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1 The major steps

The dynamics of standard cosmology has two parts: firstly, the dynamics of the back-
ground spatially homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker
(‘FLRW’) model; and secondly, the dynamics of inhomogeneous perturbations about
that model that lead to structure formation in the expanding universe. Understanding
each has taken place in two phases: before inflation theory, and after inflation theory.
The 1946 Lifshitz paper reprinted here “On the gravitational stability of the expand-
ing universe” [1,2] was the pioneer paper investigating the development of generic
linearised inhomogeneities, and provided the basis for all further developments in this
regard.

Cosmological models must of course be related to astronomical observations. One
can observationally directly test the geometry of the background model, and can
observe the structures that form in this model. However additionally, observational
studies of large scale structures on the one hand, and of Cosmic Microwave Back-
ground Radiation (‘CMB’) anisotropies on the other, provide strong observational
constraints on the background model [3,4].

The republication of the original paper can be found in this issue following the editorial note and online
via doi:10.1007/s10714-016-2165-8.
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Table 1 Major steps in cosmological theory: background dynamics and observations; perturbed model
dynamics and observations

Model Dynamics Observations

Background Friedmann 1922 [5] Sandage 1961 [6]

Perturbed Lifshitz 1946 [1,2] Sachs and Wolfe 1967 [7]

The major innovative steps before inflation theory was developed are indicated in
Table 1, with a key paper listed in each case.

– Einstein in 1917 [8] led the way on the application of general relativity theory to
cosmology, but his model was static. Friedmann in 1922 [5] and 1924 [9] developed
the first dynamical cosmological models with k = +1 and k = −1 respectively,
and so opened the way to studying dynamic universe models. Lemaître indepen-
dently in 1927 [10] developed the cosmology of an expanding universe, with a
idealised smoothed model related to observations of galactic redshifts and the
physical history of the universe. Robertson’s masterly paper in 1933 [11] sum-
marised the dynamics of these models; they included matter and radiation, as
discussed by Tolman [12] and Landau and Lifshitz in 1941 [13] (both referred to
by Lifshitz).

– The relation of these models to the theory of observations was initiated by Lemaître,
but he dealt with the theory of redshift only. Following earlier work by Slipher,
Hubble in 1929 [14] observationally established the redshift-magnitude relation,
but did not relate it to theory. Tolman and Whittaker related the theory to lumi-
nosity distances (see [11], p. 69). The theory of observations was developed by
Heckmann, McVittie, Etherington, McCrea, Mattig, Robertson, Hoyle, and others,
and culminated in Sandage’s great paper in 1961 [6] on direct observational tests
to determine the parameters of the background FLRW geometry by predicting
magnitudes, number counts, and redshifts of standard sources in these models as
a function of those parameters.

– The general theory of perturbations in the expanding universe was initiated by
Lifshitz’ 1946 paper [1,2], which is the topic of this note. It underlay all further
studies of growth of inhomogeneities in cosmology, both Newtonian and relativis-
tic, because its main results were then derived also in Newtonian form [15,16],
which had not been achieved before.

– The relation to CMB anisotropy observations, the lynchpin of today’s observational
cosmology [4], was pioneered by Sachs and Wolfe in 1967 [7] soon after the
discovery of the CMB in 1965, directly building on the work of Lifshitz. This was
then developed by many others, e.g. [17,18].

Each step was a major step forward. The development of inflationary dynamics
followed as another major step. After initial work by Gliner in 1965 [19], Englert-
Brout-Gunzig in 1978 [20], and Starobinsky in 1979 [21], the theory of the background
inflationary model was developed: the old inflation of Guth in 1981 [22] followed by
the new inflationary models of Linde [23] and Albrecht and Steinhardt [24] in 1982,
see e.g. Kolb and Turner ([25, pp. 261–320]). Then came the theory of quantum per-
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turbations in an inflationary universe initiated by Mukhanov and Chibisov [26] and
Starobinsky [27] in 1982, and developed by the participants at the Cambridge 1982
Nuffield workshop [28,29], all building on the paper by Lifshitz.

The many observational papers on inflationary universe models that followed then
built on the papers by Lifshitz and by Sachs and Wolfe, but extended to use a kinetic
theory approach, and to consider effects of gravitational radiation. This is now the
standard model of cosmology [30–35].

2 Early attempts

It was believed at the time the Lifshitz paper was written that inhomogeneities in
cosmology led to structure growth. There were two approaches used to examine this:
Newtonian theory calculations, and general relativistic models based on exact spher-
ically symmetric models.

Jeans in 1902 [36] and 1928 [37] [cited by Lifshitz] developed the Newtonian theory
of gravitational instability in a non-expanding medium with pressure. He defined the
Jeans’ mass MJ given by

MJ =
(π

6

) c3
s

G3/2ρ1/2 (1)

where cs is the speed of sound, ρ the density, and G the Newtonian gravitational
constant. He showed that aggregations of greater mass would collapse to give an
exponential growth of the accreting mass because gravitational attraction would win,
while aggregations of lesser mass would oscillate rather than grow because restoring
pressure would win. On this basis he proposed that galaxies (‘nebulae’) would arise
from gravitational instability in a uniform gas. However the calculation is not consis-
tent, as commented by Lifshitz, because all regions of greater mass in an infinite static
medium will also be collapsing, so the growth rate of the accreting mass relative to
the density of the collapsing background is slower than predicted by Jeans’ analysis.

Non-linear spherically symmetric exact inhomogeneous solutions of general rela-
tivity for a dust cloud were investigated by Lemaître in 1933 [38], Tolman in 1934
[12,39], and Sen in 1934 [40]. It is a rather sophisticated exact solution of the Einstein
equations, and it was a remarkable feat to derive something like this at that time and
engage in analysing it from the point of view of observational cosmology, as Lemaître,
Tolman and Sen did.

Robertson in 1933 commented on work done on condensations by Eddington,
McCrea, McVittie and Lemaître up to that time ([11, pp. 81–82]). Lemaître developed
implications for structure formation in 1934 [41], stating

For the perturbed motion, i.e., for a distribution of mass and initial velocities
somewhat different from the idealized model, the motion at some places may be
of a completely different type from the motion of the idealized model. The rela-
tion between the energy-constant h and the mass m may be such that the motion
is of the collapsing type: the expansion velocity vanishes when the gravitation
is not yet completely balanced by the cosmical repulsion and the expansion is
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followed by a contraction. The result of the perturbations is that, after the time
tI , the system includes collapsing regions, distributed in the generally expand-
ing space. That means that we obtain collapsing regions flying away one from
another with velocities roughly proportional to the distance.

Indeed these authors proved that expanding homogeneous universes are unstable to
condensations and rarefactions.

Gamow and Teller in 1939 [42] [cited by Lifshitz] use the Jeans criterion M > MJ ,
expressed in terms of random velocities, in the context of the expanding universe. Using
the Hubble law where v = HR, they state

In an expanding space the formation of gravitational condensations can take
place only when the average density is above a certain critical density ρ0

ρ ≥ 3H2/8πG = ρ0 (2)

They conclude

Under present conditions the formation of condensations in the universe on a
great scale is impossible whatever the masses or velocities of particles may be.

That is, in effect they conclude that a bottom up scenario must apply to galaxy forma-
tion. They continue to discuss whether use of the Friedmann equation for the expanding
universe implies one needs an open or closed universe in order that stars can form.
Using a lookback-time argument, they conclude that either open or closed models are
compatible with star formation.

Gamow in 1948 [43] stated

The epoch when the radiation density fell below the density of matter has an
important cosmogonical significance since it is only at that time that the Jeans
principle of ‘gravitational instability’ could begin to work.

This reflects the point that at that time the issue of matter domination vs radiation dom-
ination had not yet been separated from the issue of tight-coupling vs free streaming.
Lemaître in 1958 [44] summarised the problem, stating

The problem which cosmology has to face is how gas would finally arise from
the primeval radiation and then organise itself into nebulae and secondly to
understand what would arise from the part of the primeval radiation which would
have escaped condensation into gases.

