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Abstract We report on the oral contributions and give a list of posters presented
in the session A1 “Exact solutions and their interpretation” at the 20th International
Conference on General Relativity and Gravitation (GR 20) in Warsaw, July 7–13, 2013.
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The workshop A1 included 26 oral contributions, the same number as the workshop
“Numerical relativity and astrophysical applications”. In contrast to most of previous
GR-conferences, the largest number of talks (36 and 33) appeared in the parallel
sessions “Loop quantum gravity...” and “Quantum fields in curved space–time ...”.
Sharing the 3-4th “place” reveals that the interest in “exact solutions” remains strong;
a number of young speakers guarantee a bright future. The contribution by Majd
Abdelqader was awarded by the Hartle prize for the student presentation.

There were 5 sessions during first 4 days of the conference. The first two sessions
were devoted mostly to various aspects of black-hole and wormhole space–times, then
the session on solutions in higher dimensions and the session on cosmological models,
shells and disks followed. The last session involved miscellanea, including even some
observational aspects. In the following we describe these contributions in more detail.

To reflect the fact that the work on exact solutions has been considerably enhanced
during recent decades by the development of software for symbolic calculations, the
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program was started by the talk “SageManifolds: a free package for differential
geometry and tensor calculus” by E. Gourgoulhon. In this work (with M. Bejger),
the development of a new software, SageManifolds [1], for differential geometry and
tensor calculus was described. This is a package for the modern computer algebra
system Sage [2]. As Sage, it is free (open source) and is based on the Python pro-
gramming language. Its distinctive feature is to manipulate the various objects at the
tensor level, i.e. in a fully coordinate-independent and frame-independent way. This
comes along with the capability to deal with various charts and vector frames on a
given manifold. At the present stage, it is already quite applicable to general relativity,
since its functionalities include maps between manifolds, submanifolds, standard ten-
sor calculus (tensor product, contraction,(anti)symmetrization, Lie derivation), Cartan
calculus (wedge product and exterior derivative of differential forms), manipulation
of affine connections (computation of curvature and torsion) and pseudo-Riemannian
metrics (Levi-Civita connection, curvature, metric duality and Hodge duality).

Computers have been a necessary tool also in the contribution by M. Abdelqader
“Analyzing and visualizing the Kerr vacuum via gradient flows” (a joint work
with K. Lake). The authors explored the global structure of the Kerr space–time using
a new visualization and analysis tool based on gradient fields of scalar invariants.
They observed that a structure of the Kerr vacuum outside the horizon does not vary
smoothly with the spin parameter, but goes through a significant qualitative change at
some specific “transitional” values of the spin parameter. The number of the gradient
fields’ critical points and their index, or winding number, along the axis of symmetry
changes at these values. These gradient fields represent the cumulative tidal and frame-
dragging effects in an observer independent way. The results have possible applications
in theoretical astrophysics (alternative methods to extract mass and angular momentum
in numerical relativity, understanding effects of different spin parameter values etc).

The classical model of electron with over-extreme Kerr–Newman metric outside
was presented in the talk ”Regularized Kerr–Newman solution as a model spin-
ning particle” by A. Burinskii. The naked Kerr singular ring is replaced by a regular
material source consistent with external KN geometry. López (1984) determined the
boundary of the KN source, r = re, such that the external KN metric may be contin-
uously matched with a flat interior for r < re. The boundary re = e2/2m determines
a “bubble” with a special distribution of charged matter. This model was developed
in [3,4] as a gravitating soliton model, in which the thin shell model is replaced by a
domain wall which provides a phase transition from external KN fields to an internal
false-vacuum state. The superconducting Higgs-like field inside the bubble expels the
electromagnetic field. The model exhibits some properties of the extended dressed
electron, as well as Zitterbewegung of the point-like naked electron.

“Scalar multi-wormholes” were presented by S. V. Sushkov—joint work with A. I.
Egorov and P. E. Kashargin. The authors constructed exact axially symmetric solutions
describing N wormholes with the phantom scalar field (the kinetic energy term enters
action with the “opposite sign”). Space–time corresponding to these solutions has 2N

asymptotically flat regions connected by N throats. Unlike in a linear superposition of
N collinear Schwarzschild black holes one needs no singular struts to provide a static
character of the configuration. The space–time is regular, with no event horizons. This
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is possible because of exotic properties of the phantom scalar field violating standard
energy conditions.

