E ′) , (34)

Φ ≡ A + H (B − E ′)+ (B − E ′)′ , (35)

which are known as Bardeen potentials. Using the relations given in Appendix A.2,
where the perturbations of themetric are expanded in scalar harmonics, the line element
of the metric plus scalar perturbations can be written as

ds2 = a2(η)

{
−
(
1 + 2 · 6−1/2

∑
n,l,m

gnlmQ
n
lm

)
dη2

+ 2
∑
n,l,m

6−1/2knlm
1

(n2 − 1)
(Q|i )nlmdxidη

+
[(

1 +
∑
n,l,m

61/2(anlm + bnlm)
1

3
Qn

lm

)
γi j

+
∑
n,l,m

61/2bnlm
1

(n2 − 1)
(Q|i j )nlm

]
dxidx j

}
. (36)

4 See, for example, [11], Eq. (5.156).
5 The purpose of having 6−1/2 in the expansion is to cancel out this extra multiplier from the formulas
later on which arises due to the expansion (98).
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Directly comparing (33) and (36) we can relate the functions A, B, C , E with the
functions an , bn , gn , kn .

For convenience, we will proceed in longitudinal gauge (B = E = 0), for which
the line element reads

ds2 = a2(η)
{− (1 + 2Φ)dη2 + (1 − 2Φ)γi j dx

i dx j}. (37)

Given the fact that the two Bardeen potentials (34) and (35) are equal [9, 30], the
following relations are obtained,

Φn = gn = −an (38)

and
bn = kn = 0. (39)

We can then express the function fn in terms of Φn by (107); see Appendix A.3 for
details.

Finally, substituting (108) into (32), we arrive at

ṽn = aH
3φ′

{
H−1Φ ′

n +
[
1 + 3φ′2

H2

]
Φn

}[
1 + K

n2 − 4K
3φ′2

H2

]−1/2

. (40)

Thus, ζBST,n and ṽn are related by

ζBST,n = − H
aφ′

[
1 + K

n2 − 4K
3φ′2

H2

]1/2
ṽn − H2

3φ′2
(n2 − 3K)

H2 Φn, (41)

for which the following relation has been used,

− 2

3

H2

(1 + w)(H2 + K)
≡ − H2

3φ′2 . (42)

This equivalence can be shown easily by simply substituting the barotropic index for
the scalar field and using the background Eqs. (6) and (7) to simplify it further. The
corresponding relation between ζ and the Mukhanov–Sasaki variable for the flat case
is given and discussed in [31].

4 Quantization

We intend to calculate the power spectrum for the slow-roll approximation for which
the following conditions are satisfied:

φ̇ 	 V(φ), φ̈ 	 3Hφ. (43)
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The slow-roll parameters ε and δ are defined by

ε = 1 − H′

H2 , δ = ε − ε′

2Hε
. (44)

The background Eqs. (6) and (7) when written in terms of slow-roll parameters take
the form

a′′

a
= H2(2 − ε), (45)

H2
(
1 − ε

3

)
= 2a2

m2
P

V(φ) − 2K
3

. (46)

The conformal time can be expressed in terms of slow-roll parameters by

η = − 1

H (1 + ε) + O(2), (47)

where the notation O(2) is used to represent quadratic terms in ε and δ.
Applying the canonical quantization scheme, that is, taking the Hamiltonian con-

straint (9) as an operator acting on the wave functional, leads to the Wheeler–DeWitt
equation [17].6 Making a product ansatz for the full wavefunctional based on the
assumption that perturbation modes do not interact with each other, we obtain for
each mode the equation

1

2

{
e−2α

[
1

m2
P

∂2

∂α2 +m2
P

(
e6αH2

(
1− ε

3

)
− K

3
e4α
)]

− ∂2

∂ṽ2n
+ ω2

n(η)ṽ2n

}
Ψn
(
α, φ̃, ṽn

) = 0,

(48)
where we have rescaled φ to a dimensionless variable,

φ̃ = m−1
P φ. (49)

In the Wheeler–DeWitt equation we have ignored the kinetic term ∂2/∂φ2, which is
the quantum analogue of neglecting the classical kinetic term as expressed by (43).

