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Abstract
This review presents the progress made in the last decade in the field of large-scale electro-
magnetic (EM) induction with natural sources, which fluctuate at periods from seconds to 
years and originate in oceans, ionosphere and magnetosphere. These mechanisms produce 
field variations that can be used to image subsurface electrical structure of Earth and plan-
ets across scales and depths from the shallow crust to the lower mantle. In the last decade, 
we have seen a substantial progress made in different areas related to methods, observa-
tions and 3-D numerical modelling of EM phenomena at crustal and mantle scales. Spe-
cifically, new methods for handling complex ionospheric and magnetospheric sources were 
proposed, accompanied by more efficient forward and inverse modelling tools that allowed 
us to combine several broadband sources and constrain electrical conductivity on multiple 
scales simultaneously. Magnetic signals due to oceanic tides were established as a new 
source to probe conductivity of the sub-oceanic upper mantle. Further, the launch of ESA 
Swarm satellites in 2013 and their successful ongoing operation have marked a new era in 
the field of large-scale EM induction, unlocking a set of new opportunities, but also posing 
new challenges. These developments were backed by  new lab measurements of electri-
cal conductivity for mantle minerals at temperatures and pressures that are getting closer 
to the relevant pressure and temperature conditions in the mantle, alleviating the need for 
inaccurate extrapolations. The latter enabled more plausible quantitative estimates of water 
content, melt fractions and temperature in the mantle. In parallel, crust and mantle con-
ductivity models along with developed modelling techniques have become an integral part 
of geomagnetic field and geomagnetically induced currents (GICs) modelling workflows, 
establishing new inter-disciplinary knowledge domains.
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Article Highlights

• New methods for handling complex external electromagnetic sources have been devel-
oped

• Over-simplified assumptions about the external source (Z/H, also known as Geomag-
netic Depth Sounding (GDS), methods) lead to biased conductivity models

• Satellite-detected magnetic fields from ocean tides represent a new induction source to 
study sub-oceanic upper mantle 

• Untapped potential for cross-disciplinary research between Earth and Planetary sci-
ences

1 Introduction

The field of deep electromagnetic (EM) studies has been a focus of the Division VI  “Elec-
tromagnetic Induction in the Earth and Planetary Bodies” of the International Association 
of Geomagnetism and Aeronomy (IAGA). A number of review papers on this topic, dedi-
cated to studies on Earth and extraterrestrial bodies, have been published in the past 50 
years (Table 1). This paper continues the tradition and provides a review of the works in 
the field published between 2012 and 2023.

Electrical conductivity is an intrinsic physical property of minerals and rocks that EM 
induction methods are sensitive to. As a transport property, electrical conductivity is par-
ticularly sensitive to the presence of fluid or volatile phases in minerals, which affect both 
the ionic and electronic conduction. There is also a natural dependency of the conductivity 
on temperature. As is evident from Fig.  1, conductivity varies throughout the crust and 
mantle over many orders of magnitude, providing ample opportunities for studying subsur-
face thermo-chemical variations and helping  reduce ambiguities when conductivity is ana-
lysed with other geophysical observables such as seismic velocities or density. Next to seis-
mic properties, electrical conductivity is the only other physical property of rocky planets 
that can be imaged (in a tomographic sense) throughout the crust and the mantle. To this 
end, we make use of natural variations of electric and magnetic fields whose primary and 
induced components can be measured on the ground, at seafloor or at a spacecraft. In the 
latter case, only the magnetic field variations can be used, imposing certain methodological 
limitations compared to methods where both magnetic and electric field measurements are 
available. These natural variations have a broad spectrum and are induced by complex spa-
tially distributed electric currents originating in the ionosphere, magnetosphere and oceans.

Table 1 lists previous review papers, which document the progress in the field over the 
past half century. However, global (large-scale) EM induction as a part of Geophysics goes 
back to the 19th century. Long-period EM variations observed on the ground have been 
used to make inferences about deep subsurface conductivity structures as early as in the 
work by Schuster (1889). In his work, a German-British physicist Arthur Schuster esti-
mated the internal (inducing) and external (induced) components of the diurnal harmonics 
of the natural magnetic field and analysed the relation between them over the globe. This 
led him to conclude:

... there is strong evidence that the average conductivity is very small near the sur-
face, but must be greater further down.

This observation was likely due to an increase in the average bulk conductivity of major 
mineral phases in the mantle (Fig. 1). Nowadays, we would explain such increase by a 
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positive geothermal gradient, change of mineral phases, transition from brittle to ductile 
or by a combination of  the listed factors. His conclusions were based not only on real 
magnetic field observations, but also stood on solid mathematical and physical founda-
tions. Specifically, the magnetic field observations were separated into external and inter-
nal components using the potential field representation (see Sect.  3.2) elaborated in a 
seminal work by Gauss (1877), whereas an effective subsurface electrical conductivity 
for variations at different periods was estimated using the analytical solution for a homo-
geneous conducting sphere (in modern taxonomy, we would call it a forward operator) 
derived a few years earlier by Lamb (1883), using a then still new theory of electro-
magnetism compounded by Maxwell (1865) and other contemporaries (Hunt 2005). It is 
remarkable that the work of Schuster (1889) was published long before any of the present 
EM induction methods had been established or practiced. It appeared even before the 
most fundamental aspects about  the Earth’s interior, such as the presence of inner and 
outer cores, were discovered. A few years later, this  method was developed to a stage 
where a global average radially varying conductivity model was invoked to better explain 
observations (Chapman 1919).

Despite a long and rich history, there remain vast gaps in our understanding of the 
Earth’s deep electrical structure. Similar to other tomographic techniques, the deeper we go 
into the Earth the more uncertain and low resolution our models become. By far the largest 
(by volume) part of the mantle remains largely a “Terra incognita” in terms of its electrical 
structure, leaving a big “room for improvement” for current and future generations. This 
review will mention some of the reasons why it  is so difficult to access deeper parts of our 
planet with EM induction methods. Yet, this review will also show a solid progress that the 

Table 1  Review papers on large-scale electromagnetic induction studies for Earth and extraterrestrial bod-
ies

Year of the 
review talk

Title References

1972 Global electrical conductivity of the Earth  Rikitake (1973)
1972 The theory of geomagnetic induction  Price (1973)
1972 Global electromagnetic induction in the moon and planets  Dyal and Parkin 

(1973)
1972 Global geomagnetic sounding—methods and results  Bailey (1973)
1974 Morphology of slowly-varying geomagnetic external fields - A 

review
 Matsushita (1975)

1974 On the inversion of global electromagnetic induction data  Anderssen (1975)
1974 Analytical solutions to global and local problems of electromag-

netic induction in the Earth
 Hobbs (1975)

1974 Solar-wind induction and lunar conductivity  Sonett (1975)
1978 The electrical conductivity of the moon  Vanyan (1980)
1984 Global electromagnetic induction  Roberts (1986)
1986 The global conductivity distribution  Parkinson (1988)
1998 Induction studies with satellite data  Olsen (1999a)
2010 Deep electromagnetic studies from land, sea, and space: Progress 

status in the past 10 years
 Kuvshinov (2012)

2022 Unravelling the electrical conductivity of earth and planets—a 
review

This paper
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field has experienced in the last decade, also highlighting its inter-disciplinary nature and 
enormous future potential.

In addition to the traditional applications of EM induction methods for studying the 
Earth’s subsurface electrical conductivity structure, EM induction has become an integral 
part of research in other disciplines. For instance, large-scale EM induction modelling is 
essential within the Space Weather community, where it is used for modelling Geomag-
netically Induced Currents (GICs) (Kelbert 2020). Another example is the use of global 
conductivity models to calculate the mantle induction effect while reconstructing the fast 
core field dynamics or external current systems from ground and satellite magnetic field 
observations (e.g. Chulliat et al. 2016; Sabaka et al. 2018; Finlay et al. 2020).

Although IAGA Division VI identifies induction in other planets as one of the research top-
ics, the main focus of the division has always been on Earth. Nevertheless, Table 1 shows that 
the extraterrestrial research was well represented within the IAGA Division during and some 
time after the Apollo era, but the number of interactions between Earth and planetary sciences 
has since decreased. However, there has been a remarkable growth of interest in EM induc-
tion methods in planetary sciences in the last couple of decades, sustained by new observa-
tions of time-varying magnetic fields around other planets and moons, or driven by theoretical 
works on electromagnetic star–planet interactions. Therefore, I decided to briefly document 
the progress in this field in Sect. 5. I believe that there is a large potential for inter-disciplinary 
exchange, and trying to build more bridges with planetary sciences will facilitate the exchange 
of new ideas and energy, and eventually help sustain the growth of the otherwise small field.

Given the broad scope of EM induction studies in Geophysics and adjacent disciplines, 
it is inevitable that this review paper can cover only a part of the entire spectrum of works 
which invoke phenomenon of the EM induction in planets. Therefore, I shall frame the 
scope of this review as following:

Fig. 1  Conductivity ranges for major crustal and mantle mineral phases. Adapted from Yoshino (2021)
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• I will cover progress in the field from approximately 2012 to the mid 2023 unless the 
context requires us to refer to earlier works. Previous reviews listed in Table 1 contain a 
thorough coverage of earlier works.

• I will concentrate on studies which target spatial scales  ⪆ 103 km. For more regional 
and local studies, the reader is referred to specialized reviews.

• Topics related to Space Weather and GICs will not be covered. Please refer to a recent 
review by Kelbert (2020) on this topic.

• Motionally induced EM signals will be covered in the context of the subsurface con-
ductivity imaging. For other aspects, refer to another recent review by Minami (2017).

• Implications of conductivity variations on thermo-chemical structure and advanced 
interpretation techniques are not covered in detail. (See recent papers by, e.g., Yoshino 
and Katsura 2013; Selway 2014; Pommier 2014; Khan 2016; Özaydın and Selway 
2020, for more details.)

• A selection of recent studies pertaining to EM induction in other planets and extrater-
restrial bodies will be covered in a dedicated Sect. 5.

2  Data and Observations

Natural variations of electric and magnetic fields are recorded on the ground, at the ocean 
bottom or measured in space. Table 2 lists major sources of data used in EM induction stud-
ies. Traditionally, Geomagnetic Depth Sounding (GDS) used geomagnetic observatory data 
to derive either local or global average transfer functions for large-scale ionospheric and mag-
netospheric sources. However, one quickly reaches a limit imposed by this data set. As is evi-
dent from Fig. 2, despite some observatories were around for more than a century, the over-
all global coverage has always been uneven and very sparse in the southern hemisphere and 
over the oceans. Adding to this many large time gaps in data imposes significant constraints 
on what this data set allows one to do in terms of the subsurface conductivity imaging. Due 
to substantial multi-institutional and international efforts within the Intermagnet consortium 
(Love and Chulliat 2013), the number of simultaneously operating observatories reached from 
120 to 140, although the potential of growing this network further is limited. In fact, a decrease 
in the number of operating worldwide observations has been recently observed. Yet, perma-
nent observatories is the observational backbone of geomagnetic community and continue to 
find new usages in geophysics (Thomson and Flower 2021). A decade ago, British Geological 
Survey (BGS) initiated and since then maintains a real-time pre-processed and quality-con-
trolled database of permanent present and legacy geomagnetic data with cadence ranging from 
1 sec to 1 day (Macmillan and Olsen 2013). This development, primarily aimed at supporting 
ESA Swarm science activities, became a particularly useful development for the EM commu-
nity, removing a huge burden of processing and calibrating observatory data. As a result, many 
recent EM induction studies that used geomagnetic observatories relied on this database.