“Unorthodox” wormhole configurations were also discussed in the talk “Off-
Diagonal Wormhole Deformations in Modified Massive Gravity” by S. I. Vacaru.
The author studied deformations of “prime” metrics in the Einstein theory (e.g. worm-
hole configurations) into exact solutions in f (R, T )—modified and massive/bi-metric
gravity theories. The anholonomic frame deformation method was applied to construct
solutions in modified gravity theories (MGT) (see, e.g. [5,6]), when the field equations
decouple in a general form. This allows to construct generic off-diagonal solutions
depending on all space–time coordinates via generating and integration functions and
constant parameters. For certain well defined conditions on generating functions and
non-integrable constraints, the MGTs effects can be encoded as (effective) Einstein
manifolds. Using nonholonomic deformations with ellipsoid/toroid and/or solitonic
symmetries, one can generate wormhole like objects matching external black ellipsoid-
de Sitter geometries.

The contribution “Static spherical black holes with scalar field” of J. Tafel refers
to static spherically symmetric solutions of the Einstein equations with minimally
coupled scalar field ϕ. Asymptotically flat or anti-de Sitter black holes and particle
like solutions are considered [7]. A potential V (ϕ) is not a’priori prescribed. It is shown
that the Einstein equations define metric, ϕ and V in terms of a free function ρ which
is monotonically growing, convex, has a zero point and behaves like r −3M when r is
large. Given ρ a dependence of V on ϕ is given in a parametric way. This description
allows to generalize no-hair theorems (Bekenstein 1972 and later developments) to
the AdS asymptotic and to obtain new properties of solutions for both considered
asymptotics. In particular, for any potential V (ϕ) the total ADM mass M has to be
positive if ϕ is nontrivial. In the case of black holes a radius rh of the Killing horizon
has to obey the Penrose inequality rh ≤ 2M and the surface gravity is nonzero. In
generic case ϕ is finite at singularity and V is infinite. Regular potentials V (ϕ) are
admitted, bounded or unbounded, if derivatives of ρ at r = 0 (singularity) are properly
chosen. Examples of solutions were presented in a form of plots.

In the talk “Relativistic charged spheres: Exact solutions for stars, regular
black holes and quasi-black holes”, J. P. S. Lemos presented results obtained with
V. T. Zanchin on a class of exact solutions of spherically symmetric distributions
of charged matter matched smoothly to a Reissner–Nördstrom solution. The interior
parameters are given in terms of the radius of the configuration and the exterior global
ADM mass and electric charge. The solutions were found by Guilfoyle (Gen. Relat.
Gravit. 31, 1645). Some of their properties were analyzed in [8]. Now the authors
found further properties and shown that they contain a rich variety of configurations
and space–times: undercharged, extremally charged and overcharged stars, regular
black holes, and quasi-black holes. These latter may be considered as frozen stars,
i.e., collapsed stars with their boundary surfaces looming at their own gravitational
radii. The spectrum of solutions also contains “bridge space–times” with a negative
electromagnetic field energy of the type considered by Einstein and Rosen (as a non-
singular “electron”). The solutions yield a generalization of the Buchdahl limit in the
uncharged case.
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In the talk “The conformal cousin of the Husain-Martinez-Nuñez space–time”,
V. Faraoni discussed exact solutions of gravitational field equations which can be
interpreted as black holes embedded in cosmological “backgrounds”. Only few such
solutions are known. Although they are probably pathological to some extent, they
can tell us something about the theory which would be otherwise hard to guess. It is
disappointing that the known solutions are usually reported, but not studied further nor
interpreted physically. For example, it is not known whether these dynamical inho-
mogeneities represent black holes (as defined by the existence of apparent horizons)
or naked singularities. There are reasons to study these solutions in modified grav-
ity theories. In [9], a 2-parameter, spherically symmetric, inhomogeneous cosmology
in Brans–Dicke theory, obtained by conformally transforming the Husain-Martinez-
Nuñez (massless, minimally coupled) scalar field solution of the Einstein equations, is
studied. Surprisingly, depending on values of the parameters, the solution describes a
black hole dressed by apparent horizons which appear or disappear in pairs, or a worm-
hole, or a naked singularity. The reason why there is not a one-to-one correspondence
between conformal copies of this metric was discussed.