Note that a consistent quantization can be performed by using real variables which,
however, is not the case for the variable ṽn . Following, for example, [12], we could
construct a set of real variables for ṽn and p̃n . But since such a redefinition would
not affect our calculations, we will not introduce them explicitly and treat instead our
variables as real variables.

In terms of the slow-roll parameters, the frequency term ω2
n(η) assumes the form

ω2
n(η) =

(
n2 − K

)(
1 + Kε

n2 − 4K
)

+ 3(ε + δ)

η2

[
1 + 6

(
3 − ε

)

n2 − 4K
]

− 2 + 3ε

η2

6 The formalism of canonical quantization is equivalent to the formalism of path integration; see, for
example, Sec. 5.3.1 in [17].
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+ 1

n2 − 4

{
− 6ε

η2
(n2 − 1)

(
1 − 3

2

1

n2 − 4

)
− K(1 + 6ε)

+K(n2 − 1)

[
− 2(1 + 2ε) + 3(3 − 2ε)

n2 − 4

]}
, (50)

where terms containing K/H2 have been ignored. This approximation is valid as the
comoving Hubble horizon H−1 decreases strongly during inflation.

In the large-wavelength limit, we recover the result for the flat case, see e.g. [11],

ω2
n(η) = n2 − 2 + 6ε − 3γ

η2
, (51)

where we have introduced
γ := 2ε − δ. (52)

In the following, we shall apply a Born–Oppenheimer type of approximation scheme
to the Wheeler–DeWitt equation. This allows us to recover first the dynamics of the
classical background, then the Schrödinger equation for the perturbations propagat-
ing on the classical background and, finally, quantum-gravitational corrections to the
Schrödinger equation. The discussion of the corrections terms will be relegated to a
future paper. Details for the general framework can be found, for example, in [17, 32,
33]. The formalism is flexible enough to be applicable to more general theories such
as conformal gravity [34].

We start by making a WKB-like ansatz,

Ψn
(
α, φ, ṽn

) = ei S(α,φ,ṽn), (53)

and implement the Born–Oppenheimer approximation scheme by expanding
S(α, φ, ṽn) in terms of powers of the Planck mass,

S(α, φ, ṽn) = m2
PS0 + m0

PS1 + m−2
P S2 + · · · . (54)

We then insert (53) into the Wheeler–DeWitt Eq. (48) and derive equations at consec-
utive orders of mP.

At orderm2
P, theHamilton–Jacobi equation for the classical background is obtained,

which takes the form

(
∂S0
∂α

)2

− e6αH2
(
1 − ε

3

)
+ K

3
e4α = 0; (55)

its solution reads

S0(α) = ± 1

H2(3 − ε)

(
H2
(
1 − ε

3

)
e2α − K

3

)3/2

. (56)
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At the next order, m0
P, we get an equation for S1, which can be rewritten as a

Schrödinger equation for wave functions ψ
(0)
n ,

i
∂

∂η
ψ(0)
n = s Hn|2ψ(0)

n , (57)

where the perturbation Hamiltonian operator is

s Hn|2 = −1

2

∂2

∂ṽ2n
+ 1

2
ω2
n(η)ṽ2n; (58)

we have also introduced the conformal time parameter η according to

∂

∂η
:= −e−2α ∂S0

∂α

∂

∂α
= eα

√
H2
(
1 − ε

3

)
− K

3
e−2α ∂

∂α
, (59)

where we have fixed the sign of S0 such that the time direction coincides with the
expansion of the universe.