Limited coverage of the geomagnetic observatory network can be partially mitigated 
by including other sources of data, in particular magnetic variometer instruments. First, 
some regional to continental-scale arrays, such as SuperMAG (Gjerloev 2012), IMAGE 
(Tanskanen 2009), and AWAGS (Chamalaun and Barton 1990), provide recordings of suf-
ficient length and quality to enable mantle sounding. These networks have been focused on 
supporting the external field studies, but, as we shall see later, were proven useful for the 
subsurface conductivity imaging (see Sect. 4.3).
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A major highlight of the past decade has been the progress in the completion of national 
magnetotelluric (MT) arrays (Fig. 3), most notably USArray (different parts of the array 
were acquired within a number of independently funded projects and have different 
names, but for the sake of clarity we will call the combined dataset USArray) (Schultz 
2010; Schultz et  al. 2018, 2020, 2023), AusLAMP (Thiel et  al. 2020; Duan et  al. 2020, 
among others) and SinoProbe (e.g. Dong et al. 2013). Noteworthy, data from USArray and 
AusLAMP are open to public and present unique data sets that already led to high-quality 
research output in subsurface imaging (see Sect. 4.1) and space weather studies (Kelbert 
2020). Although recording times at individual locations do not typically exceed one month, 
this is sufficient to derive MT transfer functions up to periods of 5–7 h, which allows one 
to image electrical conductivity through the lithosphere and parts of asthenosphere. Some 
instruments deployed at the seafloor were also used for large-scale EM studies during the 
past decade (e.g. Matsuno et  al. 2017), although the spatial extent and density of these 

Table 2  Major sources of data and their main characteristics

1This list is not exhaustive

Data type Advantages Limitations Data sources1

Temporary sta-
tions (arrays)

Improved local 
resolution

short time series USArray, AusLAMP, SinoProbe, AWAGS, 
IMAGE, SuperMAG

Geomagnetic 
observatories

Long high-
quality time 
series

sparse uneven coverage INTERMAGNET, National Geological 
Surveys

Dedicated space 
science mis-
sions

High quality, 
uniform spa-
tial coverage

space-time aliasing, 
limited local-time 
coverage

CHAMP, Swarm, Ørsted, MSS-1 
(launched 2023), NanoMagSat (planned)

Satellite platform 
magnetometers

Unprecedented 
spatiotempo-
ral coverage

reduced accuracy, 
ad-hoc calibrating 
procedures

CryoSat-2, GRACE-FO, GOCE, DMSP, 
Iridium

Fig. 2  Top: number of available ground magnetic observatories versus time as well as the time span of 
some modern satellite missions (coloured rectangles). Bottom: Distribution of ground magnetic observato-
ries with definitive data for three selected years in the past century as per (Macmillan and Olsen 2013) data-
base. Note the lack of ground-based observations in southern hemisphere and over the oceans throughout 
the time. A quick decrease towards 2020 is due to a lag in the publication of definitive data
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surveys are limited by logistical and cost reasons. Similar efforts have been undertaken 
by several other countries, for instance, UK (Huebert et al. 2022) and Portugal (Baltazar-
Soares et al. 2023). Compilation of existing and legacy data sets can sometimes result in a 
quasi-regular national-wide network, although at the cost of heterogeneous quality of data, 
unknown survey characteristics and sometimes missing raw time series. A good example is 
a map of MT data in the Northern Europe (Fig. 3) compiled by Prof. M. Smirnov showing 
dozens of MT arrays (e.g. Korja et al. 2002; Cherevatova et al. 2015; Autio and Smirnov 
2020, among others). Some of these and further regional and local array data can also be 
found on national and international data archiving portals established in the last decade.12

The primary goals of collecting these array MT data are twofold: (i) more accurate 
evaluations of Geomagnetically Induced Currents (GICs) and (ii) improved knowledge of 
subsurface geology and tectonics. This represents a clear example of how progress in one 
discipline immediately leads to advances in the other and vice versa. It is likely that more 
country-wide MT arrays will be initiated in the next decade.

So far, we discussed only observations performed on the ground or at the seafloor. 
Since the beginning of the twenty-first century, we have nearly continuous satellite geo-
magnetic observations from dedicated missions (Fig. 2). Previous reviews have already 
covered earlier attempts in using satellite data for EM induction studies (Olsen 1999a; 
Kuvshinov 2012). A major milestone of the past decade was the launch of three ESA 
Swarm satellites in November 2013 (Olsen et al. 2013), which are still in operation (as 
of September 2023). Swarm satellites are flying on low Earth polar orbits, whereby the 
lower pair ( ≈ 430 km altitude as of May 2022), called Swarm A and C, are flying with 
a very small  longitudinal separation (few degrees) and an upper ( ≈ 500 km as of May 
2022) Swarm B spacecraft has a precessing orbit with a dynamic local-time separa-
tion relative to the lower pair. It takes around three months for satellites to cover all 
local times. In recent years, Swarm data was used to produce a series of global con-
ductivity models (see Sects.  4.4 and 4.2). However, outstanding accuracy of satellite 
data and nearly uniform global coverage come with a set of methodological challenges. 
Since satellites move very quickly ( ≈ 90 min per orbit), there always exists a trade-off 
between how well space and time variations in magnetic field can be simultaneously 
resolved. Since there are many natural sources that vary quickly in space and time, this 
may result in space-time aliasing. Furthermore, satellites at polar orbits have a limited 
local-time  (LT) coverage. In practice, a single Swarm satellite covers only two local 
times per each orbit, whereas most external induction sources are local-time phenomena 
(Finlay et al. 2017; Ganushkina et al. 2018) and require a dense LT sampling for reliable 
separation and reconstruction. Additionally, low Earth orbit (LEO) satellites fly above 
prominent ionospheric dynamo regions and through the regions with field-aligned 
currents (FACs), making it difficult to separate ionospheric and mantle contributions, 
although new methods described in Sect. 3 will help in mitigating these challenges.

We also briefly note that some further dedicated missions are planned, including 
for instance a European NanoMagSat (Hulot et al. 2021) and Chinese Macau Science 
Satellite (MSS) constellation missions. These constellations will deploy satellites on 
low-inclination and elliptic orbits in addition to satellites on polar orbits. This will 
result in a much faster and denser local-time coverage, thus enabling a more reliable 
inducing source field estimation. Finally, conceptually new ideas of remote “map-
ping” of magnetic fields using the Zeeman effect are proposed within the NASA’s 

1 https:// ds. iris. edu/ spud/ emtf.
2 https:// www. ics-c. epos- eu. org/.

https://ds.iris.edu/spud/emtf
https://www.ics-c.epos-eu.org/
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Electrojet Zeeman Imaging Explorer (EZIE), scheduled for a launch in 2024 (Laundal 
et  al. 2021). To which extent this concept can directly facilitate EM induction stud-
ies remains to be understood, but a much better understanding of ionospheric currents 
enabled by this mission will certainly have an indirect influence on the mantle induc-
tion studies through better external source models, provided there is enough will in the 
community to borrow and adapt knowledge from adjacent fields.

Next to dedicated science missions, it is known that many (hundreds to thousands) 
satellites carry the so-called platform magnetometers. These instruments’ primary 
use is an auxiliary attitude control, yet the quality of some instruments and design 
of spacecraft platforms allows for their scientific usage. There has been a substan-
tial effort in the community recently to calibrate data from platform magnetometers 
and make them available for community (Olsen et  al. 2020; Stolle et  al. 2021; Styp-
Rekowski et  al. 2022; Alken et  al. 2020; Anderson et  al. 2021). Table  2 lists some 
of the missions with available calibrated data from platform magnetometers. Notably, 
data from the CryoSat-2 mission was already used in global EM induction studies in 
conjunction with the Swarm and ground observatories (Velímskỳ and Knopp 2021; 
Kuvshinov et al. 2021). Many problems pertaining to the calibration and processing of 
these data remain, but it is already clear that platform magnetometers can add value, 
especially by improving the local-time coverage (Fig. 4) or filling in time gaps where 
dedicated satellites were not in operation, thus playing an important role in constrain-
ing the fast-varying external source currents (Olsen 2007; Finlay et al. 2017).

3  Methods

The goal of this section is to give a succinct introduction to the methods and governing 
equations that are used in large-scale EM induction studies. More detailed derivations 
may be found in the referenced papers and previous EM reviews (Table 1).

3.1  Governing Equations

Natural electromagnetic fields used for large-scale EM induction studies are governed by a 
system of partial differential equations (PDEs) known as Maxwell’s equations in matter:

(1)∇ × H⃗ =𝜎E⃗ +
𝜕D⃗

𝜕t
+ j⃗ext,

(2)∇ × E⃗ = −
𝜕B⃗

𝜕t
,

Fig. 3  Examples of national-wide MT arrays. Top panels show the state of the AusLAMP survey (image 
by Geoscience Australia) and USArray sites extracted from the IRIS database (as of August 2023) (Kelbert 
et al. 2019b). Middle panels shows nation-wide MT arrays from Portugal (modified after (Baltazar-Soares 
et al. 2023)) and UK (images courtesy of Dr. J. Hübert, see Huebert et al. (2022)). Bottom most figure is a 
compilation of national and international MT arrays collected over last decades in Northern Europe (image 
courtesy of Prof. M. Smirnov), e.g. (Korja et al. 2002; Cherevatova et al. 2015; Autio and Smirnov 2020)

▸
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where H⃗ is magnetic field intensity [A/m] , E⃗ electric field intensity [V/m] , B⃗ magnetic flux 
density [T] or [Vs/m2] , D⃗ electric flux density [As/m] , and �f  electric charge density [C/m3] . 
We assume a linear medium without additional polarization and magnetization, resulting in 
the following constitutive equations

where � is magnetic permeability [Vs/Am] and � is electric permittivity [As/Vm] . Note 
that corresponding vacuum constants for the permeability and permittivity are assumed 
throughout the volume, that is � ≡ �0, � ≡ �0 . Our modelling domain is a sphere (or 
a spherical shell) with a heterogeneous distribution of the electrical conductivity 
𝜎 ≡ 𝜎(r⃗) [S/m] . Here, r⃗ = (r, 𝜃,𝜙) denotes a position vector in the spherical coordinate 
system with the origin at the sphere’s centre and r, � and � being distance from the plan-
et’s centre, polar angle (co-latitude), and azimuthal angle (longitude), respectively. For the 
boundary conditions, we assume that fields decay to zero sufficiently fast as r → ∞ and 
satisfy the Helmholtz theorem (Griffiths 2017).

The right-hand side of Eq. (1) represents the total current density [A∕m2] given by the 
sum of the conduction current (also called free current), displacement current and the 
extraneous (impressed) electric current density. The extraneous current density term is not 
part of the original Maxwell’s equations. Instead, it is added for the practical convenience, 
in order to represent our sources in some form that is amenable to subsequent data analysis 
and modelling (Table 3).

For a relevant range of material properties, space dimensions and periods of variations, 
the displacement current term can be neglected from the complete Maxwell’s equations, 

(3)∇ ⋅ B⃗ =0,

(4)∇ ⋅ D⃗ =𝜌f ,

(5)H⃗ =
1

𝜇
B⃗,

(6)D⃗ =𝜖E⃗,

Fig. 4  Single day orbits of the dedicated geomagnetic ESA Swarm satellites and a selection of satellites 
carrying platform magnetometers. Separate orbits of the Iridium constellation (yellow) are difficult to dis-
tinguish due to a very high density of measurements. Triangles depict geomagnetic observatories
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resulting in the so-called quasi-static approximation. Under the quasi-static approximation, 
the set of equations is sometimes referred to as pre-Maxwell’s equations (Hunt 2005) and 
read

Quasi-static (sometimes also termed quasi-stationary) approximation incurs a number of 
fundamental consequences. For instance, it partially invalidates the Coulomb’s law, implies 
an instantaneous propagation (because of c → ∞ , where c is the speed of light) and makes 
it hard to understand how our inducing source EM fields reach the ground despite assum-
ing  electrically insulating (i.e. � → 0 ) layers of the atmosphere. We shall not argue that 
the quasi-static approximation is justified in practice and provides means for explaining 
our observations in the relevant physical regime, yet internal inconsistencies therein may 
generate some confusion when physical interpretation of electrodynamic phenomena is 
sought. It is notable that already first IAGA EM review papers contain discussion about 
non sequiturs of the quasi-static approximation (Price 1973). An in-depth analysis of 
physical consequences and implications of the quasi-static approximation was presented in 
insightful works by Everett and Chave (2019), Berdichevsky and Dmitriev (2002) focusing 
on geophysical context or from a more general physics standpoint by Larsson (2007).

For the purposes of this review, it will be necessary to carry out derivations and perform 
data modelling in the frequency domain. Adopting the Fourier convention

allows us to rewrite Ampere’s and Faraday’s laws (7-8) in the frequency domain as

where � is the angular frequency. In what follows and unless otherwise  stated, we will 
work in frequency domain, implying dependency on � for electromagnetic fields and 
derived variables.

3.1.1  Current Density Representation

Without loss of generality, we can represent the extraneous current density, j⃗ext(r⃗,𝜔) , as a 
linear combination of spatial modes j⃗i(r⃗) and frequency-dependent coefficients ci as

(7)
1

𝜇
∇ × B⃗ =𝜎E⃗ + j⃗ext,

(8)∇ × E⃗ = −
𝜕B⃗

𝜕t
.

(9)f (t) =
1

2�

∞

∫
−∞

F(�)e−i�td�

(10)
1

𝜇
∇ × B⃗ =𝜎E⃗ + j⃗ext,

(11)∇ × E⃗ =i𝜔B⃗,

(12)j⃗ext(r⃗,𝜔) =
∑

i

j⃗i(r⃗)ci(𝜔),
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where spatial modes j⃗i(r⃗) can be given by electric dipoles, current loops or continuous 
global functions (see Sect. 3.5 for some specific examples).

