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Abstract
This review paper addresses the development of numerical modeling of electromagnetic 
fields in geophysics with a focus on recent finite element simulation. It discusses ways of 
estimating errors of our solutions for a perfectly matched modeling domain and the prob-
lems that arise from its insufficient representation. After a brief outline of early methods 
and modeling approaches, the paper mainly discusses the capabilities of the finite element 
method formulated on unstructured grids and the advantages of local h-refinement allowing 
for both a flexible and largely accurate representation of the geometries of the multi-scale 
geomaterial and an accurate evaluation of the underlying functions representing the physi-
cal fields. In summary, the accuracy of the solution depends on the geometric mapping, the 
choice of the mathematical model, and the spatial discretization. Although the available 
error estimators do not necessarily provide reliable error bounds for our complex geomod-
els, they are still useful to guide grid refinement. Therefore, an overview of the most com-
mon a posteriori error estimators is given. It will be shown that the sensitivity is the most 
important function in both guiding the geometric mapping and the local refinement.
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1 Introduction

The goal of electromagnetic (EM) modeling in geophysics is to find mathematical and 
physical models that represent as well as possible the reality of our perceived geo-environ-
ment and allow us to predict and understand the behavior of EM fields in space and time. 
As a matter of fact, these models are always an abstract and incomplete representation of 
this reality. They therefore contain a multitude of sources of error and are subject to a lim-
ited range of validity. Particularly, the geometry of our physical models in the Earth sci-
ences is extremely challenging due to its multi-scale nature.

On a small scale, we may end up in microscopic, possibly self-similar material struc-
tures (Pape et  al. 1982, 1998a, b; Weiss et  al. 2020) where a variety of pore-scale and 
inner-surface electrochemical processes are usually not covered anymore by our cho-
sen mathematical model. Electric conductivity can become complex-valued, frequency 
dependent and nonlinear. Moreover, texture or heterogeneity below a certain spatial scale 
can appear as anisotropy, leading to a matrix representation of electromagnetic parameters 
in the equations to be discretized (Weidelt 1999; Li and Pek 2008; Yan et al. 2016; Wang 
et al. 2018; Li et al. 2021). Much of this is subject to current petrophysical research, which 
gives us new insights into the fundamental properties of these parameters (e.g., Börner 
et al. 2013, 2017).

On medium and large scales - and this is actually the main focus of this article - there 
are sources of error associated with the representation of macroscopic geometry and its 
discretization. Whereas geometry modeling started with homogeneous and layered half-
spaces with flat surface topography and only a handful of parameters in the first half of 
the twentieth century and up to the end of the 1960s (e.g., Wait 1953; Gosh 1971), we 
were able to approximate rough 2D and 3D geometries in the 1970s (Jones and Pascoe 
1971; Schmucker 1971; Brewitt-Taylor and Weaver 1976; Dey and Morrison 1979) and 
1980s (Scriba 1981; Oristaglio and Hohmann 1984) using rectangular building blocks to 
construct geometric models in a brick-like and conforming fashion mostly using finite dif-
ference (FD) methods. These are simple and easy to handle but sometimes also inefficient, 
particularly when it comes to adopting to the geometric idiosyncrasies of our geo-reality. 
Staircase-like structures associated with rectangular Cartesian grids tend to introduce 
artifacts into the model response once the configuration of sources and receivers gener-
ates sensitivity toward the artificial geometric features. Figure 1 shows an example for the 
DC resistivity case. Note, however, that this applies in general to EM methods, especially 
but not exclusively, if they apply point sources or receivers. Find another very illustrative 
example in fig. 7 of Li and Pek (2008) for the marine magnetotelluric method in 2D, where 
the rectangular discretization of a triangularly shaped sea mount leads to an erroneous 
oscillating response for the FD method.

Therefore, more elegant and accurate ways of representing geometry evolved during the 
last 20 years incorporating unstructured and non-conforming grids or, recently, even mesh-
less approaches (Wittke and Tezkan 2014; Wittke 2017).

Before we start discretizing, however, we need to describe the geometry itself which is 
a major problem to tackle. We need tools to disassemble the computational domain into 
‘water-tight’ subdomains with arbitrary shapes. These domains may encompass a large 
range of spatial scales. Boreholes, mining tunnels, bathymetry, or the topography of the 
Earth’s surface, for example, can all significantly influence the electromagnetic response 
within a specific frequency range or time interval at certain locations. This ultimately 
means that we have to deal with a multi-scale issue which requires an appropriate level 
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of geometric detailedness due to the particular sensitivity pattern of the experiment car-
ried out to account for the true physical response once a reliable mathematical model has 
been chosen. In other words, the geometry has to be mapped onto the model in great detail 
where the sensitivity of the experiment is high and can be less detailed in regions of low 
sensitivity. See Zehner et al. (2015) for a variety of approaches to geometry modeling and 
Börner et al. (2015a, 2015b) for a series of virtual electromagnetic experiments using one 
geometric model described by non-uniform rational B-splines (NURBS) for different EM 
methods.

In the following, we consider the case where the geometry is perfectly matched. Even in 
this case, however, there remain sources of error. Since there are no closed-form solutions 
of Maxwell’s equations with arbitrarily varying coefficients, discrete solutions inevitably 
lead to approximation errors, the magnitude of which is generally difficult to estimate even 
when the computational domain is perfectly geometrically consistent. FE error analyses, 
which began with the important work of Babuška and Rheinboldt (1978), nowadays pro-
vide us with a-priori and, even better and practically more relevant, a posteriori error esti-
mation that give us certain means to estimate the accuracy of the computed solution or at 
least to bring the properties of the used discretization to a desired level (Sect. 3). Particu-
larly, we will see that the mesh refinement is driven by goal-oriented error estimators that 
are basically also governed by the sensitivity function (Sect. 3.3.3).

Very instructive and worth reading reviews on EM modeling have been published by 
Avdeev (2005), Börner (2010), Everett (2012), Newman (2014), Pankratov and Kuvshinov 
(2016), and Ren and Kalscheuer (2020) focusing on different aspects of the development 
of electromagnetic modeling including uncertainty issues and computational efficiency. 
Here, I will focus on the numerical and computational side of modeling mainly during the 
last decade where finite element (FE) methods became the methods of choice for many 
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Fig. 1  Virtual DC resistivity experiment across a ramp-like topography (left-hand subplot) showing the 
influence of the insufficient geometric representation of the slope using tensor product grids. The yel-
low dots in the inset panel show apparent resistivities for a receiver located in the inner vertex of a stair, 
whereas the red dots indicate the response at the outer vertex. The blue line shows the response for an exact 
match of the topography using the finite element method with an unstructured grid. Note that the deviation 
of the response between inner and outer observation points vanishes with distance of the receiver to the 
ramp structure which is due to the decreasing sensitivity of the measurement configuration with respect to 
the artificial geometric features. For more details of the DC sensitivity patterns see Spitzer (1998)
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research groups in geo-electromagnetics (geo-EM) due to their inherent flexibility and 
power to represent complex geometries, especially when they are formulated on unstruc-
tured grids.

Having appropriately solved the forward problem we then would need to address the 
geometry in the inverse problem by trying to find a meaningful parametrization for the 
inverse solution. This, however, goes beyond the scope of this article. The paper much 
more reviews some attempts to gain control over the error sources in the forward process, 
particularly with respect to error estimators defined within the theory of FE (Sect.  3). 
Before doing so, Sect. 2 gives a brief overview how the different discretization methods, 
mainly FD (Sect. 2.1) and FE (Sects. 2.2 and 2.2.1), have evolved in mathematical research 
over time. I will then quickly browse through the different types of FE (Sect. 2.2.2) used in 
our approaches to modeling vector electromagnetic fields and scalar potentials, and discuss 
the most important types of meshes underlying the discretization schemes with respect to 
their ability to represent arbitrary geometry. Section 2.2.3 reviews the work that has been 
done particularly in geo-EM where I have organized the subsection according to the chron-
ological evolution of the simulation strategies starting with early nodal and edge elements 
on structured grids and moving on to their implementation on unstructured and non-con-
forming grids.

I will not address the inverse problem and efforts to quantify uncertainty in a Bayesian 
sense. Moreover, I will not discuss the idiosyncrasies of quasi-static, frequency or time 
domain methods and their particular applications. However, the methods discussed range 
from quasi-static to diffusive. The main focus is on the spatial part of those partial dif-
ferential equations that are underlying our electromagnetic problems. Particularly, I will 
address discretization schemes of the partial differential operators of the divergence and 
the curl that lead to their numerical representations. I will not address specific time inte-
gration approaches (e.g., Druskin and Knizhnerman 1988, 1994; Commer 2003; Commer 
and Newman 2004; Börner et al. 2008, 2015c; Zimmerling et al. 2018), integral equation 
techniques (e.g., Raiche 1974; Weidelt 1975; Hohmann 1975; Zhdanov 1988; Wannamaker 
1991; Xiong and Kirsch 1992; Avdeev et al. 2002; Pankratov and Kuvshinov 2016; Chen 
et al. 2021), and will rather briefly touch finite difference methods.