For the wave functions ψ
(0)
n we make the following Gaussian ansatz:

ψ(0)
n (η, ṽn) = A(0)

n (η)e− 1
2Ω

(0)
n (η)ṽ2n , (60)

where A(0)
n (η) is fixed by the normalization of the wave function. Substituting this

ansatz into the Schrödinger Eq. (57), we obtain

iΩ ′(0)
n (η) = (Ω(0)

n (η)
)2 − ω2

n . (61)

To solve this equation, we use the following substitution:

Ω(0)
n (η) = −i

y′
n(η)

yn(η)
, (62)

which leads to a second-order differential equation, the solution of which is given by

yn(η) = (−nη)1/2
[
cn,1 J−νε,δ(n)

(− nη fε(n)
)+ cn,2 Jνε,δ(n)

(− nη fε(n)
)]

. (63)

Here,

fε(n) :=
√
1 − 1

n2
− 1

n2 − 4

(
2 + 3ε + 3ε − 1

n2
− 3(3 − 2ε)

n2 − 4

(
1 − 1

n2

))
, (64)

and
νε,δ(n) := (γ + 3/2

)
(1 − λε,δ(n)) (65)
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with

λε,δ(n) := 1 −
√
1 − 8

n2 − 4

1

4γ + 3

(
3γ + 12δ + 3ε

2

n2 − 1

n2 − 4

)
; (66)

The functions yn(η) are normalized according to

y′
n y

∗
n − y′∗

n yn = i . (67)

We now choose for sub-Hubble modes the adiabatic vacuum state. In this state, the
modes behave locally as in the Minkowski vacuum. It is defined by the asymptotic
condition

yn(η) → 1√
2n

e−inη, nη → −∞. (68)

We thus have to set in (63)

cn,1 = −cn,2e
−iπνε,δ(n), cn,2 = − i

2

√
π fε(n)

n

einη(1− fε(n))e−iπ/4+iπνε,δ(n)/2

sin (πνε,δ(n))
.

(69)
At the next order, m2

P, we obtain correction terms for the Schrödinger Eqs. (57). They
will give tiny corrections to the power spectrum, similarly to the corrections for the
flat case calculated in [13, 14, 41]. The discussion of these correction terms is beyond
the scope of this paper and will be presented elsewhere.

5 Power spectrum

5.1 General expression

To derive the power spectrum, we have to calculate the two-point correlation function
of ṽn . It can be shown that (see e.g. [12])

〈
ψ | ˆ̃vn ˆ̃v∗

n′ |ψ 〉 = 1

2ReΩ(0)
n

δnn′δll ′δmm′ , (70)

where the wave function ψ is defined by ψ = ∏
n ψ

(0)
n . We also have the following

relation [22],
〈
ψ | ˆ̃vn ˆ̃v∗

n′ |ψ 〉 = 2π2

n(n2 − K)
Pṽδnn′δll ′δmm′ (71)

leading to the following expression for the power spectrum:

Pṽ = n(n2 − K)

2π2

1

2ReΩ(0)
n

. (72)
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Using (62) and (63), we obtain in the super-Hubble limit (−nη → 0) for the real part
of Ω

(0)
n (η) the expression

ReΩ(0)
n (η) = πn fε(n)2−2νε,δ(n)+1

Γ 2(ν)
(−nη fε(n))2νε,δ(n)−1. (73)

Substituting this into (72) and applying further approximations using the smallness of
the slow-roll parameters, we arrive at

Pṽ = n2 − K
4π2 f 3ε (n)ξ2

[
C̃ε,δ − 2(γ − 3λε,δ(n)/2) ln

(
ξ fε(n)

)]
, (74)

where

C̃ε,δ = 1 − 2ε + (γ − 3λε,δ(n)/2)(4 − 2γE − 2 ln(2)) and ξ = n

aH
, (75)

and γE � 0.5772 is the Euler–Mascheroni constant.
In the large-wavelength limit, we recover the result for the flat case [14],

Pv = k2

4π2ξ2

[
Cε,δ − 2γ ln

(
ξ
)]

, (76)

where
Cε,δ = 1 − 2ε + γ (4 − 2γE − 2 ln(2)); (77)

see also [11], p. 498. Furthermore, we need to calculate the power spectrum for the
parameter ζBST. In the super-Hubble limit, the second component in (41) can be
ignored. Hence, for the slow-roll regime, the relation (41) reads as follows:

ζBST,n = −1

a

1√
2
(
ε + K

H2

)
MP

[
1 + K

n2 − 4K
(

ε + K
H2

)]1/2
ṽn, (78)

where we have introduced a redefined Planck mass MP := 1/
√
8πG. With this, the

power spectrum of ζBST takes the form

PζBST = 1

2a2
(
ε + K

H2

)
M2

P

[
1 + K

n2 − 4K
(

ε + K
H2

)]
Pṽn . (79)

Let us emphasize here that the power spectrum has no trivial scale (or wavelength)
dependence. As we show in the next section, particularly for the large scales where
we see the suppression of the spectrum, it does not behave as a power-law.