But the paper was before the CMB was discovered and in effect he regarded cosmic
rays as the relic radiation from the big bang.

3 The Lifshitz paper

The Lifshitz paper [1,2] is based on a general relativity analysis of an inhomogeneous
spacetime that can be regarded as linearised round a FLRW homogeneous and isotropic
model.
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Linearisation of the General Relativity equations was of course not new. It had
occurred in three contexts.

– The Newtonian limit of General Relativity was obtained by Einstein in 1916 by
linearising the equations of motion and the field equations around flat spacetime
([45, §21]; see [46, pp. 435–447]).

– The prediction of gravitational waves was derived by Einstein in 1916 by approxi-
mate integration of the gravitational field equations ([47,48], see [46, pp. 442 and
451–457]).

– Particle motion in the linearised theory was studied by Einstein, Infeld, and Hoff-
man in 1938 [49]; this approximation is used for studying planetary orbits in the
solar system, see ([46, pp. 1091–1095]).

Lifshitz’ 1946 paper [1,2] was the first general relativity study of general pertur-
bations of a FLRW cosmology. The paper was extended in the second part of a paper
by Lifshitz and Khalatnikov in 1963 [50], with corrections of a couple of errors in the
original paper.

The paper starts with comments that previous work (referring to Jeans [37] and to
Gamow and Teller [42]) is based in Newtonian theory, and general relativity might
give different results. Also, strictly speaking, the Newtonian derivation is inconsistent,
because one has to discard infinite forces, which is not a consistent mathematical
operation.

This introductory section also gives the main conclusion:

In the expanding universe of the general relativity theory, the perturbations
of most types decrease with time, thus showing no tendency to spontaneous
increase. There also exist such perturbations which increase with time, but so
slowly that they cannot produce large concentrations. Thus we can apparently
conclude that gravitational instability is not the source of condensation of matter
into separate nebulae.

The rest of the paper sets out the calculations leading to this conclusion.

3.1 Background model

Section 1, based on Tolman [12] and Landau and Lifshitz [13], summarizes the geom-
etry and dynamics of FLRW universe models. Both “open” (negatively curved space
sections: k = −1) and “closed” (positively curved space sections: k = +1) models
are considered.

Both matter and radiation are considered. Introducing the conformal time η which
simplifies the equations, the dynamic equations are derived, and solutions given for
the cases of pressure free matter [(1,11) for k = +1 and (1,15) and k = −1] and pure
radiation [(1,12) for k = +1 and (1,16) for k = −1].1

1 Editor’s note: equation numbers of the form (n,m) are references to equations in Lifshitz’s original paper.
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3.2 Linearised equations

Section 2 gives the perturbed metric:

gik → gik + hik (3)

and derives the varied Christoffel symbols (2,3) and curvature tensor components
(2,4). The matter tensor is similarly perturbed in (2,9).

Using a synchronous gauge choice (2,10):

h0α = 0, h00 = 0, (4)

(see Sect. 5.1.1 below for a discussion of this choice), the perturbed field equations
(2,11) are derived. Note that these coordinates are not comoving with the matter
(δuα �= 0). Combining this with the matter perturbations gives the final form of the
field equations (2,15), (2,16). The fractional change in the density is given by (2,17)
and the fractional change in the velocity by (2,18).

The coordinates are not uniquely determined by the synchronous gauge choice (4),
hence some solutions to these equations are gauge modes (they can be eliminated
by coordinate transformations). Equation (2,19) gives a general expression for such
gauge modes.

3.3 Spherical harmonics

The key idea now is to Fourier analyze the perturbations into scalar, vector, and tensor
parts of comoving wave number n. The relevant functions are defined in Sect. 3,
starting from 4-dimensional spherical harmonics.

Because FLRW models are imbeddable in a pseudo-Euclidean 5-dimensional space
(see Robertson’s discussion in [11, pp. 86–87]), one can find 4-dimensional spherical
harmonics from the polynomial (3,1). Scalar 3-dimensional harmonics Q with wave
number n obeying (3,4) follow from this. Vectorial harmonics Sα satisfying (3,6) and
tensorial ones Gαβ satisfying (3,9) can also be defined. Hence

– one can define isotropic tensor functions Qα
β and trace-free tensor functions Pα

β

from the scalars Q, see (3,10);
– one can define vector perturbations Pα from the scalars Q, see (3,11);
– one can define tensor perturbations Sβ

α from the vectors Sα , see (3,12), but cannot
define scalars from this vector;

– one cannot define scalar or vector functions from the tensor functions Gα
β .

Using these functions, one can separate out linear perturbations into scalar, vector, and
tensor parts, and do a spherical harmonic analysis in terms of comoving wavelength
for arbitrary inhomogeneities. The number n determines the spatial periodicity of the
relevant function. The physical wavelength is a/n, so large n corresponds to small
scales.
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3.4 Perturbations of the density of the matter

Section 4 deals with scalar perturbations of open FLRW models (k = −1), accompa-
nied by condensations or rarefactions of matter. The perturbation has the form

hβ
α = λ(η)Pβ

α + μ(η)Qβ
α, h = μQ. (5)

where the wave number n is implied. The perturbed field equations give two coupled
second order growth equations (4,2) for λ and μ. The resulting density and velocity
perturbations are given by (4,3) and (4,4).

Two integrals are defined (4,5) that correspond to gauge modes. The order of the
perturbation equations can be reduced by defining new variables ξ , ζ (4,6) to give two
coupled first order perturbation equations (4,7) for ξ and ζ .

3.4.1 Radiation dominated era

At early times (η � 1), radiation dominates the universe, so the equation of state can
be taken to be

p = ρ/3 (6)

and the equations for ξ and ζ become (4,8). Two different cases occur:
Large scale perturbations: When n is small enough that nη � 1, δρ/ρ has a power

law growth given by (4,9):

δρ/ρ = n2 + 4

9

(
C1η + C2η

2
)
Q (nη � 1). (7)

While this increases with time, C1 � η0 and these perturbations remain small.
Small scale perturbations: When n is large enough that nη � 1, so we have

oscillations, δρ/ρ is given by (4,10):

δρ/ρ = C

(
i n√

3

)
exp

(
i nη√

3

) (
1

n
� μ � 1

)
(8)

(C complex). These are sound waves propagating with speed

u =
√

dp

d(ρ/c2)
= 2√

3
. (9)

The amplitude of the variations remains constant.
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3.4.2 Matter

At late stages of its expansion, the energy-momentum tensor is matter dominated, so
we can take the equation of state to be

p = 0 (10)

and the perturbation equations can be integrated to give the complex expression (4,11)
for δρ/ρ, which includes curvature effects at late times. Before such effects are appre-
ciable (η � 1), there is a decaying mode (4,12) and a growing mode. Lifshitz separates
the latter into two cases: small n gives the curvature dominated form (4,13):

δρ/ρ = C1

60
(n2 + 4)η2Q, (nη � 1), (11)

which does not become large, and large n gives the matter dominated form (4,14):

δρ/ρ = C1

60
n2η2Q, (1/n � π � 1). (12)

These perturbations increase proportionally to the radius and can become large, but
if originating in statistical fluctuations are insignificant relative to those required to
produce nebulae or even stars.

For late stages of the expansion (η � 1) curvature dominates, and one gets (4,15)
for δρ/ρ, tending to a constant or decreasing.

3.4.3 Matter and radiation

When matter and radiation must both be taken into account, one can introduce the speed
of sound u = √

dp/dρ � 1. The pressure terms are only significant if unη � 1. The
solution for δρ/ρ is then (4,16):

δρ/ρ = Cn2

3
√
uη

exp

(
i n

∫
udη

)
(13)

giving “sound waves” propagating at speed u. The condition for such “geometrical
acoustics” is unη � 1. These perturbations also cannot become large.