The emphasis of this review is on the FE technique in its different variants and its solid 
mathematical background that leads to the attempt of quantifying errors in the solution 
which, in turn, drive the adaptive mesh refinement. Consequently, Sect. 3 starts with some 
remarks on a-priori error estimation in FE. After a brief historical outline of the evolu-
tion of error estimation in Sect. 3.1,  Sect. 3.2 presents the basics of the variational prob-
lem including its weak formulation by means of a simple model problem, which is used 
to introduce three different popular a posteriori error estimators in Sect. 3.3: the residual-
based (Sect.  3.3.1), the recovery-based (Sect.  3.3.2), and the goal-oriented error estima-
tors (Sect. 3.3.3). The insights from Sects. 3.2 and 3.3 are subsequently transferred from 
the scalar model problem to geo-EM problems using a typical vectorial frequency-domain 
secondary field approach in the form of the curl–curl equation for the electric field as an 
example in Sect. 3.4. Sections 3.4.1 to 3.4.3 summarize the main work done in the geo-EM 
community for the different types of error estimation, each in a chronological order with 
illustrative example figures.

There are mainly three types of refinement that are discussed in the literature: h-, p- and 
r-refinement. h-refinement stands for the increase of the spatial resolution of the grid by 
decreasing the size of the grid cells. Cells are earmarked if the estimated local error of the 
solution exceeds a certain value relative to the largest estimated error and subsequently 
refined in a way that is briefly outlined in Sect.  4. p-refinement denotes the increase of 
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the order p of the basis functions. Finally, r-refinement is very similar to h-refinement and 
rearranges a given number of grid nodes for a given order p of the basis functions. The 
latter is rather uncommon in geo-EM research and the exclusive p-refinement is also quite 
rarely used. It leads to the class of spectral FE methods (e.g., Zhu et al. 2020; Weiss et al. 
2022), which will not be discussed further here. In the practice of geo-EM applications, 
h-refinement with moderate order basis functions (i.e., linear to second or third order) has 
become essentially the prevailing method, with quadratic basis functions as the best com-
promise between accuracy and numerical effort (Schwarzbach et  al. 2011; Grayver and 
Kolev 2015). Examples of joint h- and p-refinement are described by Pardo et al. (2006) for 
the 2D simulation of EM logging-while-drilling measurements on structured grids and by 
Pardo et al. (2011) in the context of marine 2.5D CSEM simulation.

Section  4 closes with some thoughts on alternative strategies of representing spatial 
structures and an appendix gives some more details on the energy norm and the derivation 
of the variational problem.

2  Discretization Techniques and Meshes

This section is dedicated to the discretization methods and their development over time. 
Thereby, I restrict myself as far as possible to FE methods. Due to the practical relevance, 
I briefly browse through FD techniques and the closely related finite volume (FV) meth-
ods. Concerning the grids I will address structured (rectangular, Cartesian, tetrahedral, 
hexahedral), unstructured (tetrahedral) and non-conforming grids (quad- and octrees). In 
general, all methods can be formulated on all grids. Nevertheless, e.g., FD methods are 
mainly associated with structured rectangular (2D) or hexahedral (3D) grids with only a 
few exceptions [e.g., triangular grids for DC resistivity by Erdogan et al. (2008), Demirci 
et al. (2012) and Penz et al. (2013) going back to Liszka and Orkisz (1980)]. FE methods 
were formulated on both structured and unstructured grids. However, they develop their 
full strength only on unstructured grids due to the geometric flexibility of the mesh, the 
solid theoretical foundation and the resulting elaborated error analysis.

This section is divided into a brief outline of FD methods in geo-EM (Sect. 2.1) fol-
lowed by a more comprehensive discussion of the FE technique and its application to geo-
EM research (Sect. 2.2).

2.1  Finite Differences and Finite Volumes

In FD, a very early reference goes back to a work done by the German-American math-
ematician Richard Courant (1888–1972) in Göttingen in which he presented basic FD for-
mulations (Courant et al. 1928). Even earlier Lewis Fry Richardson (1881–1953), a British 
meteorologist and peace researcher, came up with FD formulations in meteorology (Rich-
ardson 1922) but was not successful right away due to the limited computational facilities 
(i.e., performing calculations using paper and pencil) and the resulting inaccurate results 
in predicting the weather for a day. This alleged failure was interpreted by his peer group 
as the impossibility of calculating weather forecasts. A major breakthrough was achieved 
only decades later when moderate electronic computational facilities became available. 
Yee (1966) introduced a staggered grid cell to account for the different locations at which 
the electric and magnetic fields are calculated when a curl operator is discretized (Fig. 2).
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Also in geo-EM, FD has a long history and important developments were made from 
the beginning of the 1970s (see the references in Sect. 1). In the 1990s, computing facili-
ties became more powerful and iterative equation solvers like the preconditioned conju-
gate gradient method were able to solve large systems of equations with moderate memory 
requirements and reasonable run times (Mackie et  al. 1993; Wang and Hohmann 1993; 
Druskin and Knizhnerman 1994; Spitzer 1995; Newman and Alumbaugh 1995; Smith 
1996b; Newman and Alumbaugh 1997; Spitzer and Wurmstich 1999). In the end, millions 
of rectangular building blocks were used to construct geometric models in a brick-like and 
conforming fashion. FD methods are still widely used today for practical data interpreta-
tion (Xiong et al. 2000; Sasaki 2001; Siripunvaraporn et al. 2002; Davydycheva et al. 2003; 
Sasaki 2004; Streich 2009; Streich and Becken 2011; Egbert and Kelbert 2012; Grayver 
et al. 2013). They are implemented in forward and/or inverse modeling schemes and com-
pete with upcoming FE techniques. The problem of incorporating topography using FD is 
usually solved by either applying appropriate boundary conditions at the staircase-shaped 
earth’s surface or assigning high resistivities to the air cells. Resolution of both geometry 
and grid is usually controlled only by the modeler’s experience. Systematic studies on the 
grid quality are rare (see, e.g., Ingerman et al. 2000), and a rigorous investigation of the 
influence of the stair-like topography is still missing.

Using a singularity removal procedure according to Lowry et  al. (1989), more geo-
metric flexibility on structured grids can be achieved by detaching the source positions 
from the grid nodes (Spitzer et  al. 1999; Spitzer and Chouteau 1997, 2003). Singh and 
Dehiya (2023) use a coarse mesh to calculate boundary conditions for a smaller fine mesh 
to improve the condition number of the system matrix.

In addition to these well-known FD techniques used in EM, relatively few FV 
approaches were reported, some on structured rectangular grids (Haber et al. 2000; Haber 
and Ascher 2001; Mulder 2006; Plessix et al. 2007) and others on more flexible meshes 
like quad-/octrees or unstructured tetrahedral meshes. The latter allow for local refinement 
and will be discussed in more detail later in the context of FE formulations. Haber et al. 
(2007) presented FV approaches using octrees for forward and inverse problems in EM. 
Parallel inversion of large-scale airborne time-domain EM data on multiple octree meshes 
for FV or FE were outlined by Haber and Schwarzbach (2014). FV implementations on 

Fig. 2  The so-called Yee cell has 
been the blueprint for generations 
of FD modelers in geo-EM for 
discretizing the curl operator on a 
staggered grid (after Yee 1966)
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3D unstructured tetrahedral/Voronoi grids for a total-field A-phi Coulomb-gauged formula-
tion (i.e., the magnetic vector potential A and the scalar electric potential � ) were made by 
Jahandari and Farquharson (2015).

2.2  Finite Elements

In this section, FE techniques will be illuminated in more detail. For this purpose, we 
look at the historic development of FE techniques at first and briefly sketch the underlying 
concepts of variational problems leading to the weak formulation of the problem where 
equalities are typically defined in the sense of inner products with test functions. Because 
it usually takes a while for mathematical innovations to find their way into the fields of 
application I have included the use of FE in geo-EM in a separate Sect. 2.2.3.

2.2.1  A Short Historical Overview of the Development of the Finite Element Method

The variational problem dates back to 1696, when Johann Bernoulli (1644–1748) formu-
lated the so-called brachistochrone problem, in which a curve AMB was sought that gives 
the shortest possible time for a body to slide from A to B under gravity, where A and B 
are two fixed points on a vertical plane. In 1744, Euler formulated a general solution to the 
variational problem in the form of a differential equation that was a decade later justified 
by Joseph Louis de Lagrange (1736–1813). The origins of the FE method date back to the 
early nineteenth century when Karl Heinrich Schellbach (1805–1892), a German mathema-
tician, solved a minimum surface area problem with some steps typical for FE (Schellbach 
1851). Later, in the early twentieth century, Walter Ritz (1878–1909), a Swiss mathemati-
cian and physicist in Göttingen, minimized a quadratic functional in a finite-dimensional 
functional space (Ritz 1909). Whereas Ritz used eigen functions, Boris Grigoryevich 
Galerkin (1871–1945) and Ivan Grigoryevich Bubnov (1872–1919), two Russian math-
ematicians and engineers, later used polynomials or trigonometric functions to solve engi-
neering problems. Their method is called the method of weighted residuals, Galerkin or 
Galerkin-Bubnov method (Galerkin 1915). Again, Richard Courant used ansatz functions 
with small support (hat functions) for the first time in the mid-twentieth century (Courant 
1943). From the 1950s onward, the engineering community discovered FE techniques. In 
mechanical engineering, solids were disassembled into a finite number of elements and 
the displacements were calculated under given loads in the nodes of the FE. First practical 
applications came up in the aerospace and automotive industry (Turner et al. 1956; Clough 
1960). In the 1960s, there was support coming from the Math community and very impor-
tant monographs by Zienkiewicz and Cheung (1967) and Strang and Fix (1973) appeared. 
Furthermore, the computer program NASTRAN, that was originally developed for NASA, 
was commercialized by the MacNeal-Schwendler Corporation at the end of the 1960s. The 
method was extended to vector functions that are particularly important for the solution of 
electromagnetic problems by Raviart and Thomas (1977) and Nédélec (1980). Very good 
and comprehensive text books on the FE technique for Maxwell’s equations were pub-
lished by Jin (2002) and Monk (2003). An excellent historical review is given by Gander 
and Wanner (2012).