Here again, considering the large-wavelength limit, we obtain

Pζ = 1

2a2εM2
P

Pvn , (80)
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which is the result for the flat case [14]. (The tensor modes, which are not discussed
here, can be obtained by setting γ = ε.)

In Fig. 1, the power spectra of curvature perturbations are plotted as a function of
the comovingwavelength for the flat and the closedmodel. One can see that, compared
to the flat case, there is a significant suppression of power at large scales for the closed
case. One can also recognize from the plot the natural cutoff at small k due to the finite
radius of this universe.

Let us recall that the curvature radius of a closed model of the universe is given by
Rc = c

H0

1√|Ωk | and that the following relation holds: n2 = K(1 + R2
c k

2
phys), where

kphys is the physical wavelength [35]. We can make the following rough estimate.
Taking the Hubble parameter to be 67.4 km/(s Mpc) and Ωk ≈ −0.037 [1], one can
estimate to have suppression at a scale of approximately 3.6 Gpc and a cut at around
52 Gpc. An exact calculation can be made only by numerical means.

5.2 Power-law approximation

The power spectrum for a single-field slow-rollmodel of inflation can be approximated
by a power-law spectrum [11], which is in agreement with observations [1],

lnPζ = lnPζ (k∗) + [ns(k∗) − 1] ln k

k∗
+ 1

2
αs ln

2 k

k∗
+ · · · , (81)

where k∗ is the pivot scale, As ≡ Pζ (k∗) is called a scalar power spectrum amplitude,
ns is the spectral index, and αs is the running of the scalar index. This approximation
is based on the assumption that there is only a weak scale dependence which can be
quantified by the spectral index.

From (79), it is obvious that there is an explicit scale dependence that enters due
to the curvature of the universe. We will thus not be able to approximate this power

Fig. 1 Plot of the power spectra of curvature perturbations (multiplied by πM2
P/H2) for the flat (dashed

line) and closed (thick line) models of a universe at the point of horizon reentry, i.e. ξ = 1. The slow-roll
parameters are set to ε = 0.005 and δ = −0.006
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spectrum by a power-law at large scales where the scale dependence is prominent.
Indeed, calculating the spectral index for K = 1 case, we arrive at

ns − 1 ≈ −2ε − 2ε(ε − δ)

ε + 1/n2
+ 2

n2

(
1

ε + 1/n2
+ 1

1 − 1/n2

)

− n

n2 − 4 + ε + 1/n2

[
2n

n2 − 4

(
ε + 1

n2

)
+ 2

n3

]

− ln [ fε(n)]
1 − λε,δ(n)

12n

n2 − 4

1

4γ + 3

{
(3γ + 12δ)

[
2n

n2 − 4
− 1

]
+ 3ε

n(n2 − 2)

(n2 − 4)2

}

− 2γ − 3λε,δ(n) + 3

f 2ε (n)

{
1

n2
+ n2

(n2 − 4)2

[
2 + 3ε

+ 3ε − 1

n2

(
2 − 4

n2

)
− 6(3 − 2ε)

n2 − 4

(
1 − 1

n2
− n2 − 4

2n4

)]}
. (82)

We note that in the large-wavelength limit the result for the flat model is obtained [11],

ns − 1 = 2δ − 4ε. (83)

We thus explicitly recognize that for large scales, where the main deviation from the
flat model occurs, the power-law approximation is not applicable. The next step in
comparing our results with observations would consist in determining the angular
power spectrum using numerical tools; see, for example, [36] or the Numerical Cos-
mology library—NumCosmo [37], in order to fit the theoretical result to the Planck
data. This is relegated to future work.