These perturbations were assumed to be adiabatic. Lifshitz remarks that if this is
not the case, one must take into account in addition entropy changes and thermal
conduction. The gravitational field equations will contain additional terms due to the
variation of entropy.

3.5 Rotational perturbations

Section 5 deals with vector perturbations, which can generate vorticity. The perturba-
tion has the form
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hβ
α = σ(η)Sβ

α (14)

where again the comoving wave number n is suppressed. The perturbed field equations
give the growth equation (5,2) for σ , with solutions (5,3):

σ = const.
∫

dη

a2 . (15)

with perturbation of velocity (5,4). For the radiation dominated case (6), the solution
is (5,5):

σ = −C

η
, aδuα = C

8
. (16)

For the matter dominated case (10), the solution is (5,6), which when curvature is
negligible gives

σ = −8C

η3 . (17)

In all cases the perturbation decreases with time.

3.6 Gravitational waves

Section 6 deals with tensor perturbations, which generate gravitational waves. The
perturbation has the form

hβ
α = ν(η)Gβ

α. (18)

The matter is unperturbed: δuα = 0, δρ = 0 and the growth equation for ν is (6,2).
For the case of radiation (6), the solution is (6,3):

ν = 1

sinh(η)
(C1 sin nη + C2 cos nη). (19)

For the case of pressure-free matter (10) the solution is (6,4). For small η and not large
values of n this gives (6,5):

ν = C1 + C2

η2 ,

(
η � 1

n

)
(20)

while for small η and very large n one gets (6,6):

ν = 4n

η2 (C1 cos nη − C2 sin nη) ,

(
1

n
� η � 1

)
(21)
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The periodic factor in (19), (21) shows these are gravitational waves propagating at
the speed of light, with wave vector k = n/a and phase

∫
ckdt = nη) and amplitude

decreasing as 1/a.

3.7 Extension

Lifshitz and Khalatnikov in 1963 [50] reproduced and extended the results of the
Lifshitz (1946) paper. The abstract of this later paper includes

The second part of the paper contains an investigation of the gravitational stability
of the isotropic model. There are grounds to believe that this model gives an
adequate description of the present-day state of the universe considered on a
large scale. The behaviour in time of various kinds of small perturbations to the
isotropic model is studied. It is shown that perturbations which do not disturb the
uniformity of the distribution of matter are either damped with time or remain
constant. Perturbations which involve changes in the density of matter behave
differently in expanding and contracting universes. In an expanding universe
the changes in the density of matter grow slowly with time for long wavelength
perturbations and decrease with time for short wavelength perturbations. The
contracting universe, however, is essentially unstable against such perturbations.

The new part is the statement that contracting universes are unstable to scalar pertur-
bations.

4 The formation of structure: pre inflation

Lifshitz’ paper was ignored for a while by many standard texts on cosmology, such as
McVittie [51], Bondi [52], Misner, Thorne and Wheeler [46], and Sciama [53], though
McVittie’s section 9.8 in [51] does consider non-uniform models using Newtonian
like coordinates for scalar perturbations, representing N condensations immersed in
a distribution of perfect fluid (equation (9.814)). But McVittie misses the harmonic
decomposition and makes no reference to Lifshitz.

The Lifshitz paper was however noticed by some of those interested in structure
formation.

4.1 The Newtonian version

Bonnor in 1957 [15] extended Lifshitz’ work by studying the Newtonian theory of
cosmological perturbations in an expanding universe, and derived a Jeans’ length
criterion for oscillations in these models. Growth will occur for wavelengths such
that

λ2 >
π

Gρ0

dp

dρ
; (22)
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(his equation (3.21)); for perturbations larger than this wave length in an expanding
model, the density perturbations have to solve his equation (5.6), giving a power law
growth. This confirms that there is no hope of accounting for the formation of nebulae
from statistical fluctuations ([15, pp. 112–113]).

Peebles in his 1971 book Physical cosmology [16] derives a modified Newtonian
limit from the weak field limit of general relativity ([16, p. 214]): his equations (35),
(36) imply

∇2(φ) = 4πG(ρ + 3p) (23)

so giving the general relativistic active gravitational mass ρ + 3p [54,55] rather than
the Newtonian version ρ. From the Newtonian matter conservation and momentum
equations he derives ([16, pp. 215–217]) the Lifshitz growth rate for pressure free
matter, which as Bonnor [52] showed gives the same power law result (his (45)) as
Lifshitz when curvature can be ignored:

δ = A(r)t2/3 + B(r)t−1 (24)

so galaxies cannot grow from gravitational instability because this grows too slowly.
Adding in pressure (46), the Jeans length ([16, pp. 217–219])2

λJ =
(

πkT

Gρmp

)1/2

= cs

(
π

Gρ

)1/2

(25)

separates long wavelengths that behave as (24), because gravitational attraction dom-
inates, from short wavelengths that oscillate like an acoustic wave, because pressure
prevents collapse. This is essentially what was proven by Lifshitz (see Sect. 3.4.1
above), although he did not define a Jeans’ length for his relativistic models.

4.2 Jeans’-length studies and exact spherical models

Many papers then developed structure formation studies largely based on the changing
Jeans’ length as the key parameter, because of the realisation of the importance of the
history of the thermal background radiation.

It had been known since the 1930s that the early universe might involve radiation;
this was implied by Lemaître’s idea of the ‘primeval atom’, and inter alia, Tolman’s
book [12] discussed matter, radiation, and entropy relations in the early universe.
Lifshitz’ paper [1,2] explicitly incorporated the idea of an early radiation dominated
era, an intermediate matter dominated era, and a late curvature dominated era. What
was new after the 1965 CMB discovery was the idea that matter would be ionised
at early times, and so there would be tight coupling of the hydrogen-helium plasma
with photons until recombination took place on a last scattering surface (LSS) at a
redshift of about 1100 [56]. During this tight coupling time, photon oscillations would

2 The first form is that given by Peebles ( [16, p. 218]), the second is that given by Mukhanov ([32, p. 273]).
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17 Page 12 of 32 G. F. R. Ellis

necessarily be accompanied by baryon oscillations. After decoupling, the resulting
blackbody radiation would be freely propagating [16,53,57].

Many papers then proceeded on the basis one did not need a full relativistic analysis
such as given by Lifshitz; the variation of the Jeans’ length with time would govern
structure formation, which could be investigated using Newtonian theory and specif-
ically the results (25), (24).

An example is Doroshkevich, Zeldovich, and Novikov’s 1967 paper [58]. A nice
summary of these arguments is given in a popular book by Silk [59, pp. 172–182].

One could also use general relativistic models based on the spherical shell
(Lemaître-Tolman) pressure free models [38,39] where each shell evolves inde-
pendently, as in Silk and Wilson [60]. Bonnor [61] studied the formation of the
“nebulae” using an exact relativistic model, consisting of two FLRW regions with
different densities, with an LT region interpolating between them. The conclusion
was the same: statistical fluctuations in density are too small to produce the “nebu-
lae”.

Rees in 1971 [62] gave an excellent summary of this phase of understanding, mainly
based on (i) the spherical shell model for p = 0 ([62, pp. 316–318]); (ii) the way Jeans
length varies with time together with the Lifshitz growth law (24), for p �= 0 ([62, pp.
316–318 and 322–326]). The outcome remained the same as found by Lifshitz:

The original studies were motivated by the hope that galaxies and clusters might
have condensed from random

√
N/N fluctuations which would naturally be

expected in a universe composed of discrete atoms. For a galactic mass of 	
1011M◦ however, “statistical” fluctuations are only 	 10−14, and these would not
have condensed out by the present epoch unless one assumes that the growth was
initiated at a stage when the particle horizon encompassed only a few atoms... the
problem is that the overall expansion transforms the growth rate of the instability
from an exponential to a (much slower) power law, which means one must either
suppose that the galaxies come into being at an exceedingly early epoch, or else
assume larger initial amplitudes. ([62, pp. 319–320])

A more optimistic conclusion is given in Peebles’ 1981 book [63, p. 22].