While initially FE methods in geo-EM were formulated on structured grids just like FD 
methods, they were later mostly used in conjunction with unstructured triangular (2D) or 
tetrahedral (3D) meshes which develop their strengths mainly with respect to the flexible 
adaptation to arbitrary geometries. Since nodal or Lagrange elements enforce continuity 
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of the scalar function over element boundaries, they were only applicable to those cases 
where components of the electromagnetic fields or potentials behave in such a way. As 
we know from EM theory, some components like the normal component of the electric 
field E or the tangential component of the magnetic field H are discontinuous at parameter 
jumps. In this case, the simulation with Lagrange elements becomes erroneous, which was 
not remedied until the introduction of vector FE in the late 1970s/early 1980s (Raviart and 
Thomas 1977; Nédélec 1980).

2.2.2  Types of Finite Elements

In the following, I will introduce several types of FE, but will discuss only three of them in 
more detail because of their particular importance to EM modeling. These are Lagrangian, 
Nédélec, and Raviart–Thomas FE. In Table 1, there is a compilation of various FE types 
including the type of basis functions they are associated with (scalar, vector, matrix).

Lagrange elements (Fig.  3, left-hand subplot) are chosen if a piecewise smooth 
scalar function v as, e.g., in the case of the scalar electric potential is consid-
ered that lives in the Sobolev space H1(Ω) ∶=

{
v ∈ L2(Ω) ∶ ∇v ∈ [L2(Ω)]3

}
 with 

L2(Ω) ∶=
{
v ∶ Ω → ℂ

3 ∶ ∫
Ω
|v|2dx < ∞

}
 , i.e., v is square-integrable and its gradient 

exists. Lagrange elements are also called nodal elements because their degrees of freedom 
(dof) live at the nodes of the mesh. They enforce continuity of v across element bounda-
ries. Using 2D triangular meshes and linear basis functions ( p = 1 ), three dof are associ-
ated with a Lagrange element ( n = 3 ). Increasing the order of the basis functions to p = 2 
(quadratic), the number of dof n rises to 6 where the additional dof are associated with the 
center of each edge. In case of three dimensions and tetrahedral meshes, n = 4 for p = 1 
and n = 10 for p = 2.

The most important element type for EM modeling in 3D is the Nédélec 
FE (Nédélec 1980) (Fig.  3, right-hand subplot). For a piecewise polynomial 
to be H(curl)-conforming, the tangential component of v must be continuous. 
v ∈ H(curl;Ω) ∶=

{
v ∈ [L2(Ω)]3 ∶ ∇ × v ∈ [L2(Ω)]3

}
 , i.e., v is square-integrable and its 

curl exists. In case of p = 1 , they are also called edge elements because their vectorial basis 
functions v are situated along the edges of the elements. Consequently, n = 3 in 2D and 
n = 6 in 3D. For p = 2 , additional dof are associated with the element face centers giving 
n = 8 in 2D and n = 20 in 3D.

Table 1  Types of finite elements Type Scalar Vector Matrix

Arnold–Winther x
Argyris x
Brezzi–Douglas–Marini x
Crouzeix–Raviart x
Discontinuous Lagrange x
Hermite x
Mardal–Tai–Winther x
Morley x
Lagrange x
Nédélec x
Raviart–Thomas x



285Surveys in Geophysics (2024) 45:277–314 

1 3

The third and final type of element introduced here is the mixed FE according to Ravi-
art and Thomas (1977) (Fig.  3, center subplot). It guarantees the normal component of 
v to be continuous and is mainly used for fluid flow and transport modeling. In geo-EM, 
it is important in conjunction with the regularization of the inverse problem (Schwar-
zbach and Haber 2013; Blechta and Ernst 2022). The corresponding Sobolev space is 
H(div;Ω) ∶=

{
v ∈ [L2(Ω)]3 ∶ ∇ ⋅ v ∈ L2(Ω)

}
 , i.e., v is square-integrable and its diver-

gence exists.

2.2.3  Finite Elements in Geo‑electromagnetics

In this section, I will review the course that FE modeling has taken in geo-EM starting with 
nodal elements on structured grids in the 1970s, edge elements on structured grids in the 
1990s, nodal elements on unstructured grids in the 2000s and Nédélec elements of different 
order on unstructured grids from the end of the 2000s until today. Note that all approaches 
presented in this section are not subject to any kind of quantitative error estimation and 
use meshes defined by the modeler. Yet, these meshes show regions of refinement usu-
ally around sources and/or receivers and/or at specific geometric features. But these refined 
regions are identified through the experience of the modeler in conjunction with a mesh 
generator that serves for mesh quality (see Sect. 3.4.4). It is not until Sect. 3 that I intro-
duce different kinds of error estimation and present work that employs these techniques for 
the adaptive refinement of grids.

2.2.3.1 Structured Grids and Nodal Elements There were a number of early works based on 
structured rectangular/triangular/tetrahedral grids using nodal FE. As early as 1971, Cog-
gon (1971) published a secondary field 2D EM/DC/IP approach for a line source on a small 
structured triangular grid (Fig. 4). Reddy et al. (1977) reported the application of FE to the 
3D MT and magnetovariational (MV) methods and already recognized that by enforcing 
the continuity of the normal component of the electric field, an erroneous transition zone 
is created in the vicinity of conductivity jumps. Later, Pridmore et al. (1981) used FE on a 
rectangular grid for the discretization of the 3D equation of continuity in a DC resistivity 
application. The 2D MT method was tackled by Wannamaker et al. (1987), and Gupta et al. 
(1989) presented a 3D time-domain (TD) code on a rectangular grid. 2.5D EM simulations 

p = 1, n = 3

p = 2, n = 8

p = 1, n = 6

p = 2, n = 20

p = 1, n = 3

p = 2, n = 6

p = 1, n = 4

p = 2, n = 10

3D
Lagrange

p = 1, n = 3 p = 1, n = 4

p = 2, n = 8 p = 2, n = 15

2D
Raviart-Thomas

3D2D
Nédélec

3D2D

Fig. 3  Types of FE relevant to electromagnetic modeling for triangular (2D) and tetrahedral (3D) elements. 
Full red dots and arrows represent a graphic visualization of the dof. p is the order of the basis functions 
and n is the number of dof per element
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for a horizontal electric dipole (HED) were carried out by Unsworth et  al. (1993). The 
same year Livelybrooks (1993) came up with 3D nodal element simulations for a secondary 
plane-wave and electric dipole field. He introduced so-called discontinuity terms to correct 
for the errors resulting from the violation of the continuity conditions. The 3D DC resistivity 
case was formulated on a structured tetrahedral grid by Sasaki (1994). Everett and Schultz 
(1996) used a 3D nodal A-phi formulation on tetrahedrals for the simulation of induction 
phenomena in a heterogeneous conducting sphere excited by an external source current. A 
3D secondary field Coulomb-gauged A-phi approach to induction logging was performed 
by Badea et al. (2001) for controlled-source EM (CSEM) in cylindrical coordinates using 
linear nodal basis functions on tetrahedra. Li (2002) developed a 2D simulation code for 
MT in anisotropic electric media using triangular grids. Shortly thereafter, Li and Spitzer 
(2002) compared linear FE and 7-stencil FD simulations in 3D for the DC case on rectangu-
lar hexahedral grids and came up with the conclusion that for this particular setup, the two 
approaches were comparable in their performance. The accuracy was slightly higher with 
FE, however, they were also a bit more expensive in numerical terms. The investigated FE 
approach gives 27 entries per row of the system matrix whereas it is only 7 for FD. Later Li 
and Spitzer (2005) extended the DC approach to cases with arbitrary anisotropy. Erdogan 
et al. (2008) presented 2D DC simulations on structured triangular grids with simple topog-
raphy using both FD and FE.