Results presented by N. Gürlebeck in the talk “ Tidally Distorted Black Holes”
concern a generalization of a well-known no-hair theorem to more astrophysical set-
tings. In the static case, the standard version of this theorem states that an uncharged
and isolated black hole is fully characterized by its mass. The generalization includes
black holes, which are distorted due to the gravitational field of additional sources. As
a starting point served metric that describes all static, axially symmetric and distorted
black holes near the horizon (Geroch and Hartle 1982). Using this metric, Gürlebeck
proved that no multipole moment is induced in the black holes by the external sources
in spite of the distortion. Such deformed black holes contribute to the asymptotic
multipole moments only by a mass monopole. The key tool in the proof are source
integrals of the asymptotic multipoles [10]. This approach does not only lead to the
generalized version of the no-hair theorem but it also solves a debate on the Love
numbers of black holes. They measure the distortion of a star; however, they vanish
in the limit of a black hole. The aforementioned proof shows that this result holds in
full general relativity, it is not due to approximations taken in previous works.

In the talk of G. A. Alekseev “Dynamics of black holes in AdS2 x S2 space–
times (Bertotti-Robinson universes)” new applications of his monodromy trans-
form approach and corresponding linear singular integral equation method for solving
of Einstein–Maxwell equations (see [11] and the references there) were presented.
Two new exact solutions of Einstein–Maxwell equations were found in a very simple
explicit form. One of these solutions generalizes the solution found earlier in [12] for
a Schwarzschild black hole in a static position in (asymptotically) Bertotti-Robinson
pure magnetic universe. It describes a Schwarzschild black hole in a “geodesic” motion
along the magnetic field in the gravitational field of this universe. Another solution
describes a Reissner–Nördstrom black hole accelerated by the electric field of (asymp-
totically) Bertotti-Robinson pure electric universe. In both cases, the condition of the
absence of conical singularities on the axis of symmetry is satisfied. This determines
the “geodesic” character of motion of a neutral black hole along the magnetic field
and acceleration of a charged black hole in the external asymptotically homogeneous
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electric field. The acceleration of a black hole is related to its charge and strength of
the external electric field.

The talk “Black holes in 4-dimensional supergravity” of D. Chow was devoted
to new black hole solutions in four-dimensional supergravity [13]. They are solutions
of the so-called “STU” model of N = 2 supergravity coupled to 3 vector multiplets.
Upon reduction by means of a timelike symmetry to 3 dimensions and dualizing
vectors to scalars, the theory is three-dimensional gravity coupled to an SO(4, 4)

coset model. Acting with SO(4, 4) generators and then lifting back to 4 dimensions
generates new four-dimensional solutions. This generalizes the method of “Harrison
transformations” for the Einstein–Maxwell theory. If one starts with the Kerr-Taub-
NUT solution and uses an appropriate set of generators the Kerr-Taub-NUT solution
with 4 electric charges and 4 magnetic charges is generated. Setting the NUT charge to
zero gives asymptotically flat black holes that generalize the Kerr–Newman solution.
This provides a seed solution to generate the general asymptotically flat, rotating black
hole of N = 8 supergravity with 28 electric charges and 28 magnetic charges. There
are also some generalizations to U(1)4 gauged supergravity that are asymptotically
anti-de Sitter. These include new examples of static anti-de Sitter black holes with 4
electric charges and 4 magnetic charges and with spherical or planar horizons.

In the talk “Black rings in higher dimensions”, J. Kunz discussed a new type of
black holes in higher dimensions: black rings. Their existence was first suggested by
Myers and Perry (MP). Emparan and Reall then constructed rotating 5-dimensional
vacuum black rings, balancing the attractive forces of gravity and string tension by
the centrifugal force. The rings possess two branches, a branch of thin black rings
and a branch of fat black rings. The common phase diagram of MP black holes and
black rings, both with a single angular momentum, reveals that uniqueness is violated
for these vacuum black objects. In a small region of the phase diagram there reside
three different solutions: one black hole and two black rings, all three of them have the
same mass and the same angular momentum. Recently, an analogous phase diagram
was obtained for 6-dimensional black objects [14]. Again two branches of black rings
exist. Here the branch of fat black rings does not reach the MP solutions in a singular
configuration. When the inner radius of the ring shrinks to zero a singular horizon
topology changing configuration is approached. This critical configuration cannot be
reached numerically. At the horizon topology changing configuration one expects a
merger with the first still hypothetical branch of pinched black holes. These branches
should arise because of the Gregory–Laflamme type instabilities of the singly rotating
MP solutions in 6 and more dimensions.