By virtue of the linearity of Eqs. (10)–(11) with respect to the j⃗ext(r⃗,𝜔) term, we can 
expand the total (that is, inducing plus induced parts) electromagnetic field as a linear com-
bination of individual fields B⃗i, E⃗i,

where fields B⃗i(r⃗,𝜔;𝜎) and E⃗i(r⃗,𝜔;𝜎) are fields induced by individual spatial modes with 
unit coefficients. Hence, they are solutions of the equations

and represent EM transfer functions of a medium (Püthe et al. 2015b; Guzavina et al. 2019; 
Grayver et al. 2021). Therefore, a transfer function of a conductive body (planet or moon) 
at a position r⃗ depends on the subsurface conductivity distribution and frequency of excita-
tion as well as on the spatial geometry of the current density expressed through the j⃗i term.

3.1.2  Thin‑Sheet Equivalent Current

The true geometry and distribution of the current density given by the term j⃗ext are very 
complicated in reality and generally not known. However, assuming that electric currents 
flow within spherical shell embedded in an insulator above the ground, allows us to repre-
sent any current density distribution within the shell using a thin sheet current (Schmucker 
1985; Sabaka et al. 2010) characterized by a stream function

where a is the mean radius of the Earth, b = a + h , with h > 0 being the altitude of the cur-
rent sheet;

is the angular part of the gradient operator and êr , ê𝜃 and ê𝜙 are the unit vectors of the 
spherical coordinate system. Consequently, we can expand the stream function using spa-
tial modes and scalar coefficients, thus

(13)B⃗(r⃗,𝜔;𝜎) =
∑

i

B⃗i(r⃗,𝜔;𝜎)ci(𝜔),

(14)E⃗(r⃗,𝜔;𝜎) =
∑

i

E⃗i(r⃗,𝜔;𝜎)ci(𝜔),

(15)
1

𝜇0

∇ × B⃗i =𝜎E⃗i + j⃗i,

(16)∇ × E⃗i =i𝜔B⃗i,

(17)j⃗ext(r⃗,𝜔) = −𝛿(r − b)êr × ∇HΨ(𝜃,𝜙,𝜔),

(18)∇Hf =
1

r

𝜕f

𝜕𝜃
ê𝜃 +

1

r sin 𝜃

𝜕f

𝜕𝜙
ê𝜙

(19)Ψ(�,�,�) =
∑

i

Ψi(�,�)ci(�).
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Using Eqs. (12) and (19), we can rewrite Eq. (17) as

3.2  Potential Field Representation

Above the ground and in the source-free region, Eq. (10) reduces to ∇ × B⃗ = 0 . Therefore, 
B⃗ is a potential field and can be written as

By virtue of Gauss’ law of magnetism, ∇ ⋅ B⃗ = 0 . Thus, a scalar potential V satisfies the 
Laplace’s equation,

Solution of the Eq. (22) can be written as a sum of the external and internal potentials, that 
is V = Vext + V int . In the context of EM induction problems, external and internal compo-
nents represent “inducing” and “induced” parts of the magnetic field, respectively. Thus, 
the internal part of the potential also depends on the subsurface conductivity. Adding the 
dependency on the location, frequency (respectively time), and subsurface conductivity, 
the total potential can be written as

where

is a spherical harmonic (SH) function of degree n and order m with P|m|
n  being Schmidt 

semi-normalized associated Legendre polynomials, and �m
n
(�) and �l

k
(�;�) are the SH 

expansion coefficients of the external (inducing) and internal (induced) origins, respec-
tively. Hereinafter, we will adopt the following convention

Equations (21) and (23) allow us to write the (poloidal) magnetic field above the ground as

or in the component form

(20)j⃗ext(r⃗,𝜔) = −𝛿(r − b)
∑

i

[
êr × ∇HΨi(𝜃,𝜙)

]
ci(𝜔).

(21)B⃗ = −∇V .

(22)∇2V = 0.

(23)
V(r⃗,𝜔) =Vext(r⃗,𝜔) + V int(r⃗,𝜔;𝜎)

=a
∑

n,m

𝜀m
n
(𝜔)

(
r

a

)n

Sm
n
(𝜃,𝜙) + a

∑

k,l

𝜄l
k
(𝜔;𝜎)

(
a

r

)(k+1)

Sl
k
(𝜃,𝜙),

(24)Sm
n
(�,�) = P|m|

n
(cos �) exp (im�)

(25)
∑

n,m

=

∞∑

n=1

n∑

m=−n

.

(26)B⃗(r⃗,𝜔) = B⃗(r⃗,𝜔)ext + B⃗(r⃗,𝜔;𝜎)int
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where ∇
⟂
= r∇H . Now, SH functions can be used as a basis in Eq. (19). For a source of the 

external origin, the stream function can be written as (Schmucker 1985)

which in turn allows us to rewrite Eq. (20) as

with

It can be shown (Schmucker 1985; Sabaka et al. 2010; Kuvshinov and Semenov 2012) that 
the electric currents in Eqs. (30)–(31) flowing within a shell at r = b produce the external 
magnetic field Bext in region r ∈ [a, b) exactly.

Both ionospheric and magnetospheric sources are of external origin for ground meas-
urements and Eqs. (29)–(31) can be used to represent the equivalent current system and 
reproduce the external field in Eqs. (26)–(28). However, at a low Earth orbit (LEO) 
satellite, for instance at ESA Swarm satellites flying at ≈ 400 − 550 km altitude, both 
primary fields generated in the ionospheric E-region and fields induced in the subsur-
face are of internal origin, whereas fields generated by major magnetospheric source 
currents remain to be external. In additional, some in situ currents can generate toroidal 
magnetic field (Lühr et al. 2002; Olsen 1997) and invalidate the potential field assump-
tion (i.e. ∇ × B⃗ ≠ 0 ). These complications are among the main reasons why interpreta-
tion of satellite data is more nuanced and complicated compared to ground data. As a 
result, Eqs. (29–31) can still be used to model magnetospheric fields with observations 
from LEO satellites, but are no longer valid for representing E-region ionospheric fields. 
Nevertheless, a physically consistent description of the ionospheric fields at LEO sat-
ellites can still be achieved under certain assumptions, as elaborated by Sabaka et  al. 
(2002, 2010), Chulliat et  al. (2016).  In these studies, a prior subsurface conductivity 
model is used, which allows one to co-model the field induced in the mantle and then 
estimate the corresponding ionospheric source current. 

Note that the potential field representation such as the one in Eq. (22) is not valid for a 
time-varying electric field. Furthermore, inside the conductive Earth, ∇ × B⃗ ≠ 0 and Eq. 
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(21) no longer holds even for the magnetic field. Instead, we can resort to Eqs. (13)–(14) and 
express total electric and magnetic fields at a position r⃗ inside the Earth as

For a radial conductivity structure, 𝜎(r⃗) ≡ 𝜎(r) , both electric and magnetic fields inside a 
conducting body can be expressed by means of a spectral impedance Zn . At the surface, 
analytic expressions for the field components can be written as (Kuvshinov and Semenov 
2012)

Here, Zn ≡ Zn(a,�;�) is the spectral impedance of a spherical conductor (e.g. Srivastava 
1966) and r⃗a = (r → a−, 𝜃,𝜙) denotes a position at the Earth’s surface where r approaches 
the surface from below.

For the sake of brevity, the dependency on location and frequency was sometimes omitted 
above, but can be easily inferred from the context.

3.3  Global Response Functions

Unlike in the MT method (that is, under the plane-wave approximation), there is no universal 
transfer function like the impedance tensor that fully describes Earth’s induction response to a 
time-varying external current at periods longer than several hours, at least not in an equivalent 
compact form. In this and the next sections, I will give a short summary of the convention-
ally used response functions for mantle-scale studies. Whenever possible, I will try to estab-
lish a link between response functions and the governing equations laid down in the previous 
section.

In the previous section, the dependency of the induced (internal) field on the conductiv-
ity was explicitl stated. Additionally, the connection between the inducing and induced mag-
netic fields follows from Eqs. (27)–(32). Using the potential representation of the magnetic 
field above the ground (Eqs. 27–28) and assuming a 1-D subsurface conductivity structure 
( 𝜎(r⃗) ≡ 𝜎(r) ), the relation can be formally written as

where Qn is a global induction response (transfer) function (Bailey 1973; Schmucker 1985). 
Note that for a 1-D Earth, each external mode induces only one internal mode and Qn is 
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independent of order m under this assumption. Using Eq. (37), we can introduce another 
global response function, C-response, as (see Table II in Olsen (1999a))

where r ≥ a . Hence, unlike the Q-response, C-response depends on the radius. Further, 
C-response can also be defined through the spectral impedance as

where dependency on r,� and � was omitted for brevity. Mathematical and physical prop-
erties of the C-response function have been investigated in the seminal work by Weidelt 
(1972). In practice, Qn and Cn can be estimated at selected frequencies using time series of 
ground or satellite magnetic field observations or a combination thereof.

Resorting to a general case with a 3-D subsurface conductivity distribution invalidates 
equations above. In this case, each external mode �m

n
 induces infinitely many coupled inter-

nal modes (Olsen 1999a). The relation between inducing and induced coefficients is then 
described by a set of transfer functions called the Q-matrix

Formally, the Q-matrix represents a complete induction response of the 3-D Earth to an 
arbitrary inducing current as defined in Eq. (30). Importantly, Q-matrix is fully compat-
ible with the satellite data since it does not explicitly depend on the location. However, 
since SH functions have a global footprint, high truncation degrees k are required in order 
to describe conductivity variations on scales below 104 km (compare � versus SH degree 
in Fig. 6). This implies that a large number of terms of the Q-matrix need to be estimated 
from typically sparse and noisy data. More information on the calculation and properties of 
the Q-matrix can be found in Püthe and Kuvshinov (2014).

3.4  Local Response Functions

Previous section described commonly used global response (transfer) functions (TF). The 
advantage of a global TF is that the effects of space and time can be conveniently sepa-
rated, enabling easier workflows for satellite data assimilation since satellites are constantly 
moving. However, most ground or ocean-bottom EM observations have a fixed location 
in the mantle frame, therefore it is natural to resort to transfer functions that can be linked 
to a location at the surface or seafloor. In fact, local TFs were elaborated long before the 
satellite era came. As a result, none of the local responses discussed below can be easily 
reconciled with satellite data workflows.

3.4.1  Plane‑Wave Sources

Magnetotellurics (MT) is the most widely used natural EM induction method. As a method, 
MT rests on the plane-wave source assumption, which, if valid, allows one to fully factor out 
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the source term from governing equations and derive a set of complete transfer functions that 
can be used to image the 3-D subsurface conductivity distribution.

Assume a flat Earth extending infinitely in horizontal directions with a corresponding local 
Cartesian coordinate system with x, y, z pointing to the North, East, and Down respectively 
(with z = 0 at the surface). In this reference frame, a vertically incident plane wave can be rep-
resented. Assume E⃗, H⃗ are electric and magnetic fields due to a current density

where B⃗0 is a quasi-uniform, horizontal, external source magnetic field at the altitude h, ẑ 
is a unit axis vector (for brevity, the conversion from spherical to local reference frames is 
implied). These fields must obey equations (10-11). Then, the frequency-dependent MT 
impedance tensor, Z , at the surface relates horizontal electric and magnetic field compo-
nents as

Note that all quantities in Eq. (42) are functions of frequency, position and subsurface con-
ductivity. Impedance tensor, Z , is a transfer function that fully describes an EM induction 
response of a flat conductive medium due to an infinite plane-wave source. Naturally, these 
assumptions are justified only up to a certain spatial scale and period of variation. Formal 
conditions for which the impedance remains a valid transfer function are rather technical 
and were elaborated by Berdichevsky and Dmitriev (2002). For Eq. (42) to be a valid TF, a 
necessary (although not sufficient) condition is that the source field must vary slowly over a 
distance of a few skin depths, �s , that is

where �(�) is the spatial scale of the source field for a given angular frequency and a 
homogeneous Earth conductivity �h . Thanks to this, we can avoid the flat-Earth assump-
tion and resort to a different class of source functions, which fulfil Eq. (43) and allow us to 
calculate valid MT transfer functions on a sphere (e.g. Grayver et al. 2019; Kruglyakov and 
Kuvshinov 2022).

3.4.2  Spherical Harmonic Sources

Assuming that the external inducing field is described by a single spherical harmonic Sm
n
 , Cn

-response can also be defined using local electric and magnetic fields. Employing Eq. (39) 
together with Eqs. (34)–(36) yields

If the electric field is available (this is rarely the case in practice), we can also write
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Note that for zonal harmonics, S0
n
 , Eqs. (44) and (47) are not valid due to zero denominator.