2.2.3.2 Structured Grids and Edge Elements Already Sugeng (1998) came up with a 3D 
edge FE code on structured hexahedral grids. Mitsuhata and Uchida (2004) used Lagran-
gian and edge elements for discretizing a 3D T-Omega formulation (with T as the electric 
vector potential and Ω as the magnetic scalar potential) on a hexahedral grid. Isoparametric 
hexahedral grids were used by Nam et al. (2007) for 3D MT with simple topography. They 
implemented edge elements and solved the resulting system of equations using a biconjugate 
gradient method with a Jacobian preconditioner. Farquharson and Miensopust (2011) solved 
the 3D MT problem on rectangular hexahedral grid and applied a divergence correction 
scheme according to Smith (1996a) within the stabilized conjugate gradient solver BICG-
STAB. For this purpose, a scalar electric potential is calculated from the divergence of the 
electric current density to correct for numerical inaccuracies of the electric field. This cor-
rection potential is repeatedly applied to the electric field after a number of steps within the 
iterative equation solver. The electric field was discretized with linear Nédélec elements, the 
scalar electric potential with nodal elements. Another 3D CSEM secondary field approach 
using edge elements on hexahedral grids solved by a multi-frontal direct solver was outlined 
by Da Silva et al. (2012). Cai et al. (2014) used edge elements on isoparametric hexahedral 
grids for 3D CSEM in anisotropic environments with simple topography. Finally, Kordy 
et al. (2016) described a 3D magnetotelluric inversion scheme including topography using 

Fig. 4  2D structured triangu-
lar grid for the simulation of 
the EM, DC resistivity and IP 
method. The mesh is designed to 
include a vertical dike structure 
in the center part and an overbur-
den (taken from Coggon 1971)
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deformed hexahedral edge FE and direct solvers parallelized on symmetric multiprocessor 
computer architectures.

2.2.3.3 Unstructured Grids and Nodal Elements While FE and FD on structured grids did 
not seem to differ significantly in performance, the breakthrough came with the introduction 
of unstructured meshes. A very early work goes back to Rücker et al. (2006) for 3D DC sec-
ondary field simulations on unstructured tetrahedral meshes including realistic topography 
inferred from a digital terrain model (Fig. 5).

Due to the topography, there is no simple analytical solution to the reference field so that 
it was accurately calculated on a very fine grid. Only Penz et al. (2013) showed later that 
this was actually not necessary if the no-flow boundary condition at the surface is adopted 
correspondingly. Blome et al. (2009) reported on advances in three-dimensional geoelec-
tric forward modeling by calculating the primary field by fast multipole-based boundary 
element methods and applying infinite elements at boundaries. Udphuay et al. (2011) car-
ried out three-dimensional resistivity tomography in extreme coastal terrain using unstruc-
tured tetrahedral grids. A Lagrange element secondary field A-phi approach to 3D CSEM 
modeling on unstructured tetrahedral meshes and anisotropic conductivities was presented 
by Puzyrev et al. (2013). The inversion of 2D MT and radiomagnetotellurics (RMT) data 
using FE on unstructured grids was communicated by Özyildirim et al. (2017). An exam-
ple of an underground mining tunnel that was incorporated into a 3D DC resistivity inver-
sion was given by Pötschke (2017). The tunnel surface was captured with great accuracy 
using a laser scanner technology. Electrodes were placed along the tunnel wall. It turned 
out that, in regions of high sensitivity, it is extremely important to match the true locations 
of the electrodes very accurately and to incorporate the tunnel geometry with a high level 
of detailedness to avoid artifacts in the inversion results (Fig. 6).

2.2.3.4 Unstructured Grids and  Nédélec Elements Very early work using Nédélec ele-
ments in 3D on unstructured tetrahedral grids and second-order basis functions goes back 
to Franke et  al. (2007a, 2007c) and Kütter et  al. (2010). The latter already included the 
topography and bathymetry around Stromboli volcano, Italy, using a digital elevation model 
(Fig.  7). Um et  al. (2012) addressed a 3D iterative first-order Nédélec FE time-domain 
method formulated on unstructured tetrahedral meshes. To account for the ineffective time 
integration through time stepping, they introduced an adaptive time step doubling. A 3D 
CSEM modeling algorithm using edge elements on unstructured tetrahedral grids was pub-
lished by Mukherjee and Everett (2011). They included both the magnetic permeability and 
electrical conductivity for a secondary field A-phi approach. An adaptation to geometry 
or topography was, however, not performed. Schwarzbach and Haber (2013) reported a 
FE-based inversion for time-harmonic electromagnetic problems using unstructured tetra-
hedral meshes and edge elements. Nédélec elements on 3D unstructured tetrahedral grids 
were used by Um et al. (2013) for a frequency domain E-field formulation. The system of 
linear equations was solved by the QMR iterative solver with an ILU preconditioning. A 
3D Coulomb-gauged A-phi formulation on unstructured grids using Nédélec and nodal ele-
ments and electric and magnetic sources was reported by Ansari and Farquharson (2013) 
and Ansari et al. (2017). The latter apply their scheme to a realistic geophysical scenario 
using a model of the Ovoid ore deposit at Voisey’s Bay, Labrador, Canada, for helicopter-
borne EM (Fig. 8). Usui (2015) presented a 3D MT inversion code based on linear edge 
elements and unstructured tetrahedral grids written in C++. Jahandari et al. (2017) compare 
two FE and three FV schemes on unstructured tetrahedral grids. They conclude that both 
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FE and FV schemes are comparable in terms of accuracy and computational resources. 
However, the FE schemes are slightly more accurate but also more expensive than the FV 
schemes. Cai et al. (2017) used an anisotropic total field approach for the CSEM method 
on a 3D unstructured tetrahedral grid. It was implemented on a parallel computer architec-
ture using linear Nédélec elements and solved by a multifrontal direct solver. Käufl et al. 
(2018) investigated the influence of 3D topography on the magnetotelluric (MT) response 
using high-order Nédélec FE. Note that they have formulated the problem on locally refined 

Fig. 5  An early work of incorporating a digital terrain model into a 3D model using an unstructured tet-
rahedral grid (Merapi volcano, Indonesia) for the simulation of the DC resistivity method (b). The mesh 
yields 566,736 dof for second order basis functions. It is fine around the electrodes (red dots) and becomes 
coarser with increasing distance from them. The top subplot a shows a projection of the mesh onto a plane 
(taken from Rücker et al. 2006)
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octrees. A 3D marine CSEM inversion scheme including anisotropic conductivities was pre-
sented by Wang et al. (2018). The C++ code uses an unstructured tetrahedral grid Nédélec 
forward modeling code based on the FEMSTER library (Schwarzbach et al. 2011; Castillo 
et al. 2005). A 3D secondary field marine CSEM solution with linear Nédélec elements on 
a tetrahedral unstructured mesh was reported by Castillo-Reyes et al. (2018). They used the 
PETSc library to solve the resulting system of linear equations and refined the meshes due 
to the skin effect. The code was written in Python and implemented on high-performance 
computing (HPC) facilities. A 3D secondary field frequency domain parallel higher-order 

Fig. 6  A 3D meshed geometry model of a tunnel in the Reiche Zeche Mine in Freiberg, Germany, gives an 
illustrative example of mapping interior geometry onto a model using unstructured tetrahedral grids. Elec-
trode locations are depicted by red dots (a). The results of a DC resistivity inversion are shown in (b) (taken 
from Pötschke 2017)

Fig. 7  3D model of Stromboli volcano, Sicily, and its bathymetric surrounding using a digital terrain model 
of the area mapped onto a tetrahedral grid of 546,759 elements (a). The MT response for a homogeneous 
resistive Earth and a conductive ocean is simulated in the frequency domain along profiles running along 
the seafloor and crossing the volcano in the EW and NS directions (b, c top). As an example, apparent resis-
tivities (c center) and phases (c bottom) in xy- and yx-polarization at a period of T = 1000 s are shown for 
the xN- and xS-profiles. Note that the terrain effect is extremely significant changing the apparent resistivity 
by two orders of magnitude (taken from Kütter et al. 2010)
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Nédélec FE approach for the marine CSEM forward problem with isotropic conductivi-
ties discretized on tetrahedral unstructured meshes was reported by Castillo-Reyes et  al. 
(2019). Their mesh refinement was roughly guided by the skin effect. Rochlitz et al. (2019) 
presented a further total and secondary field frequency domain approach for CSEM based 
on the open-source library FEnics using linear and quadratic edge elements on unstructured 
tetrahedral grids for the E-, H-, and A-phi formulations. An open-source 3D magnetotelluric 
forward modeling code on unstructured meshes using higher order edge elements and being 
optimized for both HPC and non-HPC architectures was outlined by Gallardo-Romero and 
Ruiz-Aguilar (2022), Finally, Blechta et al. (2022) presented a generic Matlab-based for-
ward modeling and inversion library at the 25th International Workshop on Electromagnetic 
Induction in the Earth held in Çeşme, Turkey, in 2022 including higher order Lagrange, 
Nédélec, and Raviart–Thomas elements covering basically all frequency domain geo-EM 
methods including DC resistivity and induced polarization (IP).