4.3 General relativistic studies

However, many writings considered the full relativistic perturbation theory, as initiated
by Lifshitz, e.g. Harrison [64,66], Field and Shepley [65], Zel’dovich [67], Weinberg
[57] and Peebles [63].

Harrison [64] derived the equations for density perturbations in a longitudinal
gauge, found to be free from gauge modes, and later [66] considered the relation
of Jeans’ length to scale, deriving the scale free spectrum also found by Zel’dovich
[67].

Weinberg [57, pp. 561–588] includes sections on formation of galaxies as affected
by the changing Jeans Length, the Newtonian theory of small fluctuations, and the
GR theory of small fluctuations, and refers to Lifshitz as showing that disturbances at
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wave numbers below kJ grow like powers of t rather than exponentially, as in Jeans’
static case.

Peebles [63, pp. 306–362], after discussing the Newtonian theory, gives a com-
prehensive survey of GR theory perturbation theory, using the synchronous gauge,
considers acoustic waves including identification of the baryon acoustic oscillation
scale, obtains the transfer function and predicts the effect of acoustic waves on it. He
also considered effects on CMB anisotropies (see below).

4.4 Effect on radiation

One can observationally test cosmological perturbation theory firstly by observations
of the power spectrum and angular n-point correlation functions of matter, as pioneered
by Peebles [63], and secondly, by observing their effect on the CMB anisotropy power
spectrum.

The latter approach was pioneered by Sachs and Wolfe in their 1967 paper
“Perturbations of a Cosmological Model and Angular Variations of the Microwave
Background” [7]. Based on Lifshitz’ 1946 work, they consider perturbed field equa-
tions for a k = 0 FLRW model, and characterise the solution for p = 0 and for
p = ρ/3 and its gauge freedom in their equations (22), (23) (which were not given
by Lifshitz [1,2]). The Sachs–Wolfe derivation of their form of the solution is rather
enigmatic; Ehlers gives a full derivation in an introductory note to the reprinted Golden
Oldie version of the paper [7]. Sachs and Wolfe comment on the physical meaning
of the tensor, vector, and scalar perturbations (their §II.d), characterising the same
oscillating and growing density modes as identified by Lifshitz. They then calculated
photon orbits and redshifts in the perturbed model (their equations (37) and (39))
and hence the effect on the CMB anisotropies (their equation (43)). The effect usu-
ally called the Sachs–Wolfe effect is given by their equation (45). They also give the
angular autocorrelation function (their equation (54)).

Sunyaev and Zeldovich in 1970 [17] developed the theory in the context of the
thermal history of the universe, stating

A distinct periodic dependence of the spectral density of the perturbations on
wavelength is peculiar to adiabatic perturbations.

This approach was developed further in Doroshkevich, Zel’dovich, and Sunyaev in
1978 [68]. These models are based on redshift effects for single photons. However a
fuller analysis requires considering a distribution of photons.

4.5 General relativistic kinetic theory

Kinetic theory in FLRW models was presented by Robertson in 1936 [69], referring
back to pioneering work by Lemaître in 1930 [70], Heckmann in 1931 [71], and Milne.
He gives the solution of the Liouville equation in a FLRW universe. However to deal
with structure formation and associated observations, one needs the Liouville and
Boltzmann equations in generic spacetimes.
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Following earlier work inter alia by Synge in 1934 [72], Walker in 1936 [73]3,
Taub, Synge, Sasaki, Ehlers [54], and others, Sachs and Ehlers in their 1968 Brandeis
lectures [74] developed kinetic theory with an aim to application in cosmology. Kinetic
theory in a general spacetime for both matter and massless particles is presented in
detail by Ehlers in his 1969 Varenna lectures [75] and by Stewart [76]. Because this
is a general theory applicable to any spacetime whatever, it applies in particular to
perturbed FLRW models.

The specific application to such models was given by Peebles and Yu in 1970 [18],
where the CMB fluctuation spectrum in a baryon-radiation universe is calculated using
time orthogonal coordinates. They gave the distribution function relaxation collision
equation, the zero pressure solution (their (49)), and derived the CMB fluctuation peak
(Fig 8) and matter peaks (Fig 5). This is the start of the present day understanding of
the matter and radiation power spectra.

Much work followed these pioneering papers. The theory was expanded in detail
in Peebles in his 1980 book [63] using the Liouville equation for collisionless parti-
cles (pp. 345–352) and obtaining the transfer function (pp. 358–363) and predicting
acoustic waves (p. 362) and associated CMB anisotropies (p. 363).

The Boltzmann equation approach has been developed by many others since then,
e.g. Ma and Bertschinger in 1995 [77], and is presented in depth in recent texts such
as Dodelson [31] and Durrer [33].

5 Gauge problem: errors and misconceptions

The papers that used GR methods, following Lifshitz’ paper, came up against a key
problem: the gauge issue, namely, that there is a gauge freedom in fitting coordinates
to a perturbed FLRW model. This was already known to Milne in 1935, see [78, §§3
and 81]. One can choose a constant time surface {t = const} so as to make a density
inhomogeneity

δρ(t, xi ) := ρ(t, xi + δxi ) − ρ(t, xi ) (26)

vanish: simply choose {t = const} surfaces to be the same as the {ρ = const} surfaces,
then ρ(t, xi + δxi ) = ρ(t, xi ) ⇒ δρ = 0. Indeed the value determined for δρ(t, xi )
is arbitrary because of the coordinate freedom t → t ′ = t ′(t, xi ) allowed by General
Relativity. This allows apparent density variations that are in fact gauge modes.

The general coordinate freedom allowed by general relativity was what had already
plagued studies of gravitational radiation. In the case of cosmological perturbations,
Lifshitz was aware of it and handled it carefully in his 1946 paper [1,2] , as did Sachs
and Wolfe in their 1967 paper [7]; but many papers did not, and many errors resulted.
As stated by Kodama and Sasaki [79], referring to the Lifshitz and Khakatnikov paper
[50]:

Although their analysis was entirely correct, their results were often misinter-
preted and misused by a number of authors who subsequently considered the

3 He labels as the Boltzmann equation what we now call the Liouville equation.

123



Editorial note to: E. Lifshitz, On the gravitational stability... Page 15 of 32 17

generation and growth of cosmological density perturbations on super-horizon
scales. This unfortunate situation arose because too much attention was paid to
the growth rate of the density perturbation without realizing that it essentially
depends on the choice of coordinates. In addition the fact that the equations for
density perturbations in the synchronous gauge, which was used in the analy-
sis by Lifshitz and Khalatnikov, are too complicated to allow the elimination of
unphysical gauge modes in general gave rise to a number of incorrect conclusions
in the literature.

This was highlighted in a 1980 paper by Press and Vishniac [80] demonstrating a
number of erroneous results in the literature because the gauge issue was not handled
correctly. There are a number of ways to handle the issue: essentially, fix the gauge
as far as possible and then track the remaining gauge freedom very carefully (Sect.
5.1 below), with various choices as to the coordinates chosen, or use gauge invariant
quantities (Sects. 5.2 and 5.3).

5.1 Gauge fixing

The first method used was to track and use up gauge freedom as far as possible, as in
Lifshitz [1,2] and Sachs and Wolfe [7].

A key example is the Press and Vishniac paper [80], where they worked in the
synchronous gauge but carefully eliminated two unphysical gauge modes associated
with this gauge. This enabled them to reveal the source of some erroneous ideas about
density perturbations on super-horizon scales explicitly.

While there is a whole variety of gauges that can be used (see Bardeen [81]), there
are two commonly used gauges in cosmological perturbation theory: the Synchro-
nous gauge (Sect. 5.1.1) and the Conformal Newtonian gauge (Sect. 5.1.2). They are
compared in detail by Ma and Bertschinger [77].