Finally, when the geometry of the inducing field is described by the first zonal harmonic 
S0
1
 , we arrive at the well-known expression

which forms the core of the Z/H method first elaborated by Banks (1969).
It should be stressed again that Eqs. (44)–(48) are valid only if the external field varia-

tions in corresponding electric and magnetic field components are produced by an external 
electric current source that is given by a single SH function (that is, by the form given 
in Eq. 31). In reality, this is never the case (Ganushkina et al. 2018) and only rarely this 
assumption holds to a degree where source effects due to other than P0

1
 coefficients can be 

neglected. Although many studies have clearly demonstrated this and a significant effort 
has been made to overcome this limitations, many recent studies (see Sect. 4) directly apply 
Eq. (48) to real data without considering realistic source complexity and invert distorted C1 
responses for a 3-D subsurface conductivity distribution. The consequences of such sim-
plistic approach is that the source effects propagate to the subsurface conductivity model 
in an uncontrolled way and are very likely to result in conductivity variations that are arte-
facts not caused by variations in subsurface composition and temperature. This point will 
be demonstrated in an experiment involving real data in Sect. 3.5.3.

A set of local transfer functions that would remain valid for complex non-plane-wave 
sources (that is, when the source cannot be represented by a single spatial mode) from 
daily and magnetospheric bands was presented by Schmucker (2018). This work, trans-
lated and published posthumously, documents  the author’s attempt to unify plane wave, 
GDS and the so-called horizontal spatial gradient (HSG) methods (see Kuvshinov (2012) 
for a detailed description of the HSG method). However, to be applicable in practice, this 
approach requires a locally dense network of simultaneous observations, limiting its prac-
tical application. In the last decade, new approaches that can handle complex external 
sources and do not suffer from limitations of the conventional methods described above 
were developed. These approaches will be discussed in the subsequent sections.

Finally, note that none of the local responses discussed above can be easily reconciled 
with satellite data since a spacecraft does not have a fixed position in the mantle frame.

3.5  Representation of External Sources

Earth has a complex and diverse natural electromagnetic environment. The quality of the 
subsurface conductivity models in the field of mantle-scale EM induction studies depends 
strongly on how well we are able to model or represent primary source currents. As is 
evident from Fig. 7, spectrum of natural EM variations is very broad and dense. The major 
part of the primary (inducing) source field originates in the ionosphere and magnetosphere, 
although primary EM fields are also generated within the oceans (Minami 2017). To keep 
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this review focused, I assume that geomagnetic variations from the Earth’s core were 
subtracted from the data, but an interested reader will find a more complete spectrum of 
the total geomagnetic field including the core field component in Constable and Consta-
ble (2023). Further, we excluded part of the spectrum with natural variations induced by 
atmospheric phenomena in layers below the ionosphere. These phenomena mostly give rise 
to short period EM variations (Constable and Constable 2023) suitable for sounding sedi-
ments and shallow crustal layers, which are beyond the scope of this review paper.

In addition to strong periodic signals, such as those related to the orbital rotation, iono-
spheric resonances and tides, a significant part of EM time variations are due to aperiodic 
transient events, to a large extent driven and/or modulated by dynamics of the upstream 
solar wind. For more details on natural EM sources and underlying mechanisms, the reader 
is referred to review papers by Olsen (2007), Constable (2016).

To structure the discussion below, it is practical to divide the spectrum of natural EM 
variations (Fig. 7) into three frequency bands as listed below. Note that this separation does 
not strictly follow the physical nature and origin of source currents; rather, it is structured 
more by how variations in different bands are treated in practice.

3.5.1  Plane‑Wave Band

Variations with periods from fractions of a second to several hours will be referred to as the 
plane-wave or magnetotelluric (MT) band. As soon as one assumes a plane-wave source, 
a set of MT transfer functions, such as impedance or vertical magnetic field transfer func-
tion, can be estimated and used to infer subsurface conductivity. In practice, the imped-
ance transfer function does not require a perfect homogeneous plane-wave source field to 
remain valid. As long as the source field varies slowly relative to the skin depth, plane-
wave impedance remains a valid transfer function and can be used for electromagnetic 
subsurface sounding. A detailed mathematical justification for this statement was given by 
(Berdichevsky and Dmitriev 2002; Weidelt and Chave 2012, and references therein). In 
case of the vertical magnetic field transfer function (often called “tipper” or induction vec-
tor) in the MT band, the conditions on the homogeneity of the external source field are 
stricter. Strictly speaking, under the plane-wave source assumption, local vertical fields in 
a flat-Earth model can be produced only by lateral subsurface conductivity variations. This 
is the main reason why estimated tippers are often more prone to so-called source effects 
(e.g. Araya Vargas and Ritter 2016; Ernst et al. 2020) compared to impedance TFs. The 
primary reason for these source effects is that any local-to-regional deviations from a per-
fect homogeneous plane-wave source are likely to generate a radial magnetic field in the 
external source field (e.g., Jones and Spratt 2002), whereas the plane-wave assumption pos-
tulates that the radial magnetic field can only be caused by the horizontal gradients in the 
subsurface conductivity. For more detailed studies on source effects in MT transfer func-
tions, the reader is referred to  recent works by Murphy and Egbert (2018); Sato (2020), 
Romano et al. (2014), Neska et al. (2018) and references therein. In practice, MT transfer 
functions are most commonly estimated up to periods of ≈ 104 s, which usually requires 
few weeks of field measurements. In rare cases, longer recording times are available, thus 
allowing for the impedance estimation up to periods of few days. The latter is difficult since 
long measurements of natural electric field variations is a challenge due to low signal-to-
noise ratio and electrode instability. Further, at periods longer than 4–5 h special attention 
must be paid to the presence of non-plane-wave sources such as Sq and tidal signals. To 
enable the estimation of the EM plane-wave  impedance at these periods, a tailored data 
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processing with a correction for the non-plane wave ionospheric  and tidal signals is neces-
sary (Shimizu et al. 2011; Fujii et al. 2015).

3.5.2  Daily Variations Band

Natural variations with periods from several hours to one day will be attributed to the 
daily band. Dominant natural EM variations in the daily band are associated with the 
ionospheric current systems with the energy peaking at the daily period and harmon-
ics (Fig.  7). At high and equatorial magnetic latitudes (definition of the geomagnetic 
coordinate systems induced by the structure of the Earth’s magnetic field can be found 
in Laundal and Richmond (2017)), these signals are mostly driven by the polar and 
equatorial jet currents. Polar currents get further enhanced and locally dominate the 
external time variations during magnetically active periods (Finlay et al. 2017; Baum-
johann et al. 2010). During magnetically quiet periods, a mid-latitude ionospheric Solar 
quiet (Sq) variations (Yamazaki and Maute 2017) has been a conventional source of EM 
induction to constrain the conductivity of the asthenosphere and Mantle Transition Zone 
(MTZ). In fact, it is Sq variations that were used in the pioneering work by Schuster 
(1889). Physical phenomena driving the electric currents in the daily band are rather 
complicated (Richmond and Thayer 2000; Richmond 2017; Yamazaki and Maute 2017), 
leading to substantial day-to-day, seasonal and annual variability in the geometry and 
amplitude of the generated magnetic fields. As a result, inducing source currents need 
to be reconstructed along with the mantle conductivity. This approach was elaborated 
by Koch and Kuvshinov (2013), Guzavina et al. (2019) who determined complex mid-
latitude Sq source currents from data and subsequently inverted for the mantle conduc-
tivity. For a spatial basis to describe the Sq source, authors used a small set of SH func-
tions carefully selected following the method proposed earlier by Schmucker (1999). 
This parameterization works best for the magnetically quiet days around equinoxes at 
middle geomagnetic latitudes when the Sq source dominates, which implies that only a 
small portion of data is suitable for the analysis and inversion. A major novelty of the 
work by Guzavina et al. (2019) was the use of the new global-to-local TFs proposed in 
Püthe et al. (2015b) and defined in Eq. (32). This approach allows one to take advantage 
of the TF approach and account for the complex source geometry. More details on this 
approach will be given below.

A next step forward in this direction was made in recent works by Egbert et al. (2020), 
Zenhäusern et  al. (2021) who derived a physics-based spatial basis using simulations of 
ionospheric currents from the model of the coupled thermosphere/ionosphere system (TIE-
GCM) (Qian et  al. 2014). Dominant spatial characteristics of ionospheric currents were 
extracted from one-year long time series of global TIE-GCM simulations using the Princi-
pal Component Analysis (PCA, also known as the method of Empirical Orthogonal Func-
tions – EOF). High spatial and temporal correlation of primary currents enables a compact 
basis induced by estimated Principal Components (EOFs). In practice, a few tens of basis 
functions based on EOFs are sufficient to capture over 90% of the global variance in obser-
vations. This basis is then used to calculate the equivalent ionospheric source currents fol-
lowing the formalism of the Sect. 3.1.2. The major advantage of this approach is that it 
allows one to use nearly all data, including measurements from polar regions and those 
taken during magnetically active conditions. Figure  8 shows equivalent current systems 
for quiet and active days reconstructed using the physics-based basis and real observations. 
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It is evident that the Sq current system is visible at mid latitudes on a quiet day, but for a 
magnetically active day polar currents dominate.

Another EM source in the daily band is oceanic tides. As will be discussed in 
Sect. 4.2, this source was proven feasible for imaging the conductivity of the sub-oce-
anic upper mantle. For this source, the extraneous current density, j⃗ext , is confined to the 
water column and  in frequency domain can be written as

where � is the electrical conductivity of seawater, E⃗, B⃗ , u⃗ is the fluid velocity. Unlike in 
other conventional EM induction methods, where sources are coupled to the subsurface 
inductively, here currents form within the ocean (where u⃗ ≠ 0 ) couple to the ocean bot-
tom both galvanically and inductively (Minami 2017; Zhang et al. 2019). Next to the core, 
oceans is the only other region with the bi-modal EM coupling to the solid Earth. Since 
induced magnetic fields are small compared to the amplitude of the total ambient magnetic 
field, we can assume B⃗(r⃗,𝜔) ≡ B⃗core(r⃗) in the equation above, where B⃗core is a core field 
model. Another key difference from ionospheric and magnetospheric sources is that all 
components needed to represent the extraneous current due to oceanic tides are known to a 
good degree, including the ocean velocities provided by assimilated satellite altimeter data 
(Stammer et al. 2014) and core field models (Alken et al. 2021). Many other details on how 
to best discretize and represent motionally induced sources in order to achieve the best per-
formance and accuracy in the context of 3-D EM simulations were discussed by Velímskỳ 
et al. (2018). We also note that the tidal magnetic signals are a potential source of noise for 
studies where ionospheric currents are used (Schnepf et al. 2018; Yamazaki 2022). If the 
quality and length of observations do not allow for spectral and spatial separation of iono-
spheric and tidal components, a generally better known oceanic tidal magnetic field can be 
simulated and subtracted following the approach of Guzavina et al. (2018).

3.5.3  Long‑Period Band

Finally, the third band covers periods between few days and a solar cycle. In the literature, 
EM variations at these periods are often considered to be induced by magnetospheric cur-
rent systems. It is probably justified to say that the magnetosphere is the dominant source 
region in the long-period band. However, variations induced at annual and seasonal peri-
ods due to changes in the ionospheric current systems and persistent ionosphere-magne-
tosphere coupling (Richmond and Thayer 2000; Richmond 2017) will also result in vari-
ations in the long-period band. Therefore,  such separation based solely  on the temporal 
condition is not correct.

The axisymmetric component of long-period band currents is conventionally described 
by the first zonal SH function ( P0

1
 ), and its origin is attributed to the magnetospheric ring 

current (RC). Under some (often omitted) assumptions, one can use variations described 
by the P0

1
 SH coefficients to estimate both local and global C1 and Q1 responses as defined 

in Sects.  3.3–3.4. In the last two decades, several space missions (THEMIS, Van Allen 
Probes, Cluster II, MMS, among others) allowed for measuring the magnetic field and 
plasma parameters directly within the magnetosphere. These data led to the construction 
of elaborate data-constrained models of the magnetosphere (e.g. Tsyganenko 2013) and 
advanced our understanding of different current systems in the magnetosphere (Baum-
johann et  al. 2010; Ganushkina et  al. 2018). Next to their complex geometry, numerical 
models and observations also reveal dynamic coupling between different magnetospheric 

(49)j⃗ext(r⃗,𝜔) = 𝜎(u⃗(r⃗,𝜔) × B⃗(r⃗,𝜔)),
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current systems. Since current-generating regions are at least few Earth’s radii away 
(with the exception of the polar region, where magnetosphere and ionosphere are coupled 
through the field-aligned currents) from the Earth’s surface, most small-scale effects atten-
uate. Therefore, superposed magnetic field of the magnetospheric origin that we observe 
on the ground or at LEO satellites is generally large scale, yet assuming it can be fit by the 
first zonal harmonic alone is not reasonable and most recent global EM models (e.g. Püthe 
et al. 2015a; Grayver et al. 2017; Kuvshinov et al. 2021; Velímskỳ and Knopp 2021) stand 
to rectify this problem by including more spatial terms to describe the inducing field. It 
remains to be shown whether physics-based models of the magnetosphere can be used to 
improve the source parameterization adopted in EM induction studies as has been shown 
for the ionospheric daily band variations (see discussion above).