3  Error Estimation

In this section, I am going to review the most important a posteriori error estimators 
used in the geo-EM community. Basically, a priori error analysis is useful too because it 
provides information about the convergence behavior of the solution. However, it is very 
expensive in terms of numerical work. In general, the FE theory states that an arbitrar-
ily exact solution can be obtained if the discretization width h goes toward zero. There 
are two very important and fundamental theorems on which this statement is based. 
According to the theorem of Lax–Milgram (Lax and Milgram 1954), the solution exists 
and is unique. Céa’s lemma (Céa 1964) states that the Galerkin method yields the best 
solution with respect to the underlying FE subspace. The error of the numerical solu-
tion can theoretically be estimated in terms of the L2-norm ‖‖eh‖‖L2 = ‖‖u − uh

‖‖L2 ≤ CN� , 
where C is a constant depending on the regularity of the solution k, the polynomial 
degree p of the basis functions, the modeling domain Ω , and the triangulation T  but 
does not depend on the exact solution u itself and the number N of degrees of freedom. 
The asymptotic rate of convergence (or simply convergence rate) is then defined by

Fig. 8  3D model of the Ovoid 
ore body, a massive sulfide lens 
in the Voisey’s Bay nickel–cop-
per–cobalt deposit in Labrador, 
Canada, for the simulation of a 
HEM field survey. The tetrahe-
dral mesh consists of 954,092 
cells (taken from Ansari et al. 
2017)
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(Babuška and Aziz 1972; Strang and Fix 1973). To estimate the convergence rate in prac-
tice, solutions must be computed for a series of refinements and, with h → 0 , the numerical 
effort becomes very large (Franke-Börner 2012). Therefore, while such error analyses are 
informative, they are of limited use in practice.

In contrast, a posteriori error estimators, which indicate the magnitude of the error and 
can theoretically estimate error bounds, are very helpful and numerically cheap. A poste-
riori error estimators are generally based on the convergence theory and require local con-
vergence, which is not always the case as the work of Franke-Börner et al. (2013) shows. 
This has far-reaching consequences, since in cases of highly inhomogeneous discretization 
and complex high-contrast parameter models (as is usually the case in geo-EM modeling), 
neither the convergence rate nor the error bounds can be reliably predicted. According 
to Grätsch and Bathe (2005) all the error estimators generally do not provide guaranteed 
bounds so that the estimation technique most useful is probably the method that works 
efficiently in general analyses. They actually conclude that the practical error estimation 
techniques do not provide mathematically proven bounds on the error and need to be used 
with care. Also, Schwarzbach and Haber (2013) note that the mesh-dependent convergence 
rate determines the accuracy of the numerical solution only up to a mesh-independent con-
stant factor. This factor is essentially determined by the smoothness of the true solution 
which is generally difficult to quantify as it varies with problem-dependent parameters like, 
for example, discontinuities in electrical conductivity or magnetic permeability, source 
type and geometry. Still error estimators are the best option we have for getting an idea of 
the accuracy of our solutions. They are therefore definitely helpful tools when it comes to 
adaptive meshing.

After a short historical outline, we are going to look at a simple model problem in 
the form of Poisson’s equation and subsequently transfer the findings to the induction 
(curl–curl) problems that we are facing in geo-EM research.

3.1  A Short Historical Overview of Error Estimators

The beginning of modern a posteriori error estimation dates back to the end of the 1970s 
and beginning of the 1980s when Babuška and Rheinboldt (1978) defined the error in the 
energy norm (see Appendix 1). In the 1980s, element residual methods were established by 
Demkowicz et al. (1984) and Bank and Weiser (1985) where typically the weak residual 
was exploited to derive quantitative error measures. At the end of 1980s a new type of error 
estimator, the recovery-based method, was formulated taking into account the behavior of 
the gradient of the solution on a patch of elements (Zienkiewicz and Zhu 1987, 1992a, b). 
In the early 1990s, the basic principles of error estimation were established for scalar func-
tions. The extension to vector FE was achieved in the mid 1990s for elliptic problems and 
Raviart–Thomas elements by Braess and Verfürth (1996), for parabolic problems by Eriks-
son and Johnson (1991) and Maxwell’s equations with edge elements by Beck and Hipt-
mair (1999). Goal-oriented error estimation takes into account the adjoint problem using 
any of the previous error estimators (Prudhomme and Oden 1999; Oden and Prudhomme 
2001). An extensive overview was given by Ainsworth and Oden (2000) and an informa-
tive review article by Grätsch and Bathe (2005).

� = −
1

2
min(k, p + 1)
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3.2  The Variational Problem and the Weak Formulation

I demonstrate the principles of error estimation in FE using a simple model boundary 
value problem for a scalar function u with appropriate boundary conditions. The so-
called strong formulation of Poisson’s equation reads

and represents an elliptic linear boundary value problem on a domain Ω ∈ ℝ
3 that is 

Lipschitz-bounded, i.e., the data f ∈ L2(Ω) and g ∈ L2(ΓN) are sufficiently smooth 
and square-integrable. n denotes the outward normal on the boundary Γ = ΓD ∪ ΓN 
(split into a Dirichlet and a Neumann part). Multiplying both sides with test func-
tions v ∈ V =

{
v ∈ H

1(Ω) ∶ v = 0 on ΓD

}
 yields, after some rearrangement, the weak 

formulation

See Appendix 2 for more details. There are infinitely many functions in V ; therefore, one 
restricts oneself to finite dimensional spaces Vh , which are easier to deal with. V contains 
the exact solution, i.e. any residual becomes 0. Vh is contained in V and therefore functions 
from Vh cannot make the residual vanish. Reducing V to Vh ⊂ V we end up with finding 
uh ∈ Vh so that

This is the Galerkin equation with Vh as the FE subspace of cellwise polynomial functions 
of order p over the FE partition Th , the latter of which denotes a mesh consisting of indi-
vidual cells. Galerkin or Rayleigh–Ritz methods are a class of methods for converting a 
continuous problem in terms of a differential equation in its weak formulation, e.g., accord-
ing to Eq. (2), into a discrete problem yielding a linear system of equations. The Galerkin 
method uses the basis functions � ∈ V

h as test functions, a finite weighted sum of which 
approximates the sought solution uh =

∑n

i=1
ui�i . The coefficient values ui associated with 

each test function are determined such that the error between the linear combination of the 
test functions and the solution is minimized in a chosen norm yielding the linear system of 
equations

with Aij = ∫Ω

∇�i ⋅ ∇�j dΩ defining the elements of the system matrix and f  as the right-

hand side vector.

(1)
−∇2u = f on Ω

u = 0 on ΓD

n ⋅ ∇u = g on ΓN

a(u, v) = l(v)

with the bilinear form a(u, v) = ∫Ω

∇v∇u dΩ

and the linear functional l(v) = ∫Ω

vf dΩ + ∫ΓN

gv dS.

(2)a(uh, vh) = l(vh) ∀ vh ∈ Vh.

�u = f
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3.3  A Posteriori Error Estimation

In this section, using the scalar boundary value problem introduced above, I briefly outline 
the principles of three important a posteriori error estimators used in the geo-EM community. 
These are the so-called residual-based, recovery-based and goal-oriented error estimators. 
After that, I will explain how error estimation is applied to Maxwell’s equations and used for 
our geo-EM problems.

3.3.1  Residual‑Based Error Estimation

Generally, in a posteriori error estimation we want to estimate the discretization error while 
not knowing the exact solution u. The error is therefore defined as the difference between the 
unknown solution u and the FE solution uh : eh = u − uh . It satisfies the error representation

with Rh as the weak residual. The key property of the Galerkin approach is that the error 
is orthogonal to the chosen subspaces. Since Vh ⊂ V , we can use vh as a test vector in the 
original equation. Subtracting the two gives

which is called the Galerkin orthogonality.
Explicit error estimates are determined by the direct computation of interior element resid-

uals and jumps at element boundaries (Babuška and Rheinboldt 1978). The global error rep-
resentation over the whole domain is therefore split up into the sum over elemental integrals

Integration by parts and rearranging gives

with

as the interior element residual R in element K and J as the jump of the gradient across the 
element face �:

a(eh, v) = a(u, v) − a(uh, v)

= l(v) − a(uh, v) = Rh(v) ∀ v ∈ V

a(eh, vh) = l(vh) − l(vh) = Rh(vh) = 0 ∀ vh ∈ Vh,

a(eh, v) = l(v) − a(uh, v) ∀ v ∈ V

a(eh, v) =
∑
K∈Th

{
∫K

f v dΩ + ∫�K∩ΓN

g v dS

−∫K

∇uh ⋅ ∇v dΩ

}
∀ v ∈ V.

a(eh, v) =
∑
K∈Th

∫K

R v dΩ +
∑
�∈�Th

∫�

J v dS ∀ v ∈ V

(3)R = f + ∇2uh
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In the first case where � is not part of an outer boundary ( 𝛾 ⊈ Γ ), � separates two elements 
K1 and K2 . Using interpolation theory and the Cauchy–Schwarz inequality elementwise, 
this directly leads to a local error indicator for element K

with constants c1, c2 ∈ ℝ and hK as the circumdiameter of element K. For more details see, 
e.g., Grätsch and Bathe (2005) and Ainsworth and Oden (2000).