6 Conclusion

The questionwhether our Universe is open or closed is among themost important open
questions in cosmology. Observations indicate that it is spatially flat, but this is not
without controversy [2, 39]. There are also convincing conceptual and mathematical
arguments that suggest that space cannot be infinitely large [38]. These points have
motivated us to have a fresh look at a closed universe and to calculate the power
spectrum for scalar modes in a slow-roll model of inflation from a fundamental point
of view. This means that we started from a theory of quantum gravity (quantum
geometrodynamics) and derived the power spectrum using a Born–Oppenheimer type
of scheme for thewave function.Wemade use of gauge-invariant variables throughout.
Ourmain result is the analytical expression (79) for the power spectrumof the curvature
perturbations. It describes a suppression of power at large scales. The angular power
spectrum can only be calculated by sophisticated numerical methods, which is beyond
the scope of this paper. By employing a closed model, one might be able to explain
the observed lack of power for large scales [1].

It must be emphasized that other, unrelated, models can also lead to a suppression
of power at large scales. One example is fast-roll inflation for an open (K = −1)
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model [40]. There, the suppression can be traced directly to a period of fast roll during
inflation. The treatment in our paper relies on slow-roll inflationary models, which are
the most common ones. A generalization to fast-roll models is beyond the scope of
our paper.

In our paper, we have not considered the power spectrum for the tensorial modes.
In order to achieve this, one should start with the tensorial part of the perturbation
Hamiltonian, bring it into a gauge-invariant form and follow the steps performed
here for the scalar perturbations. For the flat case, there is a simple relation between
scalar and tensor perturbations, but obtaining an analogous relation for the closed case
(which is anticipated to bemore complicated compared to the flat case), can be realized
only after a significant amount of calculations. For this reason, the calculation of the
tensorial power spectrum is beyond the scope of this paper and relegated to future
work.

Our formalism is suitable to calculating genuine quantum-gravitational effects. This
can be achieved by proceeding with the Born–Oppenheimer approximation to higher
orders in the inverse Planck-mass squared. In the flat case, the power spectrum was
calculated along these lines in [13, 14, 16, 41]. So far, these terms are too tiny to
be observable, but they constitute concrete predictions from a concrete approach to
quantum gravity and may become relevant for future applications. The calculations of
such terms for closed models is left for future investigation.
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A Harmonics on the three-sphere

We give here a brief introduction to scalar, vector and tensor harmonics on the three-
sphere following [20, 23, 24], and [25].
We write the FLRW metric as

ds2 = a2(η)
[
−dη2 + dχ2 + s2K(χ)dΩ2

]
, (84)
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where χ is the comoving radial distance, the infinitesimal solid angle dΩ2 = dθ2 +
sin2 θdφ2 and

sK(χ) =
⎧⎨
⎩
sinh

(√|K|χ)/√|K|, K = −1,
χ, K = 0,
sin
(√|K|χ)/√|K|, K = +1,

A.1 Spherical harmonics

Scalar harmonics are solutions of a generalized Helmholtz equation. In a D-
dimensional maximally symmetric space the Helmholtz equation is written as

D2Q(n)(χ, θ, φ) = −k2 Q(n)(χ, θ, φ), (85)

where D2 = Di Di , and Di is a spatial covariant derivative. The comoving wavenum-
ber k and the eigenmode n are related by k2 = n2 − K, with

k2 =
⎧⎨
⎩
n2 + 1, n ≥ 0, K = −1,
n2, n ≥ 0, K = 0,
n2 − 1, n = 1, 2, 3, ..., K = +1.