5.1.1 Synchronous gauge

In general relativity, a synchronous reference system is a coordinate system in which
the metric is fitted to a set of imagined geodesically and irrotationally moving observers
by using comoving proper time for these observers:

ds2 = −dt2 + habdx
adxb, ua = δa0 . (27)

(a, b = 1 − 3) where hab is a positive definite spatial metric. This is the same as the
ADM formalism with shift function set to unity: N = 1, and the lapse vector set to
zero: Na = 0. Any metric can locally be put into this form by a coordinate transfor-
mation by choosing a family of irrotational geodesic observers and an initial surface
t = 0, and constructing the geodesics orthogonal to this surface. The coordinates are
“synchronous” for these observers. However, if there are pressure gradients or matter
has vorticity, these are fictitious observers (they do not correspond to the motion of
any matter) and the coordinates are not uniquely defined because the initial spacelike
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hypersurface {t = 0} can be chosen arbitrarily. It is used in numerical studies because
of its relation to ADM.

Its merit is that it gives the simplest form of the field equations because the orthog-
onal world lines xa(t) with tangent vector ua = dxa/dt = δa0 are geodesic. However
any matter or radiation moving non-geodesically or with vorticity cannot be comov-
ing: its 4-velocity ua = δa0 will have non-zero spatial components.4 It therefore does
not relate well to the Newtonian limit. Furthermore in general the family of fictitious
observers will develop singularities where the orthogonal curves intersect. The gauge
is not completely fixed: there is a residual growing mode that remains, see [82] for a
discussion.

This is the metric form used by Lifshitz [1,2], Sachs and Wolfe [7], and Peebles
and Yu [18].

5.1.2 Conformal Newtonian gauge

The conformal Newtonian gauge is discussed by Bardeen [81] and Mukhanov, Feld-
man and Brandenberger [83]. For scalar perturbations it has the form

ds2 = a2(τ )
[
−(1 + 2Ψ )dτ 2 + (1 − 2Φ)δabdx

adxb
]

(28)

where the conformal time coordinate τ is related to the proper time t by the transfor-
mation dt = a(t)dτ ; when anisotropic stresses vanish, Φ = Ψ . It is most commonly
used for structure formation studies in the linear regime. It still has residual coordinate
freedom. This form was already given by McVittie in his 1932 paper “Condensations
in an expanding universe” [84].

Its merit is that it relates well to the Newtonian limit because the orthogonal world
lines xa(t) with tangent vector Ua = dxa/dt = δa0 are non-geodesic when Ψ varies
spatially, and Ψ then corresponds to the Newtonian potential. However any matter or
radiation moving geodesically or with vorticity will not be comoving: its 4-velocity
ua = δa0 will have non-zero spatial components. In those cases the world lines cor-
respond therefore to a family of fictitious Newtonian-like observers relative to whom
matter moves.

5.2 Gauge invariant formalism

By keeping track of the way gauge transformations affect geometrical and physical
variables, one can form combinations that are gauge invariant. This approach, devel-
oped by Bardeen, is presented in his very influential 1980 paper “Gauge-invariant
cosmological perturbations” [81].

For scalar perturbations, on defining vector and tensor harmonics from scalar har-
monics as Lifshitz did (Sect. 3.3 above), the metric tensor is written in the form (2.14),5

which is essentially a harmonically analysed form of the conformal Newtonian gauge.

4 Cf. Sections 2.3 and 4.4.1 in [55].
5 In this paragraph, these are Bardeen’s equation numbers.
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The most general possible gauge transformation associated with a scalar perturba-
tion is the result of the coordinate transformation

τ̃ = τ + T (τ ) Q(0)(xμ), (29)

x̃α = xα + L(0)(τ ) Q(o)α(xμ) (30)

with T (τ ) and L(0)(τ ) arbitrary functions of τ and Q(o), Q(o)α scalar and vector
harmonics. One can find variables invariant under these transformations, so defining
gauge invariant potentials ΦA (3.9) and ΦH (3.10), a gauge invariant velocity v

(0)
S

(3.11), and two gauge invariant density perturbation variables: εm (3.13) and εg (3.14).
The corresponding harmonically decomposed field equations are (4.3) and (4.4), which
have a very simple form, the momentum equation is (4.5), and the energy equation is
(4.8). Bardeen gives solutions for these gauge invariant variables in specific models for
the evolution of the universe. The approach is usually implemented using a harmonic
decomposition of the Conformal Newtonian gauge.

The method is very effective and widely used, but the variables do not have a
straightforward geometrical meaning: they have to be interpreted in various coordinate
systems. Two major papers developing perturbation theory taking this all into account
are those of Kodama and Sasaki [79] and of Mukhanov, Feldman and Brandenberger
[83]. They both include the perturbed form of the Boltzmann equation.

5.3 The 3 + 1 covariant and gauge invariant approach

An alternative approach is to consider the gauge problem as being the way one fits a
FLRW model to a lumpy universe [85]; the gauge freedom is really the freedom of the
map from the background spacetime into the lumpy more realistic mode. To develop
this one uses a 1+3 splitting relative to a preferred family of observers with 4-velocity
ua developed by the Hamburg group (Heckmann, Schücking, Ehlers, Kundt, Sachs,
and Trümper), summarised by Hawking in 1966 [86], Kristian and Sachs in 1966
[87], and Ellis in 1971 [55]. From this one can define gauge-invariant and covariant
geometric and physical variables for cosmology.

Hawking first used this method in a very nice paper in 1966 [86], but his density
perturbation variable was not gauge invariant. The method was developed further by
Olson in 1976 [88], but was still ambiguous [81]. Ellis et al. in 1989 [85,90] and
1992 [20] completed the Hawking approach by using gauge invariant variables for the
density perturbation.

This 3+1 gauge invariant and covariant formalism centres on the comoving frac-
tional spatial density gradient, defined as

Da := hbaρ,b/ρ (31)

for an observer with 4-velocity ua (uaua = −1), where hab := gab + uaub projects
orthogonal to ua [54,55,87]. The 3+1 choice of ua is similar to gauge freedom, in the
sense that any ua can be chosen (as long as it reduces to the background Ricci eigen-
vector when perturbations are switched off) and this choice changes the perturbative
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variables like Da . However it can always be chosen to be tangent to a physically well
defined set of world lines, for example the timelike eigenvector of the Ricci tensor;
then the associated quantities such as the expansion, shear, acceleration, and vorticity
of these world lines [54,55,87] will be physically meaningful, as will the matter vari-
ables such as the energy density and pressure associated with this reference frame,
and the electric and magnetic parts of the Weyl tensor. Its field equations derive from
the Ricci identities for ua , and can be written out in detail in relation to any specific
coordinate system.

The approach was developed by Ellis and Bruni for pressure-free matter [85], and
extended to general fluids by Ellis, Hwang, Bruni and Dunsby [20,90] (as summarised
in [34]). It has been applied in exact parallel in the Newtonian case [89], giving a much
more transparent derivation of the Newtonian results obtained by Bonnor [15].

When w = p/ρ = const , Λ = 0, and spatial curvature k = 0, the linearised
growth equation for modes of wave number n obtained this way is

D̈a +
(

2

3
− w

)
θ Ḋa −

(
(1 − w)(1 + 3w)

2
κρ

)
Da − w

n2

a2 Da = 0 (32)

which directly gives the general relativistic version of the Jeans’ length [90] and the
density perturbation growth laws. When w = 0 this reduces to

D̈a + 2

3
θ Ḋa − 1

2
κρDa = 0 (33)

which directly gives Lifshitz’ results [1,2] for pressure free matter [85].
The method has been applied to inflationary models by Challinor and Lasenby [91]

and to CMB anisotropies from scalar perturbations of a CDM model [92]. The kinetic
theory version has been developed by Lewis, Challinor and Lasenby [93] building on
earlier work by Ellis, Treciokas, Matravers, Maartens, and Gebbie (see e.g. [94]). Its
extension to the effect of gravitational waves on the CMB is given by Challinor [95]
and to polarisation modes also by Challinor [96].