Next to a higher spatial complexity inherent to the magnetosphere, it has long been 
known (Olsen 1999b; Kuvshinov and Semenov 2012) that long-period TFs can be biased 
if the magnetic field is observed in regions where strong signals from other, mostly iono-
spheric, electric current systems are present. The problem occurs because very dynamic 
and small-scale high-latitude and equatorial current systems (such as due to Equatorial, 
Polar and Auroral Electrojets) cannot be resolved with a sufficient spatiotemporal resolu-
tion by the current observational network. Limited local-time and/or spatial coverage pres-
ently do not allow for a sufficiently detailed data-based description of these current sys-
tems. Therefore, magnetic field effects due to unresolved currents appear as a systematic 
correlated noise in the data, which often leads to biased magnetospheric transfer functions 
independent of the frequency. Exclusion of data at high-latitude and equatorial geomag-
netic latitudes cannot fully rectify this problem since the magnetic field due to polar cur-
rents easily reaches mid-latitude regions. To minimize a potential bias of the magneto-
spheric transfer functions by polar currents, several approaches have been propose in the 
past decade. In the most general case, high-latitude currents can be co-estimated along 
with the magnetospheric magnetic field as is done in the Comprehensive Inversion mod-
els (Sabaka et al. 2018, 2020) where many different sources are co-estimated simultane-
ously. In Martinec et al. (2018), the authors proposed a dedicated along-track filtering of 
the Swarm magnetic field residuals that aims to mitigate the contaminating effect of high 
latitude currents. This approach was further developed by Martinec and Velímskỳ (2022) 
who show that in addition to the SH-based representation of the magnetospheric field, co-
estimating ionospheric currents as elementary loop currents reduces the ionospheric con-
tamination. In Sun et  al. (2015), authors determine ionospheric currents as a part of the 
mantle conductivity inversion scheme and account for the effect of unresolved ionospheric 
signals through non-trivial data covariance matrix, where ionospheric currents are itera-
tively re-estimated in form of a correlated noise component.

To illustrate the issue with the reliance on the zonal current assumption in C1 responses 
estimated at the ground magnetic field observations using the Z/H method (see Sect. 3.4), 
I will carry out the following experiment. Let us take a set of quality-controlled meas-
urements of the hourly mean vector magnetic fields (Macmillan and Olsen 2013) for the 
period between 2013–12–01 and 2019–11–01. The model of the core and crustal fields as 
given by the Comprehensive Inversion (CI) model (Sabaka et al. 2018) was subtracted from 
this data such that the variations in the remaining data set are mostly driven by the mid-
latitude ionospheric and magnetospheric current systems. Observatories poleward of the 
56◦ and equatorward of 5◦ geomagnetic latitudes were excluded to minimize the contami-
nating effect of polar and equatorial current systems, resulting in 50 − 110 observatories 
over the globe depending on time. The vector magnetic field is transformed into the Geo-
magnetic reference frame (Laundal and Richmond 2017) to better approximate large-scale 
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magnetospheric current systems. Next, SH coefficients of external and internal origins are 
estimated within each time window using a robust least-squares method for SH models 
of varying complexity. In the simplest case, external field is described by a single zonal 
SH coefficient (i.e. P0

1
 assumption of the Z/H method) in a time window. Alternatively, 

magnetic field observations are expanded using all SH functions up to the degree 2 or 3, 
giving 8 and 15 terms, respectively. For each time window, a coefficient of determination 
is calculated ( R2 statistics, also referred to as squared coherency) and daily mean values 
of these coefficients are plotted as time series in Fig. 9 for all three models of the external 
field. Corresponding Cumulative Distribution Function estimate plots for all hourly time 
windows and three models are given in the inner plot.

It is evident that the model based on the first zonal harmonic is able to fit only a small 
fraction of the total signal variance, in 10% of the time windows the R2 ≤ 0.1 , and R2 < 0.5 
for more than half of time windows. Therefore, P0

1
 coefficient is not a dominant spatial 

mode for the majority of time. In contrast, models based on the SH expansions up to the 
degree 2 and 3 systematically explain more variance in the observed magnetic field vari-
ations. Going to a higher SH degree creates a risk of data over-fitting, hence the mod-
els are limited to the SH degree 3. This experiment shows that using the P10 assumption 
to describe long-period magnetic field variations observed at a given location (i.e. geo-
magnetic observatory) is generally not justified and should be avoided in favour of more 
advanced techniques that allow for a more realistic source description. This is particularly 
relevant for 3-D inversions based on the Z/H method (equivalently, C1 or GDS responses 
from Eq.  48) where generally very small EM effects from plausible conductivity varia-
tions in deep mantle are most likely overshadowed by source effects due to non-P10 source 
terms, resulting in non-physical subsurface conductivity variations. This issue is far  less 
severe in case of global average conductivity models since localized source effects are par-
tially averaged by deriving a global response from the observatories over the globe.

In summary, methods that allow one to incorporate more realistic models of the external 
source and reduce the effect of ionospheric currents, should always be preferred to conven-
tional techniques (e.g. those described in Sect. 3.4). 

3.6  Forward Modelling

Modelling EM variations due to global spatially heterogeneous sources requires dedicated 
tools and methods. For MT and near-surface studies, it is conventional to work with a flat-
Earth model, whereby part of the spherical surface (with a geodetic reference datum) is 
projected onto a plane using an arbitrary geographic projection and the modelling/inver-
sion is then carried out in a local Cartesian coordinate system. For large-scale EM studies 
( L > 103km, where L is a characteristic length representing the source, survey scale or skin 
depth), one needs to resort to spherical coordinates and work in a sphere, spherical shell 
or a part thereof, assuming electrical conductivity varies in all three dimensions (Fig. 5). 
For modelling purposes, extraneous currents are typically represented using an equivalent 
current density that can be parameterized using (a combinations of) volumetric currents, 
dipoles, loops or thin sheet currents (see Sects. 3.1.1–3.1.2). As for the Cartesian case (i.e. 
under the flat-Earth assumption), analytical solutions of Eq. 11 are generally available only 
for cases where the conductivity varies in the radial direction, that is 𝜎(r⃗) ≡ 𝜎(r) . In pres-
ence of lateral variations, governing PDEs are solved using numerical methods.

In a benchmark paper by Kelbert et al. (2014), the status of global EM induction mod-
elling has been discussed in details, presenting all actively used and developed codes at 
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that time. All participating codes were tested on a set of conductivity and inducing source 
models of varying complexity. This review is still relevant and reader can find many details 
about status of global forward modelling, yet the last decade has had several important 
developments, which will be followed in the future. First of all, a new generation of codes 
has been developed. This includes a revised finite-difference code (Zhang et al. 2019), new 
finite-element (FE) codes (Grayver et  al. 2019; Yao et  al. 2022; Wang et  al. 2023), fur-
ther developed mixed spectral-FE (Velímskỳ et al. 2021, 2019, 2018) and integral equation 

Fig. 5  Principle of electromagnetic (EM) induction. Primary magnetic field ( ⃗Bp ) induced by primary cur-
rent density J⃗p , which exist in the exterior (mostly in the ionosphere-magnetosphere system) or within the 
oceans. Secondary currents ( ⃗Js ) and fields ( ⃗Bs ) are induced in the Earth’s interior by virtue of EM induction

Table 3  Summary of deep electromagnetic sounding methods

1Given values are first-order approximations. In reality, this depends on many factors including subsurface 
conductivity, source geometry (Fig. 6) and data quality
2GDS stands for Geomagnetic Depth Sounding

Method Source region Model of the source Data sources Sounding depths (km)1

Magnetotel-
lurics (MT)

Ionosphere, lower 
atmosphere

Plane wave Temporary stations/
arrays

0–350

GDS2 Ionosphere Equivalent current 
sheet

Temporary stations, 
geomagnetic observa-
tories, satellites

200–600

Magnetosphere Equivalent current 
sheet

Observatories, satellites 400–2600

Tidal Oceanic tides Oceanic tidal models Satellites, seafloor 
temporary stations

10–400
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solutions (Kruglyakov and Kuvshinov 2022; Sun and Egbert 2012). With the exception of 
Velímskỳ et al. (2021), all codes solve governing equations in the frequency domain. How-
ever, computationally efficient approaches for adapting frequency domain codes to time 
domain problems have also been presented (Grayver et al. 2021; Kruglyakov et al. 2022).

Another development in the field was motivated by the advent of continental MT sur-
veys discussed in Sect.  2. Conventional 3-D MT solvers all operate under a flat-Earth 
assumption. However, assuming that Earth is flat for surveys that span entire continents is 
not physical and can lead to erroneous EM responses resulting from distorted geographic 

Fig. 6  Absolute value of the C-response transfer function (see Sects.  3.3–3.4 for the definition) for two 
1-D radial conductivity models (shown in the inset) as a function of horizontal scale-length �n and period 
(curves correspond to periods from 1 min to 11 years) of the external field source. Dashed blue lines are 
for the conductivity model with a more conductive lower mantle. Recreated with modifications after Olsen 
(2007)
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projections if such distortions are not explicitly accounted for. This motivated  the devel-
opment of a new type of MT solvers that operate in the spherical frame rather than in a 
flat Cartesian model. In addition to changing the reference coordinate system, this required 
development of a new source model that, once imposed on a spherical shell, would produce 
valid MT transfer functions. New 3-D MT forward solver with an adapted source model 
for the impedance tensor has been presented by Grayver et al. (2019). The source model 
used in this work is based on a combination of orthogonal uniform planetary fields repre-
sented by SH functions of degree one (Eq. 31), and works for the impedance tensor, but not 
for “plane-wave”  induction vectors (“tippers”). An alternative solution based on uniform 
meridional currents has been developed by Kruglyakov and Kuvshinov (2022). Although 
more technical, this approach also allows one to model “plane-wave” induction vectors for 
a 3-D conducting spherical shell. A comparative study on modelling MT in spherical and 
projected Cartesian plane systems was presented by Han and Hu (2023).

Fig. 7  Top: Amplitude of radial magnetic field components measured at the Honolulu/USA geomagnetic 
observatory between years 1945 and 2019 for periods between 2 min and 30 years. Some of the major 
sources and designated bands are denoted. Bottom: Zoomed in spectrum around 12 and 24 h. Red circles 
are plotted at periods of major lunar and solar tidal constituents
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One of the major challenges in EM induction is the ability to model EM phenomena 
across a broad range of periods (Fig. 7) and accurately represent local conductivity gradi-
ents (e.g. due to the coastline). These challenges demand multi-scale modelling approaches. 
The most efficient way to address this challenge is to use locally refined meshes. This is 
most easily achieved when the finite-element method (FEM) is invoked (an example of 
such meshes is shown in Fig. 10), where by refining individual elements a smaller length-
scales can be modelled more accurately within regions of interest. Importantly, the numeri-
cal solution of governing equations obtained with the FE method remains globally conserv-
ative and retains all asymptotic convergence properties upon local refinement (Bangerth 
and Rannacher 2003). A similar “multi-scale” modelling capability can be achieved with a 
nested-IE approach presented by Chen et al. (2020), although this approach involves some 

Fig. 8  Physics-based estimated equivalent sheet current stream functions, showed at 6 hr intervals (UT), for 
two days: a 9/24/2002, a quiet day. b 10/02/2002, near the start of a magnetically active interval. Units of 
the stream function are kAmp; note that different colour scales were used for the two days. Figure modified 
after Egbert et al. (2020)
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ad-hoc choices and it remains to be shown if the resulting scheme is globally conservative 
and asymptotically convergent. Another major trend is related to adding a support for mod-
elling only part of a sphere (Grayver et al. 2019; Zhang et al. 2019; Yao et al. 2022). This is 
practical when working on a continental scale and at periods where considering the entire 
planet is not necessary (Fig. 6). Modelling domains that constitute only part of a spherical 
shell (or sphere) are straightforward for FD/FE codes since these methods are based on 
local basis functions and allow one to impose arbitrary boundary conditions, whereas IE 
and spectral codes need to operate globally in order to retain their computational efficiency.