The general solution Q(n)(χ, θ, φ) can be written as a sum of scalar spherical har-
monics Qn

lm(χ, θ, φ), which can be decomposed into radial and angular parts,

Qn
lm(χ, θ, φ) = Πn

l (χ)Ylm(θ, φ), (86)

where Ylm(θ, φ) are the spherical harmonics. The radial eigenfunctions Πn
l (χ) are

solutions of the radial harmonic equation and are given by

Πn
l (χ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
Nnl

sK(χ)
P−1/2−l

−1/2+in(cosh (
√−Kχ)), K = −1,√

2k2
π

jl(kr), K = 0,√
Mnl

sK(χ)
P−1/2−l

−1/2+n(cos (
√Kχ)), K = +1,

with the coefficients

Nn
l =

l∏
p=0

(
n2 + p2

)
and Mn

l =
l∏

p=0

(
n2 − p2

)
. (87)

We use the normalization condition

∫
Qn∗

lm(χ, θ, φ)Qn′
l ′m′(χ, θ, φ)s2K(χ)dχdΩ = δ(n, n′)δll ′δmm′ , (88)
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where

δ(n, n′) =
{

δ(n − n′) = δ(k − k′), K = 0,−1,
δnn′, K = +1.

A.2 Vector harmonics

The vector harmonics (Si )nlm(χ, θ, φ) are vector solutions of the generalized
Helmholtz equation

D2S(n)
i = −k2S(n)

i , n = 2, 3, 4, . . . , (89)

where n2 = k2 + 2K and S(n)
i are transverse, i.e. the following condition is satisfied:

Di S(n)
i = 0. (90)

Here again, the general solution can be written as a sum of (Si )nlm(χ, θ, φ) vector
harmonics.

We use the following normalization condition

∫
dμ(Si )

n
lm(Si )n

′
l ′m′ = δnn

′
δll ′δmm′ ; (91)

using a parity transformation, the (Si )nlm-harmonics can be decomposed into linearly
independent even, (Sei )

n
lm , and odd, (S

o
i )

n
lm , components (see the detailed explanation

in [25]).
The complete orthogonal set is composed of three vector harmonics: (Sei )

n
lm , (S

o
i )

n
lm ,

and (Pi )nlm . The last one can be constructed via the scalar harmonics Qn
lm ,

(Pi )
n
lm = 1

n2 − KDi Q
n
lm, n = 2, 3, 4, . . . , (92)

which satisfies

D2(Pi )
n
lm = −

(
n2 − 3K

)
(Pi )

n
lm and Di (Pi )

n
lm = −Qn

lm . (93)

The normalization condition is

∫
dμ(Pi )

n
lm(Pi )n

′
l ′m′ = 1

n2 − K δnn
′
δll ′δmm′ . (94)

123



30 Page 20 of 23 C. Kiefer, T. Vardanyan

A.3 Tensor harmonics

The tensor harmonics (Gi j )
n
lm(χ, θ, φ) are tensor solutions of the generalized

Helmholtz equation

D2G(n)
i j = −k2G(n)

i j , n = 3, 4, 5, . . . , (95)

where n2 = k2 + 3K.
The tensor harmonics are transverse and traceless; therefore,

DiG(n)
i j = 0, G(n)i

i = 0. (96)

They can again be classified as even (Ge
i j )

n
lm and odd (Go

i j )
n
lm linearly independent

harmonics.
The normalization condition is

∫
dμ(Gi j )

n
lm(Gi j )n

′
l ′m′ = δnn

′
δll ′δmm′ . (97)

The complete orthogonal set is composed of six tensor harmonics: Qi j , Pi j , Soi j ,

Sei j , G
0
i j , and Ge

i j . The first two, i.e., Qi j and Pi j , are constructed using the scalar
harmonics and Soi j , S

e
i j are constructed via odd (Soi )

n
lm , and even (Sei )

n
lm transverse

vector harmonics (see [20]). Note that forK = +1, the mode values n = 1 and n = 2
should not be included because expanding functions in harmonics on the three-sphere
as certain tensor harmonics is impossible for those values [21].