3.3.2  Recovery‑Based Error Estimation

Recovery-based error estimators consider an ‘improved’, i.e., generally smoothed gradient 
of the solution M[uh] and compare it to the original unsmoothed gradient. Large differences 
point toward large errors of the solution and provide some estimate of the true error because, 
in general, gradients across element boundaries tend to be discontinuous. The a posteriori 
error estimator according to Zienkiewicz and Zhu (1987, 1992a, 1992b) therefore reads

and constitutes a rather heuristic approach. In practical application, the error estimate is 
calculated with respect to each element

with 𝜂2
K
= ‖∇u⋆

h
− ∇uh‖2L2(K) and ∇u⋆

h
 being a ‘recovered’ gradient in element K. It reads

and can be obtained by smoothing over a patch of elements Λ surrounding element K. P is 
a vector polynomial defined on Λ , �i are the basis functions, and �i and n are the coordi-
nates and the number of vertices in element K. The assumption that variations in the gradi-
ent indicate errors and that smooth solutions stand for accurate solutions is, however, not 
strictly valid. Therefore, the method might fail in cases of intrinsically smooth solutions.

Another approach of recovery-based error estimation goes back to Beck and Hiptmair 
(1999) and is formulated directly for time-harmonic Maxwell’s equations. They determine 
the magnetic field using basis functions from different Sobolev spaces, i.e., Ĥs ∈ Hcurl and 
H̃s ∉ Hcurl giving the error indicator

(4)J =

⎧
⎪⎨⎪⎩

�
n ⋅ ∇uh + n� ⋅ ∇u�

h

�
if 𝛾 ⊈ Γ

g − n ⋅ ∇uh if 𝛾 ⊂ ΓN

0 if 𝛾 ⊂ ΓD.

(5)eh
2

E
≤ ∑

K∈Th

c1h
2

K
R2

L2(K)
+ c2hKJ

2

L2(�K)

(Eh)
2 = ∫Ω

|M[uh] − ∇uh|2dΩ

‖eh‖2E =
�
K∈Th

�2
K

∇u⋆
h
=

n∑
i=1

P(𝜉i)𝜙i

𝜂Ki
= ∫Ki

(
Ĥs − H̃s

)∗

𝜇
(
Ĥs − H̃s

)
dΩ,
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where H̃s serves as the ‘improved’ quantity in the sense above. The asterisk denotes the 
complex conjugate here.

3.3.3  Goal‑Oriented Error Estimators

The last type of error estimator we consider here is called a goal-directed error estimator, 
which means that we take into account not only the physical field being modeled, but also the 
fact that the field is observed exclusively at a limited number of locations. Basically, we are 
not interested in the solution being accurate in regions where we have no observations. Con-
sequently, the global energy norm or total error is not necessarily the most important quantity 
we are interested in.

For understanding the concept of goal-oriented error estimation we consider the paral-
lels that exist with respect to the solution of the inverse problem. There, we have functions 
that, in some way, take into account the source and the receiver locations at the same time. 
The function is called the sensitivity function, and it is defined by the Jacobian matrix con-
sisting of derivatives of the data with respect to the model parameters. There are several 
ways to determine its spatial behavior (Spitzer 1998). One is called the sensitivity theorem 
(Lanczos 1961; Geselowitz 1971) that allows for the determination of the sensitivity func-
tion Φlmn by forming an inner product of the solution of the actual physical field Fl excited 
by a source at location l and a virtual field Fm excited by a virtual source at the receiver 
location m integrated over a volume �n at location n. It reads

In mathematics, the virtual problem is called the adjoint or dual problem. It is solved as an 
additional auxiliary problem using the original system matrix with a different right-hand 
side. The adjoint field Fm can be viewed as a weighting function.

The underlying idea of using the solution of the adjoint problem as a weighting function 
is also the basis of goal-oriented error estimation (Ainsworth and Oden 2000). In FE termi-
nology the virtual weighting function is called an influence function and serves for a more 
accurate determination of the so-called quantity of interest. With goal-oriented adaptivity, 
refinements are directed toward a most beneficial increase of the accuracy of this quantity 
of interest Q(u). It typically yields fine meshes around sources and receivers. Note that the 
nature of the reciprocity principle is closely related to self-adjointness that finds expression 
in a symmetric or Hermitian system matrix.

Let again uh ∈ H
1

0
 denote the FE approximation of the solution of the model problem

and let Q ∶ V → ℝ be a bounded, linear functional with wQ as the solution of the adjoint 
problem

Then the error in estimating Q(u) using the FE approximation Q(uh) is

where e and eQ are the errors of the FE approximation of u and wQ , respectively, and 
‖eQ‖ ≤ �Q and ‖e‖ ≤ � . This means the true solution of the quantity of interest is bounded 

Φlmn =∭�n

F
l
⋅ F

mdΩ.

u ∈ V ∶ a(u, v) = l(v) ∀v ∈ V,

wQ ∈ V ∶ a(v,wQ) = Q(v) ∀v ∈ V.

(6)Q(u) − Q(uh) = a(e, eQ) ≤ ��Q,
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by Q(uh) − ��Q ≤ Q(u) ≤ Q(uh) + ��Q . The errors of the primal and dual problems e and 
eQ can be estimated using any of the error estimators presented above or possibly also oth-
ers not mentioned here.

A very illustrative example is given by Ainsworth and Oden (2000) for our model problem 
(1) where the function

is defined as the right hand side f and homogeneous boundary conditions are given by

The solution of function (7) displays steep gradients as can be seen in Fig.  9a. Using a 
global energy norm the original rectangular mesh is strongly refined within the area of 
these gradients (Fig. 9b) using a non-conforming mesh to achieve the given target accuracy. 
The goal-oriented algorithm refines also around the given point x0 = (0.6, 0.4) (Fig.  9c) 
referring to the quantity of interest Q(u) to reach the target accuracy with less numerical 
effort and a steeper convergence rate.

3.4  Error Estimation in Geo‑electromagnetics

In this section, we are going to transfer the findings from the general case above to geo-EM 
starting with Maxwell’s classical equations

(7)u(x, y) = 5x2(1 − x)2
(
e10x

2

− 1

)
y2(1 − y)2

(
e10y

2

− 1

)

(8)
u = 0 on ΓD = {(x, y) ∶ 0 < x < 1, y = 0}

n ⋅ ∇u = 0 on ΓN = Γ⧵ΓD.

(9)∇ × h = j +
�d

�t

(10)∇ × e = −
�b

�t

(11)∇ ⋅ b = 0

(12)∇ ⋅ d = �el

Fig. 9  Example of goal-oriented mesh refinement. Subplot a displays function (7) with boundary conditions 
(8), subplot b shows a refinement due to the global energy norm, and c due to the goal-oriented procedure 
(modified from Ainsworth and Oden 2000)
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and discussing a typical geo-EM case in terms of the curl–curl equation for the secondary 
electric field in the frequency domain. We assume a time-harmonic factor ei�t (see, e.g., 
Schwarzbach et al. 2011; Grayver and Bürg 2014; Grayver 2015) yielding

which is a type of vector Helmholtz equation subject to, e.g., a homogeneous Dirichlet 
boundary condition as stated in Eq. (14). Equation (13) is derived from Maxwell’s equa-
tions by taking the curl of Faraday’s law stated in Eq. (10) and substituting the resulting 
curl of the magnetic field by Ampère’s law Eq. (9). Furthermore, we have considered the 
constitutive relations B = �H , D = �E and Ohm’s law j = �E implying the material to be 
linear and isotropic. In order, B,H,D , and E are the complex-valued EM fields in terms of 
the magnetic flux density, the magnetic field, the dielectric displacement and the electric 
field. Note that the lower case letters in Eqs. (9) to (12) refer to the corresponding fields in 
the time domain. Ep is the primary electric field associated with a background conductivity 
model �p . Es is the secondary electric field due to the anomalous conductivity �a = � − �p . 
� is the scalar magnetic permeability, � the scalar electric permittivity, j the current den-
sity, � the angular frequency, and i the imaginary unit. D is usually neglected in typical 
induction problems considered in geo-EM but has to be taken into account for sufficiently 
high frequencies especially in resistive environments.

Now, Eq.  (13) is multiplied by vectorial test functions 
v ∈ H0(curl,Ω) ∶= {v ∈ H(curl;Ω) ∶ n × v = 0 on �Ω} and integrated over the computa-
tional domain Ω giving the weak formulation of Eq. (13)

We again apply integration by parts and convert the integrals into sums over the elements 
and faces. In the manner of Eqs. (3) and (4), the elemental residual- and jump-based terms 
boil down to

with elemental residuals

and jumps over elemental faces

(13)∇ × (�−1∇ × Es) + i��Es = −i�(� − �p)Ep

(14)n × Es = 0 on Γ

∫Ω

∇ × (�−1∇ × E
s) ⋅ v dΩ + i�∫Ω

�E
s
⋅ v dΩ

= −i�∫Ω

(� − �
p)Ep

⋅ v dΩ.