3.7  Inversion

In general, neither the inducing source current density j⃗ext nor subsurface conductivity 
� (cf. Eqs.  10–11) are known. Therefore, in the most general case, our inverse problem 
seeks estimates of both source and subsurface conductivity variables. In some cases, one 
can reduce the problem and remove the unknown source term. For instance, assuming a 
plane-wave source geometry, substituting this into equation  12 and doing some algebra 
(Berdichevsky and Dmitriev 2002; Weidelt and Chave 2012) allows one to obtain MT 
transfer functions, which are independent of the instanteous amplitude of  source current 
term. Another exception are oceanic tidal sources, where the inducing current can be 
constructed based on the independent models (see Sect.  3.5 for more details). Local Cn 
responses (Eqs.  44–45) can also be used to eliminate the source term by assuming that 
the source geometry is described by a single known SH harmonic function. The limita-
tions and consequences of this rather strong and often unrealistic assumption have already 
been discussed in previous sections.

In the past decade, main developments in large-scale (global) EM inversion methods 
were concentrated around three points: (i) implementation of inverse solvers based on new 
forward operators discussed in the previous section; (ii) development of inversion codes 
where more realistic inducing source models are allowed and subsurface conductivity 
can be estimated simultaneously with an inducing source model, and (iii) development of 

Fig. 9  Daily averages of the R2 coefficient for three models based on the SH expansions of the magnetic 
field hourly means as measured by a global network of ground magnetic observatories. The inner plot 
shows Cumulative Distribution Function estimate for all three models
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Fig. 10  Top: locally refined 
multi-scale hexahedral (top) and 
tetrahedral (bottom) meshes from 
Grayver et al. (2019) and Yao 
et al. (2022), respectively



216 Surveys in Geophysics (2024) 45:187–238

1 3

probabilistic/stochastic approaches that assign a notion of uncertainty to retrieved subsur-
face conductivity models.

As is the case with other electromagnetic inverse problems, the conventional way to 
solve a large-scale (global) EM inverse problems is by minimizing a regularized objective 
function of the following form

where m is a vector of unknown model coefficients that parameterize the subsurface con-
ductivity, Cd is a data covariance matrix and Rm(⋅) is a regularization operator on m . The 
modelled data vector dmod = F(m) entails solving a forward problem.

In case of computationally expensive 3-D forward operators and high-dimensional 
model spaces, minimization of the objective function (50) is typically done by means of 
derivative-based optimization methods, which require calculation of the gradient (and pos-
sibly Hessian) of the forward operator. The most efficient way to obtain derivatives of a 
high-dimensional PDE-constrained operator is by using the so-called adjoint method. 
In Egbert and Kelbert (2012), Pankratov and Kuvshinov (2015), authors present a gen-
eral formalism for computing the gradient and Hessian of the objective function for EM 
induction problems using the adjoint-based approach. These works focused on governing 
equations formulated in the frequency domain for ground-based observations. The work of 
Maksimov and Velímskỳ (2017) presented efficient calculation of the gradient and Hessian 
for time domain global problems, which can incorporate both ground and satellite data 
(Velímskỳ and Knopp 2021). Further, Püthe and Kuvshinov (2014) presented an adjoint-
based method for the inversion of the global Q-matrix responses (Sect. 3.3). The latter can 
be estimated from the ground and satellite data (e.g. ESA Swarm) and was inverted for 3-D 
conductivity distribution in the mantle by Kuvshinov et al. (2021).

Adjoint-based approaches are not only important for “optimal” navigation in the high-
dimensional model space in derivative-based optimization methods, but also serve as 
a basis for efficient uncertainty quantification (UQ) where knowledge on local objective 
function derivatives is essential to make the problem of UQ computationally tractable (Ren 
and Kalscheuer 2020). In addition to the UQ accelerated by exploitation of the gradient/
Hessian, more conventional probabilistic inversion schemes were developed, although this 
approaches are mostly limited to low-dimensional 1-D problems with inexpensive forward 
operators. Püthe et al. (2015a), Verhoeven et al. (2021), Yao et al. (2023b) posed global 
EM inversion using the Bayesian formalism and sampled the corresponding posterior Prob-
ability Density Function (PDF). For this task, all used a 1-D forward operator (i.e. conduc-
tivity model is assumed to vary only in the radial direction) and derived a global average 
conductivity profiles using ground and satellite data. A set of inversion codes based on 
stochastic optimization methods were also developed to mitigate limitations of the deriva-
tive-based methods yet allow for a more physically realistic forward operator. Grayver et al. 
(2016), Chen et al. (2022) inverted ground and satellite long-period EM responses using 
a stochastic optimization method called Covariance Matrix Adaptation Evolution Strat-
egy (CMAES), which can find global minima and provides an ensemble of equivalent data-
fit models as a rough model uncertainty estimate. In these schemes, the mantle was still 
parameterized using a 1-D radial profile, but a heterogeneous conductivity layer was added 
on top to model 3-D induction effects due to realistic ocean bathymetry and sediment cover 
since these effects are often too significant to be neglected. In the next decade, we will 
likely see new probabilistic inverse codes that take an advantage of adjoint-based gradient 
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and Hessian operator with full 3-D physics and can sample high-dimensional model spaces 
in a reasonable amount of time (Fichtner et al. 2021; Zhao et al. 2022; Zhang et al. 2023b).

As was alluded to at the beginning of this section, generally neither the inducing source 
nor the subsurface conductivity are known. In the rest of this section, we therefore discuss 
the development of methods where both the source structure and subsurface conductivity 
distribution are estimated simultaneously from the data as parts of a single inverse prob-
lem. For this purpose, the minimization problem in Eq. (50) is expanded into the so-called 
separable nonlinear least-squares (SNLS) problem, which reads

Here, in addition to unknown subsurface conductivity parameters m , the problem also 
seeks an estimate for the source coefficients c and dmod = F(m) c . The key characteristic of 
this form is that while the problem is nonlinear with respect to the conductivity, it is linear 
relative to the source coefficients. This property of the SNLS problem allows us to devise 
efficient solution strategies (Min and Grayver 2023).

Many recent studies (Koch and Kuvshinov 2013; Sun et al. 2015; Guzavina et al. 2019; 
Egbert et  al. 2020; Zhang et  al. 2022) have adopted a so-called alternating approach to 
solve the problem (51), whereby the source structure is estimated given some prior knowl-
edge about the subsurface conductivity. With this estimated source structure, the inversion 
in terms of subsurface conductivity is subsequently performed and the updated conductiv-
ity model can again be used to re-estimate the source coefficients. Such separate estimation 
of the two model spaces is assumed to result in progressively refined knowledge of both the 
source and conductivity models. The alternating approach outlined above is the simplest 
way of solving a SNLS problem. However, it does not enforce consistency between con-
ductivity and source models and may suffer from the slow convergence. In Min and Gray-
ver (2023), authors explored more efficient ways of solving the SNLS problem. Namely, 
they implemented the variable projection method (VP), which has been proposed as an 
optimal method for solving SNLS problems in other domains (O’Leary and Rust 2013). 
The VP method benefits from both computational efficiency and fast convergence. In 
essence, VP exploits the linear dependency in one part of the model and estimates this part 
via linear least squares at each iteration, thus optimally (in a least-squares sense) project-
ing the complete model space onto a reduced subspace for efficient nonlinear optimization. 
The key advantage of the approaches listed above is that one does not rely on oversimpli-
fied assumptions about the source structure (as happens, for instance, in the inversion of C1 
responses), but can estimate a more complex and realistic source model directly from the 
data. On the other hand, this implies that the problem has even more unknowns.

4  Case Studies

4.1  Plane‑Wave Band

As was discussed in Sect.  2, the advent of national-wide MT arrays unlocked unprece-
dented opportunities for the MT imaging. However, before discussing research based on 
the these data, we will briefly look at studies where modern tools were used to reprocess 
and model legacy data from older large-scale arrays. A good example is the AWAGS array 
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of ≈ 60 magnetometers, which recorded magnetic field variations over the Australian con-
tinent for nearly one year in 1989–1990. Wang et al. (2014) derived induction vectors for 
stations from the AWAGS array using a modern robust processing code and inverted them 
for a 3-D conductivity structure beneath Australia. The authors obtained a model that fits 
the data and contains conductivity variations that correlate with some major geologic 
structures. In the next decade, we can expect more on the imaging of the 3-D conductivity 
under the entire Australia with the AusLAMP array that presently is half-way through to its 
completion (Fig. 2).

Kelbert et  al. (2019a) presented the USArray-based conductivity model for the con-
tiguous US. The model is a compilation of several regional conductivity models derived 
using subsets of the USArray data. In areas outside of the USArray, the global conductiv-
ity model by Sun et al. (2015) was used. In this work, the authors attempted to create a 
coherent 3-D conductivity model to constrain the location and extent of electrical struc-
tures due to various geologic structures traversing the contiguous US. Murphy et al. (2023) 
has updated the model by re-inverting overlapping subsets of USArray using common 
inversion settings, which improved the spatial coherency of the compiled continental 3-D 
model. Yang et al. (2021) inverted a subset of ≈ 450 USArray stations imaging large-scale 
conductivity variations under contiguous US and inferred an average water content of the 
asthenosphere needed to explain recovered conductivity structure. Notably, they found that 
using a starting model derived from the global 3-D conductivity model by Kelbert et al. 
(2009) results in more plausible conductivity variations within the asthenosphere. Another 
3-D inversion of the USArray was performed by (Singh and Dehiya 2023) within a broader 
methodological study.

Most recently, Munch and Grayver (2023) performed a 3-D inversion of nearly 1300 
MT stations from USArray to derive a multi-scale model of electrical conductivity for the 
conterminous US. Retrieved conductivity variations in the asthenosphere were interpreted 
in terms of lateral variability in the water content of the Olivine phase. To this end, a joint 
seismic-EM interpretation was performed, whereby seismic velocity and conductivity 
were linked through the thermodynamic phase equilibria modelling. As a starting model, 
an adapted global average satellite-based conductivity model of Grayver et al. (2017) was 
used to guide the 3-D inversion. This is the first study where 3-D MT inversion was per-
formed directly in the spherical frame, that is without invoking the flat-Earth assumption 
and thus avoiding any geographic projection. It is likely that more studies will adopt a 
more natural spherical frame in the future, provided needed technical developments (see 
Sect. 3.6) are in place.

Next to fundamental questions related to the structure of  the crust and mantle, it was 
already demonstrated that these models play a major role in identifying and imaging the 
source rocks of mineral systems (Kirkby et al. 2022) and are indispensable for assessing 
the impact of Space Weather events on the ground infrastructure (Kelbert 2020; Murphy 
et al. 2021). Significant new developments and advances in these directions can be antici-
pated as the extent of surveys and quality of continental-scale EM imaging improve.

4.2  Oceanic Sources

Tidal motion of the electrically conducting seawater in the oceans produces a time-varying 
magnetic field signal by means of a phenomena called motional induction. The physical 
aspects and historical works aimed at studying these phenomena were thoroughly covered 
in the recent EM review by Minami (2017). In this section, we will describe the progress 
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that has been enabled through the usage of tidally induced magnetic signals for probing 
electrical conductivity of the mantle below oceans. This development is one of the most 
significant methodological breakthroughs of the last decade in the field. Given logistical 
hurdles and cost of marine EM surveys, tidal magnetic signals mapped globally by satel-
lites is practically the only natural signal in the relevant period range that can be used to 
study electrical conductivity of the sub-oceanic mantle on the global scale, and will help 
us better understand processes that occur at and close to the lithosphere-asthenosphere 
boundary.

The first successful attempt to globally map the weak magnetic tidal signal due to the 
lunar principal semi-diurnal tidal constituent ( M2 ) was based on a few years of magnetic 
field observations from the CHAMP mission (Tyler et  al. 2003). The application of this 
signal for mantle sounding was not envisioned at that time, although this work demon-
strated the remarkable high quality of satellite magnetic data. The next major step forward 
was the release of the Comprehensive Model (CM5) by Sabaka et al. (2015). It retrieved 
the global magnetic field due to the M2 magnetic tidal signal with the quality that was 
sufficient to use it for probing the electrical conductivity of the upper mantle beneath the 
oceans. This was first demonstrated in a forward modelling study by Schnepf et al. (2015). 
Later, a full inversion code was developed by Grayver et al. (2016) who applied it to map 
the global average conductivity structure of the oceanic upper mantle. These papers dem-
onstrated the feasibility of using satellite-detected magnetic tidal signals as an electromag-
netic induction source for imaging the upper mantle below the oceans (Fig.  11), which 
previously was only done using locally measured EM signals. The works of Grayver et al. 
(2016), Saynisch et al. (2018) also ran detailed error propagation studies, showing how dif-
ferent input variables used for construction of the ocean tidal current density propagate to 
the simulated magnetic fields.