B Perturbations of themetric and the scalar field

Following [20], the perturbations of the line element (1) are considered. For conve-
nience, we use the same notation as in [20]. The perturbation of the three-metric εi j
when expanded in harmonics reads

εi j =
∑
n,l,m

[
61/2anlm

1

3
γi j Q

n
lm + 61/2bnlm

(
Pi j
)n
lm

+ 21/2conlm

(
Soi j

)n
lm

+ 21/2cenlm
(
Sei j

)n
lm

+ 21/2d0nlm
(
G0

i j

)n
lm

+ 21/2denlm
(
Ge

i j

)n
lm

]
. (98)

The lapse function N , shift vector Ni , and scalar field Φf are expanded in terms of
harmonics as

N = N0

[
1 + 6−1/2

∑
n,l,m

gnlmQ
n
lm

]
, (99)

Ni = a
∑
n,l,m

[
6−1/2knlm(Pi )

n
lm + 21/2 jnlm(Si )

n
lm

]
, (100)
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Φf = 1

21/2π
φ(t) +

∑
n,l,m

fnlmQ
n
lm . (101)

The coefficients anlm , bnlm , conlm , c
e
nlm , d

o
nlm , d

e
nlm are functions of time. For brevity,

as a label we write n instead of labels {n, l,m}.

C The gauge-invariant variable in terms of the Bardeen potential

The goal of this section is to express the functions fn in terms of the Bardeen potential
Φ. This is necessary to ultimately obtain an expression for the gauge-invariant variable
ṽn in terms of the Bardeen potential. To accomplish this task, we need to use the field
equations obtained by the variation of the action with respect to the perturbations. We
write the total action of the inflationary FLRW universe as [20]

S = S0(α, φ, N0) +
∑
n

Sn, (102)

where S0 and Sn are, respectively, the unperturbed (or background) and perturbation
actions. The perturbation action can be written as

Sn =
∫

dt(Ln
g + Ln

m), (103)

where Ln
g is the Lagrangian for the gravitational part and Ln

m respectively for the
matter part; see the explicit expressions of these Lagrangians in Appendix B of [20].

Working in longitudinal gauge andusing (38) and (39), the perturbationLagrangians7

are written in terms of the Bardeen potential,

Ln
g = 1

2
a2
{(

−2n2 − 7 − 33H2
)

Φ2
n − 6Φ ′

n
2 − 24HΦnΦ

′
n

}

and

Lnm = 1

2
a4
{

1

a2

(
f ′
n
2 − 6Φn f ′

nφ
′)− m2

(
f 2n − 6Φn fnφ

)
− 1

a2
(n2 − 1) f 2n + 6φ′2

a2
Φ2
n

+ 9

(
φ′2
a2

− m2φ2

)
Φ2
n − Φn

[
2m2 fnφ − 3 · m2φ2Φn + 2

f ′
nφ

′
a2

3φ′2
a2

Φn

]}
.

Variation of the action Sn with respect to an , fn , and gn leads to two field equations
and a constraint, which when written in terms of Bardeen potential are

Φ ′′
n + 3HΦ ′

n +
[
3a2m2φ2 − 1

3

(
n2 + 2

)
+ 1

3

(
n2 − 4

)]
Φn = 3

(
φ′ f ′

n − a2m2φ fn
)

,

(104)

f ′′
n + 2H f ′

n +
[
m2a2 +

(
n2 − 1

)]
fn =

[
− 2a2m2φΦn + 4φ′Φ ′

n

]
(105)

7 We perform the calculations by setting the units equal to one, and recover them in the final results only.
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and the constraint

2φ′ f ′
n + 2m2a2φ fn =

[
5(−H2 + φ′2) + 3m2a2φ2 − 2

3

(
n2 + 1

2

)]
Φn − 2HΦ ′

n .

(106)
Using the above set of equations, the function fn can be given in terms of Bardeen
potential,

fn = − 1

2φ′(n2 − 1)

{[
− H2 − 2H′ − 3φ′2 + 3m2a2φ2 − 2

3

(
n2 + 1

2

)]
Φ ′

n

+H
[
5a2m2φ2 + 5(−H2 + φ′2) − 2

3
n2 − 4 − 1

3

]
Φn

}
. (107)

Substituting this into (12), and using the background Eqs. (6), (7), (8) to simplify it
further, the following expression is obtained for the gauge-invariant variable Qn :

Qn = φ′

HΦn + fn = H
3φ′

{
H−1Φ ′

n +
[
1 + 3φ′2

H2

]
Φn

}
. (108)
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