Higher dimensional black holes were also discussed in the talk “Maximal slices of
five dimensional black holes” of H. K. Kunduri. In four dimensions initial data for
Einstein’s equations are specified by a spacelike hypersurface � with metric tensor
h and the second fundamental form K . For globally hyperbolic M , one can write
M � R × � where � is a Cauchy slice. The topological censorship (J. Friedman
et al, PRL 71, 1486) asserts that any non-simply connected topological structures in
� must be hidden behind horizons. For example, a maximal slice of the Kerr black
hole has topology � � R × S2. In five dimensions, however, topological censorship
is far less restrictive. Stationary black holes admitting a rotational isometry may have
horizon topology H � S3 (and quotients), S1 ×S2, and connected sums thereof. In the
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recent work [15] the author and collaborators investigated the topology and geometry
of maximal slices of the Myers-Perry black hole, the vacuum black ring and the black
Saturn solution and demonstrated that � is diffeomorphic to R × S3, S2 × D2 − {pt}
and S2 × D2#R

4#B4, respectively. Despite being simply connected, the latter two
examples have interesting topological structures such as non-trivial 2-cycles. As much
of this analysis is at the topological level, this work was also extended to black hole
configurations for which explicit geometries are not yet known.

An explicit “Algebraic classification of Kundt geometries in four and higher
dimensions” for which there exists a privileged non-expanding multiple “Weyl aligned
null direction” (WAND) was presented by J. Podolský—a joint work with R. Švarc.
No field equations were used, the results apply to any metric theory of gravity which
admits the Kundt space–times. All Kundt geometries are of type I(b). Simple necessary
and sufficient conditions under which WAND becomes double, triple or quadruple
were derived. All possible algebraically special types, including the refinement to
subtypes, were identified. To illustrate the classification scheme, it was applied to some
subfamilies of the Kundt class, e.g. pp-waves, the VSI space–times and a generalization
of the Bertotti–Robinson, Nariai, and Plebanski–Hacyan space–times in any dimension
(see [16,17]).

In four dimensions, a fundamental connection between geometric optics and the
algebraic structure of the Weyl tensor is provided by the Goldberg–Sachs (GS) theo-
rem, which relates algebraically special space–times to shearfree geodesic null congru-
ences. “An extension of the Goldberg–Sachs theorem in five and higher dimen-
sions” was discussed by M. Ortaggio. The standard formulation does not admit a
straightforward extension to higher dimensions, however, results on possible general-
izations have been obtained. In particular, in this talk constraints on optical properties
of null congruences “multiply aligned” with the Weyl tensor, which extend in D > 4
the “shearfree part” of the GS theorem were summarized [18,19]. Possible canonical
forms of the “optical matrix” were presented explicitly in five dimensions (or in six
dimensions for twist-free null congruences).

“Higher dimensional gravitating fluids” were studied by Y. Nyonyi, in collab-
oration with S. Maharaj and K. Govinder. They considered shear-free spherically
symmetric cosmological models with heat flow and charge defined on an (N + 2)-
dimensional manifold. The pressure isotropy condition is a nonlinear PDE which was
treated using the Lie group theoretical approach. Symmetry generators that leave the
equation invariant were found. Their knowledge allows to obtain exact solutions for
the gravitational potentials. They contain earlier solutions without charge.

In general relativity there has been considerable interest in the different types of sin-
gularities that the Friedmann–Robertson–Walker (FRW) space–times admit, namely
Big Bangs, Big Crunches, Big Rips, Sudden Singularities and Extremality Events.
The scale factor, and its derivatives, are pivotal in determining the nature of singular-
ities in the FRW space–times. Following Cattoën and Visser (Class. Quantum Gravit.
22, 4913) S. M. Scott, in the joint contribution with P. Threlfall “The conformal
structure of past and future end states of FRW space–times”, considered FRW
space–times with a scale factor expressed as a generalized power series. Inspired by
the definition of an Isotropic Past Singularity by Goode and Wainwright for an initial
singularity with regular conformal structure (an appropriate beginning for the Qui-
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escent Cosmology), Höhn and Scott [20] defined generic conformal singularities for
possible isotropic and anisotropic cosmological future end states. The singularities
found by Cattoën and Visser for the FRW space–times were analyzed and compared
with those models admitting the generic conformal singularities of an Isotropic Future
Singularity or a Future Isotropic Universe.