�2 =
∑
K∈K

�2
K

where �2
K
= �2

R,K
+ �2

J,K
∀K ∈ K

(15)
�2
R,K

= h2
K

����∇ ×
�
�
−1∇ × E

s
�
+ i�(�Es + (� − �

p)Ep)
���
2

L2(K)

+ ‖∇ ⋅ (�Es + (� − �
p)Ep)‖2

L2(K)

�

(16)
�2
J,K

=
1

2

∑
e∈E(K)

he

(‖‖‖[ne × (�−1∇ × E
s)]
‖‖‖
2

L2(e)

+ ‖‖[ne ⋅ (�Es + (� − �
p)Ep)]‖‖2L2(e)

)
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where hK is a measure of the size of element K (e.g., the circumdiameter of a cell), e is 
an interior face of element K with e ∩ Γ = � , he is the circumdiameter of e, and ne is the 
outward normal on it. Brackets denote the jump of the quantity across element boundaries. 
The residual-based term �2

R,K
 vanishes if both field equation and its divergence are exactly 

fulfilled. The jump-based term �2
J,K

 vanishes if the tangential components of the magnetic 
field and the normal component of the current density are continuous. The continuity of 
these quantities is not guaranteed by the weak formulation.

In most cases, error estimation in geo-EM has been used in conjunction with unstruc-
tured 2D triangular and 3D tetrahedral grids. However, there were also some cases where 
quad- and octrees have been used as we will see below.

3.4.1  Residual‑Based Error Estimators in Geo‑EM

A 2D MT residual-based adaptive FE unstructured triangular grid approach was described 
by Franke et  al. (2007b). The 2D and 3D MT boundary value problem has been inves-
tigated by Franke et  al. (2007a), Franke-Börner et  al. (2011), and Franke-Börner (2012) 
in terms of (1) the electric field (2) the magnetic field, (3) the magnetic vector potential 
and the electric scalar potential ( A − � ), (4) the magnetic vector potential only, and (5) 
the anomalous magnetic vector potential in a secondary field formulation using a resid-
ual-based adaptive unstructured tetrahedral discretization with nodal and vector elements. 
Franke-Börner (2012) also did extensive research on the a-priori convergence behavior of 
these FE solutions.

3.4.2  Recovery‑Based Error Estimators in Geo‑EM

Li and Key (2007) and Li and Constable (2007) used nodal FE and recovery-based refine-
ment strategies for the 2D secondary-field marine CSEM case on triangular unstructured 
grids (Fig. 10). Ren and Tang (2010) introduced recovery-based error estimators for the 3D 
DC resistivity case. The 3D secondary-field CSEM case was tackled by Schwarzbach et al. 
(2011) using a recovery-based adaptive technique according to Beck and Hiptmair (1999) 
on unstructured tetrahedral grids and higher order Nédélec elements (Fig. 11). The code 
allows for topography and arbitrary conductivity, magnetic permeability and dielectric per-
mittivity. Another 3D recovery-based adaptive FE modeling code for marine CSEM with 
seafloor topography on the basis of secondary magnetic vector potentials was outlined by 
Ye et al. (2018).

3.4.3  Goal‑Oriented Error Estimators in Geo‑EM

Key and Weiss (2006) used a goal-oriented gradient recovery operator for the adaptive 
refinement of an unstructured triangular grid in 2D MT modeling. Adaptive FE modeling 
of 2D magnetotelluric fields in general anisotropic media using a goal-oriented gradient 
recovery operator for the refinement of an unstructured triangular grid was published by 
Li and Pek (2008). The 2D marine CSEM case was treated in a similar manner by Li and 
Dai (2011). A parallel goal-oriented recovery-based adaptive FE method for 2.5-D EM was 
outlined by Key and Ovall (2011). Three different a posteriori goal-oriented residual-based 
error estimators were investigated by Ren et al. (2013) for the 3D MT case (Fig. 12). These 
are based on the nonzero residuals of the electric field and the continuity of both the nor-
mal component of the current density and the tangential component of the magnetic field 
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across interior elemental interfaces. The FE formulation uses linear Nédélec elements on 
unstructured tetrahedral grids with arbitrary conductivity, magnetic permeability and die-
lectric permittivity.

Another goal-oriented adaptive unstructured tetrahedral grid approach was outlined by 
Ren and Tang (2014) for the 3D DC resistivity case using secondary fields and boundary 
conditions according to Penz et al. (2013) but driving the refinement by a superconvergent 
patch recovery-based a posteriori error estimator. A residual-based a posteriori error esti-
mator for 3D MT on unstructured non-conforming hexahedral meshes (octrees) was pre-
sented by Grayver and Bürg (2014) using direct solvers or conjugate gradient type meth-
ods pre-conditioned with an auxiliary space technique based on highly efficient algebraic 
multigrid methods. The code is based on the open-source software deal.II (Bangerth et al. 

Fig. 10  2D Model of a complex oil reservoir and salt diapir and a linear array of 200 receivers positioned 
along the seafloor. The unstructured triangular mesh is adaptively refined using a recovery-based error esti-
mator. Starting model grid containing 1461 elements (a), fifteenth refinement containing 8818 elements (b), 
and final grid after 31 refinement steps containing 80,233 elements (c) (taken from Li and Key 2007)
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2007), and parallelization was established using the message passing interface MPI. Gray-
ver and Kolev (2015) reported a 3D EM adaptive high-order FE method using fully paral-
lel and distributed robust and scalable linear solvers based on optimal block-diagonal and 
auxiliary space preconditioners. Adaptivity is implemented through residual-based goal-
oriented adaptive mesh refinement (Fig. 13).

A 3D inversion for MT based on a Nédélec unstructured grid forward operator and goal-
oriented residual-based adaptivity was presented by Grayver (2015). Another 2D inversion 
code for MT and CSEM called MARE2DEM was published by Key (2016) where a recov-
ery-based goal-oriented adaptivity scheme was implemented on unstructured triangular 
grids. Likewise on unstructured triangular grids, adaptive FE modeling of DC resistivity 
in 2D generally anisotropic structures was described by Yan et  al. (2016) using a gradi-
ent recovery-based scheme. The 3D airborne EM case was tackled using a goal-oriented 
jump-based adaptive edge FE algorithm implemented by Yin et al. (2016) on unstructured 
tetrahedral grids. Anisotropic conductivities were incorporated in the 3D MT problem by 
Liu et al. (2018) using linear Nédélec FE on unstructured tetrahedral grids. Adaptivity was 
achieved by a goal-oriented residual-based error estimator. The resulting system of linear 
equation was solved using direct solvers from the MUMPS library (Amestoy et al. 2000). 
Recently, Rulff et al. (2021) reported a 3D CSEM total electric field forward operator in the 
frequency domain using first-order Nedelec elements and a residual-based goal-oriented 
error estimator. And finally, a 3D marine CSEM forward modeling code for general aniso-
tropic structures was presented by Li et al. (2021) using goal-oriented residual-based adap-
tivity and Nédélec FE.

3.4.4  Mesh Generation and Refinement, FE Toolboxes and Equation Solver Libraries

Mesh generators, FE toolboxes, equation solvers and the actual procedure of mesh refine-
ment, referred to in FE terminology as enrichment of the FE space, are beyond the scope of 
this article. This section will nevertheless present some key features and facilities used in 
the geo-EM community for these purposes. Besides the fineness of the grid, the accuracy 
of the solution is also influenced by geometric properties of the cells, independent of the 
function to be modeled. This so-called mesh quality can be steered via different options in 
the mesh generator. The mesh generator is usually an external tool to set up meshes with 

Fig. 11  3D Model of a marine conductivity environment including seabed topography (bathymetry) in 
terms of a fixed digital terrain model (two times vertically exaggerated) (a), the coarse unstructured tetrahe-
dral starting mesh including 380,809 elements (b), and the final adaptively refined mesh using a recovery-
based error estimator yielding 542,425 elements after the 6th iteration (c). Note that the refinement has 
mainly taken place around the focus of the secondary sources just beneath the receiver at the seafloor in the 
central part of the model yielding smallest edge lengths of 5.5 m (taken from Schwarzbach et al. 2011)
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appropriate properties and features which affect the mesh quality and, in return, the accu-
racy of the solution of the PDE. According to Shewchuk (1997), we can generally and very 
briefly state that

• small dihedral angles in cells cause poor conditioning of the system matrix,
• large angles cause discretization errors,

Fig. 12  Goal-oriented refinement for a 3D trapezoidal hill model in the MT case. The colors denote a rela-
tive residual-based error indicator in the form of Eq. (6) based on the jump of the normal component of the 
current density [Eq. (16)] shown along a vertical slice of the 3D model for a frequency of 2 Hz. The initial 
model is displayed in (a), the third refinement stage in (b), and the final 7th refinement stage in (c) (taken 
from Ren et al. 2013)
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• fewer elements yield faster solutions, and
• more elements yield higher accuracy.

High-quality meshes should not include poorly-shaped elements (needles, wedges, caps, 
and slivers), should be as small as possible, and should be locally refined with moderate 
grading from small to large. See Dey et al. (1992), Shewchuk (2002), and Bern et al. (2017) 
for more details. The mesh refinement itself is a wide field of research of the meshing com-
munity and is only perceived as a utility by geo-EM modelers. There are a multitude of 
different criteria and ways to split up elements into smaller ones, each affecting the solution 
of the PDE in an individual way.