The CM5 magnetic field model was constructed using pre-Swarm satellite magnetic 
observations, namely Ørsted, CHAMP, and SAC-C missions. The launch of the Swarm sat-
ellites by ESA pushed this field to the next level by enabling the calculation of East–West 
gradients due to the orbital configuration whereby Swarm A and Swarm C spacecrafts 
fly at a small longitudinal separation. Among other advantages, this enabled an improved 
determination of the M2 signal (Sabaka et al. 2016, 2018). Collection of additional data has 
enabled global mapping of other weaker tidal constituents, such as N2 and O1 by Grayver 
and Olsen (2019). The O1 is particularly useful in the context of the mantle conductiv-
ity studies because its period (25.82 h) is roughly twice longer than that of the M2 con-
stituent (12.42 h), adding sensitivity to the deeper asthenosphere. Subsequent studies also 
extracted the three mentioned constituents using other data processing and magnetic field 
separation approaches (Sabaka et al. 2020; Saynisch-Wagner et al. 2021). All mentioned 
papers parameterized tidal magnetic signals using truncated series of SH functions. Cur-
rent observations and state of data processing and calibration impose restrictions on spa-
tial resolution of the tidal magnetic field models. For instance, the dominant M2 constitu-
ent was reliably characterized up to the truncation degree of n ≤ 30 , implying the spatial 
resolution of ≈ 1000 km. Magnetic signals due to other weaker constituents have a lower 
spatial resolution. A dedicated modelling study by Velímskỳ et al. (2018) showed that the 
spectrum of tidal magnetic signals decays exponentially with the SH degree, thus estima-
tion of signals at higher SH degrees is increasingly challenging. Next to the improved data 
processing workflow, a major boost in spatial resolution of extracted tidal magnetic signals 
will likely be achieved at the end of life of ESA Swarm satellites, namely when spacecrafts 
will go on lower orbits prior to reentering the atmosphere eventually. This short period, 
informally called the “mapping phase”, will be a favourable window for characterization 
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of small-scale magnetic fields due to oceanic tides or crust/lithosphere. It is planned that 
the Swarm A/C spacecrafts will enter this “mapping phase” during the next solar minimum 
when the effect of contamination due to ionospheric and polar current systems will be the 
lowest.

Next to retrieval of ocean tidal magnetic signals from satellite data and their use in a 
global conductivity inversion, there were also successful attempts to use tidal magnetic 
signals registered at ocean-bottom EM instruments (OBEM). In Zhang et al. (2019), the 
authors used an array of OBEM instruments and derived a conductivity model of the sub-
oceanic upper mantle beneath a region in the Pacific ocean using locally measured tidal 
magnetic signals. Interestingly, tidal signals are normally considered noise and filtered out 
in marine EM studies. A key message of this study is that tidal magnetic signals can add 
value when combined with local MT transfer functions, which are usually the main pur-
pose of deploying OBEM stations. The advantage of OBEM measurements compared to 
satellite data is of course their higher sensitivity to the mantle, both because they are close, 
but also because magnetic signals measured within the ocean contain both poloidal and 
toroidal components, whereas only the poloidal part of the magnetic field can be measured 
at a satellite (Velímskỳ et al. 2019). However, sparsity of OBEM measurements limits their 
application to a few regions worldwide.

All studies mentioned above parameterized the oceanic mantle using a 1-D radial con-
ductivity model. The layer on top, representing ocean and sediments was parameterized as 
a thin layer of equivalent laterally variable conductance. A major methodological develop-
ment was undertaken by Šachl et al. (2022), where authors developed a new 3-D inversion 
scheme for tidal magnetic signals. Their results show that magnetic signals detected by 
LEO satellites can indeed be used to invert for the 3-D electrical structure of the upper 
oceanic mantle, provided tidal magnetic signals of sufficient accuracy and resolution are 
in place. In a related earlier study, Martinec et  al. (2021) constructed a new integrated 
geophysical-petrological global 3-D model of the upper-mantle electrical conductivity and 

Fig. 11  Black solid and dashed 
lines represent the most prob-
able models obtained by using 
structurally sparse (that is, permit 
conductivity jumps but allow 
as few features as possible) 
and smooth constraints in the 
inversion algorithm, respectively. 
The grey lines denote the 1000 
models for which misfit differs 
by no more than 10% relative 
to the most probable solution. 
Conductivities of the dry and 
water-saturated Olivine are 
shown with red and orange lines, 
respectively. Figure modified 
after Grayver et al. (2016)
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validated it by the M2 tidal magnetic field as given by Sabaka et al. (2018) and Grayver and 
Olsen (2019).

The global tidal magnetic signals have also been used in combination with long-period 
magnetospheric variations to enable sensitivity across a larger range of depths. Some 
research output on this topic is described in Sect. 4.5.

One further development that aimed to aid a more accurate modelling of motionally 
induced signals is a more realistic physical representation of the ocean and marine sedi-
ments within the model. Conductivity of the ocean and sediments is usually assigned a pri-
ori and this part of the model remains fixed. Given that both the ocean and porous marine 
sediments are prominent 3-D conductors, more faithful representation of these layers is 
important because inducing and induced EM fields propagate and get distorted by complex 
3-D induction effects that occur in the ocean and sediments. The most common approach 
has been to use an arbitrary constant value for the seawater and sediments (the latter are 
often neglected despite their total conductance can be even higher than that of the overly-
ing ocean). A significant step forward has been made by using observations of seawater 
salinity and temperature to compute physics-based 3-D conductivity models of the ocean 
and marine sediments. This has been enabled by using validated climatology products from 
the World Ocean Database or interpolated grids given by the World Ocean Atlas (WOA) 
together with the thermodynamic Equation of State for seawater. Tyler et al. (2017) derived 
a 3-D conductivity model of the global ocean with the resolution of 1 ◦ . Subsequently, a 1/4 
degree resolution product was added as a part of the WOA (Reagan et al. 2019). Indepen-
dently, Grayver (2021) derived an atlas of the world ocean and marine sediments electrical 
conductivity by combining global and regional ocean climatologies and a recent global 
model of marine sediments thickness (Straume et  al. 2019). Figure  12 shows an exam-
ple from two of the published models. These elaborate ocean and sediments conductivity 
models are also instrumental for regional MT inversions, global EM induction studies, and 
modelling of surface electric fields for GICs in the coastal areas.

4.3  Daily Variations Band

Daily band variations of the magnetic field are mostly produced within the ionospheric 
dynamo regions (Olsen 2007; Yamazaki and Maute 2017). Given their period range and 
spatial scales, these variations can be used to probe electrical conductivity within the 
asthenosphere and MTZ (Fig. 6). As was already discussed in Sect. 3.5, there were many 
works in the past decade which elaborated on space-time representation of the ionospheric 
sources, and inversion of daily band variations in terms of the mantle conductivity struc-
ture. Koch and Kuvshinov (2015) inverted Sq variations from the AWAGS array and 
derived a 3-D conductivity model of the mantle under the Australian continent. Notably 
both the source current and subsurface conductivity structures were reconstructed in an 
alternating way (see Sect. 3.7). Guzavina et al. (2019) developed this approach further and 
applied it to a global network of geomagnetic observatories to derive conductivity profiles 
under their locations. There, authors used the concept of local-to-global TFs as defined in 
Eqs. (32)–(33) in order to work with spatially complex Sq source currents. Zhang et  al. 
(2022) used an alternating approach and a physics-based spatial basis to describe the iono-
spheric source currents (see Sect. 3.5) and inverted daily band magnetic field variations for 
the global average conductivity of the asthenosphere and MTZ. All studies interpreted the 
resulting conductivity models in terms of the mantle water content or possible partial melt-
ing. Although the described works illustrate a remarkable progress within the last decade, 
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they all were limited to using ground data from global observatories or large-scale arrays. 
The extension of these methods to satellite data could be a major step forward. However, 
the challenge of using daily band variations with satellite data is twofold: (i) unlike for the 
long-period magnetospheric sources, the major part of the signal in the daily band is gener-
ated in regions below the LEO satellites (e.g. E-region at ≈ 90 − 130 km altitude), render-
ing both inducing and induced parts of the field to be of the internal origin, and (ii) LEO 
satellites occasionally pass through current-generating regions where the magnetic field is 
not potential (Sabaka et al. 2010). These complications invalidate most of the developed 
approaches that target ground magnetic data processing and modelling. Importantly, a new 
generation of methods presented by Zhang et al. (2022); Zenhäusern et al. (2021) together 
with the inversion approach of Min and Grayver (2023) can in principle be extended to also 
work with satellite data, but this extension requires further developments.

4.4  Long‑Period Band

A new generation of global 3-D conductivity models based on long-period EM responses 
was presented by different groups. Semenov and Kuvshinov (2012), Sun et al. (2015), Li 

Fig. 12  Depth-averaged (top) and, for the cross-section in red, depth-dependent (bottom) electrical conduc-
tivity of the west Pacific coast. Left and right figures were derived from Grayver (2021) and Tyler et  al. 
(2017), respectively
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et  al. (2020) used GDS (that is, C1 ) responses to derive global 3-D conductivity models 
of the MTZ and upper parts of the lower mantle. Note that the method presented by Sun 
et  al. (2015) also implements an advanced treatment of the ionospheric currents, which 
are known to bias conductivity models in conventional approaches where the sources 
is assumed to be described by the first zonal SH function ( P0

1
 assumption). Püthe et  al. 

(2015b), Grayver et al. (2021) also presented an approach that allows one to handle com-
plex external sources and reconstruct the 3-D conductivity from the ground observatory 
and satellite data. These ideas were further developed by Min and Grayver (2023) who 
developed the simultaneous inversion for the inducing source and subsurface conductivity 
whereby the physical link between the inducing source and the subsurface conductivity 
is explicitly enforced. These methods allow one to mitigate many limitations imposed by 
the conventional Gauss-based workflow or Z/H method, which nonetheless are still widely 
applied, despite their well-known and documented limitations (see Sect. 3.5).

Kuvshinov et al. (2021), Velímskỳ and Knopp (2021) presented first 3-D conductivity 
models produced with the use of satellite data. In these studies, data from the ESA Swarm 
and CryoSat-2 platform magnetometer were used along with the ground observatories. 
The inducing and induced time series of SH coefficients up to degree and order three were 
either fitted directly in time domain or transformed to the frequency domain for estimation 
of the Q-matrix TFs (see Sect. 3.3). Note the focus was on fitting the long period ( > 1 day) 
variations of the predominantly magnetospheric origin, hence these models have rather 
limited sensitivity to the mantle structure above the MTZ. Additionally, a degree 3 SH 
representation of the induced fields means that the final models have a low spatial resolu-
tion, hence many geological phenomena that can potentially have a significant signature in 
lateral conductivity gradients still remain unresolved.

In addition to the global 3-D models, Koyama et  al. (2014), Shimizu et  al. (2010) 
inverted GDS responses for 3-D conductivity distribution under Australia and/or Pacific 
regions. Zhang and Yang (2022) presented a 3-D resolution study and concluded that if 
measurements are sufficiently dense, conductivity anomalies due to stagnant slabs can be 
detected by GDS responses, assuming that the there are no source effects which would 
distort the C1 responses. Several studies inverted GDS responses for local 1-D conductiv-
ity profiles (Munch et al. 2018; Zhang et al. 2021; Yuan et al. 2020; Zhang et al. 2020). A 
number of studies derived global average conductivity profiles by inverting the global aver-
age transfer function (Püthe et al. 2015a; Yao et al. 2023a; Grayver et al. 2017; Verhoeven 
et al. 2021; Velímskỳ and Knopp 2021; Constable et al. 2022).

The aforementioned works mainly concentrate on the conductivity structure down to 
depths of ⪅ 1600 km, thus a large part of the lower mantle is not considered/resolved. As of 
today, electrical structure of the lower mantle remains poorly constrained and understood. 
Figure 6 shows that in order to reach depths of ≥1000 km, variations from global sources 
(SH degrees 1–2) with periods ⪆ 30 days are needed. Therefore, usage of long calibrated 
ground and satellite time series should enable new constraints on the conductivity structure 
of the lower mantle. In theory, the limit of no induction (i.e. the depth at which geometric 
attenuation dominates over EM induction) is within the core for the largest possible spatial 
source (Fig. 6). Thus, conductivity structure at the core–mantle boundary (CMB) affects 
EM induction responses at very long periods (Velímskỳ and Finlay 2011; Velímskỳ et al. 
2012; Constable et al. 2022). In reality, reaching these depths requires a sufficiently pow-
erful external source at relevant periods (Olsen 2007; Constable 2016). One possibility is 
to use natural variations induced at the solar cycle period (Olsen 1999b; Constable et al. 
2022) and sub-harmonics that would allow us to reach depths of 2500–2700 km (Fig. 6). 
However, reliable estimation of EM responses at these periods requires high quality 
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multi-decadal time series and a tailored pre-processing in order to minimize the effect due 
to core field variations. Sufficiently long time series are presently available only for a few 
ground observatories (Fig. 2), although the problem will render feasible with time as the 
era of high-quality modern ground and satellite magnetic observations continues.