“An exact smooth Gowdy-symmetric generalized Taub-NUT solution”, pre-
sented by J. Hennig, belongs to a class of inhomogeneous cosmological models with
spatial S3-topology [21]. They have the Cauchy horizon at t = 0 and, in general,
develop the second Cauchy horizon at t = π . For particular choices of data at t = 0 a
singularity forms at t = π . The author found a three-parameter family of the solutions
which contains the two-parametric Taub solution. To this end Sibgatullin’s integral
method (Oscillations and Waves, 1984) was used to solve an initial value problem for
the hyperbolic Ernst equation. For a special choice of the parameters, the solution con-
tains a curvature singularity with directional behaviour. For other parameter choices,
the maximal globally hyperbolic region is singularity-free. Furthermore, several exten-
sions of the solution through the Cauchy horizons have been constructed [22]).

“New exact solutions for spherical objects with charge and aniso-tropic pres-
sures”, representing generalizations of the Tolman VII solution, were presented by
A. Raghoonundun, in collaboration with D. Hobill. These solutions have appropriate
physical properties. The approach provides means for computing a zero temperature
equation of state relating pressure and density in the star. For a wide range of accessible
parameter values, these models manage to predict values associated with observed neu-
tron stars in accordance with causality and energy conditions. The anisotropic pressure
solution labeled TVIIa and the charged version labeled TVIIac are completely defined
by their metric functions. The mass density depends quadratically on the radial coor-
dinate. If the anisotropic pressures vanish TVIIa reduces to the Tolman VII solution
and TVIIac reduces to the solution of Kyle and Martin (N. Cim. A 50, 583).

An infinite family of new solutions of the Einstein–Maxwell equations representing
“Magnetized axially symmetric thin dust disks in conformastatic space–times”
was presented by G. Gonzalez. The disks are made of material sources with a surface
conduction current. The solutions are obtained by expressing the metric function and
the magnetic potential in terms of an auxiliary function satisfying the Laplace equation.
The surface energy-momentum and the surface current density of the disk are obtained
by using the formalism of tensorial distributions. A simple particular model was pre-
sented in which the energy is well behaved everywhere and the energy-momentum
tensor satisfies all standard energy conditions. Although the disks are infinite, their
total mass is finite.

Thin shells, rather than thin disks, were discussed in the talk of M.A. Ramirez
entitled “Splitting thin shells and the evolution of distributional solutions of Ein-
stein’s equations”. A number of solutions in the sense of distributions involving thin
shells was presented and their stability against separation of their constituents was
analyzed. First the spherically symmetric shells made of Vlasov matter were consid-
ered and the stability analysis against fragmentation done. Next, it was shown that
dynamical shells may be composed of particles orbiting at different angular veloci-
ties, but in order to evolve stably as a single shell the angular momentum distribution
cannot be arbitrary [23]. There are also splitting solutions, in which the original shell
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smoothly splits into a number of emergent shells. For a given initial data set, both the
original shell without splitting and the splitting solution solve the Einstein equations
coupled to matter, which illustrates a lack of uniqueness for the Cauchy problem.
The unstable non-splitting solutions appear not physical as they may not be thin shell
limits of thick shell solutions [23,24] (for generalizations, see Ramirez M A, arXiv
1207.6810[gr-qc]).

Test particles follow geodesic trajectories in space–time. This is the leading order
result from a multipolar expansion of the energy-momentum tensor of a test body. At
next order, including pole and dipole terms, the Mathisson–Papapetrou (MP) equations
of motion for spinning test particles play the role. Also, the Spin Supplementary
Condition (SSC) must be specified to fix the worldline of the body. In the contribution
“Spinning test particle trajectories in de Sitter space–time” (joint work with J.
Gair and S. Babak) R. Cole presented an analytic solution to the MP equations in de
Sitter space–time using the Frenkel-Pirani SSC and the w-condition. He also discussed
methods of studying the motion of spinning test particles in black hole space–times,
using the de Sitter solution. This has applications in the generation of waveform
templates for extreme-mass-ratio inspirals since the presence of spin in the compact
object can lead to a significant dephasing over the lifetime of the inspiral.