6 The formation of structure: post inflation

Through all of these studies, there was still no plausible mechanism for the origin of
the perturbations that grew into galaxies and clusters of galaxies. The discovery of
inflation transformed the situation by providing a specific mechanism for generating
scale-free perturbations that could be large enough.

6.1 Inflation

The idea of an inflationary universe was in essence floated by Gliner in 1966 [19],
Brout, Englert and Gunzig in 1978 [97], and Starobinsky in 1979 [21]. However it
only gained traction when ‘old inflation’ was proposed by Guth in 1981 [22]. It was
based on a scalar field that gave an early exponential expansion for a great many e-
folds, producing a de Sitter expansion epoch cooling the universe down and making
it very flat. This expansion was ended by a phase transition, assumed to be strongly
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first order, converting the inflaton field into radiation and so starting the hot big bang
epoch of the universe. This solved various problems [22] but did not work (see Guth
[29]), as random bubbles of the new phase nucleating and colliding produced an
inhomogeneous froth which did not have the right properties.

The situation was rescued by the new inflation models of Linde [23] and Albrecht
and Steinhardt [24], leading to a standard inflationary picture as described by Kolb and
Turner [25], but with numerous variations: at present there are about 195 inflationary
models [3].

The basic point of inflationary dynamics [22,25] is that at early times slow roll of
a scalar field φ with potential V (φ) would dominate the expansion (curvature, matter,
and radiation are assumed to be subdominant then). The Friedmann equation for a
FLRW model then becomes ([31, p. 153]):

Hin f 	
√

8πGV (φ)

3
(34)

where Hin f is the Hubble parameter H = ȧ/a at that time, and φ rolls slowly along V ,
leading to an almost exponential expansion driven by a slowly varying scalar potential
V (φ).

6.2 Inflation perturbations

The pioneering paper to demonstrate that particles may be created or annihilated in an
expanding universe was by Schrödinger in 1939 [98], clearly identifying the mixing
of positive and negative frequencies that is now taken to identify quantum particle
creation in a curved spacetime (see [99]). He called this an “alarming phenomenon”,
but did not take it further.

Before the idea of inflation, the possibility of quantum fluctuations as the source
of galaxies was explored by Sakharov in 1965 [100] and Harrison in 1970 [66], but
remained highly speculative.

Inflation completely changed this. A quantum origin of fluctuations in an infla-
tionary universe was explored first by Mukhanov and Chibisov in 1982 [26] and
Starobinsky also in 1982 [27]. It was separately developed in depth at a Nuffield
workshop in Cambridge in 1982 [28], as described interestingly by Guth [29]. This
led to a series of further papers, including Hawking’s 1982 paper [101] and Bardeen,
Steinhardt and Turner’s 1983 paper [102]. This laid the foundation for the current stan-
dard model: quantum fluctuations in the inflationary era are the seed of fluctuations
on the Last Scattering Surface that then, because of the presence of cold dark matter,
led to the origin of structure in a top-down way [25,31,32,79,83].

6.3 The amplitude of the perturbations

Evaluation of the power spectrum of the inflationary perturbations gives ([31, p. 168])

PΦ(k) = 128π2G2

9k3

(
H2
in f V

2

V ′2

)

aH=k

(35)
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where the right-hand side is evaluated at first Hubble crossing, the instant during the
inflationary era when the physical wavelength of the mode under consideration is
equal to H−1. This depends on the potential V (φ) at the time of inflation directly and
via (34). This means that the perturbations at the Last Scattering Surface, mediated by
the transfer function and growth function ([31, p. 183]), can be much larger than the
statistical fluctuations envisaged by Lifshitz, Rees and others as quoted above, which
were not large enough to produce the observed astronomical structures.

Key point: We observe fluctuations on the LSS at δρ/ρ 	 10−5, much larger
than the random fluctuations arising by statistics alone. Hence they can lead to
the observed large scale structure. How did they get to be that large? They are
determined by the value of the potential V (φ) during the time of inflation. As
we have no fundamental theory of what the inflaton is, we can run the theory
backwards to determine the required value of V (φ) then and assume the effective
theory does indeed have that value.

That is, we do not have a proper link to fundamental physics that will uniquely set
δρ/ρLSS 	 10−5 as observed (much larger than expected from statistical fluctuations);
but we can make a phenomenological theory that works by adjusting the properties
of V (φ) suitably. If we adopted a specific theory that fixes V (φ), such as minimal
SU(5) grand unified theory with a Coleman-Weinberg potential as initially assumed
[29], this arbitrariness would not be there; but that theory has fallen away. Thus as
described by Guth [29],

The theoretical curve shown in Figure 4 has an amplitude which is normalized to
the data; in practice inflationary models do not make any prediction for the overall
amplitude of the fluctuations, though we could in principle make a prediction if
we really knew the potential energy function of the inflaton field, the scalar field
that drives inflation.

A Higgs inflaton with the right coupling can give the needed link to testable particle
physics [101,103] and can give the observed amplitude of the inhomogeneities as well
as their power spectra [3]. In any other case inflationary theory does not explain why
the Lifshitz problem (Sects. 3 and 4.2 above) is resolved; rather a free parameter in
the theory is adjusted to make it work.

The result that δρ scales as the scale factor a(τ ) for a k = 0 universe [7] is also an
argument for the existence of dark matter, as follows ([35, §5.3.3.2]): if δρ/ρ = 10−5

at LSS at a redshift of z = 103, this means that it cannot be larger than δρ/ρ = 10−2

today. This means that one should have actually formed potential wells of a larger
amplitude at last scattering without affecting the CMB, therefore through a component
that does not couple to radiation. The point is that because photons and baryons are
coupled the perturbations cannot grow before decoupling (they oscillate), while the
DM starts to grow.

6.4 Physical effects and observational outcomes

After this a great many papers developed the theory of relativistic structure formation
in detail, involving a complex set of interactions between radiation and various mat-
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ter components. These were supplemented by N-body simulations in the non-linear
regime. They included:

– Bardeen, Steinhardt and Turner in 1983 [102] developed inflationary perturbation
theory and its effects on CMB anisotropy, and showed the simplest model of “new
inflation” based on an SU(5) GUT with Coleman-Weinberg potential is in obvious
conflict with the large-scale isotropy of the microwave background.

– Bond and Efstathiou in 1984 [104] gave a modern unified treatment of the CMB
fluctuations on all angular scales in CDM models, including polarisation effects,
using the synchronous gauge and Boltzmann equations. They considered correla-
tion function peaks (their eqn(2b)), normalized by the CfA redshift survey. Their
paper did not refer to inflation.

– Kodama and Sasaki in 1984 [79] presented perturbation theory in the light of
inflation, relating gauge invariant formalism to gauge dependent methods and
using the Boltzmann equation for the matter-radiation interaction.

– Davis, Efstathiou, Frenk, and White in 1985 [105] used N-body Newtonian simula-
tions and proposed biassed galaxy formation in a universe with bottom up structure
formation due to presence of cold dark matter (“CDM”).

– Kaiser in 1987 [106] examined the effects on LSS measurements that arise from
observing on the past lightcone because of redshift space distortions.

– Efstathiou, Sutherland, and Maddox in 1990 [107] used Newtonian N-body simu-
lations to show that a cosmological constant together with CDM, thus “ΛCDM”, is
needed to account simultaneously for the CMB spectrum and large scale structure.
This was well in advance of the confirmation of acceleration due to dark energy
by supernova observations in 1995.

– Mukhanov, Feldman and Brandenberger in 1992 [83] studied general perturbations
in an inflationary model, considering hydrodynamical and scalar field sources, and
discussing gauge free variables and the synchronous and longitudinal gauges. They
show how inflation leads to adiabatic perturbations and the Harrison-Zel’dovich
[66,67] scale-free spectrum, and consider CMB anisotropies and gravitational
waves.