Especially simple is the refinement of rectangular cells in a non-conforming way into 
quad- and octrees. Most widespread for unstructured triangular/tetrahedral meshes is the 
regular refinement where, for 2D, four new triangles are created from an old one by bisect-
ing each edge (Fig. 14a) or the longest-edge bisection that creates two new triangles from 
an old one (Fig. 14b). The minimum inner angle of the elements can be used as a criterion. 
According to Bern et al. (2017), another geometric criterion for splitting up a cell is the cir-
cumradius-to-shortest edge ratio of a triangle or tetrahedron, where the circumradius refers 
to a circle or sphere through all vertices. Any triangle whose circumradius-to-shortest edge 

Fig. 13  Goal-oriented refinement for 3D MT based on the residuals and jumps according to Eqs. (15) and 
(16) for an octree mesh and a digital terrain model of Kronotsky volcano on the Kamchatka Peninsula, Rus-
sia. The initial (a) and adaptively refined meshes (b) include 11,752 and 169,966 cells, respectively. Receiv-
ers are indicated by white rectangles. The top air layer is not shown (taken from Grayver and Kolev 2015)
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ratio is larger than a given value is split up by inserting a new vertex at its circumcenter 
(Fig.  14c, d). Theoretically, meshing algorithms still cannot guarantee all tetrahedra to 
include good angles. But, in practice, it is possible to create meshes with sufficient quality 
even if the process is tedious.

Very often, if the new mesh is not supposed to contain any hanging nodes, it has to be 
regenerated from scratch, which is time-consuming. Quad- and octrees avoid this circum-
stance by creating a hierarchical set of meshes but leave the modeler with the treatment of 
hanging nodes. Hanging nodes appeared as early as the 1930s in a work by Shortley and 
Weller (1938). There is one approach to refine also unstructured tetrahedral grids by the 
introduction of hanging edges (the equivalent of hanging nodes) for time-domain EM prob-
lems. This technique was presented by Schneider et al. (2022) and is able to rapidly adopt 
the mesh, e.g., to the temporal change of a decaying electric field.

Sometimes mesh generators are also integrated into FE toolboxes (libraries) that include 
the assembly of the system matrix. The computation of FE coefficients for unstructured 
meshes requires a high administrative effort, but is highly automatable once the underly-
ing PDE is identified, the boundary conditions to be implemented are set, and appropriate 
basis functions as well as the desired mesh type are selected. This is the reason for the 
increasing number of ready-to-use and nearly all-purpose FE libraries that can be tailored 
toward the intended application. 2D and 3D mesh generators or FE toolboxes frequently 
used in the geo-EM community are, e.g., Gmsh (Geuzaine and Remacle 2009), Tetgen (Si 
2015), Triangle (Shewchuk 1996), NetGen (Schöberl 1997), libmesh (Kirk et  al. 2006), 
FEniCS (Alnæs et  al. 2015), Dune (Blatt et  al. 2016), OpenFOAM (Weller et  al. 1998), 
deal.II (Bangerth et al. 2007), and MFEM (Anderson et al. 2021).

Some popular and powerful libraries for the direct or iterative numerical solution of 
large sparse systems of linear algebraic equations are, e.g., the shared-memory multiproc-
essing parallel direct sparse solver library PARDISO (Schenk and Gärtner 2004; PARD-
ISO Solver Project 2023; Bollhöfer et al. 2020), the multifrontal massively parallel sparse 
direct solver MUMPS (Amestoy et al. 2000), and the portable, extensible toolkit for scien-
tific computation PETSc (Balay et al. 2022).

a) b)

c) d)

Fig. 14  Refinement techniques. Regular refinement (a) and longest-edge bisection (b). Creation of new tri-
angles in case of an element that violates the circumradius-to-shortest edge ratio. Initial situation with trian-
gle in red and circumradius with circumcenter in green (c), refined mesh with new node in the circumcenter 
(d)
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4  Concluding Remarks

In this paper, I have addressed some important lines of development of geo-EM modeling 
including their historical evolution in mathematics. The key innovations, in my opinion, 
are the introduction of FE in the context of unstructured grids including their local and 
adaptive refinement, which allow in an elegant and flexible way to integrate complex multi-
scale structures, as we find them in the Earth sciences, into our conductivity models. The 
underlying and comprehensive finite element theory enables us to roughly assess the accu-
racy of the solution using a posteriori error estimators which, in turn, are mainly employed 
to adaptively control and optimize the grids, even if they are not able to provide definite 
and helpful bounds. Fast direct and iterative equation solvers as well as powerful mesh 
generators are indispensable tools without which we would not be able to obtain solutions 
for close-to-reality models, even if they basically always remain abstract and incomplete.

I have pointed out that the sensitivity function plays an important role when it comes to 
goal-oriented error estimation. It guides the refinement of the meshes with respect to the 
quantity of interest. The sensitivity is likewise important to determine the level of detailed-
ness of geometric features of the model such as topography, bathymetry or any other inte-
rior structure.

There are certainly other strategies to build realistic models, both on the physical and 
mathematical side. Primarily, it is the technical framework and developments in neighbor-
ing scientific fields that initiate and enable streams of development. In our case, computer 
architectures and new mathematical approaches and algorithms are of the utmost impor-
tance. Parallel computer architectures and distributed systems have been with us for a 
while and we are not yet fully exploiting their possibilities in geo-EM.

Moreover, there are alternative approaches to describe structures in a modified form to 
better represent the multi-scale properties. There is, for example, the hierarchical param-
eterization as introduced by Weiss (2017) and Beskardes and Weiss (2018). It is able to 
efficiently include one- and two-dimensional structures such as lines (representing, e.g., 
boreholes) or surfaces (e.g., for fissures) in the modeling of large volumes via separate 
integrals over edges and faces of the finite elements. Equivalent materials associated with 
coordinate transformations allow simplification of complicated structures and mapping to 
regular grids, which in turn leads to simplification of model handling (Kamm et al. 2020). 
Wavelet  expansions can represent spatial structures with variable accuracy, which can help 
to reduce the number of free parameters (Nittinger and Becken 2018).

Creating a high-quality unstructured tetrahedral mesh that meets all the requirements 
for solution accuracy and mapping fidelity of the geometry in a practical simulation task 
takes a significant amount of time and is still always a matter of hands-on tailoring. On the 
contrary, FD methods impress by their simplicity and straightforward implementation on 
conforming grids, which greatly simplifies the overall handling and facilitates techniques 
such as domain decomposition (see, e.g., Bohlen (2002) for seismic modeling). If we look 
at the development in consumer electronics, we can, for example, see that higher resolu-
tion of screens is not achieved by completely new approaches, but by the huge number of 
pixels (which are comparable to the parameter cells here). Over the decades, the evolution 
went from VGA (640×480 pixels) over HD (920 ×1080 pixels) to currently 4K (4096 × 
2160) without changing the concept of the pixel. 8K and 16K will be reached in the not too 
distant future. Transferring this to our modeling approaches, one could use simple struc-
tured grids for extremely high resolution, if only one can provide enough cells. Of course, 
this is only possible if there is sufficiently large and adequate computing power. All the 
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techniques we use unfold their strength and power only in connection with the currently 
available resources. Sometimes moving forward can mean to go back one step first.

Appendix 1: The Energy Norm

The energy norm was defined by Zienkiewicz and Zhu (1987) and reads

where e = u − uh is the error of the FE solution uh with respect to the unknown exact solu-
tion u. L is a differential operator. For the identity operator, the L2-norm is obtained as a 
special case of the energy norm

The squared error can be obtained by summing over the N elements of the partition Th giv-

ing e2 =
N∑
i=1

e
2

i
. With this, a relative percentage error can be expressed as � =

e

u
∗ 100% 

which represents a weighted RMS.

Appendix 2: The Variational Problem

We consider the strong formulation of our model boundary value problem of Poisson’s 
equation representing an elliptic linear problem

over the domain Ω with Lipschitz boundary �Ω = Γ = ΓD ∪ ΓN , i.e., the data f ∈ L2(Ω) 
and g ∈ L2(ΓN) are sufficiently smooth. n is the outward normal on Γ.

Now we multiply both sides of Eq. (17) with test functions v ∈ V , where 
V =

{
v ∈ H

1(Ω) ∶ v = 0 on ΓD

}
 is the Sobolev space H1

0
 giving

Applying the product rule

e =

(
∫Ω

eTL e dΩ

)1∕2

,

eL2 =

(
∫Ω

eTe dΩ

)1∕2

.

(17)−∇2u = f on Ω

(18)u = 0 on ΓD

(19)n ⋅ ∇u = g on ΓN

−∫Ω

v∇2u dΩ = ∫Ω

vf dΩ.

∫Ω

∇ ⋅ (v∇u) dΩ = ∫Ω

v∇2u dΩ + ∫Ω

∇v∇u dΩ
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to the equation above and applying Gauß’ theorem yields

With v ∈ H
1

0
 , the boundary integral reduces to ∫ΓN

gv dS and we obtain

giving a bilinear form

and a linear functional

so that the weak formulation of the problem can be written as
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