The subject of gravitational lensing has developed to a very high degree of sophis-
tication, nevertheless, it has focused on lensing in stationary systems. In his talk
“Gravitational lensing by gravitational waves”, A. Harte discussed lensing by
gravitational waves. Assuming the planar symmetry, various results can be computed
exactly. Images of objects are typically distorted, change brightness and color, and
appear to move across an observer’s sky due to the waves. Multiple images can also
be formed. Even in the simplest cases involving short wave packets, dramatic effects
occur generically. Essentially any observer eventually reaches a point in time at which
light from the entire universe is momentarily concentrated to a single point in the sky.
Formally, this light is infinitely blueshifted and was emitted in the infinitely distant
past. Later, the contributions to this flash from different sources appear to separate
from each other, dim, and then redshift away.

In the talk of O. Yu. Tsupko, based on the work with G. S. Bisnovatyi-Kogan,
“Gravitational deflection of light ray in plasma” was studied. In absence of a refrac-
tion, in a homogeneous dispersive medium, the gravitational deflection is qualitatively
different from the vacuum case and the deflection angle depends on the photon fre-
quency. Simple analytical formula for the gravitational light deflection in the Schwarz-
schild metric, in presence of a homogeneous plasma, was obtained [25]. The effect is
different from the vacuum case but it is significant only for the radio waves. Using these
results, a model of gravitational lensing in plasma was developed. In the example of
the Schwarzschild point-mass lens, instead of two point-like images with complicated
spectra, there should be two line images, formed by photons with different frequen-
cies, which are deflected by different angles. A more general approach, considering
an inhomogeneous plasma, was also developed [25,26].

In classical GR there are many solutions describing naked singularities and static
or stationary configurations with nom vanishing energy momentum. D. Malafarina
analyzed “Observational features of perfect fluid sources with a singularity at the
center”. These solutions can be obtained from gravitational collapse under simple
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assumptions [27]. It is interesting what observational features distinguish them from
black holes of the same mass. In this contribution compact objects (with interiors
described by the Tolman perfect fluid solutions), surrounded by accretion disks, were
considered. The luminosity spectrum as received by distant observers exhibits a tail
at high frequencies that is absent in the case of black holes [27]. Furthermore, sim-
ulations of the Kα iron line of absorption show very different behavior in the two
cases [28].

In the last oral presentation in the workshop M. O. Katanaev asked what is “Point
massive particle in General Relativity”. His recent work [29] indicates that the
Schwarzschild solution in isotropic coordinates can be considered as the asymptoti-
cally flat solution of Einstein’s equations with δ-type energy-momentum tensor cor-
responding to a point particle. The solution is understood as a distribution. Metric
components are locally integrable functions. The gravitational attraction at large dis-
tances is replaced by repulsion at the particle neighborhood. The author claims that if
the requirement of geodesic completeness is changed into the requirement of geodesic
completeness only in the physical sector then the space–time needs no continuation
[30].

In addition to talks 10 posters were exhibited in the framework of the session A1.
We list them below with indication of persons presenting them. Description of the
posters can be found on the conference page (gr20-amaldi10.edu.pl).

1. Gonzalez, G., Pimentel, O.: Axially symmetric relativistic thin disks immersed
in spheroidal matter haloes

2. Gonzalez, G., Navarro, A.: Relativistic static thin disks with electrically and mag-
netically polarized material source

3. Sunzu, J.: Anisotropic charged exact models
4. Abebe, G., Govinder, K., Maharaj, S.: Lie symmetries for a radiating star in

conformally flat space–time
5. Chilambwe, B., Hansraj, S., Maharaj, S.: Exact interior solutions in Einstein–

Gauss–Bonnet gravity
6. Frolov, B., Febres, E.: Spherically symmetric solution of gravitation theory with

Deser-Dirac scalar field in Riemann–Weyl space
7. Shcherban, V. N.: Investigation of Plane Waves in Torsion Poincare Gauge Theory

of Gravity
8. Pravda, V.: On the Goldberg–Sachs theorem in five dimensions
9. Korkina, M., Iegurnov, O.: Matching of the de Sitter solution and solution for

perfect fluid with nonuniform pressure
10. Bradley, M., Machado Ramos, M.: Killing vector analysis in GHP formalism of

conformally flat pure radiation metrics with negative cosmological constant.
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