– Ma and Bertschinger in 1995 [77] considered interacting cold dark matter and
baryons (fluids), plus photons, massless neutrinos, and massive neutrinos, using a
detailed phase space description. They give the full details of the cosmic microwave
background anisotropy, and present accurate calculations of the angular power
spectra in the two CDM+HDM models including photon polarization, higher neu-
trino multipole moments, and helium recombination.

– Seljak and Zaldarriaga in 1996 [108] present a method for calculating linear CMB
anisotropy spectra based on integration of the Boltzmann equation over sources
along the photon past light cone, with baryons and CDM represented as fluids.
The temperature anisotropy is written as a time integral over the product of a
geometrical term and a source term, allowing very efficient computations and
showing the CMB power spectrum peaks (their Figure 1).

– Hu and White in 1996 [109] studied the acoustic pattern of CMB peak locations
and relative heights predicted by the standard inflationary cold dark matter model
and showed it is essentially unique.
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Fig. 1 Cosmological observations. Observations determine the present day values of dark energy density
ΩΛ and matter density Ωm . The supernova data (blue ellipses) is based on observing the background
model geometry directly. The BAO data (green almost vertical straight lines ) reflects how the background
model has affected structure formation. The WMAP data (orange triangle sloping diagonally upwards)
represents how this structure affects the observed CMB temperature power spectrum. It is the latter two -
based in top-down effects from the cosmological background to smaller scales - that together give us the
best estimates of the cosmological parameters ΩΛ, Ωm [119]. From The Supernova Cosmology Project
[http://supernova.lbl.gov/Union/]

– Kamionkowski, Kosowsky and Stebbins [110] and Zaldariaga and Seljak [111,
112] in 1997 showed how E and B polarisation modes in the CMB would be
induced by the gravitational radiation predicted by inflation.

– Lewis, Challinor, and Lasenby in 2000 [93] used the 3+1 covariant and gauge
invariant method to give the first calculations in perturbed k = +1 models.

– Bacon, Refregier, and Ellis in 2000 [113] examined weak lensing as a probe of
large scale structure.

– Eisenstein et al. in 2005 [114] showed how acoustic oscillations imprinted into the
late-time correlations of galaxies by baryonic physics at the epoch of recombination
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can be used as a cosmological standard ruler, allowing computing the angular
diameter distance to and the Hubble parameter at the redshifts of the survey. These
BAO oscillations are related to the CMB power spectrum peaks.

– Pitrou and Uzan in 2007 showed how to quantize perturbations during inflation
using the 1+3 covariant formalism [115].

– Yoo in 2010 [116], Bonvin and Durrer in 2011 [117], and Challinor and Lewis in
2011 [118] investigated the effects of weak lensing on clustering observations (via
magnification bias) and of other general relativistic effects that significantly alter
the power spectrum on Hubble scales.

6.5 The integrated whole

The theory of cosmological perturbations is now a complex whole, incorporating all
the elements above: baryons, photons, neutrinos, plus dark matter and a cosmological
constant (“ΛCDM”).

Earlier texts presenting much of this theory include Kolb and Turner [25] and Liddle
and Lyth [30]. More recent integrative texts covering both the full perturbative theory
and its relation to CMB anisotropies, polarisation, and gravitational radiation include
Dodelson [31], Mukhanov [32], Durrer [33], and Peter and Uzan [35].

7 Conclusion

All this is based on and develops from Lifshitz’ path breaking paper [1,2], but extended
in important ways. The paper pioneered a key aspect of cosmology by developing
cosmological perturbations and introducing firstly, Fourier analysis into comoving
wave numbers, and second the splitting into scalar, vector, and tensor modes used in
all subsequent structure formation analyses.

There are two interesting questions we can ask about it. First, what was missed by
this paper that could have been there? This is considered in Sect. 7.1. Second, what
has resulted from it? - what has been achieved in later studies developing from it?
Three major consequences have followed from this line of research:

– A theory of structure formation in the expanding universe, completing what Jeans
hoped for and Lifshitz took further (Sect. 7.2);

– An important contribution to cosmography: determining the geometry of the uni-
verse, completing what Sandage [6] hoped for (Sect. 7.3), but in quite a new way;

– Because of the inflationary origin of perturbations, one can derive limits on
some aspects of particle physics from CMB observations - an unexpected bonus
(Sect. 7.4).

7.1 What was missed

What aspects did this innovative paper not include, that could have been there? In the
clear light of hindsight, what was missed was the following:

– It is noteworthy that it presents perturbation theory for k = +1 and k = −1 models
but not for k = 0 models, which are the focus of a great deal of present day theory.
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The lacuna was filled by Sachs and Wolfe [7], who integrated the perturbation
equations for the k = 0 case.

– The paper did not include a cosmological constant, which nowadays is seen as
playing a significant role in structure formation (cf. [107]).

– It omitted the idea of Baryon Acoustic Oscillations, because (like all the other
papers until Gamow 1948 [43]) it misses the idea of tight coupling of matter and
radiation followed by decoupling ([31, pp. 70–73]).

– Consequent on this, it did not investigate the effect of the perturbations on the CMB
anisotropy. This was first considered by Sachs and Wolfe (1967) [7], and then many
others (see [33] and references therein).

It was only later, following on the Sachs and Wolfe paper, that (i) a kinetic theory
approach to the radiation was developed ([74,75] and references therein) and (ii)
CMB polarisation, and in particular the E-polarisation and B-polarisation CMB modes
generated by gravitational waves ([33, pp. 176–209]), was considered.

7.2 Structure formation

The Lifshitz paper was the pioneering paper in generic relativistic structure formation
in the expanding universe (previous relativistic papers had looked at spherical models
only). Its methods have been used in all relativistic structure formation studies since. In
the context of a realistic thermal history of the universe, it implies growth of structure
due to gravitational instability, leading to the observed power spectrum of matter and
the BAO peak.

What happened then to Lifshitz’ pessimistic conclusion (Sect. 3), confirmed by
later analyses based on the Jeans length (see Sect. 4.2)?

Basically the freedom introduced by inflation allowed the initial fluctuations to be
much larger than he had envisaged (cf. the discussion in Sect. 6.3), hence the slow
growth rate that occurs in an expanding universe after decoupling is adequate to create
the structures we observe.

7.3 Cosmography: cosmological parameters

An unexpected outcome is that perturbation studies have also provided the mainstay
of the present day relation between theory and observational tests of cosmological
models, e.g. through the Planck CMB anisotropy data [4] and observations of baryon
acoustic oscillations [114]. This is illustrated in Figure 1.

The key point is that galaxy cluster and WMAP limits are derived by studying
the effect of the background model on structure formation in the expanding uni-
verse [31–33,35]. The resulting relations between cosmological parameters and CMB
anisotropies are clarified for example in [35, pp. 362–367]. These limits are much
tighter than those derived from the direct measurement of the background geometry
by using the Supernova data alone. The possibility of determining these tight limits
arises precisely because global cosmological variables have significant effects on the
local physical processes of structure formation. Just like nucleosynthesis, this is a
top-down effect from global variables to local physical effects [120], because global
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parameters (density ρ, expansion rate θ ) enter as parameters in the differential equa-
tions (32), (33) above for the growth of perturbations. That is why the growth is power
law [1,2] and not exponential [37], as pointed out by Lifshitz [1,2].

Cosmological tests: The most sensitive limits on inflationary cosmological mod-
els come not from direct measurement of spacetime curvature, for example by
supernova observations, but from observations of structures that have formed
and their effects on CMB anisotropies [4]: that is, the topdown effect of global
cosmological parameters (which we want to measure) on structure formation.

The limits on inflationary models through these observations are studied exhaustively
in the Encyclopaedia Inflationaris [3].