An interesting avenue for future research, which also partially mitigates the loss of sen-
sitivity of EM induction responses towards the lowermost mantle, is to constrain the lower 
mantle conductivity by using both the top-down sounding approach and the bottom-up 
mechanisms, namely the fast core field variations. In addition to the mechanical coupling 
at the CMB, core is also electromagnetically coupled to the lower mantle and magnetic 
field variations at relevant periods offer a way to impose constraints on the conductivity 
of the lowermost mantle. Some recent references that document efforts in this direction 
include Pinheiro and Jackson (2008); Pinheiro et al. (2015) where the focus was on geo-
magnetic jerks, as well as works of Schaeffer and Jault (2016), Jault (2015), Gillet et al. 
(2017) where the conductance of the lowermost mantle was inferred from studying the 
interactions between MHD waves and the mantle at the CMB. It should be noted at this 
point that without injecting some prior knowledge and constraints into the problem, the 
magnetic field vatiations from the core and lower-mantle cannot be separated within the 
potential field representation.

4.5  Joint Inversions with Multiple Sources

Owing to differences in the source representation, data processing and modelling, most 
studies focus on variations from a single band, thus using only plane-wave, daily or long-
period responses. Combination of EM variations across as wide a frequency range as pos-
sible will clearly be beneficial because it will allow us to constrain a much larger depth col-
umn. Figure 13 illustrates this idea showing inversion results for cases when EM transfer 
functions from different bands are inverted separately and jointly. Although the responses 
from different bands may not have overlapping periods, they have complementary sensi-
tivities; hence, their joint inversion would take the full advantage of this property.

In the last decade, there were several studies which successfully combined responses 
from different sources and inverted them simultaneously for a single conductivity model. 
Matsuno et  al. (2017) combined MT and GDS responses estimated from OBEM data 
collected in the Pacific East of Japan. Authors inverted data for 1-D conductivity of the 
upper mantle and MTZ to study potential presence of partially molten material. Chen et al. 
(2022) performed similar work by using data from a few islands and a concept of new 
TFs, which allowed them to work with more realistic sources. A stochastic inversion algo-
rithm was used whereby the effect of the 3-D ocean was taken into account. Munch et al. 
(2020) inverted jointly daily band and magnetospheric responses using a stochastic opti-
mization framework for a number of continental observatories and constrained the man-
tle water content for these locations using the thermodynamic phase equilibria modelling 
and laboratory conductivity measurements. Also there authors used new local-to-global 
transfer functions to accommodate a more realistic model of ionospheric and magneto-
spheric sources. In Zhang et  al. (2023a), the authors also performed a joint inversion of 
the daily band ionospheric and long period magnetospheric signals to constrain the water 
content of the upper mantle and MTZ. A physics-based description of the ionospheric 
source was used (Egbert et al. 2020), while conventional C1 responses were estimated at 
periods longer than one day. Yao et al. (2023b) implemented a 1-D Bayesian inversion of 
MT and C1 responses. Grayver et al. (2017), Kuvshinov et al. (2021) inverted long-period 
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global magnetospheric responses and ocean tidal magnetic signals jointly to reconstruct the 
average global conductivity profile. Note in these models the upper mantle is mostly con-
strained only below the oceans, because tidal magnetic signals are effectively zero over the 
land areas. These models were used for geomagnetic field modelling (Finlay et al. 2020) 
or as a starting model for 3-D EM inversion of the USArray (Munch and Grayver 2023) or 
global Q-matrix transfer functions (Kuvshinov et al. 2021).

Note that all aforementioned studies used 1-D conductivity parameterizations of the 
mantle (that is, inverting either for local or global/regional average radial conductivity pro-
files). Extensions to 3-D imaging with multiple sources from different spectral bands is an 
active area of research.

5  Extraterrestrial Studies

Since measuring EM induction effects can be done without a physical coupling, any mag-
netometer measurement of the full vector field around an electrically conductive body is 
a candidate for EM induction sounding. Similar to the Earth, the major challenge lies in 
an ability to quantitatively characterize the inducing source and separate the inducing and 
induced components. Unlike Earth, however, we know much less about electromagnetic 
environments around other planets, although this situation is changing as new missions 
equipped with magnetometers are in construction, cruising or already in orbit around other 
bodies. Therefore, while methods and modelling tools developed for Earth are in princi-
ple useful for planetary studies, they are not always directly applicable for other bodies in 
the solar system because of the existing and still sparsely sampled specifics of surround-
ing magnetic field environments that dominate observations. A comprehensive review of 

Fig. 13  Synthetic probabilistic inversion of EM responses using different spectral bands separately and 
jointly (rightmost plot). Transfer functions from different period bands are defined as: periods 2–180 days 
are long-period responses due to a source described by the first zonal harmonic, 4–24 h are daily band Sq 
variations, and 1–12000 s is the plane-wave MT band. MAP (red lines) denotes the Maximum Aposteriori 
Probability models
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the induced magnetic fields around other bodies in the solar system is given in Saur et al. 
(2010), and the reader is referred to this work for more details and description of methods. 
The rest of this section is a short overview of works published after 2010.

Discovery of the subsurface ocean on the Jovian moon Europa (Neubauer 
1998; Khurana et  al. 1998; Kivelson et  al. 2000) is a prime example of a case where 
EM induction has played the major role. There, the currents in the moon are induced 
due to the orbital motion through the varying external magnetic field of the host (Jupiter 
in this case). The main excitation in this case occurs at the synodic period (and sub-
harmonics), although measurable response at other periods also exist (e.g. Seufert et al. 
2011) and will be constrained by new missions. Since the pioneering work in the 1990s, 
the EM induction in the Jovian moons has been thoroughly explored and documented 
(Seufert et al. 2011; Biersteker et al. 2022; Liuzzo et al. 2018; Hartkorn and Saur 2017; 
Vance et  al. 2021). Signals induced in the subsurface of some Gallilean satellites can 
also alter the observed aurora signatures, allowing an indirect inference of the interior 
electrical conductivity (Saur et al. 2015). So far, mostly observations from the Galileo 
mission flybys were used to study attenuation of the magnetic field due to putative sub-
surface oceans. However, new measurements by the Juno spacecraft already enable new 
models (Weber et al. 2022; Duling et al. 2022) and together with the launched JUICE 
(Grasset et al. 2013) and planned Europa Clipper (Kivelson et al. 2023) missions will 
unlock a whole new set of opportunities in this field, including measuring an amplitude 
and phase shift at multiple periods, which will permit better constraints on the con-
ductivity and thickness of the subsurface layers. Further, multiple studies have simu-
lated EM induction responses for bodies with hypothesized subsurface fluid reservoirs, 
including Ceres (Grimm et al. 2021a), moons of Uranus (Cochrane et al. 2021; Weiss 
et al. 2021; Arridge and Eggington 2021) and Neptune (Saur et al. 2010; Cochrane et al. 
2022). Finally, dedicated MT instruments for a lander mission were also developed 
(Grimm et al. 2021b) and may become a part of the scientific payload in future missions 
to moons and planets.

The earliest application of the EM induction sounding beyond the Earth was dur-
ing the Apollo era. Namely, simultaneous observations of the magnetic field from the 
Apollo 12 lander and the Explorer 35 orbiter were used to derive a broadband EM trans-
fer function and invert it for a lunar conductivity profile (Dyal and Parkin 1973; Sonett 
1975). A recent integrated analysis and interpretation of the Apollo 12 and Explorer 
35 transfer functions were presented by Grimm (2013, 2023). However, the original 
calibrated magnetic field time series from Apollo magnetometers are seemingly lost 
or at least cannot be easily retrieved in the public domain, hence a full reprocessing 
using modern tools is not presently possible. Since the Apollo era, Lunar Prospector 
and Kaguya Selene spacecrafts collected vector magnetic field data while on low orbits 
around Moon. These data were used by Shimizu et al. (2013) to place an upper bound 
on the lunar core size and more recently by Mittelholz et al. (2021) to derive a global 
average TF (Sect. 3.3) and invert it in terms of lunar mid-mantle conductivity. Indepen-
dently, Fuqua  Haviland et  al. (2019), Grimm (2013) simulated a plasma environment 
around Moon to better quantify the contributions from plasma and induced fields. A 
future lander (Grimm and Delory 2012; Haviland et al. 2022) and reprocessing of the 
legacy Apollo magnetic data (provided it can be recovered and calibrated) will unlock 
new insights into lunar interior.

Another extraterrestrial body for which induction studies were ample in the last decade 
is Mercury. This was largely enabled through the analysis of magnetic measurements taken 
by the MESSENGER spacecraft. Unfortunately, a very elliptic orbit of the spacecraft with 
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the perigee close to the north pole imposed rather strong constraints on its usability for the 
induction studies. Nevertheless, the MESSENGER data were used by researchers to deter-
mine the core size and place some bounds on the total conductance of its mantle (Johnson 
et  al. 2016; Wardinski et  al. 2019; Shimizu et  al. 2021). The potential field assumption 
adopted in all of these studies was discussed and validated by Toepfer et al. (2021). The 
ESA BepiColombo mission, a constellation of two magnetometer-carrying spacecrafts 
(Heyner et  al. 2021), is planned to enter its nominal orbital configuration near Mercury 
in late 2025. One of the spacecraft will be inserted into a circular polar orbit, offering a 
favourable configuration for the induction studies (Zomerdijk-Russell et al. 2021, 2023).

Electromagnetic interactions for exoplanetary systems have also received a lot of atten-
tion in recent years. Main effects of EM star–planet interactions include energy channel-
ling, atmospheric escape, orbit migration and interior heating (Strugarek 2017). In view of 
this, an ability to model electromagnetic induction within exoplanets in consistency with 
other exterior/interior models is an important ingredient for simulating their long-term evo-
lution and assessing habitability. Most exoplanetary systems are constructed as solar sys-
tem analogues; therefore, our knowledge about electrical structure of bodies in the solar 
system as well as our ability to model EM induction effects within them has direct uses in 
the field of exoplanets. For instance, interior heating of rocky exoplanets has been simu-
lated for periodic (Kislyakova et al. 2017; Kelbert et al. 2019a; Noack et al. 2021; Chyba 
et  al. 2021; Kislyakova et  al. 2023) excitation (specifically, motion of planets through a 
varying magnetic field of the hosting body) and transient events such as Interplanetary 
Coronal Mass Ejections (ICMEs) (Grayver et  al. 2022) where the EM induction heating 
(through Ohmic dissipation) was found to be potentially very significant. Similar analysis 
was done by Bromley and Kenyon (2019) for asteroids and small planetesimals. The role 
of EM interactions in orbital dynamics of rocky bodies was further studied in Bromley and 
Kenyon (2022), Kotera et al. (2016).

6  Conclusions

I am confident that the field of large-scale electromagnetic induction and imaging has 
a bright future ahead with many opportunities to be taken advantage of. Given how lit-
tle we know about deep electrical structure of our planet (let alone other planets and 
moons), this field holds a large potential for generating “disruptive” science in the com-
ing decades (Park et al. 2023). A lot of questions pertinent to the thermo-chemical struc-
ture of the mantle, formation of mineral and geothermal systems, modelling of space 
weather hazards and nature of core–mantle coupling will benefit enormously from qual-
ity electrical conductivity models and/or modern EM modelling tools. This need will 
drive the field forward and working with adjacent disciplines offers ample opportuni-
ties for an exciting inter-disciplinary research. However, similar to many contemporary 
problems in science, maintaining strong engagement with other fields of Earth sciences 
will be required (Okamura 2019).

Another set of opportunities lies in planetary/space sciences, where the treatment of 
induction (if any at all) exists only at a rudimentary level. Magnetic field observations from 
new missions (to be) launched to planets and moons will present a new set of opportunities 
and challenges for planetary sciences. Beyond our solar system, potential observations and 
modelling of electromagnetic star–planet interactions have become an independent niche in 
the exoplanetary community. There is a high demand in expertise and knowledge collected 
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within our Earth-focused community, although it requires adaptation to serve the needs of 
the planetary sciences community. Those who are ready to look across the boundaries of 
their immediate research field and talk to these communities will benefit enormously.

I hope that personal reflections and thoughts found in this review were expressed in a 
well-justified and reasoned way. Although I strove for completeness, I shall apologize in 
case a reader did not find anticipated references in this work.
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