7.4 Cosmological bounds on particle physics

Most remarkably, in addition the CMB data gives interesting limits on some aspects
of particle physics. These include,

– Limits on spatial variation of the fine-structure parameter [121],
– Limits on neutrino interactions [122,123].
– Limits on thermal relic axions and axion-like particles [124–127].
– In particular, Tereno et al in 2009 [128] obtained the first evidence for a non-

vanishing neutrino mass from cosmological data alone (CMB+lensing) by giving
both an upper and a lower bound. They state,

We obtain a 95% confidence level upper limit of 0.54 eV for the sum of the neutrino
masses, and a lower limit of 0.03 eV. The preference is for massive neutrinos.

These kinds of limits can be obtained because particle interactions affect structure
formation in inflationary universes, and hence affect CMB anisotropies through the
general relativity gravitational instability effects studied by Lifshitz in his 1946 paper,
extended to the context of an inflationary universe.

Evgenii Mikhailovich Lifshitz: a brief biography

By Andrzej Krasiński, abstracted from Refs. [129], [130] and [131] below.6

E. M. Lifshitz was born on 21 February 1915 in Kharkov, Ukraine. He finished his
high school education in 1929 (at the age of 14!). He actually went to school to take
only the last two classes of a 7-year course; before that he was educated at home.
Beginning in 1929, he studied for two years at a chemical college, and then at the
Physics and Mechanics Faculty of the Kharkov Mechanics and Machine Building
Institute. He graduated from it in 1933 and began graduate study at the Ukrainian
Physico-Technical Institute (UPTI), under Lev Landau. (Lifshitz was one of the first
students, friends, and colleagues of Landau.) He took the PhD examination in 1934.

6 A large part of Ref. [129] is an extended quotation from an autobiography written by E. M. Lifshitz
himself. This quotation was edited here to make it shorter, and transformed to a third-person narration.
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As seen from these dates, Lifshitz embarked on his scientific career at a very early
age. He published his first paper with Landau in 1934 [132], while only 19 years old. Its
subject was the formation of electron-positron pairs in heavy-particle collisions. This
was a very hot topic at that time—only two years after the discovery of the positron.

He worked at UPTI until 1938 as a senior research scientist. In 1939 he obtained
the DSc degree at the Leningrad State University. From 1939 on he worked at the
Institute of Physical Problems of the Academy of Sciences of the USSR in Moscow.

Here is a short listing of Lifshitz’s most important scientific achievements, adapted
from Ref. [130] (see there for more detailed descriptions):

• The Landau–Lifshitz paper “Toward a Theory of the Dispersion of the Magnetic
Permeability of Ferromagnetic Bodies” (1935) [133]. It contains a complete theory
of domains in ferromagnets, an equation of motion of magnetic moments that takes
account of external fields and spin-orbital interactions (now called the Landau–Lifshitz
equation), and a theory of ferromagnetic resonance.

• The derivation of an expression for the Coulomb collision integral of a plasma in
a strong magnetic field (1937) [134]. It contains the first use of the well-known drift
approximation to simplify the kinetic equation.

•The calculation of deuteron dissociation on collision with a charged particle (1938)
[135]. In virtue of its use of a highly general quasi-classical calculation method, this
paper has not lost its significance even today.

• The solution of the problem of which phase transitions can be brought about
as second-order transitions (1941) [136]. Lifshitz established the properties of the
possible transitions - the “Lifshitz criterion” - and listed all possible crystallographic
changes that could accompany the transitions.

• The paper on the second sound in superfluid helium (1944) [137], whose existence
had been predicted by Landau in 1941. Attempts to excite this sound by conventional
acoustic methods had failed. Lifshitz showed that it should be excited by a heater with
oscillating temperature. It was in this way that the second sound was detected in V. P.
Peshkov’s famous experiments in 1946.

• The paper on the stability of Friedman’s solutions of Einstein’s equations (1946)
[138] that was the starting point of Lifshitz’s activity in the field of relativistic cos-
mology. More results in this area were published later, jointly with I. M. Khalatnikov
and V. A. Belinskii [139,140]. The later papers contain a perturbative discussion of
the geometry of cosmological solutions of Einstein’s equations in the vicinity of the
initial singularity. They indicated that the behaviour of a general model close to the
singularity may be approximated by an infinite sequence of Kasner-like evolutions
with the exponents alternating between different components of the metric. Work on
various aspects of cosmological singularities was the main occupation of Lifshitz from
then on till the end of his life.

• A theory of molecular forces operating between condensed bodies (1955) [141],
considered to be Lifshitz’s most elegant paper. Before, these forces had been evaluated
in a rough approximation, by adding the forces of interaction between individual
atoms. Lifshitz’s suggestion was that these forces are a manifestation of the pressure
of a fluctuating electromagnetic field between the bodies; his formulas express these
forces solely in terms of the dielectric constants of the bodies.
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In addition to working as a scientist, he taught at Kharkov University, the Kharkov
Mechanics and Machine Building Institute, the Kharkov Chemical Technology Insti-
tute, Moscow University and the Pedagogical Institute.

Ref. [131] rather cryptically mentions that 1937–1938 was a difficult period for
Lifshitz. This was one of the periods of Stalin’s purges, during which people were
murdered at random, on the basis of “court verdicts” stating that the accused com-
mitted assorted crimes against the Soviet state. (Needless to say the charges were
made up, and so was the evidence, the absurdity of the crime itself notwithstanding,
and the authorities made no effort to cover up the fraudulent character of the whole
“investigation”.) No-one, however famous and outstanding, could be safe; even Lev
Landau was arrested for a year but released thanks to a courageous intervention of
Pyotr Kapitza.7

Ref. [131] equally cryptically mentions Lifshitz’s work for the army during World
War II, for which he received the Order of the Red Star in 1945. In 1954 he received
another civil distinction: the Order of the Red Banner of Labour.

For more than twenty years he was the deputy editor of the Zhurnal Eksperimen-
talnoi i Teoreticheskoi Fiziki.

In 1966 he was elected a corresponding member of the USSR Academy of Sciences.
Among the scientific honours he received were the Lomonosov Prize of the Acad-

emy of Sciences in 1958, the Lenin Prize in 1962 – jointly with Lev Landau for their
Course of Theoretical Physics, the Lev Landau Prize in 1974 and the title of Foreign
Member of the Royal Society in the UK in 1982.

Lifshitz is best known for the 10-volume Course of Theoretical Physics written
jointly with Lev Landau. They began to work on this in the 1930s, and Lifshitz contin-
ued to work on the books after Lev Landau’s death. The course was completed in 1979.
The work includes results of many papers in which Lifshitz was an author or co-author,
the latter written in large part with Lev Landau. The books had a difficult-to-count
number of editions in various countries and languages.

Evgenii Lifshitz had a younger brother, Ilya Mikhailovich (1917 – 1982), who was
an equally outstanding physicist. He was a member of the USSR Academy of Sciences,
a Lenin Prize awardee, a member of the National Academy of Sciences of the USA
and a frequent consultant for the Course of Theoretical Physics, credited on the pages
of the course where appropriate.

E. M. Lifshitz died on 29 Oct 1985 in Moscow, Russia, after a heart operation.
More extended accounts of Lifshitz’s biography can be found in Refs. [130] and

[131] below.8 In particular, Ref. [131] contains a bibliography of Lifshitz’s papers,
with pointers to the sections of the Landau – Lifshitz “Course of theoretical physics”,
where a given paper was used. Also, Ref. [131] gives many details of Lifshitz’s per-
sonal life and inside information on some of his scientific achievements. However, the
bibliography in Ref. [131] seems to be incomplete – it does not contain some of the
papers cited in Ref. [130], and does not contain even the paper reprinted here.

7 Matvei Bronstein, the author of another Golden Oldie, was actually murdered in that period, see Gen.
Relativ. Gravit. 44, 267–83 (2012).
8 The American translation of Ref. [130] cites papers in a confusing way, which implies incorrect assignment
of some papers to journals. The references given here were copied from the Russian version.
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